高频电子线路第六章振幅调制解调与混频
第6章振幅调制、 解调及混频
(1)波形表示式
u AM (t ) [U C kaU cos t ]cos ct (6-3) kaU U C [1 cos t ]cos c t UC U C [1 ma cos t ]cos c t
(6-4)
调幅度 ma
kaU UC
不仅与 ka 有关,还与信号的幅度有关
第6章振幅调制、 解调及混频
(3)频域表示式及频谱图
u (t ) U n cos(nt n )
n 1
有 min
max
u AM (t ) [U C ka U n cos(nt n )]cos ct
n 1
kaU n U C [1 cos nt ]cos c t n 1 U C U C [1 mn cos nt ]cos ct
u (t ) 频谱
0 3 00 振 幅 3 4 00 (a ) f / Hz
u AM (t ) 频谱
0
fc-3 4 00 (b )
fc
fc+3 4 00
f / Hz
图6-5 (a)语音频谱(b)已调信号频谱
8
《高频电子线路》
第6章振幅调制、 解调及混频
c min 上边带:
载波: c 下边带: c min
(1) 当调幅度m=1时,调幅波的最大功率为载波功率的4倍,
而最小功率为零,因此由于最大、最小功率相差太大,对特 定的功放管而言,其额定输出功率将大大受限;因此在设计
功率放大器时,一定要以此来选择功放管。保证:Pmax≤PH
(功放管的额定输出功率) (2) 当m=1时,不携带调制信号的载波成分将占用调幅波 总功率的 2/3 ,而带有信号的边频只调幅波总功率的 1/3 ,因 此功率浪费大,效率低;若m<1,则效率更低。
高频电子线路第6章振幅调制解调及混频
i
VD uΩ
+
H(j) uo(t) 0 F
fc
2fc
3fc
f
−
(b)流过二极管的电流频谱
uc
2020/4/10
(a)
26
(2) 单差分对电路:
io
Io (1
uB ) Ee
uA 2VT
,
uA , uB 26mV
uB uA
U cost
Uc
c
osct
uo
I o RLU c 2VT
1
U Ee
cost cosct,
m U Ee
单差分对AM调制器的输出波形 :
2020/4/10
27
关于AM调制的说明: (1). 高电平AM调制:集电极调幅需要谐振功放工作在过压状 态,而基极调幅需要谐振功放在欠压状态,前者优点是输出 功率较大,后者优点是所需的激励功率功率较小; (2). 二极管AM调制:合理选择信号的注入位置,可以用二极 管平衡电路直接实现AM调制;要想用二极管环形电路实现 AM调制,需要在输出电压中再加入载波分量,或者在输入调 制信号中叠加上直流成分; (3). 双差分对AM调制电路:在小信号状态下,双差分对电路 就是一个标准的模拟乘法器,要想利用它实现AM调制,也需 要在输出端再加入载频分量,或者在输入调制信号中叠加上 直流成分。
R0Eb0 u cosct
RL
C1 R1
Ec CB
2020/4/10
24
基极调幅的波形:
2020/4/10
25
2) 低电平调制:用第5章的频谱搬移电路实现低电平AM调制。
(1) 单二极管电路: u1=uΩ, u2= uc, Uc>>UΩ。
高频电子线路振幅解调
c o s t1 m
代入式(6―58),得出不失真条件如下:
(6―59)
RC 1 m 2 m
RC
1
m
2 m ax
m axm m ax
(6―60) (6―61)
第6章振幅调制、 解调及混频
2) 底部切削失真
底部切削失真又称为负 峰切削失真。产生这种 失真是因检波器的交直 流负载不同引起的。
I1
iDmaxa1()
gDUm
(
sin
sin)
式中,α0(θ)、α1(θ)为电流分解系数。 由式(6―43(a))和图6―35可得
Kd
Uo Um
cos
(6―46) (6―47)
(6―48)
第6章振幅调制、 解调及混频
由此可见,检波系数Kd是检波器电流iD的通角θ的函 数,求出θ后,就可得Kd。
(6―44)
i D m a x g D ( U m U o ) g D U m ( 1 c o s) (6―45)
式中,uD=ui-uo,gD=1/rD,θ为电流通角,iD是周期 性余弦脉冲,其平均分量I0为
第6章振幅调制、 解调及混频
I0
iDmaxa0()
gDUm
(sin
cos)
基频分量为
f
0
f
F
图6―31 同步解调器的框图
第6章振幅调制、 解调及混频
➢ 同步检波分为乘积型(a)和叠加型(b)两类。 ➢ 都需要用恢复的载波信号ur进行解调。
us × 低 通 滤 波 器 uo us + 包 络 检 波 器 uo
ur (a)
ur (b)
图6―32 同步检波器
第6章振幅调制、 解调及混频
振幅调制、解调与混频电路
AMVΩmVcm AMVΩmVcm
cos(c cos(c
)t )t
对于复杂信号调制上面的模型也成立。
通信工程学院
27
F ()
F f (t) cosct
F fˆ (t) sin ct
SUSB ()
SLSB ()
通信工程学院
28
4.1.2 振幅解调和混频电路的组成模型
P(t) 1
2
Vπ 2
-π m0
(1
Ma
cost ) 2
cos2
ctdct
1 2
Vm20
(1
Ma
cos t)2
P0 (1
Ma
cos t)2
式中,P0 Vm20 / 2 :载波分量产生的平均功率。
Pmax P0 1 Ma 2
Pmin P0 1 Ma 2
通信工程学院
20
通信工程学院
21
③组成模型 vO (t) AMVcmv (t) cosct AMVcm ka
④讨论 •其包络与调制信号不一致; •调制效率高; •信号的带宽与AM信号一样。
通信工程学院
22
2. 单边带调制信号
①定义:仅传输一个边带(上边带或下边带)的调制方式称为单 边带调制 。 ②目的:节省发射功率;频谱宽度压缩一半,BWSSB = Fmax。
带通
通信工程学院
37
4.2 相乘器电路
•
实现:利用非线性器件。 电阻性
按非线性器件 电抗性
• 类别
两输入信号加到同一器件输入端
按输入信号注入方式 两输入信号加到不同器件输入端
高频电路A讲稿(第6章 幅调制、解调和混频)
io (t )
Io 1 uuC , 4 VT2
其中 | U | 、 | U C | 26mv
5/20
高频电子线路 A 课堂讲稿
4、SSB 调制电路:有滤波法和移相法两种。 (1)滤波法:由二极管平衡调制器和边带滤波器组成。 边带滤波器是一个带通滤波器,常用边带滤波器有:机械滤波器、晶体滤波器和陶瓷滤波器。 (2)移相法:移相法可以从 SSB 信号的表达式来理解。
i i1 i2 g D K (ct )(uc u ) g D K (ct )( uc u ) g D uc g D K (ct )u
显然不能实现 DSB 调制。
6/20
高频电子线路 A 课堂讲稿
(d)由电路图可得:
u D1 u c u u D2 uc u
i1 g D K (c t )u D1 i2 g D K (c t )u D 2
i i1 i2 2 g D K (c t )uc
显然不可能实现 DSB 调制。 三、调幅信号的解调 概念:从高频已调信号中恢复出调制信号的过程称为解调,又称为检波。解调是调制的逆过程。 原理:属于频谱的线性搬移,可以使用第 5 章介绍的方法。 1 调幅解调方法:包络检波和同步检波两大类。 (1) 包络检波:解调器输出电压与输入已调波的包络成正比。 包络检波器分类:峰值包络检波器和平均包络检波器。主要讲峰值包络检波器。 电路组成:非线性电路+低通滤波器。 用途:只能用于 AM 信号解调。 (2)同步检波:要在接收端产生一个与发送端同频同相的参考载波。 分类:包括乘积型和叠加型两类。
iL 2 g D K (C t )u
g DU cos t 2 g DU cos(C )t 2 g DU cos(C )t ......
《高频电子线路》振幅调制与解调实验报告
《高频电子线路》振幅调制与解调实验报告课程名称:高频电子线路实验类型:设计型实验项目名称:振幅调制与解调一、实验目的和要求通过实验,学习振幅调制与解调的工作原理、电路组成和调试方法,学习用差分对电路实现AM调制和包络检波电路的设计方法,利用Multisim仿真软件进行仿真分析实验。
二、实验内容和原理1、实验原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波信号。
调幅波的解调是调幅的逆过程,即从调幅信号中取出调制信号,通常称之为检波。
调幅波解调方法主要有二极管峰值包络检波器,同步检波器。
2、实验内容(1)设计单差对管实现AM调幅信号电路图。
(2)在电路中双端输入频率为1MHz的载波信号,单端输入频率为10kHz的调制信号,模拟仿真产生AM信号,并用双踪示波器观察调制信号和AM信号波形。
(3)用频谱分析仪测试AM信号的频谱,并进行理论分析对比。
(4)对AM信号采用包络检波,设计检波电路,仿真分析,用双踪示波器观察检波后的调制信号波形。
(5)混频实验仿真分析。
三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、函数发生器、频谱分析仪、直流电源。
四、操作方法与实验步骤及实验数据记录和处理1、设计单差对管实现AM调幅信号电路图2、在电路中Q1和Q2的基极双端接入函数发生器,函数发生器的频率设为1MHz,幅度设为10Vp。
在Q3的基极单端接入函数发生器,其频率设为10kHz,幅度为20Vp。
进行模拟仿真,用双踪示波器观察产生AM信号和调制信号。
3、在Q2的集电极接入频谱分析仪,观察AM信号的频谱结构。
为了便于观察,可将Q3的基极的函数发生器的频率设置为0.5MHz,测量并记录输出信号的频率成分。
C1200pF R2100ΩR1100ΩL1126uH R43kΩXSC3V112VR31.2kΩR55.6kΩR64.7kΩR74.7kΩV212VR810kΩXFG1COMXFG2COMQ12N2923Q22N2923Q32N2923XSA1TINAM 输出信号 f 1(MHz )f 2(MHz )f 3(MHz )测量频率 理论计算频率4、包络检波实验,用双踪示波器观察原调制信号和包络检波后恢复的调制信号。
高频电子线路第6章振幅调制解调及混频
Pmax Pc (1 m)2 Pmin Pc (1 m)2
(6―14)
《高频电路原理与分析》
第6章振幅调制、 解调及混频
2.
在调制过程中,将载波抑制就形成了抑制载波双边 带信号,简称双边带信号。它可用载波与调制信号相乘 得到,其表示式为
uDSB (t) kf (t)kf (t)uC 在单一正弦信号uΩ=UΩcosΩt调制时,
uAM(t)=UM(t)cosωct=UC(1+mcosΩt)cosωct (6―5)
上面的分析是在单一正弦信号作为调制信号的情
况下进行的,而一般传送的信号并非为单一频率的信号,
例如是一连续频谱信号f(t),这时,可用下式来描述调
幅波:
uAM (t) UC[1 mf (t)]cosct
(6―6 )
u
0
t
uC
(a)
0
t
(b) u AM (t)
mUc
m< 1
Uc
0
t
(c) u AM (t)
m= 1
0
t
uAM (t)
(d)
m> 1
0
t
(e)
《高频电路原理与分析》
u
0
t
uC
(a)
0
t
(b) u AM (t)
mUc
m< 1
Uc
0
t
(c) u AM (t)
m= 1
0
t
uAM (t)
(d)
m> 1
0
t
图6―1 AM调制过程中的信号波形
Um(t)=UC+ΔUC(t)=UC+kaUΩcosΩt
=UC(1+mcosΩt)
高频电子线路课件:模拟调幅、检波与混频电路
Ma
k
U m Ucm
,
0<Ma≤1, k为比例系数。
0
t
0
表达式: uc(t)
Ucm
M a0
Umax Umin Umax Umin
t
U
m
ax U U0
cm
c
m
c
Ucm Umin U Fra bibliotekcmuAM(t)
Uma x
包络
Ucm
Umin 0
(6.2.2)
t
0 c- c c+
(a)
(b)
式(6.2.1)又可以写成
第6章 模拟调幅、检波与混频电路 (线性频率变换电路)
6.1 概述 6.2 振幅调制与解调原理 6.3 调幅电路 6.4 检波电路 6.5 混频 6.6 倍频 6.7 接收机中的自动增益控制电路 6.8 实例介绍 6.9 章末小结
6.1
调制电路与解调电路是通信系统中的重要组成部分。 正 如绪论中所介绍的, 调制是在发射端将调制信号从低频段变 换到高频段, 便于天线发送或实现不同信号源、不同系统的 频分复用;解调是在接收端将已调波信号从高频段变换到低 频段, 恢复原调制信号。
cos(2n
1)ct
=gUcm(1+MacosΩt)cosωct·
其中的低频分量是:
1
gUcm(1 M a cost)
uAM(t)
非 线 性 器 件 低 通 滤 波 器 u(t)
图 6.2.5 包络检波原理图
(2) 同步检波。
同步检波必须采用一个与发射端载波同频同相(或固定相 位差)的信号, 称为同步信号。
一般情况下, 正交调幅信号的波形比较复杂。 图6.2.12 给出了单频调制时的频谱图。
高频电路原理与分析-第6章振幅调制解调与混频课件.ppt
第6章振幅调制、 解调及混频
为了避免产生惰性失真,必须在任何一个高频周期
内,使电容C通过R放电的速度大于或等于包络的下降速
度,即
uo U (t) t t
(6―55)
如果输入信号为单音调制的AM波,在t1时刻其包络 的变化速度为
U (t) t
t t1
mUmsin t1
(6―57)
《高频电路原理与分析》
为四象限乘法器
实际典型值:vc(60mv)、 vΩ (300mv)、输出载波抑制
可达60dB。
第6章振幅调制、 解调及混频
二、开关型调幅电路 要求:Vc>>VΩ 即:vc等效为开关函数S(t) 1.双二极管平衡调幅电路
《高频电路原理与分析》
第6章振幅调制、 解调及混频
设:二极管导通电阻为RD,等效负载为2RL 对于D1、D2: vc是共模信号,在RL上相消, vΩ是差模信号,vΩS(t)在RL上相加。
0.6
0.4 0.2
0 10
RC= ∞ RC= 5
RC= 0
gDR
10 0
10 00
图6―40 滤波电路对Kd的影响
《高频电路原理与分析》
第6章振幅调制、 解调及混频
2) 输入电阻Ri
检波器的输入阻抗包括输入电阻Ri及输入电容Ci, 如图6―41所示。输入电阻是输入载波电压的振幅Um与 检波器电流的基频分量振幅I1之比值,即
三、晶体管调幅电路 基极(发射极)调幅: vΩ控制基极(发射极)电压。 集电极(漏极)调幅: vΩ控制集电极(漏极)电压。 由选频网络选出vo(已调信号)。 1.基极调幅电路(发射极调幅电路)
《高频电路原理与分析》
第6章振幅调制、 解调及混频
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
13
(2)同步检波 同步检波必须采用一个与发射端载波同频同 相(或固定相位差)的本地载波,称为同步信号。 同步检波可由乘法器和低通滤波器实现,其原理如下图:
同步检波原理图
设输入普通调幅信号为 u A(t M ) (U c m k m U c o t)c so c ts
乘法器另一输入同步信号为: ur(t)Urm cocst
正弦波调制是以高频正弦波为载波,用低频调制 信号分别去控制正弦波的振幅、频率或相位三个参 量,分别称为调幅(AM)、调频(FM)和调相 (PM)。
返回
4
6.2 振幅调制与解调原理
振幅调制可分为几种不同的调幅方式: 普通调幅(AM) 双边带调幅(DSB-AM) 单边带调幅(SSB-AM) 残留边带调幅(VSB-AM) 正交调幅(QAM)
其中调幅指数 Mak•U U cm m,0Ma1, k为比例系数。 还可以得到调幅指数的表达式: M a U U m m a aU U x xm mi i n n U m U a cU x m cm U cU m cU m mi n
6
6.2.1 普通调幅方式
图6.2.1 普通调幅波形和频谱
7
6.2.1 普通调幅方式
❖ 显然, 当Ma>1时, 普通调幅波的包络变化与调制信 号不再相同, 产生了失真, 称为过调制, 如图6.2.2所 示。所以, 普通调幅要求Ma必须不大于1,即Ma≤1 。
8
式(6.2.1)又可以写成:
u A( t M ) U cc mo c t M s a 2 U c[ m cc o ) t s c(o c s ) t](
解调是在接收端将已调波信号从高频段变换到低 频段,恢复原调制信号。
返回
2
无线电发射机和接收机框图
3
6.1 概述
在模拟系统里,按照载波波形的不同,可分为脉 冲调制和正弦波调制两种方式。
脉冲调制是以高频矩形脉冲为载波,用低频调制 信号分别去控制矩形脉冲的幅度、宽度或位置三个 参量,分别称为脉幅调制(PAM),脉宽调制 (PDM)和脉位调制(PPM)。
其中 k 2 是乘法器增益。
综上所述,包络检波与同步检波都是利用普通调幅信号中的
边频分量c 与载波信号分量 c 进行处理, 其差频就是调制
信号的频率分量 。
返回
15
6.2.2 双边带调幅方式
1.双边带调幅信号的特点
设载波为 uc(t)Ucm cocst ,单频调制信号为
u (t) U m c o t( s c),则双边带调幅信号为:
返回
5
6.2.1 普通调幅方式
1.普通调幅信号的表达式、波形、频谱和带宽
设载波为 uc(t)Ucm cocst ,调制信号为单频信号
既 u (t) U m c o t( s c),则普通调幅信号为:
uAM(t) (Ucm kUm cost)cosct 动画
U c( m 1 M aco t)s cocts演示
u D ( t ) S k B ( t u ) u c ( t ) k m U U cc m o tcs c o t s
k U 2 m U cm [co c s)t( coc s ) (t]
其中k为比例系数.
此动画显示了单频调制双边带调幅信号 的有关波形与频谱图. 此动画显示了相位突变
u A(tM ) (U c m k m U c o t)c so c ts
uA M (t) 1U kcmU mcos t •U cmcosct
k [1k1u(t)]•uc(t),k1Ucm
返回
图6.2.4 低电平调幅原理图
11
普通调幅信号的解调方法有两种,即包络检波和同步检波。
(1)包络检波 利用普通调幅信号的包络反映了调制信号波形 变化这一特点,如能将包络提取出来,就可以恢复原来的调制信 号,这就是包络检波原理。下图给出了包络检波的原理图。
若单频调幅信号加在负载R上,载频分量产生的平均功率:
Pc
1
U
2 cm
2R
两个边频分量产生的平均功率相同,均为:
PSB21RMa2Ucm2 1 4Ma2Pc
调幅信号总平均功率: PavPc2PSB11 2Ma2Pc
返回
9
6.2.1 普通调幅方式
一般调幅信号的波形和频谱
10
2.普通调幅信号的产生和解调方法
返回
14
乘法器输出为:
u o ( t ) k 2 u A ( t ) M u r ( t ) k 2 U c U m r( 1 m M a c t o ) c 2 s o c t s
k 2 U c 2 U m r m 1 M a c t o cs 2 o c t M s a c2 2 o c s ) t M (a c2 2 o c s ) t
k 2 krU 2 U m m U c m c o t 1 2 s c2 o c s ) t( 1 2 c2 o c s ) t (
16
u(t) 0
uc(t) 0
uDSB (t) 0
t
00 tc源自0 t(a)图6.2.7 DSB-AM波形及频谱
17
c- c+ (b)
2.双边带调幅信号的产生与解调方法
同步信号为 ur(t)Urm cocst,则乘法器输出为:
u o ( t ) k 2 u D ( t ) S • u r ( B t ) k 2 k r U U m m U cc m t o • c 2 s o c t s
图6.2.5 包络检波原理图
非线性器件输出电流为:
io(t)gA u ( M t)•K 1(ct)
g c( 1 U m M a c o t ) cs c o t• 1 2 s n 1 ( 1 ) n 1 • ( 2 n 2 1 )c2 o n 1 )s c t
第六章 调幅、检波与混频电路
(线性频率变换电路)
6.1 概述 6.2 振幅调制与解调原理 6.3 调幅电路 6.4 检波电路 6.5 混频 6.6 倍频 6.7 接收机中的自动增益控制电路 6.8 实例介绍(158-159)
1
6.1 概 述
调制电路与解调电路是通信系统中的重要组成 部分。
调制是在发射端将调制信号从低频段变换到高频 段,便于天线发送或实现不同信号源、不同系统的 频分复用;