2018年内蒙古自治区中考数学模拟试卷(四)附解析

合集下载

2024年内蒙古通辽市中考数学试卷(附答案解析)

2024年内蒙古通辽市中考数学试卷(附答案解析)

2024年内蒙古通辽市中考数学试卷(附答案解析)一、选择题(本题包括12道小题,每小题3分,共36分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.(3分)某地区某日最高气温是零上8℃,记作+8℃,最低气温是零下3℃,应该记作()A.﹣3℃B.+3℃C.﹣5℃D.+5℃【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,某地区某日最高气温是零上8℃,记作+8℃,最低气温是零下3℃,应该记作﹣3℃.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.2.(3分)如图,这个几何体的俯视图是()A.B.C.D.【分析】根据简单几何体的三视图的画法画出它的俯视图即可.【解答】解:这个几何体的俯视图是,故选:D.【点评】本题考查简单几何体的三视图,理解视图的定义,掌握简单几何体三视图的画法和形状是正确解答的关键.3.(3分)在学校文艺汇演中,7名参加舞蹈表演的女生身高(单位:cm)如下:170175169171172170173这组数据的中位数是()A.175B.172C.171D.170【答案】C.4.(3分)下列运算结果正确的是()A.4xy﹣3xy=1B.(﹣a2)3=﹣a6C.=﹣5D.+=【答案】B.5.(3分)剪纸是我国民间艺术之一,如图放置的剪纸作品,它的对称轴与平面直角坐标系的坐标轴重合,则点A(﹣4,2)关于对称轴对称的点的坐标为()A.(﹣4,﹣2)B.(4,﹣2)C.(4,2)D.(﹣2,﹣4)【分析】根据所给图形,得出y轴为其对称轴,再根据轴对称的性质即可解决问题.【解答】解:由所给图形可知,此图形关于y轴对称,所以点A(﹣4,2)关于对称轴对称的点的坐标为(4,2).故选:C.【点评】本题主要考查了坐标与图形变化﹣对称、坐标确定位置及关于x轴、y轴对称的点的坐标,熟知轴对称的性质是解题的关键.6.(3分)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2(其中k1k1≠0,k1,k2,b1,b2为常数)的图象分别为直线l1,l2.下列结论正确的是()A.b1+b2>0B.b1b2>0C.k1+k2<0D.k1k2<0【分析】根据函数图象,可以得到b1=2,b2=﹣1,k1>0,k2>0,然后即可判断各个选项中的说法是否正确.【解答】解:由图象可得,b1=2,b2=﹣1,k1>0,k2>0,∴b1+b2>0,故选项A正确,符合题意;b1b2<0,故选项B错误,不符合题意;k1+k2>0,故选项C错误,不符合题意;k1k2>0,故选项D错误,不符合题意;故选:A.【点评】本题考查一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.(3分)不透明的袋子中装有1个红球,2个白球,这些球除颜色外无其他差别,从中随机摸出一个球,放回并摇匀,再从中随机摸出一个球,那么两次都摸出白球的概率是()A.B.C.D.【分析】列表可得出所有等可能的结果数以及两次都摸出白球的结果数,再利用概率公式可得出答案.【解答】解:列表如下:红白白红(红,红)(红,白)(红,白)白(白,红)(白,白)(白,白)白(白,红)(白,白)(白,白)共有9种等可能的结果,其中两次都摸出白球的结果有4种,∴两次都摸出白球的概率为.故选:C.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.8.(3分)将三角尺ABC按如图位置摆放,顶点A落在直线l1上,顶点B落在直线l2上,若l1∥l2,∠1=25°,则∠2的度数是()A.45°B.35°C.30°D.25°【分析】由平行线的性质推出∠3=∠1=25°,即可求出∠2的度数.【解答】解:∵l1∥l2,∴∠3=∠1=25°,∴∠2=60°﹣25°=35°.故选:B.【点评】本题考查平行线的性质,关键是由平行线的性质推出∠3=∠1.9.(3分)如图,▱ABCD的对角线AC,BD交于点O,以下条件不能证明▱ABCD是菱形的是()A.∠BAC=∠BCA B.∠ABD=∠CBDC.OA2+OB2=AD2D.AD2+OA2=OD2【分析】由菱形的判定、矩形的判定分别对各个选项进行判断即可.【解答】解:A、∵∠BAC=∠BCA,∴AB=BC,∴▱ABCD是菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠CBD,∵∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴▱ABCD是菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴OB=OD,∵OA2+OB2=AD2,∴OA2+OD2=AD2,∴∠AOD=90°,∴AC⊥BD,∴▱ABCD是菱形,故选项C不符合题意,D、∵AD2+OA2=OD2,∴∠OAD=90°,∴OA⊥AD,∴不能证得▱ABCD是菱形,故选项D符合题意;故选:D.【点评】本题考查了菱形的判定、平行四边形的性质,熟练掌握菱形的判定方法是解题的关键.10.(3分)如图,小程的爸爸用一段10m长的铁丝网围成一个一边靠墙(墙长5.5m)的矩形鸭舍,其面积为15m2,在鸭舍侧面中间位置留一个1m宽的门(由其它材料成),则BC长为()A.5m或6m B.2.5m或3m C.5m D.3m【答案】C.11.(3分)如图,圆形拱门最下端AB在地面上,D为AB的中点,C为拱门最高点,线段CD经过拱门所在圆的圆心,若AB=1m,CD=2.5m,则拱门所在圆的半径为()A.1.25m B.1.3m C.1.4m D.1.45m【分析】如图,连接OA,先证明CD⊥AB,AD=BD=0.5,再进一步的利用勾股定理计算即可.【解答】解:如图,连接OA,∵D为AB的中点,C为拱门最高点,线段CD经过拱门所在圆的圆心,AB=1m,∴CD⊥AB,AD=BD=0.5,设拱门所在圆的半径为rm,∴OA=OC=r,而CD=2.5m,∴OD=2.5﹣r,∴r2=0.52+(2.5﹣r)2,解得:r=1.3,∴拱门所在圆的半径为1.3m;故选B.【点评】本题考查的是垂径定理的实际应用、勾股定理等内容,熟练掌握相关知识点是解题的关键.12.(3分)如图,平面直角坐标系中,原点O为正六边形ABCDEF的中心,EF∥x轴,点E在双曲线y=(k为常数,k>0)上,将正六边形ABCDEF向上平移个单位长度,点D恰好落在双曲线上,则k的值为()A.4B.3C.2D.3【解答】解:如图,作DG⊥EF交EF的延长线于点G,DG交反比例函数图象于点H,∵原点O为正六边形ABCDEF的中心,EF∥x轴,∴∠EDO===60°,∴EDG=30°,∴EG=ED,GD=设正六边形ABCDEF的边长为a,则E(,),H(a,),∵点EH都在反比例函数图象上,∴,解得a=4,∴H(4,),∴k=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征、正六边形的性质,熟练掌握反比例函数图象上点的坐标特征是关键.二、填空题(本题包括5道小题,每小题3分,共15分,将答案直接填在答题卡对应题的横线上)13.(3分)分解因式:3ax2﹣6axy+3ay2=.【分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.【解答】解:3ax2﹣6axy+3ay2,=3a(x2﹣2xy+y2),=3a(x﹣y)2,故答案为:3a(x﹣y)2.14.(3分)如图,根据机器零件的设计图纸,用不等式表示零件长度L的合格尺寸(L的取值范围)【分析】从图上可以看出:合格尺寸最小应是40﹣0.01=39.99;最大应是40+0.01=40.01.【解答】解:根据题意,得.39.99≤L≤40.01.故答案为:39.99≤L≤40.01.【点评】本题考查了有理数的加减混合运算,理解40±0.01的意义是解题的关键.15.(3分)分式方程的解是.【解答】解:去分母得:3x=2x﹣4,解得:x=﹣4,经检验x=﹣4是分式方程的解.故答案为:x=﹣416.(3分)如图,为便于研究圆锥与扇形的关系,小方同学利用扇形纸片恰好围成一个底面半径为5cm,母线长为12cm的圆锥的侧面,那么这个扇形纸片的面积是cm2(结果用含π的式子表示).【分析】根据圆锥的侧面积=底面周长×母线长÷2计算即可.【解答】解:这个扇形纸片的面积是为×2π×5×12=60π(cm2).故答案为:60π.17.(3分)关于抛物线y=x2﹣2mx+m2+m﹣4(m是常数),下列结论正确的是(填写所有正确结论的序号).①当m=0时,抛物线的对称轴是y轴;②若此抛物线与x轴只有一个公共点,则m=﹣4;③若点A(m﹣2,y1),B(m+1,y2)在抛物线上,则y1<y2;④无论m为何值,抛物线的顶点到直线y=x的距离都等于2.【分析】依据题意,根据二次函数的图象与性质,逐个进行判断即可得解.【解答】解:当m=0时,抛物线为y=x2﹣4,∴抛物线的对称轴是y轴,故①正确.又若此抛物线与x轴只有一个公共点,∴Δ=4m2﹣4(m2+m﹣4)=﹣4m+16=0.∴m=4,故②错误.由题意,∵抛物线为y=x2﹣2mx+m2+m﹣4,∴对称轴是直线x=﹣=m.又抛物线开口向上,∴抛物线上的点离对称轴越近函数值越小.又∵A(m﹣2,y1),B(m+1,y2),∴m﹣(m﹣2)=2>m+1﹣m=1.∴y1>y2,故③错误.由题意,∵抛物线y=x2﹣2mx+m2+m﹣4的对称轴是直线x=m,∴顶点为(m,m﹣4).∴顶点在直线y=x﹣4上.又直线y=x与y=x﹣4平行,∴顶点到直线y=x的距离等于两条平行线间的距离.又直线y=x﹣4与y轴的夹角为45°,且y=x﹣4是y=x向下平移4个单位得到的,∴两平行线间的距离为4sin45°=4×=2.∴顶点到直线y=x的距离为2,故④正确.故答案为:①④.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出解答各题的文字说明、证明过程或计算步骤18.(5分)计算:|﹣2|+2sin60°﹣(﹣π)0.【分析】首先计算零指数幂、特殊角的三角函数值和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|﹣2|+2sin60°﹣(﹣π)0=2﹣+2×﹣1=2﹣+﹣1=1.19.(6分)先化简,再求值:(2a+b)(2a﹣b)﹣(a+b)(4a﹣b),其中a=﹣,b=2.【分析】根据平方差公式、多项式乘多项式的运算法则去括号,再合并同类项得到最简结果,最后将a,b的值代入计算即可.【解答】解:原式=4a2﹣b2﹣(4a2﹣ab+4ab﹣b2)=4a2﹣b2﹣4a2+ab﹣4ab+b2=﹣3ab.当a=﹣,b=2时,原式==.【点评】本题考查整式的混合运算—化简求值,熟练掌握运算法则是解答本题的关键.20.(6分)在“综合与实践”活动课上,活动小组测量一棵杨树的高度.如图,从C点测得杨树底端B 点的仰角是30°,BC长6米,在距离C点4米处的D点测得杨树顶端A点的仰角为45°,求杨树AB 的高度(精确到0.1米,AB,BC,CD在同一平面内,点C,D在同一水平线上,参考数据:≈1.73).【分析】延长AB交DC于H,得到∠AHD=90°,解直角三角形即可得到结论.【解答】解:延长AB交DC于H,则∠AHD=90°,∵∠BCH=30°,BC=6米,∴BH=BC=3米,CH=BC=3米,∵∠ADC=45°,∴AH=DH=CD+CH=(4+3)米,∴AB=AH﹣BH=4+3﹣3=1+3≈6.2(米),答:杨树AB的高度约为6.2米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,正确地作出辅助线是解题的关键.21.(8分)为迎接2024年5月26日的科尔沁马拉松赛事,某中学七年级提前开展了一次“马拉松”历史知识测试.七年级600名学生全部参加本次测试,调查研究小组随机抽取50名学生的测试成绩(百分制)作为一个样本.【收集数据】调查研究小组收集到50名学生的测试成绩:6061629473738585877263647066746567757671949384917682838392848080829291867786887270719390819074788175【整理描述数据】通过整理数据,得到以下尚不完整的频数分布表、频数分布直方图和扇形统计图:组别成绩分组频数A60≤x<70aB70≤x<8016C80≤x<9016D90≤x≤100b(1)频数分布表中a=8,b=10,并补全频数分布直方图;(2)扇形统计图中m=20,D所对应的扇形的圆心角度数是72°.【应用数据】(3)若成绩不低于90分为优秀,请你估计参加这次知识测试的七年级学生中,成绩为优秀的人数.【分析】(1)根据所给的数据即可得a和b的值,即可补全频数分布直方图;(2)利用D组的人数除以总人数即可得m的值,用360°乘以D组的人数所占的百分比即可求出D 所对应的扇形的圆心角度数;(3)用总人数乘以样本中成绩不低于90分是人数所占的百分比即可.【解答】解:(1)频数分布表中a=8,b=10,补全频数分布直方图如下:故答案为:8,10;(2)∵m%=×100%=20%,∴m=20,D所对应的扇形的圆心角度数是360°×20%=72°;故答案为:20,72°;(3)600×20%=120(人),答:估计参加这次知识测试的七年级学生中,成绩为优秀的人数为120人.【点评】本题考查频数(率)分布直方图,频数(率)分布表,扇形统计图和用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)如图,△ABC中.∠ACB=90°,点O为AC边上一点,以点O为圆心,OC为半径作圆与AB相切于点D,连接CD.(1)求证:∠ABC=2∠ACD;(2)若AC=8,BC=6,求⊙O的半径.【分析】(1)连接OD,如图,先根据切线的性质得到∠ODA=∠ODB=90°,再根据四边形的内角和与等角的补角相等得到∠ABC=∠AOD,接着根据圆周角定理得到∠AOD=2∠ACD,从而得到结论;(2)设⊙O的半径为r,则OD=OC=r,OA=8﹣r,先利用勾股定理计算出AB=10,再证明△AOD∽△ABC,则利用相似比得到=,然后解方程即可.【解答】(1)证明:连接OD,如图,∵AB为⊙O的切线,∴OD⊥AB,∴∠ODA=∠ODB=90°,∵∠ACB=90°,∴∠ABC+∠COD=180°,∵∠AOD+∠COD=180°,∴∠ABC=∠AOD,∵∠AOD=2∠ACD,∴∠ABC=2∠ACD;(2)解:设⊙O的半径为r,则OD=OC=r,OA=8﹣r,在Rt△ACB中,∵∠ACB=90°,AC=8,BC=6,∴AB==10,∵∠OAD=∠BAC,∠ADO=∠ACB,∴△AOD∽△ABC,∴=,即=,解得r=3,即⊙O的半径为3.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和相似三角形的判定与性质.23.(10分)某中学为加强新时代中学生劳动教育,开辟了劳动教育实践基地.在基地建设过程中,需要采购煎蛋器和三明治机.经过调查,购买2台煎蛋器和1台三明治机需240元,购买1台煎蛋器和3台三明治机需395元.(1)求煎蛋器和三明治机每台价格各是多少元;(2)学校准备采购这两种机器共50台,其中要求三明治机的台数不少于煎蛋器台数的一半.请你给出最节省费用的购买方案.【分析】(1)设每台煎蛋器的价格是x元,每台三明治机的价格是y元,根据“购买2台煎蛋器和1台三明治机需240元,购买1台煎蛋器和3台三明治机需395元”,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m台煎蛋器,则购买(50﹣m)台三明治机,根据购买三明治机的台数不少于煎蛋器台数的一半,可列出关于m的一元一次不等式,解之可得出m的取值范围,设学校采购这两种机器所需总费用为w元,利用总价=单价×数量,可找出w关于m的函数关系式,再利用一次函数的性质,即可找出最节省费用的购买方案.【解答】解:(1)设每台煎蛋器的价格是x元,每台三明治机的价格是y元,根据题意得:,解得:.答:每台煎蛋器的价格是65元,每台三明治机的价格是110元;(2)设购买m台煎蛋器,则购买(50﹣m)台三明治机,根据题意得:50﹣m≥m,解得:m≤.设学校采购这两种机器所需总费用为w元,则w=65m+110(50﹣m),即w=﹣45m+5500,∵﹣45<0,∴w随m的增大而减小,又∵m为正整数,∴当m=33时,w取得最小值,此时50﹣m=50﹣33=17,∴最节省费用的购买方案为:购买33台煎蛋器,17台三明治机.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.24.(8分)【实际情境】手工课堂上,老师给每个制作小组发放一把花折伞和制作花折伞的材料及工具.同学们认真观察后,组装了花折伞的骨架,粘贴了彩色伞面,制作出精美的花折伞.【模型建立】(1)如图1,从花折伞中抽象出“牵形图”,AM=AN,DM=DN.求证∠AMD=∠AND.【模型应用】(2)如图2、△AMC中,∠MAC的平分线AD交MC于点D.请你从以下两个条件:①∠AMD=2∠C;②AC=AM+MD中选择一个作为已知条件,另一个作为结论,并写出结论成立的证明过程.(注:只需选择一种情况作答)【拓展提升】(3)如图3,AC为⊙O的直径,=,∠BAC的平分线AD交BC于点E,交⊙O于点D,连接CD.求证AE=2CD.【分析】(1)利用SSS证明△ADM≌△ADN,即可;(2)选择②为条件,①为结论:在AC取点N,使AN=AM,连接DN,证明△ADM≌△ADN,可得DM=DN,∠AMD=∠AND,再由AC=AM+MD,可得DN=CN,从而得到∠C=∠CDN,即可;选择①为条件,②为结论:在AC取点N,使AN=AM,连接DN,证明△ADM≌△ADN,可得DM=DN,∠AMD=∠AND,再由∠AMD=2∠C,可得∠C=∠CDN,从而得到DN=CN,即可;(3)连接BD,取AE的中点F,连接BF,根据圆周角定理可得BD=CD,从而得到∠BCD=∠CBD,再由AC为⊙O的直径,可得AE=2BF=2AF,从而得到∠ABF=∠BAF,然后根据,可得AB =BC,可证明△ABF≌△CBD,从而得到BF=BD=CD,即可.【解答】解:(1)在△ADM和△ADN中,,∴△ADM≌△ADN(SSS),∴∠AMD=∠AND;(2)解:(Ⅰ)选择②为条件,①为结论,如图,在AC取点N,使AN=AM,连接DN,∵AD平分∠MAC,∴∠DAM=∠DAN,在△ADM和△ADN中,∵AM=AN,∠DAM=∠DAN,AD=AD,∴△ADM≌△ADN(SAS),∴DM=DN,∠AMD=∠AND,∵AC=AM+MD,AC=AN+NC,∴DM=CN,∴DN=CN,∴∠C=∠CDN,∴∠AMD=∠AND=∠CDN+∠C=2∠C;(Ⅱ)选择①为条件,②为结论,如图,在AC取点N,使AN=AM,连接DN,∵AD平分∠MAC,∴∠DAM=∠DAN,在△ADM和△ADN中,∵AM=AN,∠DAM=∠DAN,AD=AD,∴△ADM≌△ADN(SAS),∴DM=DN,∠AMD=∠AND,∵∠AMD=2∠C,∴∠AND=2∠C=∠CDN+∠C,∴∠CDN=∠C,∴DN=CN,∴DM=CN,∵AC=AN+NC,∴AC=AM+MD;(3)如图,连接BD,取AE的中点F,连接BF,∵∠BAC的平分线AD,∴,∴BD=CD,∴∠BCD=∠CBD,∵AC为⊙O的直径,∴∠ABC=90°,∴AE=2BF=2AF,∴∠ABF=∠BAF,∵∠BAF=∠BCD,∴∠ABF=∠CBD,∵,∴AB=BC,∴△ABF≌△CBD(ASA),∴BF=BD=CD,∴AE=2CD.【点评】本题主要考查了全等三角形的判定和性质、圆周角定理、等腰三角形的判定和性质、直角三角形的性质、三角形外角的性质等内容,熟练掌握相关知识是解题关键.25.(8分)如图,在平面直角坐标系中,直线与x轴,y轴分别交于点C,D,抛物线(k为常数)经过点D且交x轴于A,B两点.(1)求抛物线表示的函数解析式;(2)若点P为抛物线的顶点,连接AD,DP,CP.求四边形ACPD的面积.【分析】(1)求出D(0,3),可得3=﹣×(0﹣2)2+k,k=4,即可得抛物线表示的函数解析式为y=﹣x2+x+3;(2)连接OP,求出C(2,0),OC=2,A(﹣2,0),OA=2,抛物线顶点P坐标为(2,4),可得S=S△AOD+S△POD+S△POC=10.四边形ACPD【解答】解:(1)在y=﹣x+3中,令x=0得y=3,∴D(0,3),∵抛物线经过点D(0,3),∴3=﹣×(0﹣2)2+k,解得k=4,∴y=﹣(x﹣2)2+4=﹣x2+x+3;∴抛物线表示的函数解析式为y=﹣x2+x+3;(2)连接OP,如图;在y=﹣x+3中,令y=0得x=2,∴C(2,0),OC=2,在y=﹣x2+x+3中,令y=0得0=﹣x2+x+3,解得x=6或x=﹣2,∴A(﹣2,0),OA=2,由y=﹣(x﹣2)2+4可得抛物线顶点P坐标为(2,4),=S△AOD+S△POD+S△POC=×2×3+×3×2+×2×4=3+3+3=10;∴S四边形ACPD∴四边形ACPD的面积为10.【点评】本题考查二次函数综合应用,涉及待定系数法,函数图象上点坐标的特征,三角形面积等知识,解题的关键是用割补法求出四边形ACPD的面积.26.(10分)数学活动课上,某小组将一个含45°的三角尺AEF和一个正方形纸板ABCD如图1摆放,若AE=1,AB=2.将三角尺AEF绕点A逆时针方向旋转α(0°≤α≤90°)角,观察图形的变化,完成探究活动.【初步探究】如图2,连接BE,DF并延长,延长线相交于点G,BG交AD于点M.问题1BE和DF的数量关系是BE=DF,位置关系是BE⊥DF.【深入探究】应用问题1的结论解决下面的问题.问题2如图3,连接BD,点O是BD的中点,连接OA,OG.求证OA=OD=OG.【尝试应用】问题3如图4,请直接写出当旋转角α从0°变化到60°时,点G经过路线的长度.【分析】(1)先证△AEB≌△AFD,得到BE=DF,再根据△AMB和△DMG内角和推导,证∠G=90°即可;(2)利用直角三角形斜边上的中线等于斜边的一半即可得证;(3)由(2)知点OA=OD=OG,则点G的运动轨迹是以O为圆心,OA为半径的弧上,再根据α的变化求圆心角即可得解.【解答】(1)解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△AEF是含有45°的直角三角尺,∴△AEF是等腰直角三角形,∴AE=AF,∠EAF=90°,∵∠BAD﹣∠DAE=∠EAF﹣∠DAE,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴BE=DF,∠ABE=∠ADF,∵∠AMB=∠DMG,∴∠G=∠BAM=90°,即BE⊥DF,故答案为:BE=DF,BE⊥DF.(2)∵△BAD是直角三角形,O是BD中点,∴OA=BD=OD,由(1)知∠G=90°,∴△BGD是直角三角形,∴OG=BD=OD,∴OA=OD=OG.(3)由(2)知,OA=OD=OG,∴点G的运动轨迹是以O为圆心,OA为半径的弧,连接OA,OG,∵旋转角α从0°变化到60°,∴此时点G的运动路线就是,∵∠BAE=60°,∴ABE=30°,∴∠OBG=45°﹣30°=15°,∵OB=OG=BD,∴∠DOG=30°,∴∠AOG=180°﹣∠AOB﹣∠DOG=60°,∵AB=2,∴BD=AB=2,∴OA=OG=,∴的长度==π.即点G经过路线的长度为π.。

2024年内蒙古鄂尔多斯市中考数学模拟试题(解析版)

2024年内蒙古鄂尔多斯市中考数学模拟试题(解析版)

鄂尔多斯市2024年初中学业水平第二次调研考试试卷数学注意事项:1.本试卷共8页,满分120分.考试时间为120分钟.2.答题前,考生务必先将自己的考生号、姓名、座位号等信息填写在试卷和答题卡的指定位置.请认真核对条形码上的相关信息后,将条形码粘贴在答题卡的指定位置上.3.答题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共有10小题,每小题3分,共30分每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑.1. 下列四个数,,)A. B. C. D. 【答案】C【解析】【分析】本题考查的是算术平方根的含义,乘方,绝对值,负整数指数幂的含义,先分别计算,,,再根据结果可得答案.【详解】解:∵,,,∴负数是,即;故选C2. 鄂尔多斯市2023年一般公共预算收入累计完成了910亿元,财政收入位列全内蒙古第一.数据910亿元用科学记数法表示为( )A. 元B. 元C. 元D. 元【答案】A【解析】22-3-212-⎛⎫- ⎪⎝⎭212-⎛⎫- ⎪⎝⎭3-22-22-3-212-⎛⎫- ⎪⎝⎭242-=-33-=22114212-⎛⎫-== ⎪⎝⎭⎛⎫- ⎪⎝⎭4-22-109.110⨯110.9110⨯119.110⨯99110⨯【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定的值以及的值.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【详解】解:亿故选:A3. 下列计算正确的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了同底数幂的乘除法等运算,掌握运算法则是解答本题的关键.结合选项分别进行合并同类项、同底数幂的乘法和除法,积的乘方等运算,然后选择正确的选项.【详解】解:A .,故A 不正确;B . ,故B 不正确;C .,故C 正确;D . ,故D 不正确.故答案为:C .4. 将一块含有角的直角三角板和一把直尺按如图所示的方式摆放,若,则∠2的度数是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解本题的关键.根据10n a ⨯110a n ≤<,a n n a n 10>n 1<n 910810910109.110=⨯=⨯2235a a a +=236a a a ⋅=()224224a b a b =()()43a a a -÷-=235a a a +=235a a a ⋅=()224224a b a b =()()43a a a -÷-=-30︒120∠=︒45︒50︒55︒60︒平行线的性质和三角形的外角的性质即可得到结论.【详解】解:如图所示,∵,∴,又∵是的外角,,,∴,故选:B .5. 中国古典四大名著:《西游记》《红楼梦》《水浒传》《三国演义》可谓家喻户晓若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两木恰好是《西游记》和《红楼梦》的概率是( )A. B. C. D. 【答案】C【解析】【分析】本题考查列表法和画树状图法求等可能事件的概率,掌握列表法和画树状图法求等可能事件概率的方法是解题的关键.用列表法或画树状图法列举出所有等可能的结果,从中找出抽取的两本恰好是《西游记》和《红楼梦》的可能结果,再利用概率公式求出即可.【详解】解:记《西游记》《红楼梦》《水浒传》《三国演义》分别为A ,B ,C ,D ,画树状图如下:一共有12种等可能的结果,其中抽取的两本恰好是《西游记》(即A )和《红楼梦》(即B )的可能结果有2种可能,∴恰好是《西游记》和《红楼梦》的概率是,故选:C .AB CD ∥2BAC ∠=∠BAC ∠ABE 30E ∠=︒120∠=︒21302050BAC E ∠=∠=∠+∠=︒+︒=︒1314161821126==6. 由几个大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则该几何体至少由几个小正方搭成( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】本题考查了由三视图判断几何体,主视图是从物体的前面看得到的视图,俯视图是从物体的上面看得到的视图,熟练掌握是关键. 仔细观察该几何体的主视图和俯视图,发挥空间想象能力,便可得出几何体的形状.【详解】解:仔细观察物体的主视图和俯视图可知:该几何体的下面最少要有四个小正方体,上面最少要有一个小正方体,故该几何体最少有5个小正方体组成,故选B .7. 如图,在中,,的平分线交于点D ,点P 是射线边上的动点,连接交于M ,若,,则的度数是( )A. B. C. 或 D. 或【答案】D【解析】【分析】本题考查了直角三角形的性质,角平分线的定义,三角形外角的性质;根据点P 是射线边上的动点分类讨论并计算即可;准确地画出图形并根据相关性质计算是关键.【详解】解:当点P 在边上时,的平分线交于点D ,,是的一个外角Rt ABC △90ACB ∠=︒BAC ∠BC AC BP AD 30BAC ∠=︒=20PBC ∠︒AMP ∠45︒55︒45︒135︒55︒95︒AC AC BAC ∠ BC 30BAC ∠=︒15BAM ∴∠=︒90ACB ∠=︒ =20PBC ∠︒90302040ABM ∠=︒-︒-︒=︒∴AMP ∠∵ABM当点在的延长线上时,是的一个外角的度数是或故选:D .8. 著名数学家华罗庚说过:“数缺形时少直觉,形缺数时难入微.数形结合百般好,隔离分家万事非.”寥窖数语,把图形之妙趣说的淋漓尽致.如图是函数的图象,那么无论x 为何值,函数值y 永远为负的条件是( )A. ,B. ,C. ,D. ,【答案】D【解析】【分析】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的图象与性质,根据二次函数的55AMP BAM ABM ∠=∠+∠=︒∴1P AC 90ACB ∠=︒60ABC ∴∠=︒1=20PBC ∠︒∵1180ABM ABC PBC ∠=∠+∠=︒∴11AM P ∠∵1ABM 111195AM P BAM ABM ∠=∠+∠=︒∴AMP ∴∠55︒95︒2y ax bx c =++0a >240b ac ->0a >240b ac -<0a <240b ac ->0a <240b ac -<图象在轴的下方,可得抛物线开口向下,与轴无交点,即可判断.【详解】解:二次函教的图象在轴的下方,抛物线开口向下,与轴无交点,即,,故选:D .9. 如图,内接于,已知的直径为10,弦的长为6,则的值为( )A. B. C. D. 【答案】A【解析】【分析】本题主要考查了直径所对的圆周角等于,同弧所对的圆周角相等以及勾股定理,连接并延长交于点D,连接,由直径所对的圆周角等于得出,由勾股定理求出,由同弧所对的圆周角相等可得出.【详解】解:连接并延长交于点D,连接,如下图:∵为的直径,∴,∵,,∴,∴∵∴∴,故选:A.,,x x 2y ax bx c =++x ∴x 0a <240b ac -<ABC O O AB tan C 3443354590︒AO O BD 90︒90ABD Ð=°BD 3tan tan 4C ADB ∠=∠=AO O BD AD O 90ABD Ð=°10AD =6AB=8BD ===63tan 84AB ADB BD ∠=== AB AB=C ADB ∠=∠3tan tan 4C ADB ∠=∠=10. 如图,菱形的边长为,,动点E 从点B 出发,以的速度沿射线方向运动,动点F 同时从B 出发,以的速度沿边向点C 运动,点F 到达点C 时点E 同时停止运动,若点F 运动的时间为t 秒,的面积为,则S 关于t 的函数图象是( )A. B.C. D.【答案】D【解析】【分析】本题考查动点的函数图象问题,菱形的性质,解直角三角形,分点在上,三种情况进行讨论求解即可.【详解】解:∵菱形的边长为,,∴,过点作,则:,①当点在上运动,即:时,,过点作,则:,∴,图象为过原点,开口向上的一段抛物线;ABCD 4cm 30B ∠=︒1cm/s BC 2cm/s BA AD DC 、、BEF △2cm S F ,,AB AD CD ABCD 4cm 30B ∠=︒4AB BC CD AD ====A AH BC ⊥sin 302AH AB =⋅︒=F AB 02t ≤≤2,BF t BE t ==F FG BC ⊥sin 30FG BF t =⋅︒=21122S BE FG t =⋅=②当点在上运动,即:时,此时点到的距离为定值的长,∴,图象为一段上升的直线;③当点在上运动,即:,过点作,则,∵菱形,∴,∴,∴,∴,此时图象为开口向下的一段抛物线;故选D .二、填空题:本大题共有6小题,每小题3分,共18分请将答案填在答题卡上对应的横线上.11.有意义,则x 的取值范围是____.【答案】F AD 24t <≤F BE AH 11222S BE FG t t =⋅=⨯=F CD 46t <≤F FG BC ⊥122CF t =-ABCD AB CD 30DCG B ∠=∠=︒sin 306FG CF t =⋅︒=-()211163222S BE FG t t t t =⋅=-=-+3x ≤【解析】【分析】二次根式要有意义,那么被开方数为非负数,解不等式即可有意义即故答案为:【点睛】本题考查了二次根式的性质,熟练二次根式的性质是解题的关键.12. 若,是一元二次方程的两个实数根,则的值为_______.【答案】【解析】【分析】本题主要考查了一元二次方程根与系数的关系,根据题意得到,,然后代入计算即可.【详解】解:,是一元二次方程的两个实数根,,,∴,故答案为:.13. 弹簧秤不挂重物时长,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上的物体后,弹簧伸长,则弹簧总长y (单位:)关于所挂物体质量x (单位:)的函数表达式为_______.【答案】##【解析】【分析】根据题意可知,弹簧总长度与所挂物体质量之间符合一次函数关系,从而可求解.此题考查函数解析式问题,关键是根据弹簧总长度与所挂物体质量之间符合一次函数关系解答.620x -≥3x ∴≤3x ≤1x 2x 260x x --=1211+x x 16-121x x =+126xx =-21121211x x x x x x ++=1x 2x 260x x --=121x x ∴+=126xx =-2112121116x x x x x x ++==-16-20cm 1kg 1cm cm kg 20y x =+20y x=+()cm y ()kg x ()cm y ()kg x【详解】解:弹簧总长y (单位:)关于所挂重物x (单位:)的函数关系式为,故答案为:.14. 蜜蜂是世界上最伟大的建筑师,观察下面的“蜂窝图”,如图,按照这样的规律,第2024个图案中的“”的个数是_______.【答案】【解析】【分析】本题主要考查图形变化的规律,解答的关键是从所给图形中总结出存在的规律.第一个图案中的个数为4,第2个图案中的个数为,第3个图案中的个数为,第4个图案中的个数为,再总结规律据此可求解.【详解】解:∵第一个图案中的个数为4,第2个图案中的个数为,第3个图案中的个数为,∴第n 个图案中个数为,∴第个图案中个数为.故答案为6073.15. 如图,矩形的对角线与双曲线相交于点D ,已知,且,则______.【答案】的的cm kg 20y x =+20y x =+6073431+⨯432+⨯433+⨯431+⨯432+⨯43(1)31n n +-=+20243202416073⨯+=OABC OB ()0k y x x=<50OABC S =矩形:3:2OD BD =k =18-【解析】【分析】过点D 作,根据矩形的性质及相似三角形的判定和性质得出,再由反比例函数的几何意义求解即可.【详解】解:过点D 作于,∵矩形,,∴,∴,∵,∴,∴,∵,则,∵,∴,∵,∴;故答案为:.【点睛】本题主要考查矩形的性质及相似三角形的判定和性质,反比例函数的几何意义,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.16. 如图,将边长为2的正方形沿折叠,点A 恰好落在边上的点P 处,点B 落在点G 处,交于点H ,连接AP ,则下列结论:①;②;③平分;④当DE OA ⊥29()25ODE OBA S OD S OB == DE OA ⊥E OABC AB AO ⊥DE BA ∥ODE OBA ∽:3:2OD BD =35OD OB =29()25ODE OBA S OD S OB == 150252OBA S =⨯= 9ODE S = 192k =18k =±0k <18k =-18-ABCD EF CD PG BC AP EF ⊥AP EF =AP DPH ∠点P 是边中点时,,其中正确的有______.(请填写所有正确的序号)【答案】①②③【解析】【分析】如图,连接,,由对折可得:,,可得是的垂直平分线,可得①符合题意;如图,过点F 作于点M ,证明,括号,可得②符合题意;由折叠可知,,, ,证明,可得③符合题意;设,则,由,可得 ,再进一步可得④不符合题意;【详解】解:如图,连接,,由对折可得:,,∴是的垂直平分线,∴,故①符合题意;如图,过点F 作于点M ,CD 4tan 3DPE ∠=FP FA EA EP =FA FP =EF AP FM AD ⊥ADP FME ≌ AP EF =AE PE =PAE APE ∠=∠90EAB EPG ∠=∠=︒DPA APG ∠=∠AE PE x ==2DE x =-222DP DE PE +=54x =FP FA EA EP =FA FP =EF AP AP EF ⊥FM AD ⊥四边形为正方形,,,,四边形为矩形,,,由折叠可知, ,,,,在和中,,,,故②符合题意;由折叠可知,,,,∴,,,∴平分,故③符合题意;由折叠可知,,设,则,为中点,,在中,, ABCD 90D DAB B ∴∠=∠=∠=︒AD AB =FM AD ⊥ ABFM MF AD AB ∴==90FME ∠=︒EF AP ⊥90FEA DAP ∴∠+∠=︒90DPA DAP ∠+∠=︒ FEM DPA ∴∠=∠ADP △MFE APD MEFADP FME AD MF∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)ADP FME ∴≌ AP EF ∴=AE PE =PAE APE ∠=∠90EAB EPG ∠=∠=︒90EPA APG ∠+∠=︒90DPA DAP ∠+∠=︒ DPA APG ∴∠=∠AP DPH ∠AE PE =AE PE x ==2DE x =-P CD 1DP \=Rt PDE △222DP DE PE +=,解得 ,,,∴,故④不符合题意;故答案为:①②③【点睛】本题考查的是正方形的性质,轴对称的性质,全等三角形的判定与性质,勾股定理的应用,锐角三角函数的应用,作出合适的辅助线是解本题的关键.三、解答题:本大题共有7小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17. (1)计算:(2)先化简,再求值:,其中.【答案】(1);(2)化简得【解析】【分析】本题考查实数的混合运算与分式的化简求值,正确掌握运算步骤是解题关键.(1)结合特殊值的三角函数、绝对值进行实数运算即可;(2)利用分式混合运算的化简方法化简,再进行求值即可.【详解】解:(1);(2)2221(2)x x ∴+-=54x =324DE x ∴=-=54PE =3tan 4DE DPE DP ∠==202412cos301-+︒+-2344111x x x x ++⎛⎫+÷ ⎪--⎝⎭2x =-2-12x +202412cos301-+︒+-121=-+-11=--2=2344111x x x x ++⎛⎫+÷ ⎪--⎝⎭()213112x x x x -+-=⨯-+,将代入得:原式.18. 某校为了了解初一学生长跑能力,从初一1200名学生中随机抽取部分学生进行1000米跑步测试,并将得分情况绘制成如下统计图(如图,部分信息未给出).由图中给出的信息解答下列问题:(1)抽取学生的总人数为______,并补全频数分布直方图;(2)如果该校全体初一学生都参加测试,请你根据抽样测试的结果估计该校初一学生获得9分及以上的人数;(3)根据测试结果,请对该学校初一学生“1000米跑步”情况作出评价,并向学校提出一条合理的建议.【答案】(1)50,图见解析(2)432人 (3)见解析【解析】【分析】本题考查条形图与扇形图的综合应用,从统计图中有效的获取信息是解题的关键.(1)用8分的人数除以所占的比例求出总人数,进而求出7分的人数,补全条形图即可;(2)利用样本估计总体的思想进行求解即可;(3)根据统计图,提出建议即可.【小问1详解】()22112x x x x +-=⨯-+12x =+2x =-===解:抽取学生的总人数为;∴7分的人数为:,补全条形图如图:【小问2详解】(人);【小问3详解】由统计图可知,8分段的人数最多,建议学校加强初一学生“1000米跑步”的练习,提升学生的成绩.(合理即可)19. 鄂尔多斯市东胜区烈士陵园始建于1953年,核心建筑为位于陵园正中央的革命烈士纪念塔,是内蒙古自治区爱国主义教育基地.为了测算革命烈士纪念塔的高度,如图,无人机在离地面30米的D 处,测得操控者A 的俯角为,测得点C 处的俯角为,又经过人工测量得到操控者A 和革命烈士纪念塔间的水平距离为24米,则革命烈士纪念塔的高度为多少米?(点A ,B ,C ,D 都在同一平面内,结果保留根号)【答案】纪念塔的高度为米.【解析】【分析】如图,过作于,过作于,则四边形是矩形,则2040%50÷=504201268----=126120043250+⨯=BC 60︒45︒BC BCBC ()6D DE AB ⊥E C CF DE ⊥F BCFE,,由题意知,根据,求的值,根据,求的值即可.【详解】解:如图,过作于,过作于,则四边形是矩形,∴,,由题意知:,,,∴,,∴,∴,∴纪念塔的高度为米.【点睛】本题考查了解直角三角形的应用,矩形的判定与性质等知识,解题的关键在于理解仰角与俯角的含义.20. “绿品出塞,北京有约”2023年京蒙消费推介会在北京举行,来自鄂尔多斯的百余种名优特农畜产品集中亮相,阿尔巴斯羊肉独具特色某肉联食品厂销售该产品的成本价格为30元/,若按46元/销售,一个月可以售出4000,销售价每涨1元,月销量就会减少100.(1)当销售单价定为55元时,计算月销售量和销售利润;(2)写出月销售利润y 与销售价之间的函数解析式;(3)在(2)的情况下当销售单价定为多少元时会获得最大利润?并求出最大利润.【答案】(1)销量为千克,利润为元;(2) (3)当时,有最大利润为元.【解析】【分析】本题考查的是二次函数的实际应用,理解题意,确定正确的函数关系式是解本题的关键;CF BE =BCEF =tan 60DE AE ==︒DF CF =DF CF BE AB AE ===-DF BC EF DE DF ==-BC D DE AB ⊥E C CF DE ⊥F BCFE CF BE =BC EF =60DAE ∠=︒30DE =45DCF FDC ∠=︒=∠tan 60DE AE ===︒DF CF =24DF CF BE AB AE ===-=-(30246BC EF DE DF ==-=--=-BC ()6-kg kg kg kg ()46x x >310077500()21001160026400046y x x x =-+->58x =78400(1)根据“销售单价每涨1元,月销售量就减少100千克”,可知:月销售量(销售单价,再计算利润即可;(2)根据总利润等于每千克的利润乘以销售量可得函数关系式;(3)利用二次函数的性质可得二次函数的最值.【小问1详解】解:∵按46元/销售,一个月可以售出4000,销售价每涨1元,月销量就会减少100.∴销售单价定为55元时,每千克的利润为(元),销售数量为:(千克),∴销售利润为(元);【小问2详解】由题意可得:月销售利润y 与销售价之间的函数解析式为:;【小问3详解】∵∵,∴当时,有最大利润为元.21. 如图,为的直径,为弦,过圆上一点D 作的切线交的延长线于点E ,连接,,.(1)若,求的长;(2)若D 是的中点,求证.(请用两种证法解答)4000=-46)100-⨯kg kg kg 553025-=()400055461003100--⨯=31002577500⨯=()46x x >()()30400010046y x x =---⎡⎤⎣⎦()()308600100x x =--()21001160025800046x x x =-+->()21001160025800046y x x x =-+->()21005878400x =--+1000a =-<58x =78400AB O AC O OC CD DE =10OE =3tan 4ACD ∠=AD AC AC DE【答案】(1)6,详见解析(2)详见解析【解析】【分析】本题主要考查了圆的切线的性质,圆周角定理,解直角三角形,勾股定理等知识点(1)如图,连接,,由为圆的切线得出为直角三角形,由勾股定理得出的长,得出,再利用勾股定理即可得;(2)方法一,如图,连接,由为圆的切线得出,由D为的中点得出,进而即可得解;方法二,如图,连延长交于点F,连先证出,再由D为的中点,得出,进而即可得解;熟练掌握其性质,合理作出辅助线是解决此题的关键.【小问1详解】如图,连接,,∵为圆的切线,∴,∵,,∴,∵为直径,∴,∵所对的圆周角为和,∴,∴,∴,∵,,OD BD DE ODEOD3tan tan4ADACD ABDBD∠==∠=43BD AD=OD DE OD DE⊥ ACOD AC⊥DO OFCCDE F DAC∠=∠=∠ AC DAC DCA∠=∠OD BDDEOD DE⊥DE=10OE=5OD===AB90ADB∠=︒AD ABD∠ACD∠ABD ACD∠=∠3tan tan4ADACD ABDBD∠==∠=43BD AD=222AB AD BD=+5210AB=⨯=∴,∴(负值已舍);【小问2详解】方法一:如图,连接,∵为圆切线,∴,∵D 为的中点,∴,∴,∵,∴,∴;方法二:如图,连延长交于点F ,连,∴,∴∵为圆的切线,∴,∴,∴,∵D 为的中点,的2224103AD AD ⎛⎫=+ ⎪⎝⎭6AD =OD DE OD DE ⊥ AC AD DC =AOD DOC ∠=∠OA OC =OD AC ⊥AC DE ∥DO O FC 90DCF ∠=︒90ODC F ∠+∠=︒DE OD DE ⊥90CDE CDO ∠+∠=︒CDE F DAC ∠=∠=∠ AC∴,∴,∴,∴.22. 如图,点G 是矩形内一点,,把绕点C 按顺时针方向旋转,得到(点B 对应点,点G 对应点)延长交于点E ,连接.(1)判断四边形的形状,并说明理由;(2)如图1,若,,,求;(3)如图2,若,,求证:.【答案】(1)证明见解析(2)(3)证明见解析【解析】【分析】(1)先证明,,从而可得答案;(2)如图,过作于,证明,求解,由等面积法可得:,可得,再进一步解答即可;(3)如图,过作于,设,证明,可得,可得,求解,可得,可得.【小问1详解】AD DC =DAC DCA ∠=∠DCA CDE ∠=∠AC DE ∥ABCD 90BGC ∠=︒Rt BGC △90︒B CG ''△B 'G 'BG B G ''AG CGEG '10B C '=6EG '=4CD =ABG S AB AG =112AB k k BC ⎛⎫=<≤ ⎪⎝⎭()21B E k EG ''=-12.8ABG S = 90CGE GCG CG E ''∠=∠=∠=︒CG CG ='G GT BC ⊥T 6CG CG '==8B G ''==1122BG CG BC GT ⨯=⨯68 4.810GT ⨯==A AK BG ⊥K BK GK m ==CBK BAK ∠=∠ABK BCG ∽AB BK BC CG =m CG k =m CG CG EG k''===()()22121m m B E B G EG m k k EG k k'''''=-=-=-=-解:四边形是正方形,理由如下:由旋转可得:,,,∴,∴,∴四边形是矩形,∵,∴四边形是正方形.【小问2详解】如图,过作于,∵四边形为正方形,,∴,∵,∴,由旋转可得:,,由等面积法可得:,∴,∴,∵矩形,,∴,∴;【小问3详解】CGEG '90GCG '∠=︒90BGC B G C ''∠=︒=∠CG CG ='90CGE ∠=︒90CGE GCG CG E ''∠=∠=∠=︒CGEG 'CG CG ='CGEG 'G GT BC ⊥T GCG E '6EG '=6CG CG '==10B C '=8B G ''==10B BC C '==8BG B G ''==1122BG CG BC GT ⨯=⨯68 4.810GT ⨯== 6.4BT ==ABCD 4CD =4AB CD ==14 6.412.82ABG S =⨯⨯=如图,过作于,则,∵,∴,∵矩形,∴,∴,∵,∴,∴,∴,∴,由旋转可得:,∴.【点睛】本题考查的是旋转的性质,矩形的性质,正方形的判定与性质,勾股定理的应用,相似三角形的判定与性质,等腰三角形的判定与性质,作出合适的辅助线是解本题的关键.23. 如图,已知:抛物线与x 轴交于点和点,与y 轴交于点C .A AK BG ⊥K 90BAK ABK ∠+∠=︒AB AG =BK GK m ==ABCD 90ABC ABK CBK ∠=︒=∠+∠CBK BAK ∠=∠90AKB BGC ∠=∠=︒ABK BCG ∽AB BK BC CG=m CG k =m CG CG EG k''===2B G BG m ''==()()22121m m B E B G EG m k k EG k k '''''=-=-=-=-22y ax x c =-+()30A -,()10B ,(1)求抛物线的解析式;(2)如图1,点P 是抛物线(不包括坐标轴)上一个动点,连接和,当时,求出点P 的坐标;(3)如图2在(2)的条件下,连接CP 与x 轴交于点M ,求证:.【答案】(1)(2)(3)见解析【解析】【分析】(1)待定系数法求出函数解析式即可;(2)过点作轴,交于点,根据,进行求解即可;(3)先证明为等腰直角三角形,得到,求出的解析式,进而求出的坐标,过点作,等积法求出的长,进而求出的长,证明,得到,进而得到,再根据对顶角相等,和三角形的外角的性质,得到,即可.【小问1详解】解:抛物线与x 轴交于点和点,∴,解得:,∴;【小问2详解】∵,PA PC 4PAC OBC S S =△△45AMP OCB ∠-∠=︒223y x x =--+()4,5P --P PE x ⊥AC E 142PAC OBC S PE OA S =⋅=△△OAC 45OAC ∠=︒PC M M MN AC ⊥MN CN MNC BOC ∽MNC BOC ∽OCB ACM =∠∠45A AMP OCB O C ∠︒∠=-∠=22y ax x c =-+()30A -,()10B ,96020a c a c ++=⎧⎨-+=⎩13a c =-⎧⎨=⎩223y x x =--+223y x x =--+∴当时,,当时,,解得:;∴,∵,∴,设直线的解析式为,把代入,得:,∴,过点作轴,交于点,设,则:,∴,∴,∴,∴或,当时,解得:或(舍去);∴;当时,方程无实数根,不符合题意;综上:;【小问3详解】∵,0x =3y =0y =2x 2x 30--+=123,1x x =-=()()0,3,3,0C A -()10B ,133122OBC S =⨯⨯=△AC ()30y kx k =+≠()30A -,1k =3y x =+P PE x ⊥AC E ()2,23P m m m --+(),3E m m +23PE m m =+21133346222PAC S PE OA m m =⋅=⨯+=⨯=△234m m +=234m m +=234m m +=-234m m +=4m =-1m =()4,5P --234m m +=-()4,5P --()4,5P --()()0,3,3,0C A -∴,∴,设直线的解析式为:,把,代入,得:,∴,当时,,∴,∴,∴,过点作,则:,∴,∵,∴,3OA OC ==45CAO ACO ∠=∠=︒AC =PC 3y nx =+()4,5P--2n =23y x =+0y =32x =-3,02M ⎛⎫- ⎪⎝⎭12OM OA =1119332224AMC AOC S S ==⨯⨯⨯= M MN AC ⊥119224AMC S AC MN =⋅=⨯= MN =45CAO ∠=︒AN MN ==∴,∴∵,∴,∴,∴.【点睛】本题考查二次函数的综合应用,涉及待定系数法求函数解析式,求一次函数的解析式,等腰三角形的判定和性质,三角形的外角,相似三角形的判定和性质等知识点,正确的求出函数解析式,利用数形结合和分类讨论的思想进行求解,是解题的关键.CN AC AN =-=MN CN OB OC ==MNC COB ∠=∠MNC BOC ∽OCB ACM =∠∠45AMP OCB CMO ACM CAO ∠-∠=∠-∠=∠=︒。

(完整版)内蒙古自治区通辽市中考数学试卷含答案

(完整版)内蒙古自治区通辽市中考数学试卷含答案

2018年内蒙古通辽市中考数学试卷一、选择题<共10小题,每小题3分,满分30分)1.如图,有五个相同的小立方块搭成的几何体,这个几何体的左视图是<)A.B.C.D.2.在一个暗箱内放有a个除颜色外其余完全相同的小球,其中红球只有3个且摸到红球的概率为15%,则a的值是<)A.20 B.15 C.12 D.93.若n=﹣6,则估计n的值所在范围,下列最接近的是<)A.4<n<5 B.3<n<4 C.2<n<3 D.1<n<24.将0.0006049保留两位有效数字并用科学记数法表示正确的是<)A.6.0×10﹣4B.6.0×10﹣3C.6.1×10﹣4D.6.1×10﹣35.相交两圆的半径分别为1和3,把这两个的圆心距的取值范围在数轴上表示正确的是<)A.B.C.D.6.小刚徒步到同学家取自行车,在同学家逗留几分钟后他骑车原路返回,他骑车速度是徒步速度的3倍.设他从家出发后所用的时间为t<分钟),所走的路程为s<M),则s与t的函数图象大致是<)A.B.C.D.7.美是一种感觉,当人体的下半身长与身高的比值越接近0.618时越给人一种美感.已知某女士身高160cm,下半身长与身高的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度约为<)A.6cm B.10cm C.4cm D.8cm8.4点10分,时针与分针所夹的小于平角的角为<)A.55°B.65°C.70°D.以上结论都不对9.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=﹣和y=的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为<)A.3B.4C.5D.1010.为安置100名中考女生入住,需要同时租用6人间和4人间两种客房,若每个房间都住满,则租房方案共有<)A.8种B.9种C.16种D.17种二、填空题<共7小题,每小题3分,满分21分)11.5的倒数是_________,|1﹣|=_________,﹣=_________.12.2,3,4,5,6这五个数的平均数是4,则这组数据的方差是_________.13.如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,若∠A′BC=15°,则∠A′BD的度数为_________.14.一个扇形的弧长是20πcm,面积是240πcm2.则这个扇形的半径是_________.15.已知方程x2﹣2x﹣1=0的两根分别是x1、x2,则=_________.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.17.观察下列等式:1×2=×<1×2×3﹣0×1×2)2×3=×<2×3×4﹣1×2×3)3×4=×<3×4×5﹣2×3×4)…计算:3×[1×2+2×3+3×4+…+n<n+1)]=_________.三、解答题<共9小题,满分69分)18.先化简,再求值.<)÷<其中x=)19.如图,小艳家<点A)在学校<点C)北偏东60°方向,AC=600<m).小颖家<点B)在小艳家正南,学校在小颖家北偏西45°方向.求:小颖家与小艳家的距离.<结果保留根号)20.洋洋九年级上学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1 测验2 测验3 测验4成绩106 102 115 109 112 110<1)计算洋洋该学期的数学平时平均成绩;<2)如果学期的总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩.21.某校学生乘车到距学校60千M的景区游玩,一部分学生乘慢车,另一部分学生乘快车,他们同时出发,结果乘慢车的同学晚到20分钟.已知快车速度是慢车速度的1.5倍,求慢车的速度.22.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,=.求证:<1)AD∥OC;<2)CD是⊙O的切线.23.如图,四边形ABCD与四边形ACED都是平行四边形,R是DE的中点,BR交AC、CD于点P、Q.若AD=,AB=AC=2.求:BP、PQ的长.24.甲口袋里装有2个相同的小球,它们分别写有数字1和2;乙口袋里装有3个相同的小球,它们分别写有数字3,4,5;丙口袋里有2个相同的小球,它们分别写有数字6,7.从三个口袋中各随机地取出1个小球,按要求解答下列问题:<1)画出“树形图”;<2)取出的3个小球上只有1个偶数数字的概率是多少?<3)取出的3个小球上全是奇数数字的概率是多少?25.已知直线y=2x+4与x轴交于点A,与y轴交于点B,点P在坐标轴上,且PO=240.求△ABP的面积.26.如图,在平面直角坐标系中,将一个正方形ABCD放在第一象限斜靠在两坐标轴上,且点A<0,2)、点B<1,0),抛物线y=ax2﹣ax﹣2经过点C.<1)求点C的坐标;<2)求抛物线的解读式;<3)在抛物线上是否存在点P与点Q<点C、D除外)使四边形ABPQ为正方形?若存在求出点P、Q两点坐标,若不存在说明理由.2018年内蒙古通辽市中考数学试卷参考答案与试卷解读一、选择题<共10小题,每小题3分,满分30分)1.如图,有五个相同的小立方块搭成的几何体,这个几何体的左视图是<)A.B.C.D.考点:简单组合体的三视图。

中考数学试卷4(含答案解析).docx

中考数学试卷4(含答案解析).docx

中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1. (3 分)(2019・广州)| - 6|=( )A. - 6B. 6C.-丄D.丄6 62. (3分)(2019・广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试 点建设的长度分别为(单位:千米):5, 5.2, 5, 5, 5, 6.4, 6, 5, 6.68, 48.4, 6.3,这 组数据的众数是( ) 3. (3分)(2019•广州)如图,有一斜坡AB,坡顶B 离地面的高度BC 为30,”,斜坡的倾 斜角是"AC,若taS 送,则此斜坡的水平距离AC 为(的切线条数为( )6. (3分)(2019•广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120 个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的 是(A. 120 = 150B. 120 ==150Xx-8 x+8XC. 120= 150D. 120 ==150 x-8XXx+87. (3分)(2019・广州)如图,口ABCD 中,对角线AC, BD 相交于点O, 且E, F, G, H 分别是AO, BO, CO, DO 的中点,则下列说法正确的是()A. 5B. 5.2C. 6D. 6.4B. 50mC. 30mD. 12m4. (3分)(2019•广州)下列运算正确的是( A. - 3 - 2= - 1C. x 3*x 5=x 15B. 3X (-丄)2=-丄335. (3分)(2019・广州) 平面内,OO 的半径为1,点P 到O 的距离为2,过点P 可作OOA. 0条B. 1条C. 2条D.无数条A. 75mA.EH=HGB.四边形EFGH是平行四边形C.AC±BDD.AABO的面积是△EFO的面积的2倍& (3分)(2019•广州)若点A ( - 1, yi), B(2,加,C(3,加在反比例函数■的x 图象上,则yi, y2,丁3的大小关系是()A. y3<j2<yiB. yi<yi<y3C. yi<y3<j2D. yi<j2<j39.(3分)(2019•广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC, AD于点E, F,若BE=3, AF=5,则AC的长为()10.(3分)(2019・广州)关于x的一元二次方程(^ - 1)x-k+2=0有两个实数根xi,XI,若(M1 - X2+2)(XI - X2 - 2)+2X1X2= - 3,则斤的值()A. 0 或2B. - 2 或2C. - 2D. 2二、填空题(共6小题,每小题3分,满分18分)11.(3 分)(2019・广州)如图,点A, B, C 在直线/上,PBM, PA^6cm, PB=5cm, PC=7cm,则点P到直线/的距离是_________ cm.12.(3分)(2019・广州)代数式丿=有意义时,x应满足的条件是________ .13.(3 分)(2019・广州)分解因式:x2y+2xy+y= ____ .14.(3分)(2019•广州)一副三角板如图放置,将三角板ADE绕点A逆时针旋转a (0°B 重合),ZDAM=45°,点F 在射线AM 上,且CF 与AD 相交于点G, 连接EC, EF, EG,则下列结论:①ZECF=45° ; @/\AEG 的周长为(1+V2) a ;③BEZ+DG^EG 2;(4)A£AF 的面2 「 积的最大值丄#.8其中正确的结论是 _______ •(填写所有正确结论的序号)三、解答题(共9小题,满分102分)17. (9分)(2019・广州)解方程组:JxVFl .Ix+3y=918. (9 分)(2019・广州)如图,D 是 AB 上一点,DF 交 AC 于点 E, DE=FE, FC//AB, 求证:/\ADE 竺 CFE.点E 在边AB ±运动(不与点A,角形,则该圆锥侧面展开扇形的弧长为 _______ .(结果保留“)正方形ABCD 的边长为a,A(1)化简P;(2)若点(a, b)在一次函数的图象上,求P的值.20.(10分)(2019・广州)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组OWrvi2B组1£V2mC组2Wt<310D组3WfV412E组4WrV57F组总54请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率: 从F组中随机选取2名学生,恰好都是女生.扇形统计图AS21.(12分)(2019・广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G 基站数量将达到17.34万座. (1) 计划到2020年底,全省5G 基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G 基站数量的年平均增长率.22. (12分)(2019・广州)如图,在平面直角坐标系xOy 中,菱形ABCD 的对角线AC 与 BD 交于点P ( - 1, 2), AB Lx 轴于点E,正比例函数的图象与反比例函数丁=卫二1x的图象相交于A, P 两点. (1) 求m, n 的值与点A 的坐标; (2) 求证:△CPDsMEO ; (3)求 sinZCDB 的值.23. (12分)(2019・广州)如图,G )O 的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC (点D 不与B 重合),连接AD ;(保留作图痕迹, 不写作法)24. (14分)(2019・广州)如图,等边△ABC 中,AB=6,点D 在BC 上,BD=4,点、E 为 边AC 上一动点(不与点C 重合),关于DE 的轴对称图形为 (1) 当点F 在AC 上时,求证:DF//AB ;(2)设的面积为Si, AABF 的面积为S2,记S=Si-S2, S 是否存在最大值?若存在,求出S 的最大值;若不存在,请说明理由;求四边形ABCD 的周长.(3)当B, F, E三点共线时.求AE的长.25.(14分)(2019*广州)已知抛物线G:y-rm? -2mx-3有最低点.(1)求二次函数y—mx2 - 2mx - 3的最小值(用含,"的式子表示);(2)将抛物线G向右平移加个单位得到抛物线G1.经过探究发现,随着加的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分) 1. (3 分)(2019•广州)|-6|=( 【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答. 【解答】解:-6的绝对值是| - 6|=6. 故选:B.2. (3分)(2019・广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试 点建设的长度分别为(单位:千米):5, 5.2, 5, 5, 5, 6.4, 6, 5, 6.68, 48.4, 6.3,这 组数据的众数是( ) A. 5B. 5.2C. 6D. 6.4【考点】众数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【解答】解:5出现的次数最多,是5次,所以这组数据的众数为5 故选:A. 3. (3分)(2019•广州)如图,有一斜坡坡顶B 离地面的高度为30加,斜坡的倾 斜角是ZBAC,若tanZB4C=Z,则此斜坡的水平距离AC 为()【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC 的长,本题得以解 决.A. - 6B. 50mC. 30mD. 12mA. 75m【解答】解:•.•ZBC4=90° , tanZBAC=兰,BC=30m,55 "AC "AC解得,AC=75,故选:A.4.(3分)(2019-r州)下列运算正确的是()A.- 3 - 2= - 1B. 3X(-丄)2=-丄3 3C. ^•^—x15D. Va*Vab=a,Vb【考点】实数的运算;同底数幕的乘法.【分析】直接利用有理数混合运算法则、同底数幕的乘除运算法则分别化简得出答案.【解答】解:A、-3-2= -5,故此选项错误;B、3X (-丄)2=_,故此选项错误;3 3C、x i,x5—x s,故此选项错误;D、\/~a* V ab=fl Vb> 正确.故选:D.5.(3分)(2019・广州)平面内,OO的半径为1,点P到O的距离为2,过点P可作OO 的切线条数为()A. 0条B. 1条C. 2条D.无数条【考点】切线的性质.【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:•••O0的半径为1,点P到圆心0的距离为2,d>Y,.•.点P与OO的位置关系是:P在OO外,•.•过圆外一点可以作圆的2条切线,故选:C.6.(3分)(2019・广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. 120 = 150B. 120 = 150C. 120 = 150D. 120=150x~8 x x x+8【考点】由实际问题抽象出分式方程.【分析】设甲每小时做乂个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:120丿50,x x+8故选:D.7.(3分)(2019・广州)如图,口ABCD中,AB=2, AD=4,对角线AC, BD相交于点O,且E, F, G, H分别是AO, BO, CO, DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC1BDD.△ABO的面积是△EFO的面积的2倍【考点】三角形的面积;平行四边形的判定与性质.【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:•:E, F, G, H分别是AO, BO, CO, DO的中点,在°ABCD中,AB=2,AD=4,:.EH=1-AD^2,:.EH^HG,故选项A错误;•:E, F, G, H分别是AO, BO, CO, DO 的中点,•'•EH专AD 今BC=FG,•••四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;•••点E、F分别为OA和OB的中点,:.EF=L^, EF//AB,:,Z\OEF<^/\OAB,...S AAEF _ .-EF)2 4,^AOAB 壮4即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.& (3分)(2019・广州)若点A ( - 1, yi), B(2,以),C (3, %)在反比例函数的X 图象上,则yi, y2, y3的大小关系是()A. y3<y2<yiB. y2<yi<y3C. yi<y3<y2D. yi<y2<y3【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征求出八%、为的值,比较后即可得出结论.【解答】解:•••点A ( - 1, yi), B(2, 丁2), C(3, y3)在反比例函数y=^-的图象上,X .-.ji=-^-= - 6, y2=—=3, j3=—=2,-1 2 3又T - 6<2<3,.'.yi<y3<y2.故选:C.9.(3分)(2019・广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC, AD于点E, F,若BE=3, AF=5,则AC的长为()A. 4^5B. 4A/3C. 10D. 8【考点】全等三角形的判定与性质;线段垂直平分线的性质;矩形的性质.【分析】连接AE,由线段垂直平分线的性质得出OA^OC, AE=CE,证明COE得出AF=CE=5,得出AE=CE=5, BC=BE+CE=8,由勾股定理求出AB =V A E2-BE2=4,再由勾股定理求出AC即可.【解答】解:连接AE,如图:TEF是AC的垂直平分线,・・・OA=OC, AE=CE,・・•四边形ABCD是矩形,:.ZB=90° , AD//BC,:.ZOAF=ZOCE f'ZAOF=ZCOE在ZvlOF和ACOE 中,OA=OCZOAF^ZOCE•••△AOF竺△COE (ASA),:.AF=CE=5f:.AE=CE=5f BC=BE+CE=3+5 = 8,/MB=V A E2-BE2=V52-32=4,A c=V A B2+BC2= V42 + 82=4^:10.(3分)(2019・广州)关于x的一元二次方程(^ - 1) x-k+2^0有两个实数根xi,Xi,若(xi - X2+2) (xi -池-2) +2x1x2= - 3,贝!]丘的值( )A. 0或2B. -2 或2C. - 2D. 2【考点】根的判别式;根与系数的关系.【分析】由根与系数的关系可得出X\+X2 — k - 1, X\X2— - k+2,结合(X1-X2+2)(XI - X2 -2) +2X1X2= - 3可求出k的值,根据方程的系数结合根的判别式△三0可得出关于k 的一元二次不等式,解之即可得出)1的取值范围,进而可确定丘的值,此题得解.【解答】解:•••关于x的一元二次方程(^- 1) x-k+2=0的两个实数根为血,池,・*.X1+X2 —- 1, X1X2= ~ k+2....(XI - X2+2) (XI - X2 - 2) +2X1X2= - 3,即(X1+X2)2 - 2X1X2 - 4= - 3,(k- 1) 2+2斤-4-4= - 3,解得:k=±2.•••关于x的一元二次方程Ck- 1) x _ k+2=0有实数根,- (E-1) F-4X1X (-好2)三0,解得:k^2y/2 - 1 或kW - 2A/2 - 1 >.'.k=2.故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3 分)(2019・广州)如图,点A, B, C在直线/上,PBM, PA^Gcm, PB=5cm, PC【考点】点到直线的距离.【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【解答】解:TPB丄/, PB=5cm,■-.P到I的距离是垂线段PB的长度5cm,故答案为:5.12.(3分)(2019・广州)代数式卓=有意义时,x应满足的条件是x>8x-8【考点】62:分式有意义的条件;72:二次根式有意义的条件.【分析】直接利用分式、二次根式的定义求出x的取值范围.【解答】解:代数式有意义时,x-8x - 8>0,解得:x>8.故答案为:x>&13.(3 分)(2019・广州)分解因式:A+2xy+y= y (x+1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.【解答】解:原式=y C+2x+l)=y(x+1)故答案为:y(x+1)2.14.(3分)(2019•广州)一副三角板如图放置,将三角板ADE绕点A逆时针旋转a (0°<a<90°),使得三角板ADE的一边所在的直线与BC垂直,则a的度数为15°或【考点】角的计算.【分析】分情况讨论:®DE±BC ; @ADLBC. 【解答】解:分情况讨论:① 当 DELBC 时,ZBAD= 180° - 60° - 45° =75° , .*.a=90° - ZBAD= 15° ; ② 当 AD1BC 时,a=90° - ZC=90° - 30° =60° . 故答案为:15°或60°15. (3分)(2019-r 州)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三 角形,则该圆锥侧面展开扇形的弧长为—2近 兀(结果保留“)【分析】根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题. 【解答】解:•••某圆锥的主视图是一个腰长为2的等腰直角三角形, •••斜边长为2迈, 则底面圆的周长为2屈T,•••该圆锥侧面展开扇形的弧长为2妨, 故答案为2屈T.16. (3分)(2019・广州)如图,正方形ABCD 的边长为a,点E 在边AB 上运动(不与点A, B 重合),ZDAM=45°,点F 在射线AM 上,且AF=^E, CF 与AD 相交于点G, 连接EC, EF, EG,则下列结论:①ZECF=45° ; @AAEG 的周长为(1+返)a ;(3)BE 2+DG 2^EG 2;④△E4F 的面 积的最大值L A8其中正确的结论是①④.(填写所有正确结论的序号)弧长的计算;圆锥的计算;简单几何体的三视图;由三视图判断几何体.【考点】二次根式的应用;勾股定理;相似三角形的判定与性质.【分析】①正确•如图1中,在BC上截取BH=BE,连接EH.证明△ FAE竺厶EHC(SAS), 即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则厶CBE丝HCDH (SAS),再证明厶GCE竺厶GCH (SAS),即可解决问题.④正确.设BE=x,则AE=a-x, AF=^,构建二次函数,利用二次函数的性质解决最值问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.•:BE=BH, ZEBH=90° ,:.EH=y[2PE, ':AF=^2^E,:.AF=EH,':ZDAM=ZEHB=45° , ZBAD=90° ,:.ZFAE=ZEHC= 135° ,\'BA=BC, BE=BH,:.AE^HC,.•.△FAE竺AEHC (SAS),:.EF=EC, ZAEF^ZECH,V ZECH+ZCEB=9Q° ,A ZAEF+ZCEB^90° ,A ZF£C=90° ,:.ZECF=ZEFC=45° ,故①正确,如图2中,延长AD到H,使得DH=BE,则厶CBE竺“CDH (SAS),・•・ ZECB = ZDCH,:.ZECH=ZBCD=90° ,:.ZECG=ZGCH=45° ,•・・CG=CG, CE=CH,:.AGCE^AGCH (SAS),・・・EG=GH,•:GH=DG+DH, DH=BE,・・・EG=BE+DG,故③错误,AAEG 的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD = 2a,故②错误,设BE=x,贝lj AE=a - x, AF=\[^c,・*.S/\AEF=—(a - x) Xx= -- —(x2 - ax+^-a1 - Az?)=-丄(兀-^)2+^2,2 2 2 2 4 4 2 2 8护时,△仙的面积的最大值为护故④正确,故答案为①④.\G三、解答题(共9小题,满分102分)17.(9分)(2019・广州)解方程组:(xVFl .Ix+3y=9【考点】解二元一次方程组.【分析】运用加减消元解答即可.【解答】解:$于I:,]x+3y=9②②-①得,4y=2,解得y=2,把y=2代入①得,x - 2=1,解得兀=3, 故原方程组的解为]x=3.1尸218.(9 分)(2019・广州)如图,D 是 AB 1.一点,DF 交AC 于点E, DE=FE, FC//AB,【考点】全等三角形的判定.【分析】利用AAS证明:△ ADE竺CFE.【解答】证明:TFC/AB,:.ZA=ZFCE, ZADE= ZF,在△ADE与△ CFE中:'ZA=ZFCF•二ZADE=ZF>卫E=EF.•.△ADE竺ACFE (AAS).19.(10 分)(2019・广州)已知―至一--1(a^±b)a2-b2 a+b(1)化简P;(2)若点(a, b)在一次函数y=x-迈的图象上,求P的值.【考点】一次函数图象上点的坐标特征.【分析】(1)P=- 2a -丄= ____________ 2a ________ = 2a-a+b_=丄;2_^2 a+b (a+b)(a~b) a+b (a+b)(a~b) a~ba(2)将点(a, b)代入y=x-迈得到Q-Z?=伍,再将伍代入化简后的F,即可求解;【解答】解:(1) P= 2a -丄= _______________ 2a_ _=丄;a'-b? a+b (a+b) (a-b) a+b (a+b) (a-b) a~b(2) .点(a, b)在一次函数y—x - \[2的图象上,•• b=ci - ^2?.'.a - b—^f2,•p=.V20.(10分)(2019-r州)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.请根据图表中的信息解答下列问题:(1)求频数分布表中Ml的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率: 从F组中随机选取2名学生,恰好都是女生.扇形统计图【考点】频数(率)分布表;扇形统计图;列表法与树状图法.【分析】(1)用抽取的40人减去其他5个组的人数即可得出加的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解答】解:(1)加=40-2-10- 12-7-4=5;(2)B组的圆心角=360° X旦=45° ,40C组的圆心角= 360°或丄。

中考数学模拟试题(附答案解析)

中考数学模拟试题(附答案解析)
5.下列运算正确的是()
A. B. C. D.
6.在平面直角坐标系中,将直线 先向左平移2个单位长度,再向上平移5个单位长度,则平移后的新直线为()
A. B. C. D.
7.如图,在 中,M,N 上两点, ,连接 , , , ,添加一个条件,使四边形 是菱形,这个条件是()
A. B. C. D.
8.如图, 是 的内接三角形,作 与 相交于点C,且 ,则 的大小为()
二、填空题(本大题共4个小题,每小题3分,共12分)
11.比较大小: ______ .(填“>”、“<”或“=”)
12.圆内接正六边形的边长为6,则该正六边形的边心距为_____.
13.如图, 的顶点O在坐标原点上, ,若点B在反比例函数 的图象上,点A在反比例函数 的图象上,则k的值为______.
22.小红和小兵进行摸球试验,在一个不透明的空布袋中放有4个小球.分别标号1,2,3,4,小球除数字不同外其他都相同.试验规则:摸球前先搅拌均匀,每次随机摸一个小球,记下数字后,称为摸球一次.
(1)若小兵随机摸球一次,摸到标号为奇数的概率为__________________;
(2)若小红从袋中不放回地随机摸两次,请用列表法或画树状图法求出两球标号均为偶数的概率.
(1)请将两幅统计图补充完整,所抽取学生最感兴趣的吉祥物是____________;
(2)在这次调查中,A、B、C、D哪项选择人数少于调查总人数的平均数?
(3)若本校一共有2000名学生,请估计“对B.熊熊最感兴趣”的人数.
20.在学习了相似三角形 应用知识点后,小丽为了测量某建筑 的高度,在地面上的点D与同学们一同竖直放了一根标杆 ,并在地面上放置一块平面镜E,已知建筑底端B、E、D点在同一条水平直线上,在标杆顶端点C恰好通过平面镜E观测到建筑顶点A,在点C观测建筑顶点A的仰角为 ,平面镜E的俯角为 ,其中标杆 的长度为1米,问建筑 的高度为多少米?(结果精确到0.1米,参考数据: )

2024年重庆市中考数学模拟试卷(预测四)

2024年重庆市中考数学模拟试卷(预测四)

2024年重庆市中考数学模拟试卷(预测四)一、单选题1.2的相反数是( )A .2B .2-C .12-D .42.下面的几何体的主视图是( )A .B .C .D . 3.如图,直线a b ∥,直线c 与直线a 、b 分别相交于A 、B 两点,AC AB ⊥于点A ,交直线b 于点C .如果138∠=︒,那么2∠的度数为( )A .52︒B .48︒C .38︒D .32︒ 4.函数k y =(k 为常数,0k ≠)的部分x 和y 的值如下表所示,则“◎”表示的数是( )A .4B .2C .1D .125.估计 ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间 6.如图,ABC V 与111A B C △位似,位似中心是点O ,且1:1:2OA OA =,若ABC V 的面积为5,则111A B C △的面积为( )A .10B .15C .20D .257.下列图案是用长度相同的火柴棒按一定规律拼搭而成的,图案①需要8根火柴棒,图案②需要15根火柴棒,图案③需要22根火柴棒,….按此规律,图案⑧需要的火柴棒的根数为( )A .50B .54C .57D .648.如图,已知AB 与O e 相切于点A ,AC 是O e 的直径,连接BC 交O e 于点D ,E 为O e 上一点,连接,EC ED ,若CED α∠=,则B ∠的度数是( )A .90α︒-B .αC .452α︒+ D .2α9.如图,E 是正方形ABCD 对角线BD 上一点,连接AE ,过点E 作EF AE ⊥,交BC 于点F .已知DE AE BF 的长为( )A .1B .2 CD .10.有n 个依次排列的算式:第1项是2a ,第2项是221a a ++,用第2项减去第1项,所得之差记为1b ,将1b 加2记为2b ,将第2项与2b 相加作为第3项,将2b 加2记为3b ,将第3项与3b 相加作为第4项,……,以此类推.某数学兴趣小组对此展开研究,得到3个结论①529b a =+;②若第6项与第5项之差为4057,则2024=a ;③当n k =时,212342k b b b b b ak k +++++=+L ;其中正确的个数是( )A .0B .1C .2D .3二、填空题11.计算:()023.142π---=.12.如图,一个正方形和一个正五边形各有一边AB ,CD 在直线l 上,且只有一个公共顶点P ,则BPC ∠的度数为.13.一个不透明的口袋中有1个黄色球和3个红色球,这些球除颜色外其余均相同从中随机摸出一个球,记下颜色后放回,搅匀后再从中随机摸出一个球,则两次都摸出红球的概率是. 14.如图,某小区有一块长为15米,宽为10米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为296m ,两块绿地之间及周边留有宽度相等的人行通道.设人行通道的宽度为x 米,则所列方程是.15.长方形ABCD 中,以点A 为圆心AD 的长为半径画弧交AB 于点E ,以DC 为直径的半圆与AB 相切,切点为E ,已知4AB =,则图中阴影部分的面积为.(结果保留π)16.如图,CN 平分ABC V 的外角ACM ∠,过点A 作CN 的垂线,垂足为点D ,B BAD ∠=∠.若9AC =,6BC =,则AD 的长为.17.关于x 的一元一次不等式组32132325x x x m -+⎧≥-⎪⎨⎪->⎩至少有3个整数解,且关于y 的分式方程3222my y y y-+=--有整数解,那么符合条件的所有整数m 的和为. 18.如果一个四位自然数M 各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M 为“会意数”.把四位数M 的前两位数字和后两位数字整体交换得到新的四位数M '.规定()99M M F M '-=.例如:2335M =,∵235+=,358+=,∴ 2335是“会意数”.则()3523233523351299F -==.那么“会意数”4162N =,则()F N =;已知四位自然数S abcd =是“会意数”,(4b ≤,7d ≤,且a 、b 、c 、d 均为正整数),若()F S 恰好能被8整除,则满足条件的数S 的最大值是.三、解答题19.计算:(1)()()22+--x y x x y ;(2)26934222-+-⎫⎛÷+- ⎪--⎝⎭x x x x x x . 20.如图,在Rt ABC △中,90B ??,AD 平分BAC ∠.小明在刚学完“三角形全等的判定”这节课后,想利用所学知识,推导出ABD △和ACD V 面积的比值与AB ,AC 两边比值的关系.他的思路是:过点D 作AC 的垂线,垂足为点H ,再根据三角形全等来证明ABD △和ACD V 的高相等,进一步得到ABD △和ACD V 的面积之比等于BAC ∠的两邻边边长之比.请根据小明的思路完成以下作图与填空:(1)用直尺和圆规,过点D 作AC 的垂线,垂足为点H (只保留作图痕迹).(2)证明:∵DH AC ⊥,∴90AHD B ∠=︒=∠.∵AD 平分BAC ∠,∴ ① .在ABD △和AHD V 中,B AHD BAD HAD ⎧∠=∠⎪∠=∠⎨⎪⎩② ∴ABD △≌AHD V ()AAS .∴ ③ . ∵12ABD S AB BD =⋅V , 12ACD S AC DH =⋅△, ∴ABD ACD S AB S AC=△△. 小明再进一步研究发现,只要一个三角形被其任意一内角角平分线分为两个三角形,均有此结论.请你依照题意完成下面命题:如果一个三角形满足被其任意一内角角平分线分为两个三角形,那么 ④ .21.我校在七、八年级学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .130135x ≤<,B .135140x ≤<,C .140145x ≤<,D .145150x ≤≤),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩:131,134,135,138,141,147,148,148,148,150. 八年级10名学生的竞赛成绩在C 组中的数据是140,143,143,144.七、八年级抽取的学生的竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a =______,b =______,c =______;(2)根据以上数据分析,你认为我校七、八年级中哪个年级学生竞赛成绩较好?请说明理由(一条理由即可);(3)我校七、八年级分别有780名、620学生参加了此次竞赛,请估计成绩达到140分及以上的学生共有多少名?22.山城步道是重庆的特色,市民可以在步道里面休闲、运动,享受美好生活.半山崖线步道沙坪坝段全长2000米,由甲、乙两个工程队合作完成,甲工程队修建的步道长度比乙工程队修建的步道长度的2倍少400米.(1)求甲、乙两工程队各修建步道多少米?(2)实际修建过程中,甲工程队每天比乙工程队多修5米,最终甲工程队完成任务时间是乙工程队完成任务时间的1.2倍,则甲工程队每天修建步道多少米?23.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,4BC =.点D 是AB 中点,动点P ,Q 分别以每秒1个单位长度的速度同时运动,点P 从点C 出发,沿折线C D B →→运动,到达点B 时停止运动,点Q 从点B 出发,沿直线B A →运动,到达点A 时停止运动,设点P ,点Q 的运动时间为x 秒,点P ,Q 之间的距离为y .(1)请直接写出y 与x 之间的函数表达式并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数图像,并写出该函数的一条性质;(3)结合函数图像,直接写出P ,Q 两点相距大于3个单位长度时x 的值.(结果保留一位小数,误差不超过0.2).24.如图,四边形ABCD 是某公园的休闲步道.经测量,点B 在A 的正西方向,AB =米,点D 在A 的正北方向,点C 在B 的西北方向,BC =C 在D 的南偏西60︒方向上.(1)求步道AD 的长度;(精确到个位数);(2)小亮以90米/分的速度沿A B C D →→→的方向步行,小明骑自行车以300米/分的速度沿D C B A →→→的方向行驶.两人能否在4分钟内相遇?请说明理由.(参考数据:1.414 1.732)25.在平面直角坐标系中,抛物线22y ax bx =+-交x 轴于点()3,0A -,()1,0B ,交y 轴于点C .(1)求抛物线的解析式;(2)如图1,在直线AC 下方的抛物线上有一点D ,作D F y ∥轴交BC 于点F ,作D E A C ⊥于E ,求DF 的最大值及此时点D 的坐标;(3)如图2,将抛物线22y ax bx =+-沿射线CBy ',在y 轴的正半轴上有一点G ,在新抛物线y '上是否存在点P ,使得2GOP BAC ∠=∠?若存在,直接写出点P 的横坐标;若不存在,说明理由.26.在ABC V 中,AB AC =,D 是边AC 上一动点,E 是ABC V 外一点,连接BD BE ,.(1)如图1,CE AB ∥,=AD CE ,若1203ABD A ∠==︒∠,求E ∠的度数; (2)如图2,CE AB ∥,2BD BE A ABD =∠=∠,,过点D 作DF AB ⊥交于点F ,若23DE DF DBC CBE =∠=∠,,求证:AB BD CE =+;(3)如图3,AE AB =,延长AE 交BC 的延长线于点F ,BE 交AC 于点G ,点D 是直线AC 上一动点,将ABD △沿BD 翻折得HBD △,连接FH ,取FH 的中点M ,连接AM ,若2EF GC AB BC ==,,当线段AM 取得最大值时,请直接写出AM AB的值.。

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。

2018年内蒙古包头市中考数学试卷及答案

2018年内蒙古包头市中考数学试卷及答案

2018年内蒙古包头市中考数学试卷及答案2018年内蒙古包头市中考数学试卷⼀、选择题:本⼤题共有12⼩题,每⼩题3分,共36分.1.计算﹣﹣|﹣3|的结果是()A.﹣1 B.﹣5 C.1 D.52.如图,是由⼏个⼤⼩相同的⼩⽴⽅块所搭⼏何体的俯视图,其中⼩正⽅形中的数字表⽰在该位置的⼩⽴⽅块的个数,则这个⼏何体的主视图是()A.B.C.D.3.函数y=中,⾃变量x的取值范围是()A.x≠1 B.x>0 C.x≥1 D.x>14.下列事件中,属于不可能事件的是()A.某个数的绝对值⼤于0B.某个数的相反数等于它本⾝C.任意⼀个五边形的外⾓和等于540°D.长分别为3,4,6的三条线段能围成⼀个三⾓形5.如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.36.⼀组数据1,3,4,4,4,5,5,6的众数和⽅差分别是()A.4,1 B.4,2 C.5,1 D.5,27.如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆⼼,AB长为半径画弧,交BC于点D,则图中阴影部分的⾯积是()A.2﹣B.2﹣C.4﹣ D.4﹣8.如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°9.已知关于x的⼀元⼆次⽅程x2+2x+m﹣2=0有两个实数根,m为正整数,且该⽅程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.310.已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在⼆次函数y=x2﹣2x﹣1的图象上,且满⾜x1<x2<1,则y1>y2>﹣2;③在同⼀平⾯内,a,b,c是直线,且a∥b,b ⊥c,则a∥c;④周长相等的所有等腰直⾓三⾓形全等.其中真命题的个数是()A.4个B.3个C.2个D.1个11.如图,在平⾯直⾓坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第⼀象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.212.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A.B.C.D.⼆、填空题:本⼤题共有8⼩题,每⼩题3分,共24分.13.若a﹣3b=2,3a﹣b=6,则b﹣a的值为.14.不等式组的⾮负整数解有个.15.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为⼤于﹣4⼩于2的概率是.16.化简;÷(﹣1)=.17.如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC=度.18.如图,在?ABCD中,AC是⼀条对⾓线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S △AEF=1,则S△ADF的值为.19.以矩形ABCD两条对⾓线的交点O为坐标原点,以平⾏于两边的⽅向为坐标轴,建⽴如图所⽰的平⾯直⾓坐标系,BE⊥AC,垂⾜为E.若双曲线y=(x>0)经过点D,则OB?BE的值为.20.如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的⼀个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF?CA;④若AB=3,AD=2BD,则AF=.其中正确的结论是.(填写所有正确结论的序号)三、解答题:本⼤题共有6⼩题,共60分.21.(8分)某公司招聘职员两名,对甲、⼄、丙、丁四名候选⼈进⾏了笔试和⾯试,各项成绩满分均为100分,然后再按笔试占60%、⾯试占40%计算候选⼈的综合成绩(满分为100分).他们的各项成绩如下表所⽰:(1)直接写出这四名候选⼈⾯试成绩的中位数;(2)现得知候选⼈丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选⼈的综合成绩,并以综合成绩排序确定所要招聘的前两名的⼈选.22.(8分)如图,在四边形ABCD 中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的⾯积.(注意:本题中的计算过程和结果均保留根号)23.(10分)某商店以固定进价⼀次性购进⼀种商品,3⽉份按⼀定售价销售,销售额为2400元,为扩⼤销量,减少库存,4⽉份在3⽉份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3⽉份这种商品的售价是多少元?(2)如果该商店3⽉份销售这种商品的利润为900元,那么该商店4⽉份销售这种商品的利润是多少元?24.(10分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆⼼,AC长为半径的圆交AB于点D,BA 的延长线交⊙A于点E,连接CE,CD,F是⊙A 上⼀点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.25.(12分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的⼀个动点.(1)如图1,连接BD,O是对⾓线BD的中点,连接OE.当OE=DE时,求AE的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.26.(12分)如图,在平⾯直⾓坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD ⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第⼀象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P 的坐标;若不存在,请说明理由.2018年内蒙古包头市中考数学试卷答案1.B.2.C.3.D.4.C.5.A.6.B.7.A.8.D.9.B.10.C.11.B.12.D.13.﹣2.14.4.15..16.﹣.17.115.18..19.3.20.①②③.21.解:(1)这四名候选⼈⾯试成绩的中位数为:=89(分);(2)由题意得,x×60%+90×40%=87.6解得,x=86,答:表中x的值为86;(3)甲候选⼈的综合成绩为:90×60%+88×40%=89.2(分),⼄候选⼈的综合成绩为:84×60%+92×40%=87.2(分),丁候选⼈的综合成绩为:88×60%+86×40%=87.2(分),∴以综合成绩排序确定所要招聘的前两名的⼈选是甲和丙.22.解:(1)在四边形ABCD中,∵AD∥BC,∠ABC=90°,∴∠BAD=90°,∵AB=AD,∴∠ABD=∠ADB=45°,∵∠BDE=15°,∴∠ADE=30°,在Rt△ADE中,AE=DE×sin30=2,AD=DE?cos30°=6,∴AB=AD=6,∴BE=6﹣2.(2)作DF⊥BC于F.则四边形ABFD是矩形,∴BF=AD=6,DF=AB=6,在Rt△DFC中,FC==4,∴BC=6+4,∴S四边形DEBC=S△DEB+S△BCD=×(6﹣2)×6+(6+4)×6=36+6.23.解:(1)设该商店3⽉份这种商品的售价为x元,则4⽉份这种商品的售价为0.9x元,根据题意得:=﹣30,解得:x=40,经检验,x=40是原分式⽅程的解.答:该商店3⽉份这种商品的售价是40元.(2)设该商品的进价为y元,根据题意得:(40﹣a)×=900,解得:a=25,∴(40×0.9﹣25)×=990(元).答:该商店4⽉份销售这种商品的利润是990元.24.解:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵DE是⊙A的直径,∴∠DCE=90°,∴∠BEC+∠CDE=90°,∵AD=AC,∴∠CDE=∠ACD,∴∠BCD=∠BEC,(2)∵∠BCD=∠BEC,∠EBC=∠EBC,∴△BDC∽△BCE,∴,∵BC=2,BD=1,∴BE=4,EC=2CD,∴DE=BE﹣BD=3,在Rt△DCE中,DE2=CD2+CE2=9,∴CD=,CE=,过点F作FM⊥AB于M,∵∠FAB=∠ABC,∠FMA=∠ACB=90°,∴△AFM∽△BAC,∴,∵DE=3,∴AD=AF=AC=,AB=,∴FM=,过点F作FN⊥BC于N,∴∠FNC=90°,∵∠FAB=∠ABC,∴FA∥BC,∴∠FAC=∠ACB=90°,∴四边形FNCA是矩形,∴FN=AC=,NC=AF=,∴BN=,在Rt△FBN中,BF=,在Rt△FBM中,sin∠ABF=.25.解:(1)如图1,连接OA,在矩形ABCD中,CD=AB=3,AD=BC=5,∠BAD=90°在Rt△ABD中,根据勾股定理得,BD=,∵O是BD中点,∴OD=OB=OA=,∴∠OAD=∠ODA,∵OE=DE,∴∠EOD=∠ODE,∴∠EOD=∠ODE=∠OAD,∴△ODE∽△ADO,∴,∴DO2=DE?DA,∴设AE=x,∴DE=5﹣x,∴()2=5(5﹣x),∴x=,即:AE=;(2)如图2,在矩形ABCD中,∵BE平分∠ABC,∴∠ABE=∠EBC=45°,∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=3,∴AE=CD=3,∵EF⊥EC,∴∠FEC=90°,∴∠AEF+∠CED=90°,∵∠A=90°,∴∠AEF+∠AFE=90°,∴∠CED=∠AFE,∵∠D=∠A=90°,∴△AEF≌△DCE,∴AF=DE=2,∴BF=AB﹣AF=1,过点G作GK⊥BC于K,∴∠EBC=∠BGK=45°,∴BK=GK,∠ABC=∠GKC=90°,∵∠KCG=∠BCF,∴△CHG∽△CBF,∴,设BK=GK=y,∴CK=5﹣y,∴y=,∴BK=GK=,在Rt△GKB中,BG=;(3)①在矩形ABCD中,∠D=90°,∵AE=1,AD=5,∴DE=4,∵DC=3,∴EC=5,由折叠知,ED'=ED=4,D'H=DH,∠ED'H=∠D=90°,∴D'C=1,设D'H=DH=z,∴HC=3﹣z,根据勾股定理得,(3﹣z)2=1+z2,∴z=,∴DH=,CH=,∵D'N⊥AD,∴∠AND'=∠D=90°,∴D'N∥DC,∴△EMN∽△EHD,∴,∵D'N∥DC,∴∠ED'M=∠ECH,∵∠MED'=∠HEC,∴△ED'M∽△ECH,∴,∴,∴,∴;②相似,理由:由折叠知,∠EHD'=∠EHD,∠ED'H=∠D=90°,∴∠MD'H+∠ED'N=90°,∵∠END'=90°,∴∠ED'N+∠NED'=90°,∴∠MD'H=∠NED',∵D'N∥DC,∴∠EHD=∠D'MH,∴∠EHD'=∠D'MH,∴D'M=D'H,∵AD∥BC,∴∠NED'=∠ECB,∴∠MD'H=∠ECB,∵CE=CB=5,∴,∴△D'MH∽△CBE.26.解:(1)∵抛物线y=x2+x﹣2,∴当y=0时,得x1=1,x2=﹣4,当x=0时,y=﹣2,∵抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(﹣4,0),点B(1,0),点C(0,﹣2),∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,,得,即直线l的函数解析式为y=;(2)直线ED与x轴交于点F,如右图1所⽰,由(1)可得,AO=4,OC=2,∠AOC=90°,∴AC=2,∴OD=,∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,∴△AOD∽△ACO,∴,即,得AD=,∵EF⊥x轴,∠ADC=90°,∴EF∥OC,∴△ADF∽△ACO,∴,解得,AF=,DF=,∴OF=4﹣=,∴m=﹣,当m=﹣时,y=×()2+×(﹣)﹣2=﹣,∴EF=,∴DE=EF﹣FD=;(3)存在点P,使∠BAP=∠BCO﹣∠BAG,理由:作GM⊥AC于点M,作PN⊥x轴于点N,如右图2所⽰,∵点A(﹣4,0),点B(1,0),点C(0,﹣2),∴OA=4,OB=1,OC=2,∴tan∠OAC=,tan∠OCB=,AC=2,∴∠OAC=∠OCB,∵∠BAP=∠BCO﹣∠BAG,∠GAM=∠OAC﹣∠BAG,∴∠BAP=∠GAM,∵点G(0,﹣1),AC=2,OA=4,∴OG=1,GC=1,∴AG=,,即,解得,GM=,∴AM===,∴tan∠GAM==,∴tan∠PAN=,设点P的坐标为(n,n2+n﹣2),∴AN=4+n,PN=n2+n﹣2,∴,解得,n1=,n2=﹣4(舍去),当n=时,n2+n﹣2=,∴点P的坐标为(,),即存在点P(,),使∠BAP=∠BCO﹣∠BAG.。

2024年内蒙古自治区赤峰市中考数学试题(含解析)

2024年内蒙古自治区赤峰市中考数学试题(含解析)

2024年赤峰市初中毕业、升学统一考试试卷数学温馨提示:1.本试卷卷面分值150分,共8页,考试时间120分钟.2.答题前,考生务必将姓名、座位号、考生号填写在答题卡的相应位置上,并仔细阅读答题卡上的“注意事项”.3.答题时,请将答案填涂在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为()A.95.210⨯ B.110.5210⨯ C.95210⨯ D.105.210⨯3.将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为()A.100︒B.105︒C.115︒D.120︒4.下列计算正确的是()A.235a a a+= B.222()a b a b+=+ C.632a a a÷= D.()236a a=5.在数据收集、整理、描述的过程中,下列说法错误..的是()A.为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50B.了解某校一个班级学生的身高情况,适合全面调查C.了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性D.甲、乙二人10次测试的平均分都是96分,且方差2 2.5S=甲,2 2.3S=乙,则发挥稳定的是甲6.解不等式组()322211x x x x -<⎧⎪⎨+≥-⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是()A.B.C.D.7.如图,是正n 边形纸片的一部分,其中l m ,是正n 边形两条边的一部分,若l m ,所在的直线相交形成的锐角为60︒,则n 的值是()A.5B.6C.8D.108.某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是()视力 4.7以下 4.7 4.8 4.9 4.9以上人数3941334047A.120B.200C.6960D.96009.等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A.17或13B.13或21C.17D.1310.如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是()A.61︒B.63︒C.65︒D.67︒11.用1块A 型钢板可制成3块C 型钢板和4块D 型钢板;用1块B 型钢板可制成5块C 型钢板和2块D 型钢板.现在需要58块C 型钢板、40块D 型钢板,问恰好用A 型钢板、B 型钢板各多少块?如果设用A 型钢板x 块,用B 型钢板y 块,则可列方程组为()A.32404558x y x y +=⎧⎨+=⎩ B.35404258x y x y +=⎧⎨+=⎩ C.35584240x y x y +=⎧⎨+=⎩ D.34585240x y x y +=⎧⎨+=⎩12.如图,ABC 中,1AB BC ==,72C ∠=︒.将ABC 绕点A 顺时针旋转得到AB C ''△,点B'与点B 是对应点,点C '与点C 是对应点.若点C '恰好落在BC 边上,下列结论:①点B 在旋转过程中经过的路径长是15π;②B B A C '∥;③BD C D '=;④AB B B AC BD'=.其中正确的结论是()A.①②③④B.①②③C.①③④D.②④13.如图,数轴上点A ,M ,B 分别表示数a a bb +,,,若AM BM >,则下列运算结果一定是正数的是()A.a b +B.a b -C.abD.a b-14.如图,正方形ABCD 的顶点A ,C 在抛物线24y x =-+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是()A.1m n +=B.1m n -=C.1mn = D.1mn=二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15.请写出一个比小的整数_____________16.因式分解:233am a -=______.17.综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为________米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos650.423︒≈,tan 65 2.145︒≈).18.编号为A ,B ,C ,D ,E 的五台收割机,若同时启动其中两台收割机,收割面积相同的田地所需时间如下表:收割机编号A ,B B ,C C ,D D ,E A ,E 所需时间(小时)2319202218则收割最快的一台收割机编号是________.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.(1()0π12sin 602+++︒+-;(2)已知230a a --=,求代数式2(2)(1)(3)a a a -+-+的值.20.如图,在ABC 中,D 是AB 中点.(1)求作:AC 的垂直平分线l (要求:尺规作图,不写作法,保留作图痕迹);(2)若l 交AC 于点E ,连接DE 并延长至点F ,使2EF DE =,连接BE CF ,.补全图形,并证明四边形BCFE 是平行四边形.21.某校田径队为了调动队员体育训练的积极性,计划根据成绩情况对队员进行奖励.为确定一个适当的成绩目标,进行了体育成绩测试,统计了每个队员的成绩,数据如下:收集数据777876728475918578798278767991917674758575918077757587857677整理、描述数据成绩/分72747576777879808284858791人数/人11a433b111314分析数据样本数据的平均数、众数、中位数如下表:平均数众数中位数80c78解决问题(1)表格中的=a ______;b =______;c =______;(2)分析平均数、众数、中位数这三个数据,如果想让一半左右的队员都能达到成绩目标,你认为成绩目标应定为______分,如果想确定一个较高的成绩目标,这个成绩目标应定为______分;(3)学校要从91分的A ,B ,C ,D 四名队员中,随机抽取两名队员去市里参加系统培训.请利用画树状图法或列表法,求A ,B 两名队员恰好同时被选中的概率.22.一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.(1)求甲、乙两队平均每天修复公路分别是多少千米;(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?23.在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N -,()30,2N -中,是点M 等和点的有_____;(2)若点()3,2M -的等和点N 在直线y x b =+上,求b 的值;(3)已知,双曲线1ky x=和直线22y x =-,满足12y y <的x 取值范围是4x >或20x -<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =-上,求点P 的坐标.24.如图,ABC 中,90ACB ∠=︒,AC BC =,O 经过B ,C 两点,与斜边AB 交于点E ,连接CO 并延长交AB 于点M ,交O 于点D ,过点E 作EF CD ∥,交AC 于点F .(1)求证:EF 是O 的切线;(2)若42BM =,1tan 2BCD ∠=,求OM 的长.25.如图,是某公园的一种水上娱乐项目.数学兴趣小组对该项目中的数学问题进行了深入研究.下面是该小组绘制的水滑道截面图,如图1,人从点A 处沿水滑道下滑至点B 处腾空飞出后落入水池.以地面所在的水平线为x 轴,过腾空点B 与x 轴垂直的直线为y 轴,O 为坐标原点,建立平面直角坐标系.他们把水滑道和人腾空飞出后经过的路径都近似看作是抛物线的一部分.根据测量和调查得到的数据和信息,设计了以下三个问题,请你解决.(1)如图1,点B 与地面的距离为2米,水滑道最低点C 与地面的距离为78米,点C 到点B 的水平距离为3米,则水滑道ACB 所在抛物线的解析式为______;(2)如图1,腾空点B 与对面水池边缘的水平距离12OE =米,人腾空后的落点D 与水池边缘的安全距离DE 不少于3米.若某人腾空后的路径形成的抛物线BD 恰好与抛物线ACB 关于点B 成中心对称.①请直接写出此人腾空后的最大高度和抛物线BD 的解析式;②此人腾空飞出后的落点D 是否在安全范围内?请说明理由(水面与地面之间的高度差忽略不计);(3)为消除安全隐患,公园计划对水滑道进行加固.如图2,水滑道已经有两条加固钢架,一条是水滑道距地面4米的点M 处竖直支撑的钢架MN ,另一条是点M 与点B 之间连接支撑的钢架BM .现在需要在水滑道下方加固一条支撑钢架,为了美观,要求这条钢架与BM 平行,且与水滑道有唯一公共点,一端固定在钢架MN 上,另一端固定在地面上.请你计算出这条钢架的长度(结果保留根号).26.数学课上,老师给出以下条件,请同学们经过小组讨论,提出探究问题.如图1,在ABC 中,AB AC =,点D 是AC 上的一个动点,过点D 作DE BC ⊥于点E ,延长ED 交BA 延长线于点F .请你解决下面各组提出的问题:(1)求证:AD AF =;(2)探究DF DE 与ADDC的关系;某小组探究发现,当13AD DC =时,23DF DE =;当45AD DC =时,85DF DE =.请你继续探究:①当76AD DC =时,直接写出DFDE 的值;②当AD m DC n =时,猜想DFDE的值(用含m ,n 的式子表示),并证明;(3)拓展应用:在图1中,过点F 作FP AC ⊥,垂足为点P ,连接CF ,得到图2,当点D 运动到使ACF ACB ∠=∠时,若AD m DC n =,直接写出APAD的值(用含m ,n 的式子表示).参考答案一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.【答案】A【解析】A .是轴对称图形,故A 选项正确;B .不是轴对称图形,故B 选项错误;C .不是轴对称图形,故C 选项错误;D .不是轴对称图形,故D 选项错误.故选:A .2.【答案】D【解析】解:1052000000000 5.210=⨯,故选:D .3.【答案】B【解析】解:如图所示:由题意得:3230∠=∠=︒∴1180345105∠=︒-∠-︒=︒故选:B .4.【答案】D【解析】解:A 、2a 与3a 不是同类项,不能合并,故此选项不符合题意;B 、()222222a b a ab b a b +=++≠+,故此选项不符合题意;C 、6332a a a a ÷=≠,故此选项不符合题意;D 、()236a a =,故此选项符合题意.故选:D .5.【答案】D【解析】解:A 、为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50,说法正确,本选项不符合题意;B 、了解某校一个班级学生的身高情况,适合全面调查,说法正确,本选项不符合题意;C 、了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性,说法正确,本选项不符合题意;D 、甲、乙二人10次测试的平均分都是96分,且方差22.5S =甲,22.3S =乙,则发挥稳定的是乙,故原说法错误,符合题意;故选:D .6.【答案】C【解析】解:()322211x x x x -<⎧⎪⎨+≥-⎪⎩①②解不等式①得,2x <,解不等式②得,3x ≥-,所以,不等式组的解集为:32x -≤<,在数轴上表示为:故选:C .7.【答案】B【解析】解:如图,直线l m 、相交于点A ,则60A ∠=︒,∵正多边形的每个内角相等,∴正多边形的每个外角也相等,∴1806012602︒-︒∠=∠==︒,∴360660n ︒==︒,故选:B.8.【答案】D 【解析】解:334047160009600200++⨯=,∴视力不低于4.8的人数是9600,故选:D .9.【答案】C【解析】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .10.【答案】B【解析】解:∵半径OC AB ⊥,∴ AC BC=,∴42AOC BOC ∠=∠=︒,84AOB ∠=︒,∵ AC AC=,∴1212D AOC ∠=∠=︒,∴63OED AOB D ∠=∠-∠=︒,故选:B .11.【答案】C【解析】解:设用A 型钢板x 块,用B 型钢板y 块,由题意得:35584240x y x y +=⎧⎨+=⎩,故选:C .12.【答案】A【解析】解:∵AB BC =,72C ∠=︒,∴72BAC C ∠=∠=︒,180236ABC C ∠︒=︒-∠=,由旋转的性质得36AB C ABC ︒'∠=∠=,72B AC BAC ︒''∠=∠=,72AC B C ''∠︒=∠=,72AC B ADC ︒''∠=∠=,AC AC '=,∴72AC C C '∠=∠=︒,∴36CAC '∠=︒,∴36CAC BAC ''∠=∠=︒,∴723636B AB '∠=︒-︒=︒,由旋转的性质得AB AB '=,∴()118036722ABB AB B ''∠=∠=︒-︒=︒,①点B 在旋转过程中经过的路径长是36111805ππ⋅=;①说法正确;②∵36B AB ABC '∠=∠=︒,∴B B A C '∥;②说法正确;③∵18027236DC B '∠=︒-⨯︒=︒,∴36DC B ABC '∠=∠=︒,∴BD C D '=;③说法正确;④∵36BB D ABC '∠=∠=︒,72B BD BAC '∠=∠=︒,∴B BD BAC '∽△△,∴AB B B AC BD'=.④说法正确;综上,①②③④都是正确的,故选:A .13.【答案】A【解析】解:数轴上点A ,M ,B 分别表示数a a bb +,,,∴AM a b a b =+-=、()BM b a b a =-+=-,∵AM BM >,∴原点在A ,M 之间,由它们的位置可得a<0,0b >且a b <,∴0a b +>,0a b -<,00ab a b <-<,,故运算结果一定是正数的是a b +.故选:A .14.【答案】B【解析】解:如图,连接AC 、BD 交于点E ,过点A 作MN y ⊥轴于点M ,过点B 作BN MN ⊥于点N ,四边形ABCD 是正方形,AC ∴、BD 互相平分,AB AD =,90BAD ∠=︒,90BAN DAM ∴∠+∠=︒,90DAM ADM ∠+∠=︒,BAN ADM ∴∠=∠.90BNA AMD ∠=∠=︒ ,BA AD =,(AAS)ANB DMA ∴ ≌.AM NB ∴=,DM AN =.点A 、C 的横坐标分别为m 、n ,24(,)A m m ∴+-,2()4,C n n -+.(2m n E +∴,2282m n -+-,2(0,)4M m +-,设(0,)D b ,则22(,)8B m n m n b ++---,2()4,N m n m ++-,24BN n b ∴=-+-,AM m =,AN n =,24DM m b =-+.又AM NB =,DM AN =,24n m b +--∴=,24n m b =-+.24b n m ∴=--+.2244n m n m ∴=---+.∴()()m n m n m n +-=+.点A 、C 在y 轴的同侧,且点A 在点C 的右侧,0m n ∴+≠.1m n ∴-=.故选:B .二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15.【答案】1(或2)【解析】23=<<= ,满足条件的数为小于或等于2的整数均可.16.【答案】()()311a m m +-【解析】解:()()()223331311am a a m a m m -=-=+-,故答案为:()()311a m m +-.17.【答案】11.5【解析】解:如图,过点D 作DM AB ⊥,交AB 的延长线于点M ,∴四边形ACDM 是矩形,∴10DM AC ==米,∵45BDM ∠=︒,65ADM ∠=︒,90M ∠=︒,∴BDM 是等腰直角三角形,∴10BM DM ==米,在Rt ADM △中,tan 10tan 6510 2.14521.45AM DM ADM =⋅∠=⋅︒≈⨯≈(米),∴21.451011.4511.5AB AM BM =-=-=≈(米),∴古树AB 的高度约为11.5米.故答案为:11.5.18.【答案】C【解析】解:同时启动A ,B 两台收割机,所需的时间为23小时,同时启动B ,C 两台收割机,所需的时间为19小时,得到C 比A 快;同时启动B ,C 两台收割机,所需的时间为19小时,同时启动C ,D 两台收割机,所需的时间为20小时,得到B 比D 快;同时启动A 、B 两台收割机,所需的时间为23小时,同时启动A ,E 两台收割机,所需的时间为18小时,得到E 比B 快;同时启动C ,D 两台收割机,所需的时间为20小时,同时启动D ,E 两台收割机,所需的时间为22小时,得到C 比E 快.综上,收割最快的一台收割机编号是C .故答案为:C .三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.【答案】(1)6;(2)7.【解析】解:(1)原式331222=++⨯+42=+-,6=;(2)∵230a a --=,∴23a a -=,∴()()()2213a a a -+-+224423a a a a =-+++-,2221a a =-+,()221a a =-+,231=⨯+,7=.20.【答案】(1)见解析(2)见解析【解析】【小问1详解】解:直线l 如图所示,;【小问2详解】证明:补全图形,如图,由(1)作图知,E 为AC 的中点,∵D ,E 分别为AB ,AC 的中点,∴DE BC ∥,12DE BC =,∵2EF DE =,即:12DE EF =,∴EF BC =,∵EF BC ∥,∴四边形BCFE 是平行四边形.21.【答案】(1)5;2;75(2)78;80(3)A ,B 两名队员恰好同时被选中的概率为16.【解析】【小问1详解】解:根据收集的数据知5a =;2b =;出现最多的是75分,有5人,众数为75分,则75c =;故答案为:5;2;75;【小问2详解】解:∵由统计图可知中位数为78分,∴如果想让一半左右的队员都能达到成绩目标,成绩目标应定为78分,如果想确定一个较高的目标,成绩目标应定为80分,因为在样本的众数,中位数和平均数中,平均数最大,可以估计,如果成绩目标定为80分,努力一下都能达到成绩目标.故答案为:78;80;【小问3详解】解:画树状图表示所有等可能结果如图所示,共有12种等可能结果,A ,B 两名队员恰好同时被选中的情况有2种,∴A ,B 两名队员恰好同时被选中的概率为21126==,答:A ,B 两名队员恰好同时被选中的概率为16.22.【答案】(1)甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;(2)15天的工期,两队最多能修复公路105千米.【解析】【小问1详解】解:设甲队平均每天修复公路x 千米,则乙队平均每天修复公路()3x +千米,由题意得60903x x =+,解得6x =,经检验,6x =是原方程的解,且符合题意,39x +=,答:甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;【小问2详解】解:设甲队的工作时间为m 天,则乙队的工作时间为()15m -天,15天的工期,两队能修复公路w 千米,由题意得()69153135w m m m =+-=-+,()215m m ≥-,解得10m ≥,∵30-<,∴w 随m 的增加而减少,∴当10m =时,w 有最大值,最大值为310135105w =-⨯+=,答:15天的工期,两队最多能修复公路105千米.23.【答案】(1)()14,2N 和()30,2N -;(2)5b =;(3)()4,2--或()2,4.【解析】【小问1详解】解:由()1,3M ,()14,2N 得,12125x x y y +=+=,∴点()14,2N 是点M 的等和点;由()1,3M ,()23,1N -得,124x x +=,122y y +=,∵1212x x y y +≠+,∴()23,1N -不是点M 的等和点;由()1,3M ,()30,2N -得,12121x x y y +=+=,∴()30,2N -是点M 的等和点;故答案为:()14,2N 和()30,2N -;【小问2详解】解:设点N 的横坐标为a ,∵点N 是点()3,2M -的等和点,∴点N 的纵坐标为()325a a +--=+,∴点N 的坐标为(),5a a +,∵点N 在直线y x b =+上,∴5a a b +=+,∴5b =;【小问3详解】解:由题意可得,0k >,双曲线分布在一、三象限内,设直线与双曲线的交点分别为点A B 、,如图,由12y y <时x 的取值范围是4x >或20x -<<,可得点A 的横坐标为4,点B 的横坐标为2-,把4x =代入2y x =-得,422y =-=,∴()4,2A ,把()4,2A 代入1k y x =得,24k =,∴8k =,∴反比例函数解析式为18y x =,设8,P m m ⎛⎫ ⎪⎝⎭,点Q 的横坐标为n ,∵点Q 是点P 的等和点,∴点Q 的纵坐标为8m n m +-,∴8,Q n m n m ⎛⎫+- ⎪⎝⎭,∵点Q 在直线22y x =-上,∴82m n n m +-=-,整理得,820m m -+=,去分母得,2280m m +-=,解得14m =-,12m =,经检验,4,2m m =-=是原方程的解,∴点P 的坐标为()4,2--或()2,4.24.【答案】(1)见解析(2)5OM =【解析】【小问1详解】证明:连接OE ,延长EO ,交O 于点P ,连接,,PD BD 如图,∵,90,AB BC ACB =∠=︒∴ABC 是等腰直角三角形,∴45,ABC ∠=︒∵CD 是O 的直径,∴90,CBD ∠=︒∴904545,DBE CBD ABC ∠=∠-∠=︒-︒=︒∴45,EPD DBE ∠=∠=︒∴224590,DOE DPE ∠=∠=⨯︒=︒∵,EF CD ∥∴90,FEO DOE ∠=∠=︒即,OE EF ⊥∵OE 是O 的半径,∴EF 是O 的切线;【小问2详解】解:∵90DBC ∠=︒,1tan 2BCD ∠=,∴12DB BC =,∵,BC AC =∴12DB AC =,∵,DMB CMA ∠=∠A DBM ∠=∠,∴DBM ACM ∽ ,∴12BM DM DB AM CM AC ===,∵BM =,∴2AM BM ==∴AB AM BM =+=+=,在等腰直角三角形ABC 中,222AC BC AB +=,∴(2222AC AC AB +==,解得,12AC =,∴12AC BC ==,∴16,2DB BC ==在t R BDC 中,CD ==∴CO DO ==又12DM CM =,∴2,CM DM =∴2DM DM CD +==∴DM =∴OM OD DM =-==25.【答案】(1)()217388y x =++(2)①此人腾空后的最大高度是258米,解析式为()2125388y x =--+;②此人腾空飞出后的落点D 在安全范围内,理由见解析(3)这条钢架的长度为米【解析】【小问1详解】解:根据题意得到水滑道ACB 所在抛物线的顶点坐标为73,8C ⎛⎫- ⎪⎝⎭,且过点()0,2B ,设水滑道ACB 所在抛物线的解析式为()2738y a x =++,将()0,2B 代入,得:()272038a =++,即998a =,18a ∴=,∴水滑道ACB 所在抛物线的解析式为()217388y x =++;【小问2详解】解:① 人腾空后的路径形成的抛物线BD 恰好与抛物线ACB 关于点B 成中心对称,则设人腾空后的路径形成的抛物线的解析式为()218y x b c =-++,∴人腾空后的路径形成的抛物线BD 的顶点坐标与抛物线ACB 的顶点坐标73,8C ⎛⎫- ⎪⎝⎭关于点()0,2B 成中心对称,()7250233,2288⨯--=⨯-=,∴人腾空后的路径形成的抛物线BD 的顶点坐标为253,8⎛⎫ ⎪⎝⎭,即253,8b c ==,∴此人腾空后的最大高度是258米,人腾空后的路径形成的抛物线BD 的解析式为:()2125388y x =--+;由①知人腾空后的路径形成的抛物线BD 的解析式为:()2125388y x =--+,令0y =,则()21253088x --+=,即()2325x -=∴8x =或2x =-(舍去,不符合题意),∴点()8,0D ,8OD ∴=,12OE =,43DE OE OD ∴=-=>,∴此人腾空飞出后的落点D 在安全范围内;【小问3详解】解:根据题意可得M 点的纵坐标为4,令()2173488y x =++=,即()2325x +=,2x ∴=(舍去,不符合题意)或8x =-,()8,4M ∴-,设BM 所在直线的解析式为y kx b '=+,将()()8,4,0,2M B -代入得:248b k b =⎧⎨=-+''⎩,解得:214b k =-'⎧⎪⎨=⎪⎩,∴BM 所在直线的解析式为124y x =-+,如图,设这条钢架为GH ,与MN 交于点G ,与地面交于H, 这条钢架与BM 平行,∴设该钢架GH 所在直线的解析式为14y x n =-+,联立()21417388y x n y x ⎧=-+⎪⎪⎨⎪=++⎪⎩,即()21173488x n x -+=++,整理得:281680x x n ++-=,该钢架GH 与水滑道有唯一公共点,()2Δ8411680n ∴=-⨯⨯-=,∴0n =即该钢架所在直线的解析式为14y x =-,∴点H 与点O 重合, ()1824GN =-⨯-=,8NO =,90GNO ∠=︒,GH ∴==∴这条钢架的长度为米.26.【答案】(1)见解析(2)①73DF DE =②2DF DE m n=,证明见解析(3)2AP n AD m =【解析】【小问1详解】证明:∵AB AC =,∴B C ∠=∠,∵DE BC ⊥,∴90BEF CED ∠=∠=︒,∴90F B ∠=︒-∠,90CDE C ∠=︒-∠,且CDE ADF ∠=∠,∴F ADF ∠=∠,∴AD AF =;【小问2详解】解:①当13AD DC =时,23DF DE =;当45AD DC =时,85DF DE =,∴总结规律得:DF DE 是AD DC 的2倍,∴当76AD DC =时,14763DF DE ==;②当AD m DC n =时,猜想2DF DE m n =,证明:作AG EF ⊥于点G ,∵DE BC ⊥,∴AG CE ∥,∴AGD CED ∽△△,∵AD m DC n =,∴GD AD m DE DC n ==,由(1)知AD AF =,又AG EF ⊥,∴DG FG =,即2DF DG =,∴22GD m DE nDF DE ==;【小问3详解】2AP n AD m=,理由如下:过点D 作DG CF ⊥,∵ACF ACB ∠=∠,DE CE ⊥,∴DG DE =,由(2)知,当AD m DC n =时,2DF DE m n=,∴2DE n DF m =,∴2DG n DF m=,∵PF AC ⊥,∴90ACF CFP ∠+∠=︒,∵FE BC ⊥,∴90B AFD ∠+∠=︒,∵AB AC =,∴ACB B =∠∠,∴B ACF ∠=∠,∴AFD CFP ∠=∠,∴AFD PFD CFP PFD ∠-∠=∠-∠,∴AFP DFG ∠=∠,∴sin sin AFP DFG ∠=∠,∴2AP DG n AF DF m==,由(1)知AD AF =,∴2AP AP n AD AF m ==.。

2018年内蒙古呼和浩特市中考数学试卷-答案

2018年内蒙古呼和浩特市中考数学试卷-答案

内蒙古呼和浩特市2018年中考试卷数学答案解析一、选择题1.【答案】A【解析】解:32=3(+2)=1-----.故选A .【考点】实数的运算.2.【答案】D【解析】根据统计图易得大寒节气的白昼时长低于11小时,故选D .【考点】统计图.3.【答案】B【解析】设多边形的边数为n ,则有18021080n ︒⨯-=︒(),解得8n =,故选B.【考点】多边形的内角和.4.【答案】C【解析】根据三视图在几何体的俯视图中标出各个位置的小正方体的个数如图所示,则小正方体的个数为4个,故选C .【考点】几何体的三视图.5.【答案】D【解析】根据折线统计图易得当实验次数增多时,频率约为0.33,则实验的概率为13.对于选项A ,概率为35,不符合;对于选项B ,概率为12,不符合;对于选项C ,概率为14,不符合;对于选项D ,概率为13,符合,故选D.【考点】概率的计算.6.【答案】B【解析】由20x y b +-=得2x b y =-,代入直线方程得1212y b y b =--+-(),解得2b =,故选B . 【考点】二元一次方程和直线的关系.7.【答案】C 【解析】①的前年收入为11760000360⨯()元,去年收入为1170000360⨯(8)元,显然不相等,A 选项错误;③的收入所占比例前年为1351173136010+-=,去年所占比例为12611713136040+-=,所以所占比例前年比去年小,B 选项错误;去年②的收入为1268000028000360⨯=(元),C 选项正确;扇形统计图中只包含①②③三种农作物,故D 选项错误.综上所述,故选C .【考点】扇形统计图.8.【答案】C【解析】由平行四边形的判定定理易得①③,①④,③④可以得出“四边形ABCD 为平行四边形”,故选C .【考点】平行四边形的判定.9.【答案】B【解析】()111555(5)525555⨯÷⨯=⨯⨯⨯=----,A 选项错误;由231(1)x x x ++-=得211x x +-=或2113x x x ⎧+-=-⎪⎨+⎪⎩,为偶数或2103=x x x ⎧+-≠⎨+⎩,0,解得1x =或2x =-或1x =-或3x =-,即方程231(1)x x x ++-=有四个整数解,B 选项正确;由33356710,10a a b ⎧⨯=⎪⎨÷=⎪⎩得33310,5671,567a b ⎧=⎪⎪⎨⎪=⎪⎩所以3610567a b ⨯=,C 选项错误;因为2100m m +>,≥,所以点(21m m +,)在x 轴正半轴或在第一象限,D 选项错误.综上所述,故选B .【考点】实数的运算,方程的解,平面直角面坐标系内点的坐标特点.10.【答案】D 【解析】由题意知,当112x <≤时,由不等式3222x x mx -->恒成立得222x x m x -->恒成立,所以m 小于2212(1)2x x x x --<≤的最小值.由二次函数和反比例函数的性质易得当112x <≤时,对于函数22y x x =-和函数2y x =-都有y 随x 的增大而增大,所以对于函数222y x x x=--也有y 随x 的增大而增大,所以222x x x--的最小值大于21122()41222⨯--=-,所以m ≤-4,故选D . 【考点】函数的性质.二、填空题11.【答案】()()33b a a +-【解析】229(9)(3)(3)a b b b a b a a -=-=+-.【考点】因式分解.12.【解析】设圆的半径为r ,则其内接正方形的边心距为2r ,内接正三角形的边心距为12r ,则同一个圆内1:2r =. 【考点】圆的内接正方形,内接正三角形的性质.13.【答案】486【解析】设小华实际购买个数为x 个,则少买1个应付款18(1)x -,实际付款为180.9x ⨯,则由题意可得方程18(1)180.936x x -=⨯+,解得30x =,则小华实际付款为18300.9486⨯⨯=(元).【考点】一元一次方程解决实际问题.14.【答案】512【解析】由函数(21)4y k x =-+为y 随x 增加而增加的一次函数,得21k ->0,解得12k >,则所求概率为13523(3)12-=--. 【考点】一次函数的性质.15.【答案】6a -≤【解析】由20x a +>得2a x ->,由1124a x -+>得22a x -+>,则不等式组20,1124x a a x +⎧⎪⎨-+⎪⎩>>的解集为22a x -+>,由不等式组的解集中的任意x ,都能使50x ->,即5x >成立,所以252a -+≥,解得6a -≤. 【考点】解一元一次不等式组.16.【答案】①②③【解析】过点H 分别作AB AD ,的垂线,垂足分别为点F G ,,连接MH DH ,,则易得四边形AGHF 为正方形,由AHE △为等腰直角三角形得EF AF HF ==,则HG HF AG AF EF ====,又由平移易得BE AM =,所以DG AD AG AB EF BE AF MF =-=-=+=,则Rt HGD Rt HFM △≌△,则HD HM =,HDG HMF ∠=∠,所以90HDM HMD HDG ADM HMD FMH ADM HMD ADM AMD ∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒,所以HDM △为等腰直角三角形,则DM ,②正确;当=60DHC ∠︒时,3607D H G D H C C H E E H F F H G ∠=︒-∠-∠-∠-∠=︒,则901H D G D H G ∠=︒-∠=︒,所以30ADM HDM HDG ∠=∠-∠=︒,所以22DM AM BE ==,①正确;由图易得当点H 由点C 向点A 运动的过程中,CHD ∠逐渐减小,所以当点H 与点A 重合时,CHM ∠取得最小值135CAM CAD DAM ∠=∠+∠=︒,则无论点M 运动到何处,CHM ∠一定大于135︒,③正确.综上所述,正确结论的序号为①②③.【考点】全等三角形的判定和性质,等腰直角三角形的判定与性质.三、解答题17.【答案】解:(1)223sin 45-+︒ 1144+==(2)33122x x x-+=--, 323x x -+-=-,1x =∴,检验:当1x =时,20x -≠,所以,1x =是原分式方程的解.【解析】(1)利用负指数幂、根式的运算、特殊角的三角函数值分别计算求解;(2)先去分母化为整式方程,解整式方程,最后把整式方程的解代入最简公分母进行检验,当最简公分母不为0时,才是原分式方程的解;当最简公分母为0时,原分式方程无解.【考点】实数的运算,解分式方程.18.【答案】解:(1)证明:AB DE A D ∴∠=∠∥,,AF CD AF FC CD FC =∴+=+,,即AC DF =,又AB DE ABC DEF =∴,△≌△.(2)75【解析】(1)根据平行线的性质,利用“边角边”证明结论;(2)根据菱形的性质得到相关线段的长度,结合勾股定理求解.【考点】全等三角形的判定和性质,菱形的性质.19.【答案】解:(1)(4500018000100005500350006340030001120002)x =+++⨯+⨯++⨯+⨯÷(111361112)6150+++++++=,中位数为3 200.(2)甲:由样本平均数6 150元,估计全体员工月平均收入大约为6 150元,乙:由样本中位数为3 200元,估计全体员工大约有一半的员工月收入超过3 200元,有一半的员工月收入不足3 200元.(3)乙的推断比较科学合理.由题意知样本中的26名员工,只有3名员工的月收入在6 150元以上,原因是该样本数据极差较大,所以平均数不能真实反映实际情况.【解析】(1)平均数为所有数据的和除以数据的个数,中位数是将数据从小到大或从大到小重新排列后,最中间的那个数或最中间两个数的平均数;(2)根据(1)中的结论分别得出推断;(3)分析数据分布情况得出结论.【考点】平均数和中位数的概念,数据分析.20.【答案】解:(1)由平移性质得,点C 的坐标为(25),,又0()6A ,,AC ∴=(2)当点D 在线段OA 上时,115=522S x x =, 215=(6)51522S x x -=-+, 当点D 在OA 的延长线上时, 115=522S x x =, 215=(6)51522S x x -=-,55(15)515(06)22=55(15)15(6)22x x x x S x x x ⎧--+=-⎪⎪⎨⎪--=⎪⎩<<,∴>, 1=65=152DBC S ⨯⨯△∵, ∴点D 在OA 延长线上的任意一点处都可满足条件,∴点D 所在位置为(,0)D x 且6x >.【解析】(1)根据点的坐标,利用两点间的距离公式求解线段的长度;(2)根据题意确定三角形面积的函数解析式,根据函数解析式得到面积相等时点D 的坐标.【考点】两点间的距离公式,三角形面积公式.21.【答案】解:过点D 作DH BC ⊥,垂足为H .斜坡BD 的坡度1:3i =,:1:3DH BH ∴=,在Rt BDH △中,600BD =,222(3)600DH DH ∴+=,DH BH ∴==设AE x =,在Rt ADE △中,45ADE ∠=︒,DE AE x ∴==,又HC DE EC DH ==,,HC x EC ∴==,,在Rt ABC △中,tan33︒∴,x ∴,AC AE EC =+=∴.答:山顶A 到地面BC 米. 【解析】根据勾股定理、坡度的概念得到相关线段的长度,结合角的正切的概念列方程求解.【考点】解直角三角形的实际应用.22.【答案】解:(1)2y x=-, 反比例函数图象(略). (2)设点2(,)P x x-,则点(,2)A x x -, 由题意知PAB △是等腰直角三角形,2552PAB S PA PB ===△∵,∴, 0x ∵<,2=2P A PA y y x x-=--+∴,即225x x --+=, 解得1221x x =-=-,,∴点(2,1)P -或(1,2)-.【解析】(1)根据点的坐标确定函数解析式,画出函数大致图象;(2)设出点P 的坐标结合三角形面积公式列方程求解.【考点】反比例函数的图像和性质.23.【答案】解:2()00ax bx c a ++=≠,2b c x a x a∴+=-, 222()()22b b c b x a a a a x ∴++=-+, 2224()24b b ac x a a -∴+=, 240a >,∴当240b ac -≥时,方程有实数根.2b x a ∴+=,∴当240b ac ->时,12b x a -=,2x =, 当240b ac -=时,122b x x a==-, 212)(b b x x --∴=2222(4)444b b ac ac c a a a--===, 或者2212224()244b b ac c x x a a a a=-===, 12c x x a∴=. 【解析】利用配方法转化一元二次方程得到方程有实根的条件,进而得到方程的根即可证明结论.【考点】解一元二次方程,一元二次方程的根与系数的关系.24.【答案】解:(1)证明:连接OD OP ,,=AD AM A A AP AO=∠∠,, ADM APO ∴△∽△,ADM APO MD PO ∴∠=∠∴,∥,1423∴∠=∠∠=∠,,3412OD OM =∴∠=∠∴∠=∠,,,又OP OP OD OC ==,,ODP OCP ∴△≌△,ODP OCP ∴∠=∠, 90BC AC OCP ⊥∴∠=︒,,90ODP OD AP ∴∠=︒∴⊥,,PD ∴是O 的切线.(2)由(1)知PC PD =,连接CD ,AM MC =,22AM MO R ∴==(R 为O 的半径),在Rt AOD △中,222OD AD OA +=,222129R R R ∴+=∴=,,OD MC ∴==2,63AD AM DP AP AO ==∴=, 又MD PO O ∥,是MC 中点,12CO CP MC CB ∴==, ∴点P 是BC 中点,6BP CP DP ∴===,又MC 是O 的直径,90BDC CDM ∴∠=∠=︒,在Rt BCM △中,212BC DP MC ===,BM ∴= 又BCM CDM △∽△,MD MCMC BM ∴=,=,BP MD MD ∴==【解析】(1)证明ADM APO ODP OCP △∽△,△≌△,进而得到角的关系,利用切线的判定定理证明结论;(2)根据勾股定理、平行线的性质、相似三角形得到线段的长度间的关系求解.【考点】圆的性质,三角形全等的判定和性质,三角形相似的判定和性质,平行线的性质,勾股定理.25.【答案】解:(1)设(17)y kx b x =+≤≤, 由已知得23,673,2k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得1,46k b =-=, 14(17)6y x x =-+≤≤, 6x ∴=时,16436y =-⨯+=,300201515120%18∴÷=+=,(),又12x =时,115912844y =-⨯+=, 91001812.54∴⨯÷=万人. 所以最后一年可解决12.5万人的住房问题.(2)由于每平方米的年租金和时间都是变量,且对于每一个确定的时间x 的值,每平方米的年租金m 都有唯一的值与它对应,所以它们能构成函数.由题意知236(112)m x x =+≤≤. (3)2222111(236)(4)2144(3)147(17),63311511(236)()3135(6)144(712),8444x x x x x x W x x x x x x ⎧+-+=-++=--+⎪⎪=⎨⎪+-+=-++=--+⎪⎩≤≤≤≤ 当3x =时,max 147W =,8x =时,max 143W =,147143>, ∴当3x =时,年租金最大,max 1.47W =亿元,当3x =时,233642m =⨯+=元,58422436⨯=元,所以老张这一年应交租金为2 436元.【解析】(1)根据题中的条件利用待定系数法求出一次函数的解析式,结合题意找出关系进而得到结论;(2)根据函数的定义作出判断,由题中所给数据写出函数解析式即可;(3)根据条件得到年租金W 关于时间x 的二次函数解析式,利用二次函数的性质得到年租金的最大值,结合(2)中的函数解析式求解即可.【考点】一次函数和二次函数的应用.。

2024年内蒙古包头市中考数学模拟试卷(四)

2024年内蒙古包头市中考数学模拟试卷(四)

2024年内蒙古包头市中考数学模拟试卷(四)一、单选题1.据不完全统计,2021年河北省中考报名人数已经超过了886000人,数据886000用科学记数法可以表示为( ). A .58.8610⨯B .68.8610⨯C .588.610⨯D .688.610⨯2.下列说法正确的是( )A .14是12的算术平方根B .2-是4的算术平方根C .()21-的算术平方根是1 D .9-的算术平方根是33.下列计算中正确的有( )个①623a a a ÷=;②()235a a =;③336a a a +=;④122-=-;⑤0(3)1π-=;⑥236=.A .1B .2C .3D .44.如图,由若干个小正方体组成的一个几何体,从它的正面看得到的平面图形是( )A .B .C .D .5.如图,将三角形纸板的直角顶点放在直尺的一边上,120,240∠=︒∠=︒,则3∠等于( )A .50︒B .40︒C .30︒D .20︒6.二维码的图案主要由黑,白两种小正方形组成.现对由4个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,则恰好涂成两个黑色和两个白色的概率为( )A .12B .116C .38D .3167.如图,点O 是等边三角形ABC 内的一点,BOC=150∠︒,将B C O ∆绕点C 按顺时针旋转60︒得到ACD ∆,则下列结论不正确的是( )A .BO=ADB .DOC=60∠︒C .OD AD ⊥ D .OD//AB8.若关于x 的方程x 2=﹣m 有实数根,则m 的取值范围是( ) A .m >0B .m ≥0C .m <0D .m ≤09.如图,在Rt ABC △中,90C ∠=︒,AC BC =,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AC ,AB 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠内交于点O ;③作射线AO ,交BC 于点D .若点D 到AB 的距离为2,则BC 的长为( )A .2B .2+C .D .210.如图,双曲线ky x=()0k >经过Rt OAB V 斜边OB 的中点D ,与边AB 相交于点C ,若OBC △的面积为6,则k 的值为( )A .4B .8C .10D .12二、填空题11.已知1y =是方程13py p -=--的解,则代数式31p p p--的值为. 12.化简分式:ma mba b a b-=--; 13.如图,在平面直角坐标系中,A 、B 的坐标分别为()2,0、()0,1,若将线段AB 平移至11A B ,则a b +的值为.14.若点(),P a b 在抛物线221y x x =-+-,则a b +的最大值为.15.如图所示,扇形AOB 的圆心角是直角,半径为C 为OA 边上一点,将BOC V 沿BC 边折叠,圆心O 恰好落在弧AB 上的点D 处,则阴影部分的面积为 .16.如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于E ,交BA 的延长线于点F .(1)图中APD △与哪个三角形全等:.(2)猜想:线段PC 、PE 、PF 之间存在什么关系:.三、解答题17.(1)解不等式:121x -≥-;(2)化简求值:()()()22132x x x -+-+,其中x18.实施乡村振兴战略,能够将发展机遇提供给农业生产,改善乡村面貌提高农民的生活质量,促进机械化发展以及农业现代化发展.为助力乡村产业振兴,某地利用网络销售农产品,一段时间后负责人随机抽取部分销售人员统计他们上一个月的销售额m (单位:万元),绘制成如下统计图表(尚不完整):其中B 等级销售人员的销售额分别是(万元):5,6,7,8,8,8,9,9. 请根据图表中的信息,解答下列问题:(1)填空:=a __________,B 等级销售人员的销售额的众数是___________万元,所抽取销售人员的销售额的中位数是___________万元;(2)若想让一半左右的销售人员都能达到销售目标,你认为月销售额目标定为多少合适?说明理由;(3)若该地共有80位网络销售人员销售农产品,请估计该地上个月农产品的网络销售总额. 19.某校数学社团利用自制测角仪和皮尺测量河宽(把河两岸看作平行线).如图,他们在河岸MN 一侧的A 处,观察到对岸P 点处有一棵树,测得31PAN ∠=︒,向前走45m 到达B 处,测得45PBN ∠=︒,求河的宽度(精确到1m )(s i n310.52︒≈,cos310.86︒≈,tan310.60︒≈,1.41).20.为进一步加强“书香校园”建设,某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用7200元购进的甲种书柜的数量比用7500元购进乙种书柜的数量少5个. (1)每个甲种书柜的进价是多少元?(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.该校应如何进货使得购进书柜所需费用最少?21.如图,在Rt ABC △,90ACB ∠=︒,点D 在BC 边上,以CD 为直径的O e 与直线AB 相切于点E ,连接OA ,OA OB =.(1)求证:30ABC ∠=︒;(2)连接AD ,若AD =O e 的半径.22.操作:如图①在正方形ABCD 中,点E 是BC 的中点,将ABE V 沿AE 折叠后得到AFE △,点F 在正方形ABCD 内部,延长AF 交CD 于点G ,易知FG GC =.探究:若将图①中的正方形改成矩形,其他条件不变,如图②,那么线段GF 与GC 相等吗?请说明理由.拓展:如图③,将图①中的正方形ABCD 改为平行四边形,其他条件不变,若3AB =,4=AD ,则AGD △的周长为______.23.抛物线22y ax bx =++交x 轴于()1,0A 、()3,0B 两点,交y 轴于点C ,点P 为线段BC 下方抛物线上一动点,连接BP ,CP .(1)求抛物线解析式;(2)在点P 移动过程中,BPC △的面积是否存在最大值?若存在,求出最大面积及点P 的坐标,若不存在,请说明理由;(3)设点D 为CB 上不与端点重合的一动点,过点D 作线段BC 的垂线,交抛物线于点E ,若DCE △与BOC V相似,请直接写出点E 的坐标.。

中考数学仿真模拟测试题(附答案解析)

中考数学仿真模拟测试题(附答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。

内蒙古乌拉特前旗第六中学2024届中考数学四模试卷含解析

内蒙古乌拉特前旗第六中学2024届中考数学四模试卷含解析

内蒙古乌拉特前旗第六中学2024届中考数学四模试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B .94C .352D .3542.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m 2,广告牌所占的面积是 30m 2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m 2,设矩形面积是xm 2,三角形面积是ym 2,则根据题意,可列出二元一次方程组为( )A .430(4)(4)2x y x y +-=⎧⎨---=⎩B .26(4)(4)2x y x y +=⎧⎨---=⎩ C .430(4)(4)2x y y x +-=⎧⎨---=⎩D .4302x y x y -+=⎧⎨-=⎩3.将2001×1999变形正确的是( ) A .20002﹣1B .20002+1C .20002+2×2000+1D .20002﹣2×2000+14.如图,点C 是直线AB ,DE 之间的一点,∠ACD =90°,下列条件能使得AB ∥DE 的是( )A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°5.﹣2018的绝对值是()A.±2018 B.﹣2018 C.﹣12018D.20186.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.1397.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差8.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A.方有两个相等的实数根B.方程有一根等于0C.方程两根之和等于0 D.方程两根之积等于09.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是( )A.DEBC=23B.DEBC=25C.AEAC=23D.AEAC=2510.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55 135 149 191 乙55 135 151 110 某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③11.一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形12.在Rt△ABC中,∠C=90°,如果AC=2,cosA=23,那么AB的长是()A.3 B.43C.5D.13二、填空题:(本大题共6个小题,每小题4分,共24分.)13.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:__________.14.△ABC的顶点都在方格纸的格点上,则sin A=_ ▲ .15.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.16.如图,矩形ABCD中,AD=5,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP 的最小值是___________.17.已知关于x的方程有两个不相等的实数根,则m的取值范围是______.18.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b、的等式为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.20.(6分)如图 1 所示是一辆直臂高空升降车正在进行外墙装饰作业.图 2 是其工作示意图,AC 是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 为 2 m .当起重臂 AC 长度为 8 m ,张角∠HAC 为 118°时,求操作平台 C 离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)21.(6分)如图,在ABC 中,90ACB ∠=︒,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在射线DE 上,并且EF AC =. (1)求证:AF CE =;(2)当B ∠的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.22.(8分)某生姜种植基地计划种植A,B 两种生姜30亩.已知A,B 两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B 两种生姜各种多少亩?(2)若要求种植A 种生姜的亩数不少于B 种的一半,那么种植A,B 两种生姜各多少亩时,全部收购该基地生姜的年总收入最多最多是多少元? 23.(8分)如图,一次函数的图象与反比例函数的图象交于C ,D 两点,与x ,y 轴交于B ,A 两点,且,,,作轴于E 点.求一次函数的解析式和反比例函数的解析式; 求的面积;根据图象直接写出一次函数的值大于反比例函数的值时,自变量x 的取值范围.24.(10分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。

2024年内蒙古兴安盟中考数学模拟考试卷及答案

2024年内蒙古兴安盟中考数学模拟考试卷及答案

2024年内蒙古兴安盟中考数学模拟考试卷及答案学校:___________姓名:___________班级:___________考号:___________ 一单选题1.的倒数是()A.B.C.5 D.2.由大小相同的正方体搭成的几何体如图所示其左视图是()A.B.C.D.3.下列运算正确的是()A.B.C.D.4.将一副直角三角板按如图所示的方式摆放点在的延长线上且则的度数为()A.B.C.D.5.不等式的正整数解的个数有()A.3个B.4个C.5个D.6个6.下列命题正确的是()A.“经过有交通信号灯的路口遇到红灯”是必然事件B.精确到十分位C.点关于轴的对称点坐标是D.甲乙两人参加环保知识竞赛他们的平均成绩相同方差分别是则甲成绩比乙的稳定7.某校举行篮球赛每场比赛都要分出胜负每队胜一场得2分负一场得1分.某队在12场比赛中得20分.设该队胜场负场则根据题意列出关于的二元一次方程组正确的是()A.B.C.D.8.若实数是一元二次方程的两个根且则点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限9.如图在菱形中顺次连接菱形各边中点则四边形的周长为()A.B.C.D.10.如图直线与双曲线交于点和点则不等式的解集是()A.B.C.或D.或11.如图在中以点为圆心以的长为半径画弧交于点连接再分别以点为圆心大于的长为半径画弧两弧交于点作射线交于点交于点连接则的值是()A.B.C.D.12.将矩形纸板剪掉一个小矩形后剩余部分如图1所示动点P从点A出发沿路径匀速运动速度为点P到达终点F后停止运动的面积与点P运动的时间的关系如图2所示根据图象获取了以下的信息:①②③点从点运动到点需要④矩形纸板裁剪前后周长均为.其中正确信息的个数有()A.4个B.3个C.2个D.1个二填空题13.分解因式:= .14.如图在平面直角坐标系中点坐标连接将绕点逆时针旋转得到则点的坐标为.15.实数在数轴上对应点的位置如图所示化简:.16.如图正六边形的边长为2 以点A为圆心为半径画弧得到扇形(阴影部分).若扇形正好是一个圆锥的侧面展开图则该圆锥的底面圆的半径是.17.观察下列各式:…请利用你所发现的规律计算:.三解答题18.计算:.19.先化简再求值:其中.20.如图两个带指针的转盘分别被分成三个面积相等的扇形转盘上的数字分别是 5 转盘上的数字分别是6 4(两个转盘除表面数字不同外其他完全相同).小聪和小明同时转动两个转盘使之旋转(规定:指针恰好停留在分界线上则重新转一次).(1)转动转盘转盘指针指向正数的概率是________(2)若同时转动两个转盘转盘指针所指的数字记为转盘指针所指的数字记为若则小聪获胜若则小明获胜请用列表法或树状图法说明这个游戏是否公平.21.某数学兴趣小组借助无人机测量一条河流的宽度.如图所示一架水平飞行的无人机在处测得河流左岸处的俯角为无人机沿水平线方向继续飞行12米至处测得河流右岸处的俯角为线段米为无人机距地面的铅直高度点在同一条直线上其中.求河流的宽度(结果精确到1米参考数据:).22.为了激发学生的航天兴趣某校举行了太空科普知识竞赛竞赛结束后随机抽取了部分学生成绩进行统计按成绩分为如下5组(满分100分)组:组:组:组:组:并绘制了如下不完整的统计图表.请结合统计图表解答如下问题:学生成绩统计表组别成绩频数2014445(1)本次调查的样本容量为________ 学生成绩统计表中________(2)所抽取学生成绩的中位数落在________组(3)求出扇形统计图中“”所在扇形的圆心角度数(4)若成绩在90分及以上为优秀学校共有2000名学生估计该校成绩优秀的学生有多少名?23.如图是⊙的直径为⊙上的一点点是的中点连接过点的直线垂直于的延长线于点交的延长线于点.(1)求证:为⊙的切线(2)若求的长.24.端午节吃粽子是中华民族的传统习俗.市场上豆沙粽礼盒的进价比肉粽礼盒的进价每盒便宜10元某商家用2500元购进的肉粽和用2000元购进的豆沙粽盒数相同.(1)求每盒肉粽和每盒豆沙粽的进价(2)商家计划只购买豆沙粽礼盒销售经调查了解到有A两个厂家可供选择两个厂家针对价格相同的豆沙粽礼盒给出了不同的优惠方案:A厂家:一律打8折出售.厂家:若一次性购买礼盒数量超过25盒超过的部分打7折.该商家计划购买豆沙粽礼盒盒设去A厂家购买应付元去厂家购买应付元其函数图象如图所示:①分别求出与之间的函数关系②若该商家只在一个厂家购买怎样买划算?25.已知正方形是对角线上一点.(1)如图1 连接.求证:(2)如图2 是延长线上一点交于点.判断的形状并说明理由(3)在第(2)题的条件下.求的值.26.如图在平面直角坐标系中抛物线与轴的交点分别为和(点在点的左侧)与轴交于点点是直线上方抛物线上一动点.(1)求抛物线的解析式(2)如图1 过点作轴平行线交于点过点作轴平行线交轴于点求的最大值及点的坐标(3)如图2 设点为抛物线对称轴上一动点当点点运动时在坐标轴上确定点使四边形为矩形求出所有符合条件的点的坐标.参考答案:1.A【分析】两个乘积是1的数互为倒数 0没有倒数根据倒数的定义即可求解.【详解】解:的倒数是.故选:A【点睛】本题考查倒数.熟悉倒数的概念是关键.2.B【分析】画出左视图即可.【详解】解:左视图如图:故选B.【点睛】本题考查三视图.熟练掌握三视图的画法是解题的关键.3.D【分析】根据二次根式加减的运算性质积的乘方的运算性质分式加减的运算性质分式乘除的运算性质判断即可.【详解】A 运算错误该选项不符合题意B 运算错误该选项不符合题意C 运算错误该选项不符合题意D 运算正确该选项符合题意.故选:D.【点睛】本题主要考查二次根式加减积的乘方分式的加减分式的乘除牢记二次根式加减的运算性质积的乘方的运算性质分式加减的运算性质分式乘除的运算性质是解题的关键.4.B【分析】平行线的性质得到再利用进行求解即可.【详解】解:由题意得:∵∴∴故选B.【点睛】本题考查平行线的性质三角板中角度的计算.正确的识图掌握平行线的性质是解题的关键.5.A【分析】首先利用不等式的基本性质解不等式再从不等式的解集中找出正整数解得个数.【详解】解:∴正整数解为:有个故选A.【点睛】本题考查了一元一次不等式的整数解正确解不等式求出解集是解答本题的关键.6.C【分析】A 根据必然事件和随机事件的定义即可判断该命题是否正确 B 根据小数精确度的定义即可判断该命题是否正确 C 根据轴对称图形的性质即可判断该命题是否正确 D 方差越大数据的波动越大方差越小数据的波动越小.【详解】A “经过有交通信号灯的路口遇到红灯”是随机事件命题错误该选项不符合题意B 精确到百分位命题错误该选项不符合题意C 点关于轴的对称点坐标是命题正确该选项符合题意D 甲乙两人参加环保知识竞赛他们的平均成绩相同方差分别是则乙成绩比甲的稳定命题错误该选项不符合题意.故选:C【点睛】本题主要考查必然事件和随机事件小数精确度轴对称图形方差牢记必然事件和随机事件的定义小数精确度的定义轴对称图形的性质方差的性质是解题的关键.7.D【分析】设该队胜场负场根据每队胜一场得2分负一场得1分在12场比赛中得20分列出方程组即可.【详解】解:设该队胜场负场根据题意得:故D正确.故选:D.【点睛】本题主要考查了列二元一次方程组解题的关键是找出题目中的等量关系.8.B【分析】根据一元二次方程的解法求出的值根据各象限点的特征即可求得.【详解】∵实数是一元二次方程的两个根且∴∴为∴在第二象限故选:B.【点睛】此题考查了一元二次方程的解法以及各象限点的特征解题的关键是熟练掌握一元二次方程的解法.9.C【分析】首先利用三角形的中位线定理证得四边形为平行四边形再求对角线长度然后利用三角形中位线定理求出此平行四边形边长即可求出周长.【详解】解:如图连接相交于点点分别是边的中点同理四边形是平行四边形四边形是菱形对角线互相垂直是等边三角形在中四边形的周长为.故选:C.【点睛】本题考查了中点四边形的知识解题的关键是灵活运用三角形的中位线定理菱形的性质及平行四边形的判定与性质进行计算.10.B【分析】利用数形相结合借助图象求出不等式的解集即可.【详解】解:∵把直线与双曲线交于点和点∴当时直线在双曲线的下方且直线在x轴的上方∴不等式的解集是:故选:B.【点睛】本题考查了一次函数与反比例函数的交点问题反比例函数图象上点的坐标特征利用数形相结合的思想是解此题的关键.11.A【分析】根据尺规作图可得是的平分线可得由三角形内角和定理可得由等腰三角形性质可得根据直角三角形的性质可得可推出根据三角形面积公式即可求解.【详解】解:由尺规作图可得是的平分线∴∵∴∴在中∴即∴故选:A.【点睛】本题考查基本作图含角直角三角形的性质等腰三角形的性质三角形的面积等知识角所对直角边长度是斜边的一半.12.C【分析】利用图表信息结合面积及逐个运动阶段得到计算数据逐个判断正误即可.【详解】由矩形及点P运动过程可知:时点P位于点B处则①正确时点P位于点D处故运动时间为10s 所以③正确时点P位于点C处所以②错误周长所以④错误故①③正确正确得有2个故选C.【点睛】本题考查动点面积计算问题能够在不同位置清晰计算面积及结合图表确认拐点位置是解题的关键.13.x(x+2)(x﹣2)【分析】先提取公因式再根据平方差公式分解因式即可.【详解】解:==x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法的综合运用掌握a2-b2=(a+b)(a-b)是解题的关键.14.【分析】过点作轴于点A过点作轴于点C易证即得出即.【详解】解:如图过点作轴于点A过点作轴于点C∵将绕点逆时针旋转得到∴∴.∵∴.又∵∴∴∴.故答案为:.【点睛】本题考查坐标与图形三角形全等的判定和性质.正确作出辅助线构造全等三角形是解题关键.15./【分析】利用二次根式的性质和绝对值的性质即可求解.【详解】由数轴位置可知.【点睛】本题考查二次根式化简运算掌握二次根式的性质是关键.16.【分析】首先确定扇形的圆心角的度数然后利用圆锥的底面圆周长是扇形的弧长计算即可.【详解】解:∵正六边形的外角和为∴每一个外角的度数为∴正六边形的每个内角的度数为设这个圆锥底面圆的半径是r根据题意得解得故答案为:.【点睛】本题考查正多边形和圆及圆锥的计算解题的关键是求得正六边形的内角的度数并理解圆锥的母线长是扇形的半径圆锥的底面圆周长是扇形的弧长.17./【分析】直接根据已知数据变化规律进而将原式变形求出答案.【详解】故答案为:.【点睛】本题考查数字变化规律正确将原式变形是解题的关键.18.【分析】根据实数的混合运算法则即可求解.【详解】原式【点睛】本题考查实数的混合运算.熟记特殊角的三角函数值求绝对值法则负指数幂的运算法则是解题关键.19. 45【分析】先按照完全平方公式平方差公式多项式乘以多项式计算整式的乘法再合并同类项即可.【详解】原式.当时原式.【点睛】本题考查的是整式的化简求值同时考查了二次根式的混合运算掌握完全平方公式与平方差公式进行简便运算是解题的关键.20.(1)(2)这个游戏公平理由见解析【分析】(1)转盘指针指向正数的概率据此即可求解(2)通过列表找出事件的所有等可能结果分别计算小明获胜的概率小聪获胜的概率即可进行判断.【详解】(1)解:∵为正数∴转盘指针指向正数的概率为:(2)解:列表得:64一共有9种等可能的结果其中的有4种其中的有4种∴(小聪获胜)(小明获胜)(小聪获胜)(小明获胜)∴这个游戏公平【点睛】本题考查了概率的应用.熟记概率的计算公式以及列表法(或树状图)是解题关键.【分析】过点作于点分别解即可.【详解】解:过点作于点.则四边形是矩形.∴∵∴在中∴∴∴在中∴∴∴∴米【点睛】本题考查了关于俯仰角的解直角三角形的问题.作垂线构造直角三角形是解题关键.22.(1)400 176(2)(3)扇形统计图中“”所在扇形的圆心角度数为(4)估计该校成绩优秀的学生约有300名【分析】(1)利用组频数除以组所占百分比即可计算本次调查的样本容量利用样本容量乘以组所占百分比即可计算的值(2)根据中位数的定义分析判断即可(3)首先计算的值再计算扇形统计图中“”所在扇形的圆心角度数即可(4)首先计算本次调查学生成绩优秀的百分比然后利用该百分比乘以该校总人数即可获得答案.【详解】(1)本次调查的样本容量为.故答案为:400 176(2)此次共抽取了400名学生成绩将学生成绩按从低到高排序排在最中间的是第200个第201个这两个数的平均数是中位数∴中位数落在组.故答案为:(3)∵∴扇形统计图中“E”所在扇形的圆心角度数为答:扇形统计图中“”所在扇形的圆心角度数为.(4)答:估计该校成绩优秀的学生约有300名.【点睛】本题主要考查了频数分布统计表扇形统计图中位数样本估计总体等知识熟练掌握相关知识是解题关键.23.(1)见解析(2)【分析】(1)连接根据点是的中点可得进而证从而得证即可(2)解法一:连接交于根据及勾股定理求出再证明从而得到即可求出的值解法二:过点作于点按照解法一步骤求出然后证明四边形是矩形再证明求得进而求出的值.【详解】(1)证明:连接点是的中点是半径是的切线(2)解法一:连接交于在中或(不符合题意舍去)点是的中点是半径垂直平分是的中位线是直径解法二:过点作于点在中或(不符合题意舍去)四边形是矩形.【点睛】本题考查切线的判定圆的相关性质勾股定理平行线间线段成比例相似三角形的的判定与性质掌握并理解相关性质定理并能综合应用是关键.24.(1)每盒肉粽和每盒豆沙粽的进价分别为50元和40元(2)①(且为整数)②购买粽子礼盒少于75盒去A厂家购买划算购买粽子礼盒等于75盒去A厂家或厂家购买一样划算购买粽子礼盒多于75盒去厂家购买划算【分析】(1)设每盒豆沙粽的进价为元则每盒肉粽的进价为元列分式方程求解即可(2)①根据售价与数量单价间的关系即可列一次函数得解②由得解得结合图象即可得解.【详解】(1)解:设每盒豆沙粽的进价为元则每盒肉粽的进价为元方程两边乘得解得检验:当时∴是原方程的解答:每盒肉粽和每盒豆沙粽的进价分别为50元和40元.(2)解:①(且为整数)当且为整数时当且为整数时∴②当且为整数时由图象可知:购买粽子礼盒少于75盒去A厂家购买划算购买粽子礼盒等于75盒去A 厂家或厂家购买一样划算购买粽子礼盒多于75盒去厂家购买划算.【点睛】本题考查了求一次函数得解析式分式方程的应用以及一次函数的图像及性质正确找出等量关系列分式方程是解题的关键.25.(1)见解析(2)是等腰三角形理由见解析(3)【分析】(1)利用正方形的性质得出进而即可得到(2)先判断出进而判断出即可得到结论(3)先求出的长可证明是等腰直角三角形.从而得到的长再利用可证得进而得到从而可得到答案.【详解】(1)解:∵四边形是正方形是对角线∴在和中∴.(2)解:是等腰三角形理由如下:∵∴∵四边形是正方形∴∴∵∴∵∴∴∴∴∴是等腰三角形.(3)解:∵∴又∵∴是等腰直角三角形.∴∴∴∴∵∴∴∴.【点睛】本题考查四边形综合题主要考查了正方形的性质全等三角形等腰三角形以及相似三角形熟练掌握等腰三角形以及全等三角形的判定与性质是解题的关键.26.(1)(2)的最大值为点的坐标为(3)符合条件的点坐标为:或【分析】(1)利用待定系数法即可求解(2)先求得直线的解析式设则得到利用二次函数的性质求解即可(3)先求得抛物线的顶点对称轴为分当点在轴上和点在轴负半轴上时两种情况讨论当点在轴负半轴上时证明求得再证明求得点的坐标为由点在抛物线上列式计算求解即可.【详解】(1)解:∵抛物线与轴交于点与轴交于点解得抛物线的解析式为:(2)解:当时解得∴设直线的解析式为:把代入得:解得∴直线的解析式为设∵轴∴点的纵坐标为又∵点在直线上∴∴∴∵轴∴∴∵∴当时有最大值最大值为当时∴点的坐标为答:的最大值为点的坐标为(3)解:则抛物线的顶点对称轴为情况一:当点在轴上时为抛物线的顶点∵四边形为矩形∴与纵坐标相同∴情况二:当点在轴负半轴上时四边形为矩形过作轴的垂线垂足为过作轴的垂线垂足为设则∴∴∵∴又∵∴∴∵抛物线对称轴为点在对称轴上∴∴即∵∴∴∴∴∴点的坐标为∵点在抛物线上∴解得(舍去)∴综上所述:符合条件的点坐标为:或.【点睛】本题考查二次函数的综合应用涉及待定系数法相似三角形的判定和性质矩形的性质等知识解题的关键是方程思想的应用.。

2023年9月内蒙古自治区巴彦淖尔市小升初数学分班思维应用题模拟试卷二含答案解析

2023年9月内蒙古自治区巴彦淖尔市小升初数学分班思维应用题模拟试卷二含答案解析

2023年9月内蒙古自治区巴彦淖尔市小升初分班数学思维应用题模拟试卷二含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。

一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。

)1.体育馆有920个座位,高兴小学组织全校学生去看篮球比赛,该校有9个班,每个班有36人。

学生全体入场后还有多少个空座位?2.五年级同学做了80个中国结,比四年级同学做的个数的2倍多6个,四、五年级一共做了多少个中国结?(列方程解答)3.甲、乙两辆列车同时从宁波、上海相对开出,甲车每小时行60千米,乙车每小时行55千米,经过4小时相遇,宁波至上海全长多少千米?4.前进小学四年级一班参加科技小组和舞蹈队共78人,其中参加科技小组的有51人,参加舞蹈队的有42人。

科技小组与舞蹈队的总数比78人多出15人。

请你告诉我为什么呢?5.在一块长45米、宽28米的长方形地上铺一层4厘米厚的沙土.(1)需要多少立方米沙土?(2)一辆车每次运送1.5立方米的沙土,至少需要运多少次?6.五年级50个人练习射击,每人打2发子弹,共命中96发.求命中率.7.一辆汽车每秒行18米,车的长度是10米.一条隧道长152米,这辆汽车从进入隧道到全部通过,需要多长时间?8.新学期开始,五年级师生向希望小学捐书270本,六年级比五年级多捐19本,六年级师生捐书多少本?(用两种方法解答)9.一个长方形停车场,周长是128米,长和宽的比是5:3,这个停车场的占地面积是多少平方米?10.一根钢管,要把它锯成长度相等的7段,每锯一段要8分钟.锯完这根钢管一共需要多少分钟.11.某体育用品商店进了100套福娃,售出85套.售出了百分之几?12.要做一个底面边长是10厘米,高是24分米的长方体烟囱,至少要用多少平方分米的铁皮.13.一个长方形操场长30米,宽20米,绕着这个操场跑2圈,跑了多少米?14.育才小学六年级有男生262人,女生185人.男生人数比实验小学六年级男生的1.5倍少8人,女生人数比实验小学六年级女生的1.8倍多5人.实验小学六年级男生,女生各有多少人?(用方程回答,并解设.)15.师徒两人合租偶一批零件,师傅做了5小时,徒弟做了8小时,一共做了284个.已知师傅3小时做的零件数比徒弟4小时做的还多12个,师傅平均每小时做多少个零件?16.工人师傅给一个直径为50厘米的木桶打一道铁箍,接头处要4厘米,需要多长的铁丝?如果给这个木桶配一个木盖,至少需要多少平方厘米的木板.17.教育储蓄所得的利息不用纳税.爸爸为笑笑存了三年期的教育储蓄基金20000元,年利率为5.40%,到期后共领到了本金和利息多少元?18.一件衣服售价80元,如果打八折出售,少卖了多少元?19.修路队修一段长1240米的公路,已经修了5天,还有275米没有修,平均每天修多少米?20.一辆轿车3小时可以行驶192千米,一辆货车每小时可行驶40千米.轿车行驶的速度是货车的多少倍?21.甲数是乙数的60%,丙数是甲数的30%,问丙数比乙数少百分之几?22.商店里的运动外套要35元一件,短袖要20元一件,运动裤要30元一条,(1)方老师带了430元钱,如果全买外套,买12件,钱够吗?(2)方老师带了430元钱,买了8件短袖和5条裤子,还剩多少钱?23.某校五年级学生参加艺术考级的有183人,其中考美术的有35人,考声乐的人数是考美术的3.2倍,其余的是考器乐的同学,考器乐的同学有多少人?24.植树节那天,四年级植树180棵,是五年级植树棵数的3/5,五年级的棵数又占六年级的2/3,六年级植树多少棵?25.修筑一条水泥路,甲队独修需12天完成,乙队独修15天完成,乙队先修5天后,剩下的由甲、乙合修,还要多少天才能完工?26.城建工人铺一条自来水管道,已经铺了7天,每天铺400米,还剩200米没有铺。

2024年内蒙古自治区通辽中考数学模拟试题

2024年内蒙古自治区通辽中考数学模拟试题

2024年内蒙古自治区通辽中考数学模拟试题一、单选题1.2024-的绝对值是( )A .2024B .2024-C .12024D .12024- 2.每年4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点439000米.将439000用科学记数法表示应为( )A .60.43910⨯B .64.3910⨯C .54.3910⨯D .543910⨯ 3.下列运算中,正确的是( )A .523a a -=B .()22224x y x y +=+ C .842x x x ÷= D .()3328a a = 4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 5.下列说法正确的是( )A .打开电视,它正在播天气预报是不可能事件B .要考察一个班级中学生的视力情况适合用抽样调查C .在抽样调查过程中,样本容量越大,对总体的估计就越准确D .甲、乙两人射中环数的方差分别为22S =甲,21S =乙,说明甲的射击成绩比乙稳定 6.如图,已知直线AB CD ∥,EG 平分BEF ∠,140∠=︒,则2∠的度数是( )A .70︒B .50︒C .40︒D .140︒7.实数a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A .a b >B .||||a b >C .0ab >D .0a b +>8.某中学的学生自己动手整修操场,七年级的学生说:“如果让我们单独工作,7.5小时能完成”;八年级的学生说:“如果让我们单独工作,5小时能完成.”现两个年级学生一起工作1小时,剩下的部分再让七年级单独完成需x 小时,可列方程( )A .1117.557.5x --= B .1117.557.5x -+= C .1117.557.5x +-= D .1117.557.5x ++= 9.如图,正五边形ABCDE 的外接圆为O e ,P 为优弧ADB 上一点,则APB ∠=( )A .36︒B .54︒C .30︒D .26︒10.二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限11.如图,在ABC V 中,D ,M 是边AB 的三等分点,N ,E 是边AC 的三等分点.连接ND 并延长与CB 的延长线相交于点P .若4DE =,则线段CP 的长为( )A .5B .7C .6D .812.如图,点A 是射线y =65x (x ≥0)上一点,过点A 作AB ⊥x 轴于点B ,以AB 为边在其右侧作正方形ABCD ,过点A 的双曲线y =k x交CD 边于点E ,则DE EC 的值为( )A .65B .95C .165D .1二、填空题13有意义,则x 的取值范围是. 14.已知关于x 的一元二次方程240x x m ++=有两个相等的实数根,则m 的值为.15.若关于x 的一元一次不等式组1030x x a +>⎧⎨-≤⎩有且只有3个整数解,则a 的取值范围是. 16.如图,矩形ABCD 中,48AB BC ==,,将纸片折叠,使点C 与点A 重合,折痕为EF ,点D 的对应点为G ,连接DG ,则图中阴影部分面积是.17.如图,在OAB △中,90AOB ∠=︒,==BO AO P 是OB 的中点,若点D 在直线AB 上运动,连接OD ,以OD 为腰,向OD 的右侧作等腰直角三角形ODE ,连接PE ,则在点D 的运动过程中,线段PE 的最小值为.三、解答题18.计算:()202422sin 60112-︒---.19.先化简,再求值:2211111⎛⎫+÷ ⎪+--⎝⎭x x x x ,其中12x =-. 20.已知:如图,在平行四边形ABCD 中,点E 、F 在对角线BD 上,且CE BD ⊥,AF BD ⊥.(1)求证:CDE ABF VV ≌; (2)求证:四边形CEAF 是平行四边形.21.第31届世界大学生运动会将于2023年7月28日至8月8日在成都举行,某校开展了“爱成都,迎大运”系列活动,增设篮球,足球,柔道,射击共四个课外活动项目.为了解全校1500名同学对增设的四个活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人限选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图,请回答下列问题:(1)参加问卷调查的同学共 名,补全条形统计图;(2)估计该校1500名同学中喜爱篮球运动的人数;(3)学校准备组建一支校篮球队,某班甲,乙,丙,丁四名同学平时都很喜欢篮球运动,现决定从这四人中任选两名同学加入球队,请你用树状图或列表法求恰好选中甲,乙两名同学的概率.22.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量某广场花坛的高度,他们借助无人机设计了如下测量方案:无人机在距地面63m 高的点C 处,测得花坛顶部点B 处的俯角为70︒,沿水平方向由点C 飞行43m 到达点D ,测得花坛底部点A 处的俯角为45︒,其中点A ,B ,C ,D 均在同一竖直平面内.请根据以上数据,求花坛AB 的高度.(结果精确到1m ;参考数据:sin 700.94︒≈,cos700.34︒≈,tan 70 2.75︒≈)23.如图,一次函数y ax b =+的图象与反比例函数k y x=的图象交于A ,B 两点,已知点A 坐标为()3,1,点B 的坐标为()2,m -.(1)求反比例函数的解析式和一次函数的解析式;(2)观察图象直接写出满足k ax b x+>时的x 的取值范围; (3)P 为x 轴上一动点,当三角形OAP 为等腰三角形时,求点P 的坐标.24.某学校为筹备初三同学们的毕业活动,学校准备为同学们购进A ,B 两款T 恤,每件A 款T 恤比每件B 款T 恤多10元,用500元购进A 款T 恤和用400元购进B 款T 恤的数量相同.(1)求A 款T 恤和B 款T 恤每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买T 恤,求有几种购买方案?(3)在实际购买时,由于数量较多,商家让利销售,A 款七折优惠,B 款每件让利m 元,采购人员发现(2)中的所有购买方案所需资金恰好相同,求m 值.25.如图所示,以ABC V 的边AB 为直径作O e ,点C 在O e 上,BD 是O e 的弦,A CBD ∠=∠,过点C 作CF AB ⊥于点F ,交BD 于点G ,过C 作CE BD ∥交AB 的延长线于点E .(1)求证:CE 是O e 的切线;(2)求证:CG BG =;(3)若30DBA ∠=︒,CG 4=,求阴影部分的面积. 26.已知抛物线2y ax bx c =++与x 轴相交于A 、B 两点,与y 轴相交于点C 0,−3 ,点()1,4M -为抛物线的顶点.(1)求抛物线的表达式.(2)如图1,D 是第四象限内抛物线上一点,分别连接DA ,DB ,DC ,AC .若2A C D A B D S S =△△,求点D 的坐标;(3)如图2,直线CM 交x 轴于点E ,若点P 是线段EM 上的一个动点,是否存在以点P 、E 、O 为顶点的三角形与ABC V 相似.若存在,求出点P 的坐标;若不存在,请说明理由.。

2024年内蒙古包头市中考数学试卷(含解析)

2024年内蒙古包头市中考数学试卷(含解析)

2024年初中学业水平考试试卷数学注意事项:1.本试卷共6页,满分120分.考试时间为120分钟.2.答题前,考生务必先将自己的考生号、姓名、座位号等信息填写在试卷和答题卡的指定位置.请认真核对条形码上的相关信息后,将条形码粘贴在答题卡的指定位置.3.答题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共有10小题,每小题3分,共30分.每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑.1.计算所得结果是()A.3B.C. D.±2.若,m n 互为倒数,且满足3m mn +=,则n 的值为()A.14B.12C.2D.43.如图,正方形ABCD 边长为2,以AB 所在直线为轴,将正方形ABCD 旋转一周,所得圆柱的主视图的面积为()A.8B.4C.8πD.4π4.如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有()A.1个B.2个C.3个D.4个5.为发展学生的阅读素养,某校开设了《西游记》《三国演义》《水浒传》和《红楼梦》四个整本书阅读项目,甲、乙两名同学都通过抽签的方式从这四个阅读项目中随机抽取一个.则他们恰好抽到同一个阅读项目的概率是()A.116 B.112C.16D.146.将抛物线22y x x =+向下平移2个单位后,所得新抛物线的顶点式为()A.()213y x =+- B.()=+-2y x 12C.()213y x =-- D.()212y x =--7.若21m -,m ,4m -这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是()A.2m < B.1m < C.12m << D.513m <<8.如图,在扇形AOB 中,80AOB ∠=︒,半径3OA =,C 是 AB 上一点,连接OC ,D 是OC 上一点,且OD DC =,连接BD .若BD OC ⊥,则 AC 的长为()A.π6B.π3C.π2D.π9.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()1,2A ,()3,3B ,()5,0C ,则四边形OABC 的面积为()A.14B.11C.10D.910.如图,在矩形ABCD 中,,E F 是边BC 上两点,且BE EF FC ==,连接,,DE AF DE 与AF 相交于点G ,连接BG .若4AB =,6BC =,则sin GBF ∠的值为()A.1010B.31010C.13D.23二、填空题:本大题共有6小题,每小题3分,共18分.请将答案填在答题卡上对应的横线上.11.()2024381+-=______.12.已知一个n 边形的内角和是900︒,则n =________.13.在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的表达式______.14.如图,四边形ABCD 是O 的内接四边形,点O 在四边形ABCD 内部,过点C 作O 的切线交AB 的延长线于点P ,连接,OA OB .若140AOB ∠=︒,35BCP ∠=︒,则ADC ∠的度数为______.15.若反比例函数12y x=,23y x=-,当13x ≤≤时,函数1y 的最大值是a ,函数2y 的最大值是b ,则b a =______.16.如图,在菱形ABCD 中,60ABC ∠=︒,6AB =,AC 是一条对角线,E 是AC 上一点,过点E 作EF AB ⊥,垂足为F ,连接DE .若CE AF =,则DE 的长为______.三、解答题:本大题共有7小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17.(1)先化简,再求值:()()2121x x +-+,其中x =(2)解方程:2244x xx x --=--.18.《国家学生体质健康标准(2014年修订)》将九年级男生的立定跳远测试成绩分为四个等级:优秀(240x ≥),良好(225240x ≤<),及格(185225x ≤<),不及格(185x <),其中x 表示测试成绩(单位:cm ).某校为了解本校九年级全体男生立定跳远测试的达标情况,精准找出差距,进行科学合理的工作规划,整理了本校及所在区县九年级全体男生近期一次测试成绩的相关数据,信息如下:a .本校测试成绩频数(人数)分布表:等级优秀良好及格不及格频数(人数)40706030b .本校测试成绩统计表:平均数中位数优秀率及格率222.5228p85%c .本校所在区县测试成绩统计表:平均数中位数优秀率及格率218.722323%91%请根据所给信息,解答下列问题:(1)求出p 的值;(2)本校甲、乙两名同学本次测试成绩在本校排名(从高到低)分别是第100名、第101名,甲同学的测试成绩是230cm ,请你计算出乙同学的测试成绩是多少?(3)请你结合该校所在区县测试成绩,从平均数、中位数、优秀率和及格率四个方面中任选两个,对该校九年级全体男生立定跳远测试的达标情况做出评价,并为该校提出一条合理化建议.19.如图,学校数学兴趣小组开展“实地测量教学楼AB 的高度”的实践活动.教学楼周围是开阔平整的地面,可供使用的测量工具有皮尺、测角仪(皮尺的功能是直接测量任意可到达的两点间的距离;测角仪的功能是测量角的大小).(1)请你设计测量教学楼AB 的高度的方案,方案包括画出测量平面图,把应测数据标记在所画的图形上(测出的距离用,m n 等表示,测出的角用,αβ等表示),并对设计进行说明;(2)根据你测量的数据,计算教学楼AB 的高度(用字母表示).20.图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y (单位:cm )随着碗的数量x (单位:个)的变化规律.下表是小亮经过测量得到的y 与x 之间的对应数据:/x 个1234/cmy 68.410.813.2(1)依据小亮测量的数据,写出y 与x 之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm ,求此时碗的数量最多为多少个?21.如图,AB 是O 的直径,,BC BD 是O 的两条弦,点C 与点D 在AB 的两侧,E 是OB 上一点(OE BE >),连接,OC CE ,且2BOC BCE ∠=∠.(1)如图1,若1BE =,CE =,求O 的半径;(2)如图2,若2BD OE =,求证:BD OC ∥.(请用两种证法解答)22.如图,在ABCD Y 中,ABC ∠为锐角,点E 在边AD 上,连接,BE CE ,且ABE DCE S S = .(1)如图1,若F 是边BC 的中点,连接EF ,对角线AC 分别与,BE EF 相交于点,G H .①求证:H 是AC 的中点;②求::AG GH HC ;(2)如图2,BE 的延长线与CD 的延长线相交于点M ,连接,AM CE 的延长线与AM 相交于点N .试探究线段AM 与线段AN 之间的数量关系,并证明你的结论.23.如图,在平面直角坐标系中,抛物线22y x bx c =-++与x 轴相交于()1,0A ,B 两点(点A 在点B 左侧),顶点为()2,M d ,连接AM .(1)求该抛物线的函数表达式;(2)如图1,若C 是y 轴正半轴上一点,连接,AC CM .当点C 的坐标为10,2⎛⎫⎪⎝⎭时,求证:ACM BAM ∠=∠;(3)如图2,连接BM ,将ABM 沿x 轴折叠,折叠后点M 落在第四象限的点M '处,过点B 的直线与线段AM '相交于点D ,与y 轴负半轴相交于点E .当87BD DE =时,3ABD S △与2M BD S '△是否相等?请说明理由.参考答案一、选择题:本大题共有10小题,每小题3分,共30分.每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑.1.【答案】C===;故选C .2.【答案】B【解析】解:∵,m n 互为倒数,∴1⋅=m n ,∵3m mn +=,∴2m =,则12n =,故选:B .3.【答案】A【解析】解:由图可知:圆柱体的主视图为长为4,高为2的长方形,∴面积为248⨯=;故选A .4.【答案】C【解析】解∶∵AB CD ∥,∴180AEF CGE +∠=︒∠,∵CGE DGF ∠=∠,∴180AEF DGF ∠+∠=︒,又180AEF BEG ∠+∠=︒,∴图中与AEF ∠互补的角有CGE ∠,DGF ∠,BEG ∠,共3个.故选∶C .5.【答案】D【解析】解:设《西游记》《三国演义》《水浒传》和《红楼梦》四个整本书阅读项目分别为A B C D 、、、,画树状图如下:一共有16种等可能的结果,其中恰好抽到同一个阅读项目的结果有4种可能,∴他们恰好抽到同一个阅读项目的概率是41164=,故选:D .6.【答案】A【解析】解:抛物线22y x x =+向下平移2个单位后,则抛物线变为222y x x =+-,∴222y x x =+-化成顶点式则为()213y x =+-,故选:A .7.【答案】B【解析】解:由题意,得:214m m m -<<-,解得:1m <;故选B .8.【答案】B【解析】解:连接BC ,OD DC =,BD OC ⊥,OB BC ∴=,∴OBC △是等腰三角形,OB OC =,∴OB OC BC ==,OBC △是等边三角形,∴60BOC ∠=︒,80AOB ∠=︒,∴20AOC AOB BOC ∠=∠-∠=︒,3OA =,∴ 203ππ1803AC ⨯==,故选:B .9.【答案】D【解析】解∶过A 作AM OC ⊥于M ,过B 作BN OC ⊥于N ,∵()0,0O ,()1,2A ,()3,3B ,()5,0C ,∴1OM =,2AM =,3ON BN ==,5CO =,∴2MN ON OM =-=,2CN OC ON =-=,∴四边形OABC 的面积为AOM BCNAMNB S S S ++梯形 ()1111223232222=⨯⨯+⨯+⨯+⨯⨯9=,故选:D .10.【答案】A【解析】解:∵矩形ABCD ,BE EF FC ==,4AB =,6BC =,∴6,AD BC AD BC ==∥,2BE EF FC ===,∴AGD FGE ∽,4BF =,∴13FG EF AG AD ==,∴14FG AF =过点G 作GH BC ⊥,则:GH AB ∥,∴GHF ABF ∽,∴14FH GH FG BF AB AF ===,∴114FH BF ==,114GH AB ==,∴3BH BF FH =-=,∴221310BG =+=∴10sin 1010HG GBF BG ∠===;故选A .二、填空题:本大题共有6小题,每小题3分,共18分.请将答案填在答题卡上对应的横线上.11.【答案】3【解析】解:原式213=+=;故答案为:3.12.【答案】7【解析】解:根据题意,得()2180900n -︒=⋅︒,解得7n =.故答案为:713.【答案】1y x =+(答案不唯一)【解析】解:设一次函数的解析式为()0y kx b k =+≠,∵一次函数的图象经过一、二、三象限,∴0,0k b >>,∴符合该条件的一个一次函数的表达式是:1y x =+(答案不唯一).故答案为:1y x =+(答案不唯一).14.【答案】105︒##105度【解析】解∶连接OC ,∵OA OB OC ==,140AOB ∠=︒,∴()1180202OAB OBA AOB ∠=∠=︒-∠=︒,OCB OBC ∠=∠,∵CP 是切线,∴90OCP ∠=︒,即90OCB BCP ∠+∠=︒,∵35BCP ∠=︒,∴55OBC OCB ∠=∠=︒,∴75ABC ABO OBC ∠=∠+∠=︒,∵四边形ABCD 是O 的内接四边形,∴180105ADC ABC ∠=︒-∠=︒,故答案为:105︒.15.【答案】12##0.5【解析】解: 函数12y x =,当13x ≤≤时,函数1y 随x 的增大而减小,最大值为a ,1x ∴=时,12y a ==,23y x =- ,当13x ≤≤时,函数2y 随x 的增大而减大,函数2y 的最大值为21y b =-=,1122b a -∴==.故答案为:12.16.【答案】【解析】解∶过D 作DH AC ⊥于H ,∵菱形ABCD 中,60ABC ∠=︒,6AB =,∴AB BC CD AD ===,60ADC ABC ∠=∠=︒,∴ABC ,ACD 都是等边三角形,∴60EAF ∠=︒,6AC AB ==,132AH CH AC ===,∵EF AB ⊥,∴30AEF ∠=︒,∴2AE AF =,又CE AF =,∴2AE CE =,∴2CE =,∴1HE CH CE =-=,在Rt CDH △中,22227DH CD CH =-=,∴DE ==故答案为:三、解答题:本大题共有7小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17.【答案】(1)21x -,7;(2)3x =【解析】解:(1)()()2121x x +-+22122x x x =++--21x =-,当x =(217=-=;(2)2244x x x x --=--去分母,得()224x x x ---=,解得3x =,把3x =代入43410x -=-=-≠,∴3x =是原方程的解.18.【答案】(1)20%(2)乙同学的测试成绩是226cm(3)见解析【解析】【小问1详解】解:本次测试的总人数为:40706030200+++=(人),成绩为优秀的人数为:40人,则优秀率为:40200100%20%p =÷⨯=;【小问2详解】解: 第100名、第101名成绩的平均值为该校本次测试成绩的中位数,中位数为228,则2228230226cm ⨯-=,答:乙同学的测试成绩是226cm ;【小问3详解】解:本校测试成绩的平均数为222.5,本校所在区县测试成绩平均数为218.7,本校测试成绩的优秀率为20%,本校所在区县测试成绩优秀率为23%,222.5218.7,20%23%>< ,从平均数角度看,该校九年级全体男生立定跳远的平均成绩高于区县水平,整体水平较好;从优秀率角度看,该校九年级全体男生立定跳远成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的优秀率低于区县水平;建议:该校在保持学校整体水平的同时,多关注接近优秀的学生,提高优秀成绩的人数.19.【答案】(1)见解析(2)()tan tan m αβ+【解析】【小问1详解】解:如图,将测角仪放在D 处,用皮尺测量出D 到AB 的距离为m ,用测角仪测出A 的仰角为α,测出B 的俯角为β;【小问2详解】解:如图,过C 作CE AB ⊥于E ,则四边形CDBE 是矩形,ACE α∠=,BCE β∠=,∴CE BD m ==,BE CD =,在Rt BCE 中,tan tan BE CE ECB m β=⋅∠=,在Rt ACE 中,tan tan BE CE ECA m α=⋅∠=,∴()tan tan AB AE BE m αβ=+=+,答:教学楼AB 的高度为()tan tan m αβ+.20.【答案】(1) 2.4 3.6y x =+(2)10个【解析】【小问1详解】解:由表格可知,每增加一只碗,高度增加2.4cm ,∴()6 2.41 2.4 3.6y x x =+-=+,检验∶当1x =时,6y =;当2x =时,8.4y =;当3x =时,10.8y =;当4x =时,13.2y =;∴ 2.4 3.6y x =+;【小问2详解】解:根据题意,得2.4 3.628.8x +≤,解得10.5x ≤,∴碗的数量最多为10个.21.【答案】(1)3(2)见解析【解析】【小问1详解】解∶∵OC OB =,∴()11802OBC OCB BOC ∠=∠=︒-∠,∵2BOC BCE ∠=∠,∴()11802902OBC BCE BCE ∠=︒-∠=︒-∠,即90OBC BCE ∠+∠=︒,∴90OEC ∠=︒,∴222OC OE CE =+,∴()2221OC OC =-+,解得3OC =,即O 的半径为3;【小问2详解】证明:法一:过O 作OF BD ⊥于F ,∴12BF BD =,∵2BD OE=∴OE BF =,又OC OB =,90OEC BFO ∠=∠=︒,∴()Rt Rt HL CEO OFB ≌,∴COE OBF ∠=∠,∴BD OC ∥;法二:连接AD ,∵AB 是直径,∴90ADB ∠=︒,∴2AD CE ====,∴12OC CE OE AB AD BD ===,∴CEO ADB ∽ ,∴COE ABD ∠=∠,∴BD OC ∥.22.【答案】(1)①见解析;②::2:1:3AG GH HC =(2)3AM AN =,理由见解析【解析】【小问1详解】解:①ABE DCE S S = ,E ∴为AD 的中点,AE DE ∴=,F 是边BC 的中点,BF CF ∴=,AE CF ∴=,在ABCD Y 中,AD BC∴EAH FCH ∠=∠,又∵AHE CHF ∠=∠,()AAS AHE CHF ∴ ≌,AH CH ∴=,H ∴是AC 的中点;②,AE BF AE BF =∥ ,∴四边形ABFE 为平行四边形,AB EF ∴∥,AGB HGE ∴ ∽,AB AG EH GH∴=,∵AHE CHF ≌,EH FH ∴=,2AB AG EH GH∴==,2AG GH ∴=,1133GH AH HC ∴==,::2:1:3AG GH HC ∴=;【小问2详解】解:线段AM 与线段AN 之间的数量关系为:3AM AN =,理由如下:连接BD 交CN 于点F ,如下图:由题意,BE 的延长线与CD 的延长线相交于点M ,连接,AM CE 的延长线与AM 相交于点N ,,AE DE AEB DEM =∠=∠ ,又AB CD ∥ ,AB CM \∥,ABE DME ∴∠=∠,()AAS AEB DEM ∴ ≌,AB DM ∴=,∴四边形ABDM 为平行四边形,,AM BD AB MD ∴==,AB CD =,DM CD ∴=,D ∴为CM 的中点,DF MN ∥ ,12CD CF CM CN ∴==,F ∴为CN 的中点,DF ∴为CMN 的中位线,12DF MN ∴=,,,AE DE AEN DEF NAE FDE =∠=∠∠=∠ ,()ASA AEN DEF ∴ ≌,DF AN ∴=,12DF AN MN ∴==,2MN AN ∴=,3AM AN MN AN ∴=+=,3AM AN ∴=.23.【答案】(1)2286y x x =-+-(2)见解析(3)相等,理由见解析【解析】【小问1详解】解: 该抛物线的顶点为()2,M d ,即该抛物线的对称轴为2x =,∴()2222b b x a =-=-=⨯-,∴8b =,将()1,0A 代入解析式228y x x c =-++,则028c =-++,∴6c =-,∴抛物线的解析式表达式为2286y x x =-+-;【小问2详解】证明:如图1,延长MC 交x 轴于点D,由(1)知抛物线的解析式表达式为2286y x x =-+-,则2228262M y =-´+´-=,∴()2,2M ,点C 的坐标为10,2⎛⎫ ⎪⎝⎭,设直线MC 的解析式为()0y kx b k =+≠,则1222b k b⎧=⎪⎨⎪=+⎩,解得:1234b k ⎧=⎪⎪⎨⎪=⎪⎩∴直线MC 的解析式为3142y x =+,则31042D x =+,23D x ∴=-,∴2,03D ⎛⎫-⎪⎝⎭, ()1,0A ,∴53AD =,∴105,36DM CD ====,551136,1052233ADCD DMAD ==== ,∴ADCD DM AD=,ADM ADM ∠=∠ ,∴ACD MAD ∽ ,∴ACD MAD ∠=∠,180ACD ACM MAD BAM ∠+∠=∠+∠=︒,∴ACM BAM ∠=∠;【小问3详解】解:过点D 作DG x⊥轴,交x 轴于点G ,令22860x x -+-=,即2430x x -+=,解得:121,3x x ==,根据题意得:()3,0B ,∴3,2OB AB ==,DG x ⊥轴,OE x ⊥轴,∴OE DG ∥,∴BDG BEO ∽ ,∴=BG BD DG OB BE OE =,87BD DE =,即815BD BE =,∴88155BG OB ==,∴75OG =,∴点D 的横坐标为75,由折叠的性质得到()2,2M '-,设直线AM '的解析式为()0y mx n m =+≠,则220m n m n -=+⎧⎨=+⎩,解得:22m n =-⎧⎨=⎩,∴直线AM '的解析式为22y x =-+,742255D y ∴=-⨯+=-,∴74,55D ⎛⎫- ⎪⎝⎭,∴45DG =,∴1425ABD S AB DG =⋅= ,∴146255M BD ABM ABD M S S S AB y '''=-=⋅-= ,∴4123355ABD S =⨯=△,6122255M BD S '=⨯=△,∴32ABD M BD S S '=△△.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年内蒙古自治区中考数学模拟试卷(四)附解析一、选择题(本题共6个小题,每小题3分,共18分)1.下列图形中,是中心对称图形的是()A. B.C.D.2.下列运算中,正确的是()A.m2×m3=m6B.(m3)2=m5C.m+m2=2m3D.﹣m3÷m2=﹣m3.已知m,n是一元二次方程x2﹣4x﹣3=0的两个实数根,则代数式(m+1)(n+1)的值为()A.﹣6 B.﹣2 C.0 D.24.如图是一个底面为正方形的几何体的实物图,则其俯视图为()A. B. C. D.5.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A.B.C.D.6.已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c﹣a=0的两根为m、n(m<n),则下列判断正确的是()A.m<n<x1<x2B.m<x1<x2<n C.x1+x2>m+n D.b2﹣4ac≥0二、填空题(本大题共6小题,每小题3分,共18分)7.当分式的值为0时,x的值是.8.已知a+b=8,a﹣b=4,则a2﹣b2= .9.如图,已知二次函数y=x2+bx+c的图象的对称轴是直线x=1,过抛物线上两点的直线AB 平行于x轴,若点A的坐标为(0,),则点B的坐标为.10.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC 的值为.11.如图,正方体的棱长为a,沿着共一个顶点的三个正方形的对角线裁截掉一个几何体之后,截面△ABC的面积= .12.以线段AC为对角线的四边形ABCD(它的四个顶点A、B、C、D按顺时针方向排列),已知AB=BC=CD,∠ABC=100°,∠CAD=40°;则∠BCD的大小为.三、解答题(本大题共11小题,每小题6分,共30分)13.(1)计算:|﹣|+(π﹣3)0+()﹣1﹣2cos45°(2)若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,求方程的另一个根.14.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.15.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.备用图16.如图,由6个形状、大小完全相同的小矩形组成大矩形网格,小矩形的顶点称为这个矩形网格的格点,请仅用无刻度直尺在矩形中完成下列画图.(1)在图1中画出一个顶点均在格点上的非特殊的平行四边形;(2)在图2中画出一个顶点均在格点上的正方形.17.小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小明按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.(1)若小明任意按下一个开关,则下列说法正确的是()A.小明打开的一定是楼梯灯;B.小明打开的可能是卧室灯;C.小明打开的不可能是客厅灯;D.小明打开走廊灯的概率是(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.18.反比例函数y=(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=,将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=(x>0)的图象恰好经过DC的中点E.(1)求k的值和直线AE的函数表达式;(2)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.19.某地区为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区20万用户中约有多少用户的用水全部享受基本价格?20.图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾斜角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求(1)真空管上端B到AD的距离(结果精确到0.01米);(2)铁架垂直管CE的长(结果精确到0.01米).21.在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O 上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC 的面积的最大值;(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.22.探究与应用.试完成下列问题:(1)如图①,已知等腰Rt△ABC中,∠C=90°,点O为AB的中点,作∠POQ=90°,分别交AC、BC于点P、Q,连结PQ、CO,求证:AP2+BQ2=PQ2;(2)如图②,将等腰Rt△ABC改为任意直角三角形,点O仍为AB的中点,∠POQ=90°,试探索上述结论AP2+BQ2=PQ2是否仍成立;(3)通过上述探究(可直接运用上述结论),试解决下面的问题:如图③,已知Rt△ABC 中,∠C=90°,AC=6,BC=8,点O为AB的中点,过C、O两点的圆分别交AC、BC于P、Q,连结PQ,求△PCQ面积的最大值.23.对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E,现有点A(2,0)和抛物线E上的点B(﹣1,n),请完成下列任务;【尝试】(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为(2)判断点A是否在抛物线E上;(3)求n的值.【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为.(1)二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+3和一次函数y=﹣2x+4的一个“再【应用】生二次函数”吗?如果是,求出t的值;如果不是,说明理由;(2)以AB为边作矩形ABCD,使得其中一个顶点落在y轴上;若抛物线E经过A,B,C,D 其中的三点,求出所有符合条件的t的值.2017年江西省赣州市石城县中考数学一模试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分)1.下列图形中,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析即可.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:A.2.下列运算中,正确的是()A.m2×m3=m6B.(m3)2=m5C.m+m2=2m3D.﹣m3÷m2=﹣m【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则、积的乘方、同底数幂的乘法和除法,对各项计算后即可判断.【解答】解:A、m2×m3=m5,错误;B、(m3)2=m6,错误;C、m与m2不是同类项,不能合并,错误;D、﹣m3÷m2=﹣m,正确;故选:D.3.已知m,n是一元二次方程x2﹣4x﹣3=0的两个实数根,则代数式(m+1)(n+1)的值为()A.﹣6 B.﹣2 C.0 D.2【考点】根与系数的关系.【分析】根据根与系数的关系即可得出m+n=4、mn=﹣3,将代数式(m+1)(n+1)展开,再将m+n=4、mn=﹣3代入其中即可得出结论.【解答】解:∵m,n是一元二次方程x2﹣4x﹣3=0的两个实数根,∴m+n=4,mn=﹣3,∴(m+1)(n+1)=mn+(m+n)+1=﹣3+4+1=2.故选D.4.如图是一个底面为正方形的几何体的实物图,则其俯视图为()A. B. C. D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得到被一条直线分割成两个长方形的正方形.故选D.5.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先连接CD,交MN于E,由将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,即可得MN⊥CD,且CE=DE,又由MN∥AB,易得△CMN∽△CAB,根据相似三角形的面积比等于相似比的平方,相似三角形对应高的比等于相似比,即可得,又由MC=6,NC=,即可求得四边形MABN的面积.【解答】解:连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE,∴CD=2CE,∵MN∥AB,∴CD⊥AB,∴△CMN∽△CAB,∴,∵在△CMN中,∠C=90°,MC=6,NC=,∴S△CMN=CM•CN=×6×2=6,∴S△CAB=4S△CMN=4×6=24,∴S四边形MABN=S△CAB﹣S△CMN=24﹣6=18.故选C.6.已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c﹣a=0的两根为m、n(m<n),则下列判断正确的是()A.m<n<x1<x2B.m<x1<x2<n C.x1+x2>m+n D.b2﹣4ac≥0【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】把方程ax2+bx+c﹣a=0的两根为m、n(m<n),理解为二次函数y=ax2+bx+c与直线y=a的交点的横坐标分别为m、n,然后讨论a>0和a<0,利用图象可确定m、n、x1、x2的大小.【解答】解:当a>0,∵方程ax2+bx+c﹣a=0的两根为m、n,∴二次函数y=ax2+bx+c与直线y=a的交点在x轴上方,它们的横坐标分别为m、n,∴m<x1<x2<n;当a<0,∵方程ax2+bx+c﹣a=0的两根为m、n,∴二次函数y=ax2+bx+c与直线y=a的交点在x轴下方,它们的横坐标分别为m、n,∴m<x1<x2<n.故选B.二、填空题(本大题共6小题,每小题3分,共18分)7.当分式的值为0时,x的值是 1 .【考点】分式的值为零的条件.【分析】根据分式值为0的条件:分子为0且分母不为0进行计算即可.【解答】解:∵分式的值为0;∴x﹣1=0,∴x=1,故答案为1.8.已知a+b=8,a﹣b=4,则a2﹣b2= 32 .【考点】平方差公式.【分析】先根据平方差公式变形,再代入求出即可.【解答】解:∵a+b=8,a﹣b=4,∴a2﹣b2=(a+b)(a﹣b)=8×4=32,故答案为:32.9.如图,已知二次函数y=x2+bx+c的图象的对称轴是直线x=1,过抛物线上两点的直线AB 平行于x轴,若点A的坐标为(0,),则点B的坐标为(2,).【考点】二次函数的性质.【分析】先确定抛物线的对称轴为x=1,然后求出点A(0,)关于直线x=1的对称点即可.【解答】解:∵二次函数y=x2+bx+c的图象的对称轴为过点(1,0)且与y轴平行的直线,∴抛物线的对称轴为x=1,∵直线AB与x轴平行,∴点A和点B关于直线x=1对称,∴B点坐标为(2,).故答案为(2,).10.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC 的值为.【考点】圆周角定理;勾股定理;垂径定理;锐角三角函数的定义.【分析】首先构造直径所对圆周角,利用勾股定理得出BD的长,再利用cosC=cosD=求出即可.【解答】解:连接AO并延长到圆上一点D,连接BD,可得AD为⊙O直径,故∠ABD=90°,∵⊙O的半径为5,∴AD=10,在Rt△ABD中,BD===8,∵∠ADB与∠ACB所对同弧,∴∠D=∠C,∴cosC=cosD===,故答案为:.11.如图,正方体的棱长为a,沿着共一个顶点的三个正方形的对角线裁截掉一个几何体之后,截面△ABC的面积= .【考点】等边三角形的判定与性质;截一个几何体;勾股定理.【分析】由正方体的每个面都是全等的正方形,得到对角线相等AB=BC=AC,得到△ABC是等边三角形,利用三角形的面积公式即可求解.【解答】解:∵正方体的每个面都是全等的正方形,∴AB=BC=AC,∵正方体的棱长为a,∴AB=AC=BC=a,∴AB边上的高为:•a=,∴S△ABC=•a•=.故答案为:.12.以线段AC为对角线的四边形ABCD(它的四个顶点A、B、C、D按顺时针方向排列),已知AB=BC=CD,∠ABC=100°,∠CAD=40°;则∠BCD的大小为80°或100°.【考点】全等三角形的判定与性质;等腰梯形的判定.【分析】根据等腰三角形的性质和平行线的判定可得AD∥BC,再分2种情况:(1)如图1,过点C分别作CE⊥AB于E,CF⊥AD于F,通过证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,由全等三角形的性质得到∠2=∠ACD=40°,可得∠BCD=80°;(2)如图2,根据等腰梯形的判定可得四边形ABCD′是等腰梯形,再根据等腰梯形的性质得到∠BCD′=∠ABC=100°,从而求解.【解答】解:∵AB=BC,∠ABC=100°,∴∠1=∠2=∠CAD=40°,∴AD∥BC,(1)如图1,过点C分别作CE⊥AB于E,CF⊥AD于F,∵∠1=∠CAD,∴CE=CF,在Rt△ACE与Rt△ACF中,,∴Rt△ACE≌Rt△ACF,在Rt△BCE与Rt△DCF中,,∴Rt△BCE≌Rt△DCF,∴∠ACE=∠ACF,∠BCE=∠△DCF,∴∠2=∠ACD=40°,∴∠BCD=80°;(2)如图2,∵AD∥BC,AB=CD′,∴四边形ABCD′是等腰梯形,∴∠BCD′=∠ABC=100°.综上所述,∠BCD=80°或100°.三、解答题(本大题共11小题,每小题6分,共30分)13.(1)计算:|﹣|+(π﹣3)0+()﹣1﹣2cos45°(2)若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,求方程的另一个根.【考点】根与系数的关系;实数的运算;零指数幂;负整数指数幂;一元二次方程的解;解一元二次方程﹣因式分解法;特殊角的三角函数值.【分析】(1)将|﹣|=、(π﹣3)0=1、()﹣1=2、cos45°=代入原式,再根据实数的运算即可得出结论;(2)将x=﹣2代入原方程解出k值,再将k值代入原方程利用因式分解法解一元二次方程即可得出方程的另一个根.【解答】解:(1)原式=+1+2﹣2×,=+1+2﹣,=3.(2)将x=﹣2代入x2+(k+3)x+k=0中,4﹣2(k+3)+k=0,解得:k=﹣2.将k代入原方程得:x2+x﹣2=(x﹣1)(x+2)=0,解得:x1=﹣2,x2=1.∴方程的另一个根为1.14.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE ≌△ABF;(2)先利用勾股定理可计算出AE=10,再根据△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE==10,∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90°得到,∴AE=AF,∠EAF=90°,∴△AEF的面积=AE2=×100=50.15.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.备用图【考点】二元一次方程组的应用.【分析】(1)要求x,y的值,根据表格中的数据,即可找到只含有x,y的行或列,列出方程组即可;(2)根据(1)中求得的x,y的值和每行的3个数、每列的3个数、斜对角的3个数之和均相等即可完成表格的填写.【解答】解:(1)由题意,得,解得;(2)如图16.如图,由6个形状、大小完全相同的小矩形组成大矩形网格,小矩形的顶点称为这个矩形网格的格点,请仅用无刻度直尺在矩形中完成下列画图.(1)在图1中画出一个顶点均在格点上的非特殊的平行四边形;(2)在图2中画出一个顶点均在格点上的正方形.【考点】作图—应用与设计作图;平行四边形的性质;矩形的判定与性质.【分析】(1)直接利用平行四边形的判定方法得出答案;(2)直接利用正方形的判定方法得出答案.【解答】解:(1)如图1所示:平行四边形,即为所求;(2)如图2所示:正方形,即为所求.17.小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小明按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.(1)若小明任意按下一个开关,则下列说法正确的是( D )A.小明打开的一定是楼梯灯;B.小明打开的可能是卧室灯;C.小明打开的不可能是客厅灯;D.小明打开走廊灯的概率是(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.【考点】列表法与树状图法.【分析】(1)由小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C (走廊)三盏电灯,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与正好客厅灯和走廊灯同时亮的情况,再利用概率公式即可求得答案.【解答】解:(1)∵小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,∴小明任意按下一个开关,打开走廊灯的概率是,故选D.(2)画树状图得:∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是: =.18.反比例函数y=(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=,将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=(x>0)的图象恰好经过DC的中点E.(1)求k的值和直线AE的函数表达式;(2)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.【考点】反比例函数综合题.【分析】(1)由已知得,在Rt△OAB中,OB=2,tan∠AOB=,求得AB=3,代入y=得到k=xy=6,根据已知条件得到点E的纵坐标为,由点E在双曲线y=(x>0)的图象上,得到点E的坐标为(4,),解方程组即可得到结论;(2)根据y=﹣x+求得点M(6,0),N(0,),延长DA交y轴于点F,则AF⊥ON,且AF=2,OF=3,根据全等三角形的性质即可得到结论.【解答】解:(1)由已知得,在Rt△OAB中,OB=2,tan∠AOB=,∴AB=3,∴A点的坐标为(2,3),∴k=xy=6,∵DC由AB平移得到,点E为DC的中点,∴点E的纵坐标为,又∵点E在y=(x>0)的图象上,∴点E的坐标为(4,),设直线MN的函数表达式为y=k1x+b,则,解得,∴直线MN的函数表达式为y=﹣x+;(2)结论:AN=ME,理由:在表达式y=﹣x+中,令y=0可得x=6,令x=0可得y=,∴点M(6,0),N(0,),延长DA交y轴于点F,则AF⊥ON,且AF=2,OF=3,∴NF=ON﹣OF=x,∵CM=6﹣4=2=AF,EC==NF,在△ANF与△MEC中,,∴△ANF≌△MEC,∴AN=ME.19.某地区为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区20万用户中约有多少用户的用水全部享受基本价格?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据统计图可知“10吨~15吨”的用户10户占10%,从而可以求得此次调查抽取的户数;(2)根据(1)中求得的用户数与条形统计图可以得到“15吨~20吨”的用户数,进而求得扇形图中“15吨~20吨”部分的圆心角的度数;(3)根据前面统计图的信息可以得到该地区20万用户中约有多少用户的用水全部享受基本价格.【解答】解:(1)由统计图可得,10÷10%=100(户)即此次调查抽取了100户的用水量数据;(2)用水量为“15吨~20吨”的用户有:100﹣10﹣36﹣25﹣9=20(户),补全的频数分布直方图如右图所示,扇形图中“15吨~20吨”部分的圆心角的度数是:×360°=72°;10(3)由题意可得,20×=13.2(万人)即该地区20万用户中约有13.2万用户的用水全部享受基本价格.20.图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾斜角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求(1)真空管上端B到AD的距离(结果精确到0.01米);(2)铁架垂直管CE的长(结果精确到0.01米).【考点】解直角三角形的应用;矩形的判定与性质.【分析】(1)过B作BF⊥AD于F.构建Rt△ABF中,根据三角函数的定义与三角函数值即可求出答案.(2)根据BF的长可求出AF的长,再判定出四边形BFDC是矩形,可求出AD与ED的长,再用CD的长减去ED的长即可解答.【解答】解:(1)过B作BF⊥AD于F.在Rt△ABF中,∵sin∠BAF=,∴BF=ABsin∠BAF=2.1sin40°≈1.350.∴真空管上端B到AD的距离约为1.35米.…(2)在Rt△ABF中,∵cos∠BAF=,∴AF=ABcos∠BAF=2.1cos40°≈1.609.…∵BF⊥AD,CD⊥AD,又BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD.…在Rt△EAD中,∵tan∠EAD=,∴ED=ADtan∠EAD=1.809tan25°≈0.844.…∴CE=CD﹣ED=1.350﹣0.844=0.506≈0.51∴安装铁架上垂直管CE的长约为0.51米.…21.在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O 上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为45°或135°;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC 的面积的最大值;(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.【考点】圆的综合题.【分析】(1)根据点A和点B坐标易得△OAB为等腰直角三角形,则∠OBA=45°,由于OC ∥AB,所以当C点在y轴左侧时,有∠BOC=∠OBA=45°;当C点在y轴右侧时,有∠BOC=180°﹣∠OBA=135°;(2)由△OAB为等腰直角三角形得AB=OA=6,根据三角形面积公式得到当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,此时C点到AB的距离的最大值为CE的长,然后利用等腰直角三角形的性质计算出OE,然后计算△ABC的面积;(3)①过C点作CF⊥x轴于F,易证Rt△OCF∽Rt△AOD,则=,即=,解得CF=,再利用勾股定理计算出OF=,则可得到C点坐标;②由于OC=3,CF=,所以∠COF=30°,则可得到BOC=60°,∠AOD=60°,然后根据“SAS”判断△BOC≌△AOD,所以∠BCO=∠ADO=90°,再根据切线的判定定理可确定直线BC为⊙O 的切线.【解答】解:(1)∵点A(6,0),点B(0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=90°+∠OBA=135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图,此时C点到AB的距离的最大值为CE的长,∴OE=AB=3,∴CE=OC+OE=3+3,△ABC的面积=CE•AB=×(3+3)×6=9+18.∴当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18.(3)①如图,过C点作CF⊥x轴于F,∵OC∥AD,∴∠COF=∠DAO,又∵∠ADO=∠CFO=90°∴Rt△OCF∽Rt△AOD,∴=,即=,解得CF=,在Rt△OCF中,OF==,∴C点坐标为(﹣,);故所求点C的坐标为(﹣,),当C点在第一象限时,同理可得C点的坐标为(,),综上可得,点C的坐标为(﹣,)或(,).②当C点坐标为(﹣,)或(,)时,直线BC是⊙O的切线.理由如下:在Rt△OCF中,OC=3,CF=,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADO=90°,∴OC⊥BC,∴直线BC为⊙O的切线;当C点坐标为(﹣,)或(,)时,显然直线BC与⊙O相切.综上可得:C点坐标为(,)或(﹣,)时,显然直线BC与⊙O相切.22.探究与应用.试完成下列问题:(1)如图①,已知等腰Rt△ABC中,∠C=90°,点O为AB的中点,作∠POQ=90°,分别交AC、BC于点P、Q,连结PQ、CO,求证:AP2+BQ2=PQ2;(2)如图②,将等腰Rt△ABC改为任意直角三角形,点O仍为AB的中点,∠POQ=90°,试探索上述结论AP2+BQ2=PQ2是否仍成立;(3)通过上述探究(可直接运用上述结论),试解决下面的问题:如图③,已知Rt△ABC 中,∠C=90°,AC=6,BC=8,点O为AB的中点,过C、O两点的圆分别交AC、BC于P、Q,连结PQ,求△PCQ面积的最大值.【考点】圆的综合题.【分析】(1)证△APO≌△COQ,求出AP=CQ,同理求出BQ=CP,根据勾股定理求出即可;(2)延长QO到D,使OD=OQ,连接AD,PD,求出PD=PQ,证△AOD≌△BOQ,推出AD=BQ,∠BAD=∠B,OD=OQ,在Rt△PAD中,由勾股定理得:AP2+AD2=PD2,即可得出答案;(3)连接PO、OQ,则∠POQ=90°,根据勾股定理得出AP2+BQ2=PQ2,设PC=a,CQ=b,推出(6﹣a)2+(8﹣b)2=a2+b2,求出b=﹣a+,代入S△PCQ=ab求出即可.【解答】(1)证明:∵△ABC是等腰直角三角形,O为斜边AB中点,∴AO=OC=OB,∠A=∠B=∠OCQ=45°,∠AOC=90°,∵∠POQ=90°,∴∠AOP+∠POC=∠POC+∠COQ,∴∠AOP=∠COQ,在△AOP和△COQ中∴△AOP≌△COQ,∴AP=CQ,同理BQ=CP,在Rt△CPQ中,CP2+CQ2=PQ2,∴AP2+BQ2=PQ2.(2)解:还成立,理由是:延长QO到D,使OD=OQ,连接AD,PD,∵O是AB中点,∴AO=OB,在△AOD和△BOQ中∴△AOD≌△BOQ(SAS),∴AD=BQ,∠BAD=∠B,OD=OQ,∵PO⊥OQ,∴PD=PQ,∵∠C=90°,∴∠PAD=90°,在Rt△PAD中,由勾股定理得:AP2+AD2=PD2,∴AP2+BQ2=PQ2.(3)解:∵∠C=90°,∴PQ是直径,连接PO、OQ,则∠POQ=90°,∴AP2+BQ2=PQ2,设PC=a,CQ=b,∴(6﹣a)2+(8﹣b)2=a2+b2,∴3a+4b=25,∴b=﹣a+,∵S△PCQ=ab,∴S△PCQ=﹣a2+a=﹣(a﹣)2+.当a=时,△PCQ的面积的最大值是.23.对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E,现有点A(2,0)和抛物线E上的点B(﹣1,n),请完成下列任务;【尝试】(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为(1.﹣2)(2)判断点A是否在抛物线E上;(3)求n的值.【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为A(2,0)和B(﹣1,6).(1)二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+3和一次函数y=﹣2x+4的一个“再【应用】生二次函数”吗?如果是,求出t的值;如果不是,说明理由;(2)以AB为边作矩形ABCD,使得其中一个顶点落在y轴上;若抛物线E经过A,B,C,D 其中的三点,求出所有符合条件的t的值.【考点】二次函数综合题.【分析】【尝试】(1)把t=2代入抛物线的解析式,利用配方法即可解决问题.(2)边点A坐标代入即可判断.(3)把点B的坐标代入即可求出n的值.【发现】观察上面计算结果即可判断.【应用】(1)根据“再生二次函数”的定义,即可判断.(2)如图,作矩形ABC1D1和矩形ABC2D2,过点B作BK⊥y轴于K,过点D1作D1G⊥x轴于G,过点C2作C2H⊥y轴于H,过点B作BM⊥x轴于M,C2H与BM交于点T.分两种情形求出C、D两点坐标,再利用待定系数法求出t的值即可.【解答】【尝试】(1)解:当t=2时,抛物线y=2(x2﹣3x+2)+(1﹣2)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,∴顶点坐标(1,﹣2).故答案为(1,﹣2).(2)解:∵x=2时,y=t(4﹣6+2)+(1﹣t)(﹣4+4)=0,∴点A(2,0)在抛物线E上.(3)解:将(﹣1,n)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得n=t(1+3+2)+(1﹣t)(2+4)=6,∴n的值为6.【发现】解:通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为A(2,0)和B(﹣1,6).故答案为A(2,0)和B(﹣1,6).【应用】解:(1)不是.∵将x=﹣1代入y=﹣3x2+5x+2,得到y=﹣6≠6,∴二次函数y=y=﹣3x2+5x+2的图象不经过等B,∴二次函数y=﹣3x2+5x+2不是二次函数y=x2﹣3x+3和一次函数y=﹣2x+4的一个“再生二次函数”.(2)如图,作矩形ABC1D1和矩形ABC2D2,过点B作BK⊥y轴于K,过点D1作D1G⊥x轴于G,过点C2作C2H⊥y轴于H,过点B作BM⊥x轴于M,C2H与BM交于点T.∵AM=3,BM=6,BK=1,由△KBC1∽△MBA,得=,即=,解得C1K=,∴C1(0,),由△KBC1≌△GAD1,得到AG=KB=1,GD1=KC1=,∴D1(3,),由△OAD2∽△GAD1,得到=,可得OD2=1,∴D2(0,﹣1),由△TBC2≌△OD2A,得到TC2=OA=2,BT=OD2=1,∴C3(﹣3,5),∵抛物线总是经过A、B,∴符合条件的三点只可能是A、B、C或A、B、D.①当抛物线经过A、B、C1时,将C1(0,)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t=﹣,②当抛物线经过A、B、D1时,将D1(3,)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t=,③当抛物线经过A、B、C2时,将C2(﹣3,5)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t=﹣④当抛物线经过A、B、D2时,将D2(0,﹣1)代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得到t=,综上所述,满足条件的t的值为﹣或或﹣或.。

相关文档
最新文档