北师大版初二数学下册含参数一元一次不等式组专题复习
北师大版八年级下册第二章:一元一次不等式和一元一次不等式组专题四【一元一次不等式】知识点总结+经典例
第二章一元一次不等式和一元一次不等式组专题四:一元一次不等式知识点一:认识一元一次不等式例1:下列各式中,哪些是一元一次不等式?哪些不是?试说明理由。
(1)2x y;(2)x22x 10;(3)(4)--11x (x 1) 32x1x 132;挑战自我,勇攀高分1、判断下列式子是否是一元一次不等式:(是的打√,否的打x )(1)7>4()(2)3x≥2x+1()(3)2x0()(4)x+y>1()(5)x2+3>2x()知识点二:解一元一次不等式与含字母系数的一元一次不等式的解法例1:解下列不等式(1)2x 1x 2(x 1)2(2)1 323(3)2x 1x 3232(4)2x-3-3x-2-3>2例2:解不等式2x 1(3x 1)132,并将解集在数轴上表示出来。
例3:已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是(A.a>0B.a>1C.a<0D.a<1)例4:若|a﹣5|﹣5+a=0,则a的取值范围是()A.a≤5B.a<5C.a≥5D.a>5例5:已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围例6:关于x的不等式2x-a≤-1的解集如图所示,则a的取值是()A、0B、-3C、-2D、-1-2-1 0 1例7:解关于x的不等式(3a1)x3a2ax 3挑战自我,勇攀高分1.解下列一元一次不等式(1)x 12(2)(x1)2(3)23x 2+x(4)3[x2(x2)]x 3(x2)2.二次根式2x4有意义,求x的取值范围。
3.x321成立,则x的取值范围是____________。
4.已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是()A.a>0B.a>1C.a<0D.a<15.已知m,n为常数,若mx+n>0的解集为x<,则nx﹣m<0的解集是()A.x>3B.x<3C.x>﹣3D.x<﹣36.已知y满足不等式﹣y>2+,化简|y+1|+|2y﹣1|的结果是()A.﹣3y B.3y C.y D.﹣y+27.当2(k 3)10k3时,求关于x的不等式k(x 5)4x k的解集。
八年级数学下册 第二章 一元一次不等式(组)知识点归纳 (新版)北师大版.doc
第二章 一元一次不等式与一元一次不等式组1. 不等关系2. 不等式的基本性质3. 不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组 一.不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式. ¤2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系. ※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二.不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c b c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cb c a < ※2. 比较大小:(a 、b 分别表示两个实数或整式)一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三.不等式的解集※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. ¤3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②方向:大向右,小向左 四.一元一次不等式※1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.※2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向. ※3.解一元一次不等式的步骤:①去分母; ②去括号; ③移项; ④合并同类项; ⑤系数化为1(不等号的改变问题)※4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为abx >;②当a=0时,且b<0,则x 取一切实数; 当a=0时,且b ≥0,则无解;③当a<0时, 解为abx <;¤5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式与一次函数 六. 一元一次不等式组※1.定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. ※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b)。
最新北师大版八年级下册数学期末专题复习二——一元一次不等式和一元一次不等式组
不等式重难点易错点辨析不等式的定义题一:①x +y =1;②x ≤y ;③x -3y ;④x 2 -3y >5;⑤x <0中属于不等式的有( )A .2个B .3个C .4个D .5个不等式的性质 题二:已知a >b ,c ≠0,则下列关系一定成立的是( )A .ac >bcB .>a b c cC .c a >c bD .c +a >c +b 不等式的解及其解集题三:下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5有4个的负整数解C .不等式2x <8的解集是x <4D .40是不等式x <-8的一个解金题精讲题一:下列不等关系中,正确的是( )A .a 不是负数表示为a >0B .x 不大于5可表示为x >5C .x 与1的和是非负数可表示为x +1>0D .m 与4的差是负数可表示为m 4<0题二:若0<m <1,m 、m 2、1m由小到大排列为 .题三:(1)如图,数轴所表示的不等式的解集是 .(2)如图,数轴所表示的不等式的解集是 .题四:已知实数a 、b 、c 在数轴上对应的点如图所示,请判断下列不等式的正确性.(1)bc >ab(2)ac >ab(3)c b <a b(4)c +b >a +b(5)a c >b c (6)>a b c c思维拓展题一:有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那么a与b哪个大?解不等式重难点易错点辨析一元一次不等式的定义题一:下列不等式中,是一元一次不等式的是( )A.2x1>0 B.1<2 C.3x2y≤ 1 D.y2+3>5解一元一次不等式题二:(1)4(x+1)>5x-6(2)321223 ->+ x x(3)21 132-+ -x x≥金题精讲题一:m是关于x的不等式2x-1≤13解集中的最大值,n是关于x的不等式3x-1≤7解集中的最小值,求不等式nx+mn<mx的解集.题二:若关于x,y的二元一次方程组3133+=++=⎧⎨⎩x y ax y的解满足x+y<2,则a的取值范围是什么?题三:请先阅读材料:解方程(x-2)(x-3)=0,得x1=2,x2=3,解题的依据是:若两个数的积为零,那么这两个数中至少有一个是零.根据以上解题思路,解不等式:(x+2)(x+1)>0.题四:已知方程713+=---=+⎧⎨⎩x y ax y a的解x为非正数,y为负数,求a的取值范围.思维拓展题一:如果a<b<c,并且x<y<z,那么在四个代数式(1)ax+by+cz;(2)ax+bz+cy;(3)ay+bx+cz;(4)az+bx+cy;中哪一个的值最大?解不等式组重难点易错点辨析一元一次不等式组的定义题一:下列各式中不是一元一次不等式组的是( )A.135⎧<-⎪⎨⎪>⎩yyB.350420->⎧⎨+<⎩xxC.5020489->⎧⎪+<⎨⎪+<⎩xxxD.1020-<⎧⎨+>⎩ab解一元一次不等式组题二:解不等式组3(1)7243--⎧⎨+>⎩x xx x≤,并把解集在数轴上表示出来.题一:解不等式组:30123(12)12123---⎧⎪⎪-+⎨->-⎪⎪⎩x xx xx≤,并找出所有负整数解.题二:若不等式组2123-<⎧⎨->⎩x ax b的解集为1<x<1,那么(a+1)(b+1)的值是多少?题三:已知:43+=xa,274-=xb,并且522b≤<a.请求出x的取值范围,并将这个范围在数轴上表示出来.题四:关于x的不等式组23(3)1324<-+⎧⎪⎪+⎨>+⎪⎪⎩x xxx a有三个整数解,求a的取值范围.题一:若不等式组{121<+>-x m x m无解,求m的取值范围.不等式与方程重难点易错点辨析不等式与方程综合题一:求使方程组24563x y mx y m+=++=+⎧⎨⎩的解x、y都是正数的m的取值范围?金题精讲题一:如果关于x的方程6151632x m mx---=-的解不大于1,且m是一个正整数,试确定x的值.题二:已知2x+3=2a,y2a= 4,并且311242a x y a-<+≤+.(1)求a的取值范围;(2)比较a2+2a3与a2+a1的大小.题三:已知x、y同时满足三个条件:①3x2y=4-p;②4x3y=2+p;③x>y.则p的取值范围是什么?思维拓展题一:根据有理数的除法符号法则“两数相除,同号得正,异号得负”,求不等式210 23xx+< -的解集.不等式与方程应用题重难点易错点辨析列不等式解应用题题一:某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?不等式与方程综合解应用题题二:有红、白两种颜色的小球若干个,已知白球的个数比红球少,但白球的个数的2倍比红球多;若给每个白球都写上数字“2”,给每个红球都写上数字“3”(每个小球只能写上一个数字),结果所有小球写的数字总和为60,那么白球和红球各是多少个?金题精讲题一:若干名学生合影留念,需交照像费20元(有两张照片),如果另外加洗一张照片,又需收费1.5元,要使每人平均出钱不超过4元钱,并都分到一张照片,至少应有几名同学参加照像?题二:某单位要购买一批电脑,甲公司的标价是每台5800元,优惠条件是购10台以上,第11台起可按标价的七折付款;乙公司的标价是每台5800元,优惠条件是每台均按标价的八五折付款.若两个公司所售电脑的品牌、质量、售后服务等完全相同,该单位购买哪个公司的电脑合算?请说明理由.题三:为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.思维拓展题一:某企业人事招聘工作中,共安排了五个测试项目,规定每通过一项测试得1分,未通过不得分,此次前来应聘的26人平均得分不低于4.8分,其中最低分3分,而且至少有3人得4分,则得5分的共有多少人?。
北师大版八年级下册数学[一元一次不等式组(基础) 知识点整理及重点题型梳理]
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x ,请你根据题意写出x 必须满足的不等式.【思路点拨】由题意知,x 必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2.(2016•莆田)解不等式组:. 【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】 解:解:.由①得x ≤1;由②得x <4;所以原不等式组的解集为:x ≤1.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三: 【变式】解不等式组,并把解集在数轴上表示出来. 【答案】 解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树; 第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式. 到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤< 答:此商品的原价在37.5元(包括37.5元)至40元范围内.4. “全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元; (2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
北师大版数学八下第一章一元一次不等式和一元一次不等式组复习与回顾(练习题)
第二章《一元一次不等式和一元一次不等式组》测试题班级 姓名一、选择题(每小题3分,共30分)1.已知b a <,下列四个不等式中不正确的是( )(A)b a 44< (B)b a 44-<- (C)44+<+b a (D)0<-b a2.已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A 、x ≥-1B 、x >1C 、-3<x ≤-1D 、x >-33.如图,天平右盘中每个砝码的重量都是1g ,自然图中显示出某药品A 重量的范围是( )(A)大于2g (B)小于3g (C)大于2g 且小于3g (D)大于2g 或小于3g4.三个连续自然数的和小于11,这样的自然数组共有( )组A .1B .2C .3D .45.不等式2x -1≥3x -5的正整数解的个数为( )(A)1个 (B)2个 (C)3个 (D)4个6.如果不等式()11->-a x a 的解集为1<x ,则a 必须满足( )(A)1>a (B)0<a (C)1<a (D)1.-a7.一次函数323+-=x y 的图象如图所示,当-3<y <3时,x 的 取值范围是( )A 、x >4B 、0<x <2C 、0<x <4D 、2<x <48.如果不等式组⎩⎨⎧>-<+n x x x 737的解集是4>x ,则n 的取值范围是( )A 、4≥nB 、4≤nC 、4=nD 、4<n9.某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )折A.6B.7C.8D.910.若方程组⎩⎨⎧=++=+3313y x k y x 的解x ,y 满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .0<k <8D .k >-4二、填空题(每小题3分,共15分)11.不等式2x -1<3的非负整数解是 .12、若一次函数y =2x -6,当x _____时,y >0。
北师大版 八年级数学 一元一次不等式(组)复习
一元一次不等式(组)复习课前测试【题目】课前测试如图所示的是一个运算程序:若需要经过两次运算才能输出结果,则输入的x 的取值范围是 .【答案】1≤x <7.【解析】分析:根据运算流程结合需要经过两次运算可得出关于x 的一元一次不等式组,解不等式组即可得出结论.解:根据题意得:,解得:1≤x <7.故答案为1≤x <7.【总结】此题主要考查了一元一次不等式组的应用,关键是弄明白图示的意思,列出不等式组.【难度】3【题目】课前测试某宾馆底楼客房比二楼少5间,某旅游团48人,若全部安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排在二楼,每间3人,房间不够,每间4人,有房间空着,该宾馆底楼客房数.【答案】10.【解析】分析:关系式为:48除以5得到的房间数<底楼房间数<48除以4得到的房间数;3×二楼房间数<48<4×二楼房间数.解:设该宾馆底楼有客房x间,则二楼有客房(x+5)间.依题意,得:.解不等式①得:9.6<x<12,所以x可能为10或11;③解不等式②,得7<x<11,所以x可能为8、9、10.④综合③、④知x=10.即:该宾馆底楼有客房10间.故答案是:10.【总结】本题考查了一元一次不等式的应用.找到相应的关系式是解决问题的关键,注意第一个关系式应以房间数来列关系式;第二个关系式应以人数来列关系式.【难度】4知识定位适用范围:北师大版,初二年级,成绩中等以及中等以上知识点概述:通过本次课的学习,要求学生理解不等式的有关概念,掌握不等式的三条基本性质;理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;会根据题中的不等关系建立不等式(组),解决实际应用问题.适用对象:成绩中等以及中等以上注意事项:学生主要想听一元一次不等式(组)的解法及应用重点选讲:①不等式的基本性质②一元一次不等式(组)的解法③一元一次不等式(组)的应用知识梳理知识梳理1:不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a b>).c c不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a b<).c c知识梳理2:一元一次不等式(组)的解法一元一次不等式的解法去分母;去括号;移项;合并同类项;系数化为1.不等式组解集的类型知识梳理3:不等式(组)的应用不等式(组)的应用列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.例题精讲【题目】题型1:不等式的基本性质若a>b,讨论ac与bc的大小关系.【答案】当c>0时,ac>bc,当c=0时,ac=bc,当c<0时,ac<bc.【解析】分析:把c的值分为三种情况,再根据不等式的基本性质求出ac与bc的大小关系.解:a>b,当c>0时,ac>bc,当c=0时,ac=bc,当c<0时,ac<bc.【总结】本题考查了不等式的性质:不等式两边同加上(或减去)一个数,不等号方向不变;不等式两边同乘以(或除以)一个正数,不等号方向不变;不等式两边同乘以(或除以)一个负数,不等号方向改变.【难度】3【题目】题型1变式练习1:不等式的基本性质用不等号填空:若a>b,则a﹣5 b﹣5,﹣4a ﹣4b,.【答案】>;<;>.【解析】分析:根据不等式的基本性质1,不等式a>b不等式两边减同一个数5,不等号的方向不变,则a﹣5>b﹣5;不等式两边除以同一个负数﹣4,不等号的方向改变则,﹣4a<﹣4b;不等式两边乘同一个正数,不等号的方向不变则>.解:∵a>b,∴根据不等式的基本性质1可得:a﹣5>b﹣5;再根据不等式的基本性质3可得:﹣4a<﹣4b;再根据不等式的基本性质2可得:>.【总结】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【难度】3【题目】题型1变式练习2:不等式的基本性质若关于x的不等式(1﹣a)x>3可化为,则a的取值范围是.【答案】a>1.【解析】分析: 根据不等式的性质3,可得答案.解:关于x的不等式(1﹣a)x>3可化为,1﹣a<0,a>1,故答案为:a>1.【总结】本题考查了不等式的性质,不等式的两边都乘或都除以同一个负数,不等号的方向改变.【难度】3【题目】题型2:一元一次不等式(组)的解法解不等式组把它的解集表示在数轴上,并求出不等式组的非负整数解.【答案】0,1,2.【解析】分析:先求出不等式组的解集,再在数轴上表示不等式组的解集,再求出答案即可.解:∵解不等式①得x≥﹣1.25,解不等式②得x<3,∴不等式组的解集是﹣1.25≤x<3,在数轴上表示为:所以不等式组的非负整数解是0,1,2.【总结】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集,不等式组的整数解等知识点,能求出不等式组的解集是解此题的关键.【难度】3【题目】题型2变式练习1:一元一次不等式(组)的解法关于x的不等式(a+b)x+(2a﹣3b)<0的解集为x,求关于x的不等式(a﹣3b)x>2a+b的解集.【答案】x>﹣5.【解析】分析:根据已知条件,判断出a+b<0,a=2b,再求得不等式(a﹣3b)x>2a+b的解集.解:∵不等式(a+b)x+(2a﹣3b)<0的解集是x>﹣,∴,解得:a=2b ,∵a+b <0,∴3b <0,即b <0,∴﹣b >0,此时不等式(a ﹣3b )x >2a+b 为﹣bx >5b ,解得:x >﹣5.【总结】本题主要考查解一元一次不等式,解题的关键是掌握不等式得基本性质及配方法的应用.【难度】4【题目】题型2变式练习2:一元一次不等式(组)的解法我们定义一个关于实数m ,n 的新运算,规定:m ※n=4m ﹣3n ,例如:5※2=4×5﹣3×2=14,若m 满足m ※2<0,则m 的取值范围是 【答案】23m 【解析】分析:根据新定义列出关于m 的不等式,解之可得.解:∵m ※2=4m ﹣3×2=4m ﹣6,∴由m ※2<0可得4m ﹣6<0,解得:m <.故答案为:m <.【总结】本题主要考查解一元一次不等式,解题的关键是根据新定义列出关于m 的不等式及解不等式的基本步骤.【难度】3【题目】题型3:一元一次不等式(组)的应用某公司计划购进甲、乙两种规格的电脑,若购买甲种电脑3台,乙种电脑2台,共需资金23000元;若购买甲种电脑4台,乙种电脑3台,共需资金32000元.(1)甲、乙两种电脑每台的价格分别是多少元;(2)若公司计划购进这两种规格的电脑共20台,其中甲种电脑的数量不少于乙种电脑的数量,公司至多能够提供购买电脑的资金92000元,请设计几种购买方案供这个公司选择.【答案】(1)甲每台5000元,乙每台4000元;(2)方案有三种:甲种10台,乙种10台甲种11台,乙种9台甲种12台,乙种8台.【解析】分析:(1)设甲、乙两种电脑每台价格分别为x元、y元,根据题意列出方程组,求出方程组的解即可;(2)设甲种电脑a元,则乙种电脑(20﹣a)台,根据题意列出不等式组,求出不等式组的解集即可.解:(1)设甲、乙两种电脑每台价格分别为x元、y元,,解得:,答:甲每台5000元,乙每台4000元;(2)设甲种电脑a元,则乙种电脑(20﹣a)台,,解得:10≤a≤12,方案有三种:甲种10台,乙种10台甲种11台,乙种9台甲种12台,乙种8台.【总结】本题考查了二元一方程组和解一元一次不等式组的应用,能根据题意列出不等式组和方程组是解此题的关键.【难度】4【题目】题型3变式练习1:一元一次不等式(组)的应用准备用100元钱买圣诞树装饰品,这样的装饰品成束出售.由20朵花组成的花束每束价4元,由35朵花组成的花束每束价6元,由50朵花组成的花束每束价9元.为了买到最多的花朵,应该买第二种花朵.【答案】560.【解析】分析:本题考的是朵数,所以应该看下哪种情况单独买一朵价钱最便宜,然后尽量买价钱便宜的多.解:4÷20=0.2,6÷35≈0.17,9÷50=0.18,所以第二种单独买一朵的价钱最便宜,所以应该尽量多买第二种,设第二种买x束,6x≤100,x≤16,∴x=16,16×35=560(朵).故答案为:560.【总结】本题考查对题意的理解情况以及审题是否仔细,最后考查的是朵,一定看清问什么.【难度】3【题目】题型3变式练习2:一元一次不等式组的应用某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有人.【答案】25.【解析】分析:分别设两个年级的人数为未知数,可得到每个年级奖品的总数目,让其相等可得两个未知数的关系.关系式为:50<每个年级的奖品数≤100,把相关数值代入求得适合的整数解,相加即可.解:设初一获奖人数为n+1人,初二获奖人数为m+1人(n≠m).依题意有3+7n=4+9m,即7n=9m+1①由于50<3+7n≤100,50<4+9m≤100.得<n≤,<m≤,∴n=7,8,9,10,11,12,13.m=6,7,8,9,10.但满足①式的解为唯一解:n=13,m=10.∴n+1=14,m+1=11.∴获奖人数共有14+11=25(人).故答案为25.【总结】考查一元一次不等式组的应用;得到各年级人的总数的关系式是解决本题的关键;根据奖品总数之间的关系式得到各年级人数的准确值是解决本题的难点.【难度】4【题目】兴趣篇1若2a+b=12,其中a≥0,b≥0,又P=3a+2b.试确定P的最小值和最大值.【答案】最小值为18,最大值为24.【解析】分析:由2a+b=12,其中a≥0,b≥0,可知0≤a≤6,由2a+b=12得;b=12﹣2a,然后代入P=3a+2b得;p=24﹣a,最后根据a的范围即可求得p的范围.解:∵2a+b=12,a≥0,b≥0,∴2a≤12.∴a≤6.∴0≤a≤6.由2a+b=12得;b=12﹣2a,将b=12﹣2a代入P=3a+2b得:p=3a+2(12﹣2a)=24﹣a.当a=0时,P有最大值,最大值为p=24.当a=6时,P有最小值,最小值为P=18.【总结】本题主要考查的解一元一次不等式和整式的加减,由已知条件确定出a的范围以及得出p=24﹣a是解题的关键.【难度】4【题目】兴趣篇2对x、y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b,已知T(1,﹣1)=﹣2,T(4,2)=1,若关于m的不等式组恰好有3个整数解,则实数P的取值范围是.【答案】﹣2≤P<﹣.【解析】分析:根据已知得出关于a、b的方程组,求出a、b的值,代入求出不等式组的每个不等式的解集,根据已知即可得出p的范围.解:∵T(1,﹣1)=﹣2,T(4,2)=1,∴=﹣2,=1,解得:a=1,b=3,T(2m,5﹣4m)=≤4,解得m≥﹣,T(m,3﹣2m)=>P,解得m<,∵关于m的不等式组恰好有3个整数解,∴2<≤3,∴﹣2≤P<﹣,∴实数P的取值范围是﹣2≤P<﹣,故答案为:﹣2≤P<﹣.【总结】本题考查了解一元一次不等式组,解二元一次方程组的应用,能求出a、b的值是解此题的关键.【难度】4【题目】备选试题1如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2﹣k1)x+b2﹣b1>0的解集为.【答案】x<3.【解析】分析:将所求不等式进行变形,可得:(k2﹣k1)x+b2﹣b1>0⇒k2x+b2﹣(k1x+b1)>0,即y2>y1;然后根据图象观察,得出符合条件的x的取值范围.解:由图知:x<3时,y1<y2,即y2﹣y1>0;∴当x<3时,k2x+b2﹣(k1x+b1)>0;化简得:(k2﹣k1)x+b2﹣b1>0;因此所求不等式的解集为:x<3.【总结】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.【难度】4【题目】备选试题2已知n、k均为正整数,且满足<<,则n的最小值为.【答案】n=15【解析】分析:根据不等式的性质和分式的性质得到<<,则易求>﹣1>.要使n、k最小,就尽量使上式分子、分母所扩大的倍数最小.所以最小扩大2倍有正整数解.由=,=,求得n、k的最小值为n=15,k=13.解:∵n、k均为正整数,∴>>,即>1+>,∴<<,∴>>,∴>﹣1>.要使n、k最小,就尽量使上式分子、分母所扩大的倍数最小.又∵n、k均为正整数,∴最小扩大2倍有正整数解.∵=,=,∴﹣1=,∴n=15,k=13.故答案为:n=15.【总结】本题考查了一元一次不等式的应用.解题的关键是推知要使n、k最小,就尽量使上式分子、分母所扩大的倍数最小.【难度】4【题目】备选试题3为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【答案】(1)男式单车2000元/辆,女式单车1500元/辆;(2)该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.【解析】分析:(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.【总结】本题主要考查二元一次方程组、一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.【难度】4。
北师大版八年级下册数学《不等关系》一元一次不等式和一元一次不等式组研讨说课复习课件
4. 用“<”或“>”号填空.
(1)-2_<___2;
(2)-3_<___-2;
(3)12_>___6;
(4)0__>__-8;
(5)-a__<__a (a>0); (6)-a__>__a(a<0).
5.用不等式表示下列问题中数量之间的关系.
(1)小陈的体重(x)至少100斤. x≥100
(2)这支铅笔的价钱(y)至多3元. y≤3
(3)一辆轿车在某公路上的行驶速度是 x km/h,已知 x≤100 这辆轿车在该公路上行驶的速度不超过100 km/h. (4)一块正方形的苗圃地,边长为y(m),周长不少于 36 m . 4y≥36 (5)某隧道限速为60km/h,一辆车在隧道中行驶 的速度为v(km/h)的轿车因超速被交警处罚. v>60 (6)山亭3月8日最低气温1oC,最高气温是 13oC,薛城这一天某一时刻的气温是toC . 1oC ≤ toC ≤ 13oC
探究新知
不等式的概念:
观 察 由 上 述 问 题 得 到 的 关 系 式 : x>50 , s>60x , s<100x,a+b+c≤160 ,6+3x>30,它们有什么共同的特点?
结论
一般地,用不等号“>”(或“≥”),“<”(或
“≤”)连接的式子叫做不等式.
探究新知
不等号:
不等号
>
读作
大于
<
第二章 一元一次不等式与一元一次不等式组
不等关系
课件
情景导入
找出下列材料中的不等关系.
北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义
第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。
数学北师大版八年级下册一元一次不等式及一元一次不等式组复习
一元一次不等式与一元一次不等式组习题课一、学生知识状况分析学生的知识技能基础:学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.学生活动能力基础:经历探索、发现不等关系的过程学习解决一些简单的实际问题.二、教学任务分析学生通过整理本章学习的主要内容,建构本章知识联系图,体会知识之间的发展脉络与内在联系,增强应用数学知识研究和解决实际问题的能力.本节课的具体教学目标是:(一)知识与技能1.掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集.2.能够用一元一次不等式解决一些简单的实际问题.3.体会不等式、函数、方程之间的联系.(二)过程与方法通过梳理本章内容,进一步体会模型思想及类比的思想方法.(三)情感与价值观要求鼓励合作学习,引导学生从不同的角度思考问题、解决问题,发展学生个性,使每个学生都能体会学习数学的价值,增进学生对数学的理解和学好数学的信心.三、教学过程分析第一环节:知识回顾,构建体系活动内容:学生通过回答下列问题把本章的知识内容进行整理,画出本章知识联系图.1.用表示大小关系的式子,叫做不等式.2. 叫做不等式的解集.3. 不等式两边都加上(或减去)同一个数(或式子),不等号的方向 ;不等式两边都乘以(或除以)同一个正数,不等号的方向 ;不等式两边都乘以(或除以)同一个负数,不等号的方向 .4.只含有一个未知数,并且 叫做一元一次不等式.解一元一次不等式时,经过 “去分母、 、 、 、 、”等变形后,把左边变成单独的一个未知数,右边变成一个常数.要特别注意的是在不等式的两边都乘以(或除以)同一个 时,不等号的方向一定改变.5. 列一元一次不等式(组)解答实际问题一般需要般要遵循如下步骤:①审:分清已知量、未知量及它们之间的关系;②设:设出未知数;③设列:列出反映不等式;④解:解不等式,获得解集 ;⑤答:舍去不合题意的答案,确定符合题意的答案,写出答句.6.由几个含有同一个未知数的 叫做一元一次不等式组.7.一元一次不等式组中各个不等式解集的 叫做一元一次不等式组的解集.8.由于任何一个一次不等式都可以转化为0ax b +>或0ax b +<(a ,b 是常数,a ≠0)的形式,所以解一元一次不等式0ax b +>或0ax b +<,可以看作:当一次函数y = ax +b 的值大(小)于0时,求自变量相应的 ;反之,求一次函数y = ax +b 的值何时大(小)于0时,只要求出不等式0ax b +>或0ax b +<的 即可.活动目的:学生通过对本章的知识进行整理,建构本章的知识体系.通过画本章知识联系图,培养学生归纳整理、对比分析的能力,同时在画图的过程中,学生可以互相进行比较、补充,养成交流与合作的习惯.第二环节:例题分析,解决问题活动内容:教师出示例题,要求学生先独立完成,对学生感觉有一定难度的内容,鼓励学生之间进行交流、讨论,互相补充,然后教师给以适当的帮助.例1解不等式x >0.5x -2,并将其解集表示在数轴上.例2不等式组 的解集是x<2,则m 的取值范围是() ⎩⎨⎧<<mx x 2例3小明放学回家后,问爸爸妈妈小牛队与太阳队篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:“特里得分的两倍与纳什得分的差大于10;纳什得分的两倍比特里得分的三倍还多.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小明分析一下.究竟是哪个队赢了,本场比赛特里、纳什各得了多少分? 第三环节:合作学习,练习提高活动内容:学生独立完成课堂练习.解下列不等式或不等式组,并把它们的解集在数轴上表示出来.1、2x+3<12、 3、 ⎪⎪⎩⎪⎪⎨⎧-+>--<+4233225351x x x x x4、 二、练习1、若不等式3x+a<2的解集是x<5,则a=()2、2x-4a<0只有4个正整数解,则a 的取值范围是()三、练习1、若不等式组 的解集是x>b,则a( )b,2、如果a>0,那么关于x 的不等式组 的解集为()3、方程组 的解x 为非正数,y 为负数, 求a 的取值范围;化简四、练习1、如图所示,一次函数y 1=kx+b 与y 2=x+a,kx+b>x+a 的解集是()2、经过点B (-2,0)的直线y=kx+b 与直线y=4x+2相交与点A (-1,-2),则4x+2<kx+b<0的解集是()8)2(3413+≥--x x ⎪⎩⎪⎨⎧->+≥+1321112x x x ⎩⎨⎧>>b x a x ⎩⎨⎧-<>a x a x ⎩⎨⎧+=---=+a y x a y x 31723++-a a活动目的:对不等式(组)的解法进行巩固练习.第四环节:课堂小结,能力提升活动内容:通过本节课的学习,你有什么收获?你感觉最困难的是什么?印象最深刻的是哪个部分的知识?活动目的:鼓励学生结合本节课的学习内容,谈自己对本节课的感受.注意事项:学生把自己这一节课的学习所得进行交流,互相补充,把自己存在的问题交由大家一起讨论,共同解决问题.。
北师大版八年级数学下册第二章 一元一次不等式与一元一次不等式组 小结与复习
5. 某单位准备和一个体车主或一国营出租车公司中的
一家签订月租车合同,设汽车每月行驶 x 千米,个体
车主收费 y1 元,国营出租车公司收 y (元)
4000
费为 y2 元,观察下列图象可知,当 3000
y2 y1
x_>__1_5_0_0__时,选用个体车较合算.
2000 1000
O
1500 x (千米)
例3 如图是一次函数 y=kx+b 的图象,当 y<2 时,x 的
取值范围是 ( C )
A.x<1 B.x>1 C.x<3
D.x>3
y
【解析】一次函数 y=kx+b 经过点
(3,2)
(3,2),且函数值 y 随 x 的增大而增大,
(2,1)
∴ 当 y<2 时,x 的取值范围是 x<3. O
x
针对训练
把解集在数轴上表示
3
出来,并将解集中的整数解写出来.
解:解不等式,得 x≤3. 解不等式,得 x 7 .
所以这个不等式组的解集是 7 <x≤3,解集在数轴5 上
表示如下:
5
0 17 2 3 4 通过观察数轴可知5该不等式组的整数解为 2,3.
方法总结
可借助数轴或口诀确定不等式组的解集.
针对训练
7. 使不等式 x-1≥2 与 3x-7<8 同时成立的 x 的整数
值是 3 或 4 .
8. 若关于 x 不等式组
x x
2m <0 m>2
,有解,则
m
的取值范
围是 ( C )
A. m> 2
3
B. m≤ 2
3
C.
m>
2 3
D. m≤ 2
3
知识点五 不等式、不等式组的实际应用
北师大版八年级数学下册 2.6 一元一次不等式专题复习
一元一次不等式(2)一、解一元一次不等式的步骤1、易错点2、不等式的基本性质3、复习知识点:①三边关系 ②绝对值 ③k 2 ④比大小的方法练:①223125+<-+x x ②12.02.05.012.0>--+x x ③6313-->x x【题型1:已知解集,x 的系数含未知字母,求字母的取值。
】练:①若的取值范围是那么的解集为)(a a b x b x a ,33-<<- ②的取值范围求的解集为的不等式若关于a a a x a x ax x ,3333-+<+>-③不等式的取值范围请确定的解集是a x a x x a ,121)1(-<-+>-【题型2:已知解集,x 的系数为常数,求未知字母取值。
// 两个不等式的解集相同,求字母的取值。
】 练:①关于53)1(2134>+-->-x a x x 与不等式的不等式的解集相同,第一个不等式的解集是xa 13-, 第二个是2>x ,求a 的取值②如果关于4251<+<-x a x a x 和)的不等式(的解集相同,则a 的值为二、解一元一次不等式组1、复习正数、负数、非正数、非负数、非正整数、非负整数、整数解的概念2、将两个不等式合二为一的“四句口诀”3、掌握方法会解00<>yx xy 或,。
练:若12)23(-=-x x a 的解是负数,则a 的取值为【题型3:利用不等式的解集或整数解求字母取值】【例】:①若不等式0≤-m x 的正整数解是1、2,则m 的取值范围是②若不等式0>-n x 有3个非正整数解,则n 的取值练:若关于x 的不等式02≤-m x 的正整数解只有4个,则m 的取值范围是【例】:③若关于x 的不等式组 026≥+≤x mx 有解,则m 的取值范围是。
无解,则m 的取值范围是练:若关于x 的不等式组 110->->-x x a x 有解,则a 的取值范围是 。
北师版八下第二章《一元一次不等式和一元一次不等式组》专题复习
一元一次不等式和一元一次不等式组【知识回顾】一、不等式与不等式组1、定义:(1)不等式(组);(2)不等式(组)的解(集);(3)解不等式(组);2、不等式组的解集二、不等式的性质1、不等式的三条基本性质2、不等式的其他性质:(1)反射性:若a>b,则b<a ;(2)传递性:若a>b ,且b>c ,则a>c 。
三、解不等式的步骤1、去分母;2、去括号;3、移项合并同类项;4、系数化为1。
四、解不等式组的步骤1、解出不等式的解集;2、在同一数轴表示不等式的解集。
(注:系数化1时,系数为正不等号方向不变;系数为负方向改变)五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,根据(不等量)关系式列不等式(组)(4)解不等式组;检验并作答。
【典型例题】一、不等式概念【例1】用不等式表示:(1)a 为非负数: ,a 为正数: ,a 不是正数:(2)x 的与5的差小于1; (3)8与y 的2倍的和是正数;二、不等式性质【例2】(1)若x >y ,则下列式子中错误的是( )A .x ﹣3>y ﹣3B .> C . x +3>y +3 D .﹣3x >﹣3y(2)a ,b 都是实数,且a <b ,则下列不等式的变形正确的是( )A . a+x >b+xB . ﹣a+1<﹣b+1C . 3a <3bD . >(3)在等腰△ABC 中,AB =AC ,其周长为20cm ,则AB 边的取值范围是( )A .1cm <AB <4cm B .5cm <AB <10cmC .4cm <AB <8cmD .4cm <AB <10cm三、解不等式(组)【例3】如果a>b ,比较下列各式大小32(1) ; (2) 。
【例4】解不等式(组) (1)2(2x -3)<5(x -1) (2)(3) (4)(5)【例5】不等式的解集在数轴上表示正确的是( ) A . B .C .D .变式练习:一元一次不等式组的解集中,整数解的个数是( ) A .4 B . 5 C .6 D .73a -3b -13a +13b +.17)10(2383+-≤--y y y ⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x ()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 12432362273(x 1)x x x x ---⎧-≥⎪⎨⎪-≤-⎩21050x x +⎧⎨-≤⎩>【例6】若不等式组有解,则实数a 的取值范围是( ) A .a <﹣36 B .a ≤﹣36 C .a >﹣36 D .a ≥﹣36变式练习:1、若关于x 的不等式组恰有三个整数解,求实数a 的取值范围。
专题04 一元一次不等式(组)含参数及一次函数问题(解析版)八年级数学下册期末综合复习(北师大版)
2020-2021学年八年级数学下册期末综合复习专题提优训练(北师大版)专题04一元一次不等式(组)含参数及一次函数问题【典型例题】1.如果一元一次不等式(m+2)x>m+2的解集为x<1,则m必须满足的条件是()A.m<﹣2B.m≤﹣2C.m>﹣2D.m≥﹣2【答案】A【分析】根据解集中不等号的方向发生了改变,得出m+2<0,求出即可.【详解】解:∵不等式(m+2)x>m+2的解集是x<1,∵m+2<0,∵m<﹣2,故选:A.【点睛】本题考查了一元一次不等式,解题关键是明确不等式性质,列出不等式求解.2.若不等式组531x xx m+<-⎧⎨>⎩的解集是3x>,则m的取值范围是_________.【答案】3m≤【分析】分别求出每一个不等式的解集,根据不等式组的解集结合口诀:同大取大、同小取小、大小小大中间找、大大小小无解了可得答案.【详解】解:x+5<3x-1,得:x>3,∵不等式组的解集是x>3,∵m≤3,故答案为:m≤3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【专题训练】一、选择题1.若(m ﹣1)x >m ﹣1 的解集是 x <1,则 m 的取值范围是( )A .m >1B .m ≤﹣1C .m <1D .m ≥1 【答案】C【分析】根据已知不等式的解集,利用不等式的基本性质求出m 的范围即可.【详解】解:∵(m -1)x >m -1的解集为x <1,∵m -1<0,解得:m <1,故选:C .【点睛】本题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.2.若关于x 的一元一次方程13mx x -=的解为正实数,则m 的取值范围是( )A .3m ≥B .3m ≤C .3m >D .3m < 【答案】C【分析】根据题意可得x >0,将x 化成关于m 的一元一次方程,然后根据x 的取值范围即可求出m 的取值范围.【详解】解:由mx -1=3x ,移项、合并,得(m -3)x =1,∵x =13m -, ∵方程mx -1=2x 的解为正实数,∵103m >-, 解得m >3.故选:C .【点睛】此题考查的是一元一次方程的解法,将x 用含m 的代数式来表示,根据x 的取值范围可求出m 的取值范围. 3.若不等式8x a x ≤⎧⎨>⎩无解,则a 得取值范围是( ) A .8a <B .8a >C .8a ≤D .8a ≥【答案】C【分析】根据已知和找不等式组解集的规律得出答案即可.【详解】 解:∵不等式组8x a x ≤⎧⎨>⎩无解, ∵a 的取值范围是8≥a ,即a ≤8,故选C .【点睛】本题考查了不等式的解集和解不等式组,能熟记找不等式组解集的规律是解此题的关键.4.若一次函数y x m =-+的图象经过点()1,2-,则不等式2x m -+≥的解集为( )A .0x ≥B .0x ≤C .1x ≥-D .1x ≤-【答案】D【分析】先把()1,2-代入y x m =-+中求出m ,然后解不等式2x m -+≥即可.【详解】解:把()1,2-代入y x m =-+得12m +=,解得1m =,所以一次函数解析式为1y x =-+,解不等式12x -+≥得1x ≤-.故选:D .本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围.5.若不等式组2425x a x b +>⎧⎨-<⎩的解集是02x <<,则 a b +的值是( ) A .1B .2C .3D .4【答案】A【分析】先分别用a 、b 表示出各不等式的解集,然后根据题中已知的解集,进行比对,从而得出两个方程,解答即可求出a 、b ,由此即可求解.【详解】 24{25x a x b +->①<②, ∵由①得,x >4-2a ;由②得,x <52b +, ∵不等式组24{25x a x b +-><的解是0<x <2, ∵此不等式组的解集为:4-2a <x <52b +, ∵4-2a =0, 52b +=2, 解得a =2,b =-1,∵a +b =1.故选A .【点睛】本题考查了根据不等式组的解集的情况求参数,熟练掌握不等式组的解法是解题的关键.6.若关于x 的不等式组20219x a x -<⎧⎨+≥-⎩有两个整数解,则a 的取值范围是( ) A .43a -<<-B .43a -<-C .86a -<-D .86a -<-【答案】C先求出不等式组的解集,根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:20219x a x -<⎧⎨+-⎩≥①②,∵解不等式①得:x <2a , 解不等式②得:x ≥-5, ∵不等式组的解集是-5≤x <2a , ∵关于x 的不等式组20219x a x -<⎧⎨+≥-⎩有两个整数解, ∵-4<2a ≤-3, 解得:-8<a ≤-6,故选:C .【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.7.若关于x 的一元一次不等式组21341x x x a⎧>-⎪⎨⎪+≥⎩恰有3个整数解,且一次函数()21y a x a =-++不经过第三象限,则所有满足条件的整数a 的值之和是( )A .2-B .1-C .0D .1【答案】C【分析】 根据关于x 的一元一次不等式组21341x x x a⎧>-⎪⎨⎪+≥⎩恰有3个整数解,可以求得a 的取值范围,再根据一次函数()21y a x a =-++不经过第三象限,可以得到a 的取值范围,结合不等式组和一次函数可以得到最后a 的取值范围,从而可以写出满足条件的a 的整数值,然后相加即可.【详解】解:由不等式组21341x x x a⎧>-⎪⎨⎪+≥⎩,得134a x -≤<, ∵关于x 的一元一次不等式组21341x x x a⎧>-⎪⎨⎪+≥⎩恰有3个整数解, ∵1104a --<≤, 解得-3<a ≤1,∵一次函数y =(a -2)x +a +1不经过第三象限,∵a -2<0且a +1≥0,∵-1≤a <2,又∵-3<a ≤1,∵-1≤a ≤1,∵整数a 的值是-1,0,1,∵所有满足条件的整数a 的值之和是:-1+0+1=0,故选:C .【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,求出a 的取值范围,利用一次函数的性质和不等式的性质解答.8.如图,直线y ax b =+(0a ≠)过点()0,5A ,()3,0B -,则方程0ax b +>的解集是( )A .3x >-B .3x <-C .5x >D .35x >- 【答案】A【分析】所求不等式的解集,即为函数y =ax +b 图象在x 轴上方部分的横坐标即可.【详解】解:∵直线经过点A (0,5)和B (-3,0),∵当x >-3时,直线在x 轴上方,∵ax +b >0,故选A .【点睛】本题考查了一次函数与一元一次不等式.注意掌握从函数的角度看,就是求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.如图,在平面直角坐标系中,直线2y x =-和 1.2y ax =+相交于点(,1)A m ,则不等式2 1.2x ax -<+的解集为( )A .12x <-B .1x <C .1x >D .12x >- 【答案】D【分析】首先利用待定系数法求出点A 的坐标,在观察图象,写出直线y =-2x 在直线y =ax +1.2的下方所对应的自变量的范围即可.【详解】解:∵函数2y x =-过点(),1A m ,∵21m -=,解得:12m =-, ∵1,12A ⎛⎫- ⎪⎝⎭, 不等式24x ax -<+在函数图像上表现为 1.2y ax =+图像在2y x =-函数图像上方,在交点A 的右侧满足条件,∵不等式24x ax -<+的解集为12x ->. 故答案选D .【点睛】本题主要考察了一次函数与一元一次不等式关系,对题意的准确理解是解题的关键.二、填空题10.若关于x 的不等式103x m -<的非负整数解只有3个,则m 的取值范围是________. 【答案】23<m ≤1 【分析】首先确定不等式组的解集,先利用含m 的式子表示,根据非负整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m 的不等式,从而求出m 的范围.【详解】 解:解不等式103x m -<,得3x m <, ∵不等式103x m -<的非负整数解只有3个, ∵不等式的非负整数解为0、1、2,则2<3m ≤3, 解得:23<m ≤1, 故答案为:23<m ≤1. 【点睛】本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定3m 的范围是解决本题的关键.解不等式时要用到不等式的基本性质.11.已知关于x 的不等式0ax b +>的解集为12x <,则不等式0bx a +<的解集是________.【分析】根据不等式的性质3,可得a 、b 的关系,再根据不等式的性质,可得答案.【详解】解:由关于x 的不等式ax +b >0的解集为12x <,得a <0,12b a -=, ∵a =−2b <0,即:b >0,解0bx a +<得:x <a b -=2b b=2. 故答案为:x <2.【点睛】本题考查了不等式的解集,利用不等式的解集得出a =−2b <0,是解题关键. 12.若关于x 的不等式组100x x a ->⎧⎨-<⎩无解,则a 的取值范围是__________. 【答案】1a ≤【分析】将不等式组解出来,根据不等式组100x x a ->⎧⎨-<⎩无解,求出a 的取值范围. 【详解】解:解100x x a ->⎧⎨-<⎩得1x x a>⎧⎨<⎩, ∵100x x a ->⎧⎨-<⎩无解, ∵a ≤1.故答案为:a ≤1.【点睛】本题考查了解一元一次不等式组,会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.13.若关于x 的一元一次不等式组23(2)x x x m >-⎧⎨<⎩的解集是6x <,则m 的取值范围是____.【分析】先求出23(2)x x >-的解集,然后根据同小取小,即可求出m 的取值范围.【详解】解:∵23(2)x x x m >-⎧⎨<⎩, 解得:6x x m <⎧⎨<⎩, ∵一元一次不等式组23(2)x x x m >-⎧⎨<⎩的解集是6x <, ∵6m ≥;故答案为:6m ≥.【点睛】本题考查了解一元一次不等式组,解题的关键是正确求出不等式的解集.14.若关于x 的一元一次不等式组10x x a ->⎧⎨<⎩有2个整数解,则a 的取值范围是_____. 【答案】34a <≤【分析】分别求出每一个不等式的解集,确定不等式组的解集,再结合不等式组的整数解的个数得出关于a 的不等式组,解之可得答案.【详解】解不等式10x ->,得:1x >,则不等式组的解集为1x a <<,不等式组有2个整数解,不等式组的整数解为2、3,则34a <≤,故答案为:34a <≤.【点睛】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,根据不等式组的整数解得出关于a 的不等式组是解答此题的关键.15.已知关于x ,y 的方程组2315x y k x y k -=⎧⎨+=-⎩的解满足不等式﹣3≤x +y ≤1,则实数k 的取值范围为__________________. 【答案】1733k -≤≤ 【分析】根据关于x ,y 的方程组2315x y k x y k -=⎧⎨+=-⎩可得132k x y -+=,然后代入不等式﹣3≤x +y ≤1进行求解即可. 【详解】 解:由关于x ,y 的方程组2315x y k x y k -=⎧⎨+=-⎩①② 可①+②得:2213x y k +=-, 则有132k x y -+=, 代入不等式﹣3≤x +y ≤1得:13312k --≤≤, 解得:1733k -≤≤; 故答案为1733k -≤≤. 【点睛】本题主要考查二元一次方程组的解法及一元一次不等式组的解法,熟练掌握二元一次方程组的解法及一元一次不等式组的解法是解题的关键.16.若关于x 的不等式组()322312x x x a ⎧->-⎨-<-⎩的所有整数解的和是5-,则a 的取值范围是______. 【答案】10a -<≤或23a <≤【分析】解不等式组得出解集,根据整数解的和为-5,可以确定整数解必含-3,-2这两个数,再根据解集确定a 的取值范围.【详解】解:解不等式组()322312x x x a ⎧->-⎨-<-⎩,得:-4<x <a -1, ∵所有整数解的和是-5,-5=(-3)+(-2) ,∵不等式组的整数解为①-3,-2或②-3,-2,1,0,1,∵211a -<-≤-或112a <-≤,∵10a -<≤或23a <≤,故答案为: 10a -<≤或23a <≤.【点睛】考查一元一次不等式组的解集、整数解,根据整数解和解集确定待定字母的取值范围,在确定的过程中,不等号的选择应认真细心,切实选择正确.17.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x =a ﹣b 的解是x =3;④当x <3时,y 1<y 2中.则正确的序号有____.【答案】①③.【分析】根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x <3时,一次函数y 1=kx +b 在直线y 2=x +a 的上方,则可对④进行判断.【详解】解:∵一次函数y 1=kx +b 经过第一、二、三象限,∵k <0,b >0,所以①正确;∵直线y 2=x +a 的图象与y 轴的交点在x 轴,下方,∵a <0,所以②错误;∵一次函数y 1=kx +b 与y 2=x +a 的图象的交点的横坐标为3,∵x =3时,kx +b =x ﹣a ,整理得kx ﹣x =a ﹣b ,所以③正确;当x <3时,y 1=kx +b 图像在y 2=x +a 图像的上方,∵y 1>y 2,所以④错误.故答案为①③.【点睛】本题考查一次函数与一元一次方程、一次函数与一元一次不等式、一次函数图象与系数的关系,掌握一次函数与一元一次方程、一次函数与一元一次不等式、一次函数图象与系数的关系是解题关键.18.在同一平面直角坐标系中,函数y 1=kx +b 与y 2=mx +n 的图象如图所示,则关于x 的不等式kx +b ≥mx +n 的解集为__.【答案】x ≥2【分析】直接利用函数图象,结合kx +b ≥mx +n ,得出x 的取值范围.【详解】解:如图所示:不等式kx +b >mx +n 的解集为:x ≥2.故答案为:x ≥2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象求解是解题的关键.三、解答题19.在平面直角坐标系中,直线1I :111y k x b =+与x 轴交于点()12,0B ,与直线2I :22y k x =交于点()6,3A .(1)分别求出直线1I 和直线2I 的表达式;(2)直接写出不等式112k x b k x +<解集.【答案】(1)1162y x =-+;212y x =;(2)6x > 【分析】(1)根据待定系数法即可求得;(2)利用图像直线1I :111y k x b =+在直线2I 的下方时,有不等式112k x b k x +<,写出范围即可.【详解】解:(1)把点()6,3A ,()12,0B 代入直线1l :111y k x b =+, 得111163120k b k b +=⎧⎨+=⎩, 解得11126k b ⎧=-⎪⎨⎪=⎩,∴直线1l 的表达式为1162y x =-+; 将()6,3A 代入直线2l :22y k x =,得,236k =, 解得212k =, ∴直线2l 的表达式为212y x =; (2)不等式112k x b k x +<,根据图像直线1I :111y k x b =+在直线2I 的下方,在交点A 右侧部分满足条件,所以6x >.【点睛】本题考查待定系数法求解析式,利用图像解不等式,掌握待定系数法求解析式方法,利用图像解不等式,一看位置,二找交点,三定方向,写出范围是解题关键.20.在平面直角坐标系中,过点(1,2)A 的直线1l 与直线2:l y x m =+交于点(4,3)B .(1)求直线1l 、2l 的解析式;(2)若直线y kx =与线段AB 恰有一个公共点,则k 的取值范围是 .【答案】(1)直线1l 的表达式为1533y x =+;直线2:1l y x =-;(2)324k 【分析】(1)由待定系数法求出直线解析式即可;(2)求得直线y =kx 分别经过A 、B 时的k 的值,即可求得k 的取值.【详解】解:(1)点(4,3)B 在直线2:l y x m =+上, 34m ∴=+,解得1m =-.∴直线2:1l y x =-,点(1,2)A 和(4,3)B 在直线1l 上,设1:l y ax b =+,∴243a b a b +=⎧⎨+=⎩,解得1353a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线1l 的表达式为1533y x =+. (2)把点(1,2)A 代入y kx =,求得2k =,把点(4,3)B 代入y kx =,求得34k =, ∴若直线y kx =与线段AB 恰有一个公共点,则k 的取值范围是324k , 故答案为:324k . 【点睛】 本题考查了两直线相交的问题,主要利用了待定系数法求一次函数解析式,一次函数的图象与系数的关系,熟练掌握待定系数法是解题的关键.21.已知关于x ,y 的方程组325x y a x y a-=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.【答案】(1)a ≥2;(2)-5<x <1【分析】(1)解方程组,用a 表示x 和y ,再根据x ,y 为非负数得到不等式组,解之即可;(2)根据x >y ,且2x +y <0,列出不等式组,求出a 的取值范围,可得x 的范围.【详解】解:(1)解方程组325x y a x y a -=+⎧⎨+=⎩,得212x a y a =+⎧⎨=-⎩, ∵x ,y 为非负数,∵21020a a +≥⎧⎨-≥⎩, 解得:a ≥2;(2)∵x y >,且20x y +<,∵()21222120a a a a +>-⎧⎪⎨++-<⎪⎩①②, 解不等式①得:a >-3,解不等式②得:a <0,∵不等式组的解集为:-3<a <0,∵-6<2a <0,∵-5<2a +1<0,∵-5<x <1.【点睛】本题考查的是解二元一次方程组,解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.若方程组3133x y m x y m+=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.【答案】(1)1;(2)m >2;(3)-2<2m -3n <18【分析】(1)将两个方程相加,化简可得x +y ;(2)解方程组得出x 、y ,由x 为非负数,y 为负数得出关于m 的不等式组,解之可得;(3)根据m +n =4,n >-2可得m 的范围,将n =4-m 代入2m -3n 中,利用不等式的性质可得取值范围.【详解】解:(1)3133x y m x y m +=+⎧⎨+=-⎩①②, ①+②得:444x y +=,∵1x y +=;(2)解方程组3133x y m x y m +=+⎧⎨+=-⎩得: 12112x m y m ⎧=⎪⎪⎨⎪=-+⎪⎩, ∵方程组的解满足x 为非负数,y 为负数, ∵1021102m m ⎧≥⎪⎪⎨⎪-+<⎪⎩, 解得:m >2;(3)∵m +n =4,∵n =4-m >-2,∵m <6,∵2<m <6,∵2m -3n =2m -3(4-m )=5m -12,∵10<5m <30,∵-2<5m -12<18,即-2<2m -3n <18.【点睛】本题考查的是解二元一次方程组,解一元一次不等式组,解题的关键是理解题意,掌握相应的运算法则. 23.已知:如图一次函数12y kx =-与x 轴相交于点()2,0B-,2y x b =+与x 轴相交于点()4,0C ,这两个函数图象相交于点A .(1)求出k ,b 的值和点A 的坐标;(2)连接OA ,直线2y x b =+上是否存在一点P ,使13OCP OAC S S ∆∆=.如果存在,求出点P 的坐标; (3)结合图象,直接写出12y y ≥时x 的取值范围.【答案】(1)-1,-4,(1,-3).(2)P 点坐标为(5,1)或(3,1);(3)当x ≤1时,12y y ≥.【分析】(1)把()2,0B -,()4,0C 分别代入两个解析式,联立两个解析式,解方程组即可;(2)根据13OCP OAC S S ∆∆=求出点P 的纵坐标,代入解析式即可; (3)观察图象直接判断即可.【详解】解:(1) 把()2,0B -代入12y kx =-得,0-22k =-,解得,1k =-;把()4,0C 代入2y x b =+得,04b =+,解得,4b =-;联络方程组得,24y x y x =--⎧⎨=-⎩, 解得,13x y =⎧⎨=-⎩, A 点坐标为:A (1,-3).(2)由(1)OC =3,A (1,-3).193322OAC S ∆=⨯⨯=, 3123OCP OAC S S ∆∆==, 设P 点坐标为(x ,y ),12OCP S OC y ∆=⨯, 31322y =⨯⨯, 1y =,当y =1时,1=x -4,x =5,P 点坐标为(5,1);当y =-1时,-1=x -4,x =3,P 点坐标为(3,1);纵上,P 点坐标为(5,1)或(3,1);(3)根据图象可知,在A 点或A 点左侧时,12y y ≥,故当x ≤1时,12y y ≥.【点睛】本题考查了一次函数图象和性质,解题关键是熟练运用一次函数知识,用待定系数法求解析式,结合一次函数的性质求点的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二环节、合作交流,探究新知
活动内容:
解下列不等式组:
(三)情感与价值观要求
1.培养学生独立思考的习惯,加强运算的熟练性与准确性.
2.培养学生的合作交流意识与创新意识,为学生在今后生活和学习中更好运用数学 作准备。
三、教学过程分析
本节课由四个教学环节组成,它们是: (1)创设情境,导入新课; (2) 合作交流, 探究新知;(3)巩固练习,同化知识;(4)师生交流,归纳小结;(5)作业布置.其具 体内容与分析如下:
bx —2CX州⑴5x-"gx*1)Jx+3c5(1)<1(1)
1.严2ux1\丿2.[33.彳4.2
.x+5>4x+1(2)|异-1色7-异(2)卜-2>4(2)|7x-8£9x⑵
Z2L
请大家认真观察一下这四组解,你发现了什么? 活动目的:
1.认真讨论解的情况;
2.从每个不等式的解集,到这个不等式组的解集,认真观察,互相交流,找出规律。
3
由(4)得,两个不等式的解集中不等号的方向有大于也有小于,数字-4V1,并且
是x>-4, x<1,最后的结果中是x取大于小数而小于大数,即-4Vx<1.
由(3)得,两个不等式的解集中不等号的方向有大于也有小于,并且是x>6, XV
2,因为6>2,即x应取大于6而小于2的数,而这样的数根本不存在,所以原不等式组 的解集为无解•
教科书基于学生对一元一次不等式组的概念已基本掌握的基础之上, 提出了本课的 学习任务和本节课的教学目标是:
(一)知识认知要求
1.会解由两个或两个以上一元一次不等式组成的不等式组并能用数轴求得解集;
2.总结解一元一次不等式组的步骤及情形。
(二)能力训练要求 通过总结解一元一次不等式组的步骤,培养学生的类比推理能力和不完全归纳能 力。
/>b
第二章 一元一次不等式与一元一次不等式组
一、学生知识状况分析
学生在前一节课中初步理解了不等式组的概念, 对不等式组的解法已经有一定的掌 握,对其特点有所了解;在学习过程中,学生经历了合作学习的过程,具有了新旧知识 类比学习的经验,为本节课的学习奠定了感性认识与理性认识的基础。
二、教学任务分析
引导学生紧密联系不等式研究不等式组,让学生理解组成不等式组的每个不等式的 地位相同,缺一不可;引导学生充分应用“数形结合”的思想解决不等式组的问题;课 堂上让学生独立思考,通过观察,探讨,引导学生去发现与归纳不等式解集的特点。
活动效果:
通过学生之间的交流和讨论,对照各组解的情况如下:
此时,教师让学生说说自己组的讨论结果,并代表本组作总结性的发言.最后教师
引导学生得出以下结论:
5
由(2)得,两个不等式的解集中不等号的方向都是大于号,在数字-和4中取大
2
Hale Waihona Puke 数4,不等号取大于等于号;由(1)得,两个不等式的解集中不等号的方向都是小于号,在不等式组的解集中 不等号的方向取小于,而数字取比较小的数字4;
第一环节、创设情境,导入新课
活动内容:
问题:现有两根木条a和b,a长7cm,b长3cm,如果要再找一根木条X,用这三 根木条钉成一个三角形木框,请动手试一试:
1•当x是14cm时,能与a和b钉成三角形木框吗?
2•当x是9cm时,能与a和b钉成三角形木框吗?
3.当x是4cm时,能与a和b钉成三角形木框吗?
最后,教师利用课件将此结论理论化,并用课件展示出来:
两个一元一次不等式所组成的不等式组的解集有以下四种情形•
设avb,那么
r
(1)不等式组」x>a的解集是x>b;
x >b
f
x<a
(2)不等式组」的解集是xva;
x <b
x>a
(3)不等式组丿的解集是avxvb;
x <b
r
xva
(4)不等式组丿的解集是无解。
4.在什么条件下,长度为3cm, 7cm, xcm的三条线段可以围成三角形? 活动目的:
引导学生进行试验、观察、发现,激发学生的好奇心和求知欲,让学生亲自动手, 亲身体验,加深学生理解x并不是可以取任意值,要钉成三角形,x的取值有一定的范 围,让学生深深感受到数学是与生活实际密不可分的。
活动效果:
学生根据“三角形中两边之和大于第三边,两边之差小于第三边”,列出木条的长