临界温度和临界压力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临界温度和临界压力
因为任何气体在一点温度和压力下都可以液化,温度越高,液化所需要的压力也越高,但是当温度超过某一数值时,即使在增加多大的压力也不能液化,这个温度叫临界温度,在这一温度下最低的压力就叫做临界压力,例如:水的临界温度为374.15℃,临界压力为225.65kgf/cm2;,氨的临界温度为132.4℃,临界压力为115.2kgf/cm2;。
通常我们所见到的物质常以三种形态存在,即固体、液体和气体。
形态是物质的一种属性,不同物质的形态有所不同,如铁是固体,水是液体,空气是气体等。
一种物质所具有的形态与其所存在的客观条件有关,并非永恒不变。
例如,在一般情况下二氧化碳是气体,但在一定的低温和一定压力下也可以是液体或固体(俗称干冰)。
其它物质的形态也同样随着外界条件的变化而改变。
气体变成液体的过程叫做气体的液化。
对气体能否变成液体的问题是有个认识过程的。
早在19世纪以前,曾认为气体本质上就是气体,不能使之改变。
只是在19世纪20年代,人们才成功地用加大压力的办法做氨气、氯气、二氧化碳及其它一些气体变成液体。
但是还有许多其它气体(如组成空气的主要成分——氮气和氧气),虽然作了很大努力,也不能使之液化。
因此,人们曾错误地认为当时还不能液化的这些气体是“永久气体”,这种形而上学的观点,阻碍了人们进一步研究如何使空气液化的工作。
随着科学的不断发展,人们逐渐认识到:组成物质的分子间都存在相互吸引和相互排斥的两种作用力,当分子间相互排斥力>分子间相互吸引力时,物质的气体;当分子间的相互吸引力>分子间的相互排斥
力或至少等于排斥力的时候,气体才有可能转变为液体。
分子间的相互吸引作用,实际上可以认为不依赖于温度;相反,由分子的相互撞击而引起互相排斥作用则强烈地依赖于温度,所以只有当气体的温度降低到一定程度时,才有可能使分子间的吸引作用≥分子间的排斥作用。
即才有可能使气体变为液体。
这种使分子间的吸引作用等于分子间的排斥作用时,所许可存在的最高温度叫做该气体的临界温度。
当高于临界温度时无论外加多大的压力,都不能使气体液化。
在临界温度下使气体液化所需的最低压力,叫做临界压力。
不同的气体,它们的临界温度和临界压力也不相同,临界温度较高的气体,如氨、氯气、二氧化碳,二氧化硫和乙炔等气体,在常温下(低于它们的临界温度)加压就能液化,临界温度较低的气体,如氧气、一氧化碳等,需经压缩并冷却到一定温度以下才能液化;临界温度很低的气体如氢和氦等,需经压缩并冷却到接近绝对零度(-273.16℃)的低温才能液化。
氦的临界温度最低,它是最后一个转变成液体的气体。
随着生产的发展,液化气体有着广泛的应用。
将气体变成液体后体积大为减小,便于贮存运输和使用。
例如我们常见的液氨、液氯和液化石油气(主要成分是丙烷、丁烷、丙烯、丁烯)等。
气体的液化也常用于混合气体的分离,如空气液化后,可用来分离出氮气、氧气及其它稀有气体等,此外,气体的液化对现代科学技术的发展也具有重要的意义,例如液氧可用于制造液氧炸药和高能燃料的助燃剂。
液氢可用作高能燃料;液氦可用来获得绝对零度(-273.16℃)的低温等。
1869年Andrews首先发现临界现象.任何一种物质都存在三种相态----气相、液相、固相。
三相呈平衡态共存的点叫三相点。
液、气两相呈平衡状态的点叫临界点。
在临界点时的温度和压力称为临界温度和临界压力。
不同的物质其临界点所要求的压力和温度各不相同。
超临界流体(SCF)是指在临界温度和临界压力以上的流体。
高于临界温度和临界压力而接近临界点的状态称为超临界状态。
处于超临界状态时,气液两相性质非常接近,以至于无法分辨,故称之为SCF.自从1869年Andrews首先发现临界现象以来,各种研究工作陆续开展起来,其中包括1879年Hannay和Hogarth测量了固体在超临界流体中的溶解度,1937年Michels等人准确地测量了CO2近临界点的状态等等。
在纯物质相图上,一般流体的气-液平衡线有一个终点——临界点,此处对应的温度和压力即是临界温度(Tc)和临界压力(Pc)。
当流体的温度和压力处于Tc和Pc之上时,那么流体就处于超临界状态(supercritical状态,简称SC 状态)。
超临界流体的许多物理化学性质介于气体和液体之间,并具有两者的优点,如具有与液体相近的溶解能力和传热系数,具有与气体相近的黏度系数和扩散系数。
同时它也具有区别于气态和液态的明显特点:
(1)可以得到处于气态和液态之间的任一密度;
(2)在临界点附近,压力的微小变化可导致密度的巨大变化。
由于黏度、介电常数、扩散系数和溶解能力都与密度有关,因此可以方便地通过调节压力来控制超临界流体的物理化学性质。
与常用的有机溶剂相比,超临界流体特别是SC CO2、SC H2O还是一种环境友好的溶剂。
正是这些优点,使得超临界流体具有广泛的应用潜力,超临界流体萃取分离技术已得到了广泛的医药
方面应用。
超临界流体萃取(Supercritical Fluid extrac-ion,SPE)是一项新型提取技术,超临界流体萃取技术就是利用超临界条件下的气体作萃取剂,从液体或固体中萃取出某些成分并进行分离的技术。
超临界条件下的气体,也称为超临界流体(SF),是处于临界温度(Tc)和临界压力(Pc)以上,以流体形式存在的物质。
通常有二氧化碳(CO2)、氮气(N2)、氧化二氮(N2O)、乙烯(C2H4、三氟甲烷(CHF3)等。
超临界流体萃取的基本原理:当气体处于超临界状态时,成为性质介于液体和气体之间的单一相态,具有和液体相近的密度,粘度虽高于气体但明显低于液体,扩散系数为液体的10~100倍,因此对物料有较好的渗透性和较强的溶解能力,能够将物料中某些成分提取出来。
并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加,极性增大,利用程序升压可将不同极性的成分进行分部提取。
提取完成后,改变体系温度或压力,使超临界流体变成普通气体逸散出去,物料中已提取的成分就可以完全或基本上完全析出,达到提取和分离的目的。
物质的四种状态(固态、液态、气态和超临界状态)随着它的温度和压力而改变。
以CO2为例,CO2在三相点(T)上,固、液、气三相共存的温度T(tr)为-56.4℃(217K),压力P(tr)为5.2×105Pa。
CO2的蒸气压线终止于临界点C(Tc=31.3℃,Pc=73.8×105Pa,ρc=0.47 g/cm3)。
超过临界点以上,液气两相的界面消失,成为超临界流体(SF)[2]。
SF的扩散系数(~10-4cm2/s)比一般液体的扩散系数(~10-5cm2/s)高一个数量级,而它的粘度(~10-4N s/m2)要低于一般液体(~10-3Ns/m2)一个数量级。
与液-液萃取系统相比,SF系统具有较快的质量传递和萃取速度。
因此能有效地穿入固体样品的空隙中进行萃取分离。
SF的密度随
着温度和压力改变,导致它的溶解度参数(solubility parameter)的改变。
在较低的密度下,SF-CO2的溶解度参数接近己烷;在较高的密度下,它可接近氯仿。
因此控制SF的密度(温度和压力),可获得所需要的溶剂强度。
这种能力使得SF可任意改变溶剂强度而适合于不同的溶质。
一般而论,SF能有效地溶解非极性固体,它亦能按溶质的极性做选择性的萃取,这在分离和分析化学的领域用途很广。
CO2具有较低的临界温度和压力,且价格便宜,无毒,具有较低的活性,因此SF-CO2常被用来萃取非极性和略有极性的物质。
在超临界状态下,流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和对物质良好的溶解能力。
其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内出成比例,故可通过控制温度和压力改变物质的溶解度。
超临界流体已用于药物的提取合成分析及加工。