勾股定理测试题1

合集下载

(常考题)人教版初中数学八年级数学下册第二单元《勾股定理》测试题(包含答案解析)(1)

(常考题)人教版初中数学八年级数学下册第二单元《勾股定理》测试题(包含答案解析)(1)

一、选择题1.如图,在ABC 中,D 是BC 边上的中点,连结AD ,把ABD △沿AD 翻折,得到AB D ',连接CB ',若2BD CB '==,3AD =,则AB C '的面积为( )A .332B .23C .3D .22.下列条件中不能确定ABC 为直角三角形的是( ).A .ABC 中,三边长的平方之比为1:2:3B .ABC 中,222AB BC AC +=C .ABC 中,::3:4:5A B C ∠∠∠=D .ABC 中,1,2,3AB BC AC ===3.已知直角三角形纸片的两条直角边长分别为m 和3(m <3),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )A .m 2+6m +9=0B .m 2﹣6m +9=0C .m 2+6m ﹣9=0D .m 2﹣6m ﹣9=0 4.如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,AB AC ,灰色部分面积记为1S ,黑色部分面积记为2S ,白色部分面积记为3S ,则( )A .12S SB .23S S =C .13S S =D .123S S S =- 5.如图,90MON ∠=︒,已知ABC ∆中,10AC BC ==,12AB =,ABC ∆的顶点A 、B 分别在边OM 、ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点C 到点O 的最大距离为( )A .12.5B .13C .14D .156.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为123S S S 、、;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为456S S S 、、.其中125616,45,11,14S S S S ====,则34S S +=( )A .86B .64C .54D .487.如图,分别以直角三角形ABC 的三边为斜边向外作直角三角形,且AD CD =,CE BE =,AF BF =,这三个直角三角形的面积分别为1S ,2S ,3S ,且19S =,216S =,则S 3S =( )A .25B .32C .7D .188.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .1699.已知ABC ∆的三边a ,b ,c 满足:23|4|10250a b c c -+-+-+=,则c 边上的高为( )A .1.2B .2C .2.4D .4.810.如图,在平面直角坐标系中,点P 为x 轴上一点,且到A (0,2)和点B (5,5)的距离相等,则线段OP 的长度为( )A .3B .4C .4.6D .2511.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE ,EB 在一条直线上,证明中用到的面积相等关系是( )A .EDA CEB S S =△△B .EDA CDE CEB ABCD S S S S ++=△△△四边形C .EDA CEB CDE S S S +=△△△D .AECD DEBC S S =四边形四边形12.在Rt △ABC 中,∠C=90°,CA=CB=4,D 、E 分别为边AC 、BC 上的两点,且AD=CE , 当线段DE 取得最小值时,试在直线AC 或直线BC 上找到一点P ,使得△PDE 是等腰三角形,则满足条件的点P 的个数是( )A .6B .7个C .8个D .以上都不对二、填空题13.如图,△ABC 中,∠ACB =90°,分别以AC 、BC 为斜边作等腰直角三角形 S 1、S 2,以AB 为边作正方形S .若S 1与S 2的面积和为9,则正方形S 的边长等于_______.14.如图,已知圆柱的底面周长为10cm ,高AB 为12cm ,BC 是底面的直径,一只蚂蚁沿着圆柱侧面爬行觅食从点C 爬到点A ,则蚂蚁爬行的最短路线为________cm .15.在ABC ∆中,AC =8,45C ∠=︒,AB =6,则BC =___________.16.如图1是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A 、B 、C 、D 各点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形ABCD 中6AB =,15CD =,那么BC =_____,AD =_______才能实现上述的折叠变化.17.已知一个三角形三边的长分别为5,10,15,则这个三角形的面积是_________________.18.有一个三角形的两边长是8和10,要使这个三角形成为直角三角形,则第三边长为_______.19.如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,这棵树有的高是______________ .20.如图ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB ,交BC 于点E ,若CE =2,则BE =______________.三、解答题21.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC 中,∠ACB =90°.AC =b ,BC =a ,AB =c ,请你利用这个图形解决下列问题:(1)试说明:a 2+b 2=c 2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a +b )2的值.22.如图,在ABC 中,2,1,20AB AC BAC AD BC ︒==∠=⊥于点D ,延长AD 至点E ,使DE AD =,连接BE 和CE .(1)补全图形;(2)若点F 是AC 的中点,请在BC 上找一点P 使AP FP +的值最小,并求出最小值. 23.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC 与AE 的长度一样,滑梯的高度4,1BC m BE m ==.求滑道AC 的长度.24.如图,每个小正方形的边长均为1可以得到每个小正方形的面积为1.⨯的方格内作出边长为13的正方形;(1)请在图中的55-+.(2)请在数轴上表示出11325.已知长方形纸片ABCD,将长方形纸片按如图所示的方式折叠,使点D与点B重合,折痕为EF.(1)△BEF是等腰三角形吗?若是,请说明理由;(2)若AB=4,AD=8,求BE的长.26.如图,在四边形ABCD中,AB=13,BC=5,CD=15,AD=9,对角线AC⊥BC.(1)求AC的长;(2)求四边形ABCD的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】证明AD∥CB′,推出S△ACB′=S△CDB′即可解决问题.【详解】∵D是BC的中点,∴BD DC=,由翻折的性质可知ADB ADB '∠=∠,DB DB '=,∴2BD CB '==,∴2CD DB CB ''===,∴CDB '是等边三角形, ∴60CDB DCB ''∠=∠=︒,120BDB '∠=︒, ∴120ADB ADB '∠=∠=︒, ∴60ADC CDB '∠=∠=︒, ∴ADC DCB '∠=∠, ∴//AD CB ',∴22ACB CDB S S ''===△△ 故选:C .【点睛】本题考查了折叠的性质,等边三角形的判定和性质,三角形的面积等知识,解题的关键是学会用转化的思想思考问题.2.C解析:C【分析】根据三角形内角和定理和勾股定理进行判断即可.【详解】解:A 选项:ABC 中,三边长的平方之比为1:2:3,ABC ∴是直角三角形. B 选项:∵在ABC 中,222AB BC AC +=,ABC ∴是直角三角形.C 选项:ABC 中,::3:4:5A B C ∠∠∠=,∴设3,4,5A x B x C x ∠=∠=∠=,又180A B C ︒∠+∠+∠=,12180x ︒∴=,345x ︒=,460x ︒=,575x ︒=,ABC ∴不是直角三角形.D 选项:在ABC 中,1,AB BC AC ===222AB BC AC ∴+=,ABC ∴是直角三角形.故选C .【点睛】本题考查了三角形内角和定理以及勾股定理,熟练掌握三角形内角和定理和勾股定理是本题的关键.3.C解析:C【分析】如图,根据等腰三角形的性质和勾股定理可得m 2+m 2=(3﹣m )2,整理即可解答.【详解】解:如图,m 2+m 2=(3﹣m )2,2m 2=32﹣6m +m 2,m 2+6m ﹣9=0.故选:C .【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.4.A解析:A【分析】由勾股定理,由整个图形的面积减去以BC 为直径的半圆的面积,即可得出结论.【详解】Rt △ABC 中,∵AB 2+AC 2=BC 2∴S 2=222111*********ABC AB AC BC S πππ⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()22218ABC AB AC BCS π∆+-+=S 1.故选A .【点睛】 本题考查了勾股定理、圆面积公式以及数学常识;熟练掌握勾股定理是解题的关键. 5.C解析:C【分析】取AB 的中点D ,连接CD ,根据三角形的边角关系得到OC≤OD+DC ,只有当O 、D 及C 共线时,OC 取得最大值,最大值为OD+CD ,根据D 为AB 中点,得到BD=3,根据三线合一得到CD垂直于AB,在Rt△BCD中,根据勾股定理求出CD的长,在Rt△AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD的值,进而求出DC+OD,即为OC的最大值.【详解】解:如图,取AB的中点D,连接CD,∵AC=BC=10,AB=12,∵点D是AB边中点,∴BD=12AB=6,CD⊥AB,∴22221068BC BD-=-=,连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值=OD+CD,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=12AB=6∴OD+CD=6+8=14,即OC的最大值=14,故选:C.【点睛】本题主要考查等腰三角形的性质,直角三角形的性质以及三角形三边之间的关系,掌握三角形任意两边之和大于第三边,是解题的关键.6.C解析:C【分析】分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.同理,得出S4、S5、S6的关系,即可得到结果.【详解】解:如图1,过点E作AB的垂线,垂足为D,∵△ABE是等边三角形,∴∠AED=∠BED=30°,设AB=x,∴AD=BD=12AB=12x,∴DE=22AE AD -=32x , ∴S 2=1322x x ⨯⨯=23AB , 同理:S 1=23AC ,S 3=23BC , ∵BC 2=AB 2-AC 2,∴S 3=S 2-S 1,如图2,S 4=21122AB π⎛⎫⨯ ⎪⎝⎭=28AB π, 同理S 5=28AC π,S 6=28BC π,则S 4=S 5+S 6,∴S 3+S 4=45-16+11+14=54.【点睛】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.7.A解析:A【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可.【详解】解:∵△ADC 为直角三角形,且AD=CD ,∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即2AC AD =,∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB , ∵∠ACB=90︒,∴222AB AC BC =+,即312111444S S S =+, ∴312S S S =+,∵19S =,216S =,∴3129+16=25S S S =+=,故答案为:A .【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.8.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】 解:由条件可得:22131131240a b ab a b ⎧+=⎪-⎪=⎨⎪>>⎪⎩, 解之得:32a b =⎧⎨=⎩. 所以2()25a b +=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力.9.C解析:C【分析】先将已知条件配方后,利用非负数和为零,求出a 、b 、c 的值,利用勾股定理确定三角形的形状,设出c 边上的高,利用面积求解即可.【详解】2|4|10250b c c -+-+=()2|4|50b c -+-=,()2|4|50b c -+-=, 30a ∴-=,40b -=,50c -=,解得:3a =,4b =,5c =,22222291653452a b c =+=+=+==,ABC ∆∴是直角三角形,设C 边上的高为h ,由直角三角形ABC 的面积为:1122c h a b =, 整理得3412===2.455a b h c ⨯=, c ∴边上的高为:2.4,故选择:C .【点睛】本题考查非负数的性质,勾股定理的逆定理,三角形面积问题,掌握判断非负数的标准,会利用非负数和求a 、b 、c 的值,会用勾股定理判断三角形的形状,会用多种方法求面积是解题的关键.10.C解析:C【分析】设点P (x ,0),根据两点间的距离公式列方程,即可得到结论.【详解】解:设点P (x ,0),根据题意得,x 2+22=(5﹣x )2+52,解得:x =4.6,∴OP =4.6,故选:C .【点睛】本题考查了利用勾股定理求两点间的距离,熟练掌握两点间的距离公式是解题的关键. 11.B解析:B【分析】直接根据梯形ABCD 的面积的两种算法进行解答即可.【详解】解:由图形可得:EDA CDE CEB ABCD S S S S ++=△△△四边形故答案为B .【点睛】本题主要考查了勾股定理的证明方法,将图形的面积用两种方式表示出来成为解答本题的关键.12.B解析:B先找出DE 最短时的位置,然后根据等腰三角形的性质,进行分类讨论,即可求出点P 的个数.【详解】解:在Rt △ABC 中,∠C=90°,设AD=CE=x ,则4CD x =-,由勾股定理,得:2222222(4)28162(2)8DE CD CE x x x x x =+=-+=-+=-+, ∴当2x =时,2DE 最小,即DE 最小,∴此时2AD CD CE BE ====,822DE ==;∵在直线AC 或直线BC 上找到一点P ,使得△PDE 是等腰三角形,则可分为三种情况进行分析:PD=PE ;PD=DE ,PE=DE ;如下图所示:点P 共有7个点;故选:B .【点睛】本题考查了等腰三角形的性质,完全平方公式的应用,勾股定理,最短路径问题,解题的关键是熟练掌握所学的知识,正确的确定点P 的位置,注意运用数形结合的思想进行解题.二、填空题13.6【分析】过D 作DE ⊥AC 于E 根据等腰直角三角形的性质推出DE=AE=CE=AC 求得同理:求出=36根据勾股定理得求出S==36即可得到答案【详解】如图:过D 作DE ⊥AC 于E ∵△ACD 是等腰直角三角解析:6【分析】 过D 作DE ⊥AC 于E ,根据等腰直角三角形的性质推出DE=AE=CE=12AC ,求得21111224S AC AC AC =⋅=,同理:2214S BC =,求出22AC BC +=36,根据勾股定理得222AC BC AB +=,求出S=2AB =36,即可得到答案.如图:过D 作DE ⊥AC 于E ,∵△ACD 是等腰直角三角形,∴AD=CD ,90D ∠=︒,45CAD ACD ∠=∠=︒,∴AE=CE ,45ADE CDE ∠=∠=︒,∴CAD ACD ADE CDE ∠=∠=∠=∠,∴DE=AE=CE=12AC , ∴21111224S AC AC AC =⋅=, 同理:2214S BC =, ∴221211944S S AC BC +=+=, ∴22AC BC +=36,在△ABC 中,∠ACB =90°,222AC BC AB +=,∴S=2AB =36,∴正方形S 的边长等于6,故答案为:6..【点睛】此题考查等腰直角三角形的性质,勾股定理,正确掌握与运用等腰直角三角形的性质是解题的关键.14.13【分析】把圆柱沿母线AB 剪开后展开点C 展开后的对应点为C′利用两点之间线段最短可判断蚂蚁爬行的最短路径为AC′然后利用勾股定理计算出AC′即可【详解】把圆柱沿母线AB 剪开后展开点C 展开后的对应点解析:13【分析】把圆柱沿母线AB 剪开后展开,点C 展开后的对应点为C′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AC′,然后利用勾股定理计算出AC′即可.【详解】把圆柱沿母线AB 剪开后展开,点C 展开后的对应点为C′,则蚂蚁爬行的最短路径为AC′,如图,∵AB =12, BC′=5,在Rt △ABC′,AC′=2251213+=∴蚂蚁爬行的最短路程为13cm .故答案是:13【点睛】本题考查了平面展开−最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.15.【分析】有两种情况可能是锐角三角形可能是钝角三角形过A 点作AD 垂直于BC 当为锐角三角时BC=CD+BD 当为钝角三角形时BC=CD-BD 利用勾股定理求出各边即可得到答案【详解】如图过点A 作垂足为D 当为 解析:422±【分析】ABC ∆有两种情况,可能是锐角三角形,可能是钝角三角形,过A 点作AD 垂直于BC ,当为ABC ∆锐角三角时,BC=CD+BD ,当ABC ∆为钝角三角形时,BC=CD-BD 利用勾股定理求出各边即可得到答案.【详解】如图,过点A 作AD BC ⊥ 垂足为D当为ABC ∆锐角三角时,AC =8,45C ∠=︒,90ADC ∠=︒∴ AD=CD=42在Rt ABD ∆中22226(42)3632AB AD -=-=-∴BC=CD+BD=2当为ABC ∆钝角三角时,同理可得CD= ,BD=2∴BC=CD-BD=2故答案为:2【点睛】本题考查了三角形的分类,勾股定理的应用,准确的画出图形是解决本题的关键. 16.39【分析】根据已知得出图形得出AC2+CD2=AD2以及AB+AD=CD+BC 进而组成方程组求出即可【详解】解:由图2的第一个图形得:AC2+CD2=AD2即(6+BC )2+152=AD2①又由图解析:39【分析】根据已知得出图形得出AC 2+CD 2=AD 2,以及AB+AD=CD+BC ,进而组成方程组求出即可.【详解】解:由图2的第一个图形得:AC 2+CD 2=AD 2,即(6+BC )2+152=AD 2①,又由图2的第三和第四个图形得:AB+AD=CD+BC ,即6+AD=15+BC②,联立①②组成方程组得:()222615615BC AD AD BC⎧++=⎪⎨+=+⎪⎩, 解得:3039BC AD =⎧⎨=⎩, 故BC ,AD 分别取30和39时,才能实现上述变化,故答案为:30,39.【点睛】此题主要考查了翻折变换的性质以及勾股定理和二元二次方程组的解法,得出正确的等量关系是解题关键.17.【分析】根据勾股定理的逆定理判断这是一个直角三角形再结合面积公式求解【详解】解:∵∴∴该三角形为直角三角形∴其面积为故答案为:【点睛】本题考查了勾股定理的逆定理以及二次根式的乘法法则熟练掌握勾股定理【分析】根据勾股定理的逆定理,判断这是一个直角三角形,再结合面积公式求解.【详解】解:∵2215+=,215=,∴222+=,∴该三角形为直角三角形,∴其面积为12=【点睛】本题考查了勾股定理的逆定理以及二次根式的乘法法则,熟练掌握勾股定理的逆定理是解决本题的关键. 18.或6【分析】分第三边是直角边与斜边两种情况进行讨论利用勾股定理即可求解【详解】设第三边长为x 当第三边是斜边时则x2=82+102=164;∴x=(负值舍去)当第三边是直角边时则斜边长为10∴x2+8解析:6【分析】分第三边是直角边与斜边两种情况进行讨论,利用勾股定理即可求解.【详解】设第三边长为x ,当第三边是斜边时,则x 2=82+102=164;∴x=当第三边是直角边时,则斜边长为10,∴x 2+82=102,解得:x=6,(负值舍去)故答案是:6【点睛】本题考查了勾股定理,直角三角形中,两条直角边的平方和等于斜边的平方;熟练掌握勾股定理并运用分类讨论的思想是解题关键关键.19.15米【分析】根据题意确定已知线段的长再根据勾股定理列方程进行计算【详解】设BD=米则AD=()米CD=()米∵∴解得即树的高度是10+5=15米故答案为:15米【点睛】本题主要考查了勾股定理的应用解析:15米【分析】根据题意确定已知线段的长,再根据勾股定理列方程进行计算.【详解】设BD=x 米,则AD=(10x +)米,CD=(30x -)米,∵222CD AD AC -=,∴()()222301020x x --+=, 解得5x =.即树的高度是10+5=15米.故答案为:15米.【点睛】本题主要考查了勾股定理的应用,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.20.2【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论【详解】∵DE垂直平分AB∴AE=BE∴∠EAB=∠B=225°∴∠AEC=∠EAB+∠B=45°∵∠C=90°∴AC=CE=2A解析:【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论.【详解】∵DE垂直平分AB,∴AE=BE,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴AC=CE=2,AE2=AC2+CE2,∴AECE=,∴BE=AE=.故答案为:【点睛】此题考查了线段垂直平分线的性质以及等腰直角三角形性质.此题难度不大,注意数形结合思想的应用.三、解答题21.(1)证明见解析;(2)23【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.【详解】解:(1)∵大正方形面积为c2,直角三角形面积为12ab,小正方形面积为(b﹣a)2,∴c2=4×12ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2;(2)由图可知:(b ﹣a )2=3,4×12ab =13﹣3=10, ∴2ab =10, ∴(a +b )2=(b ﹣a )2+4ab =3+2×10=23.【点睛】本题考查了对勾股定理的证明和以及非负数的性质,掌握三角形和正方形面积计算公式是解决问题的关键.22.(1)见解析;(2)3【分析】(1)根据题意补全图形即可;(2)连接EF 交BC 于点P ,根据两点之间线段最短结合等边三角形的性质求解即可.【详解】解:(1)补全图形如下:(2)连接EF 交BC 于点P ,此时AP FP +的值最小.DE AD AD BC =⊥,,BC ∴为AE 的垂直平分线.2,CA CE AP EP ∴===.AP FP EP PF ∴+=+.,120AB AC AD BC BAC ︒=⊥∠=,,60BAD CAD ∴∠=∠=︒.ACE ∴为等边三角形.∵点F 是AC 的中点,1EF AC AF CF ∴⊥==,.在Rt CEF △中,90,1,2CFE CF EC ∠=︒==,3EF ∴=.AP FP ∴+的最小值为3.【点睛】此题主要考查了等边三角形的判定与性质以及勾股定理等知识,熟练掌握相关性质和定理是解答此题的关键.23.5m【分析】设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,根据勾股定理得到222AB BC AC +=,即()22214x x -+=,解方程即可. 【详解】解:设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,由题意得:090ABC ∠=,在Rt ABC ∆中,222AB BC AC +=,∴()22214x x -+= 解得8.5x =,∴8.5AC m =.【点睛】此题考查勾股定理的实际应用,解一元一次方程,根据题意建立直角三角形,从而利用勾股定理解决实际问题是解题的关键.24.(1)见解析;(2)见解析.【分析】(1)根据勾股定理可知,作13的长的线段时,可以作一个直角边分别为2和3的直角三角形,它的斜边长即所求;(2)先作出边长是13的线段,再以原点为圆心,13为半径画弧,与数轴的正半轴相交于点A ,再以A 为圆心,1为半径画弧,与OA 相交于点B ,则OB 为所求.【详解】解:(1)如图所示,ABCD 为所求作正方形.(2)如图所示,OB=113-+为所求..【点睛】本题考查了勾股定理,利用勾股定理作图时找出相应线段是解题的关键.25.(1)BEF 是等腰三角形,理由见解析;(2)5.【分析】(1)先根据长方形的性质可得//AD BC ,再根据平行线的性质可得DEF BFE ∠=∠,然后根据折叠的性质可得DEF BEF ∠=∠,从而可得BFE BEF ∠=∠,最后根据等腰三角形的判定即可得;(2)先根据长方形的性质可得90A ∠=︒,再根据折叠的性质可得BE DE =,然后设BE DE x ==,从而可得8AE x =-,最后在Rt ABE △中,利用勾股定理即可得.【详解】(1)BEF 是等腰三角形,理由如下:四边形ABCD 是长方形,//AD BC ∴,DEF BFE ∴∠=∠,由折叠的性质得:DEF BEF ∠=∠,BFE BEF ∴∠=∠,BEF ∴是等腰三角形;(2)四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,222AB AE BE +=,即2224(8)x x +-=,解得5x =,即BE 的长为5.【点睛】本题考查了长方形与折叠问题、勾股定理、等腰三角形的判定等知识点,熟练掌握各判定定理与性质是解题关键.26.(1)12;(2)84.【分析】 (1)在Rt ABC 中,利用勾股定理即可得;(2)先根据勾股定理的逆定理可得ACD △是直角三角形,再根据四边形ABCD 的面积等于Rt ABC 的面积与Rt ACD △的面积之和即可得.【详解】(1)AC BC ⊥,ABC ∴是直角三角形,13,5AB BC ==,2222213514412AC AB BC AC ∴=-=-==,;(2)15,9,12CD AD AC ===,222AC AD CD ∴+=, ACD ∴是直角三角形,则四边形ABCD 的面积为1122Rt ABC Rt ACD S S AC BC AC AD +=⋅+⋅, 1112512922=⨯⨯+⨯⨯, 84=,即四边形ABCD 的面积为84.【点睛】本题考查了勾股定理、勾股定理的逆定理等知识点,熟练掌握勾股定理的逆定理是解题关键.。

勾股定理练习题1-4

勾股定理练习题1-4

1S 3S 2S 1C BACBA D E FE F D C B A C A B D 课题:勾股定理(一) 姓名:直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系: (2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边:勾股定理的内容是: 。

1、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为202、一个直角三角形的两边长分别为5cm 和12cm,则第三边的长为 。

3.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt△ABC =________。

4、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为 。

5、一个直角三角形的两边长分别为3cm 和4cm,则第三边的为 。

6、已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高. 求 ①AD 的长;②ΔABC 的面积.7、以直角三角形的两条直角边为边向外作正方形,他们它们面积分别是6和3.则斜边长是 。

8、若直角三角形三边存在关系,则最长边是 。

9、在,∠C =90°AB=34,并且AC:BC=8:15,则AC= BC=10、直角三角形的两直角边的长分别是5和12,则其斜边上的高的长为 .11、已知甲往东走了4km ,乙往南走了3km ,这时甲、乙俩人相距 .12、一直角三角形的斜边长比一条直角边长多2,另一直角边长为6,则斜边长为 . 13、直角三角形中,以直角边为边长的两个正方形的面积为7,8,则以斜边为边长的正方形的面积为____.14、一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做_____?15、已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是_____ 16、如图所示,以的三边向外作正方形,其面积分别 为,且 ;17、等边三角形的边长为2,则该三角形的面积为18、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为19、如图,为修通铁路凿通隧道AC ,量出∠A=40°∠B =50°,AB =5公里,BC =4公里,若每天凿隧道0.3公里,问几天才能把隧道AC 凿通?20、如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,•则这条小路的面积是多少?21、如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9。

人教版八年级数学下册第十七章勾股定理综合测试题(一)

人教版八年级数学下册第十七章勾股定理综合测试题(一)

C5米3米2013-2014学年度第二学期八年级数学试卷(二)(第十七章:勾股定理)一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)1.满足下列条件的三角形中,不是直角三角形的是( )A.、三内角之比为1∶2∶3B.、三边长的平方之比为1∶2∶3C.、三边长之比为3∶4∶5 D 、.三内角之比为3∶4∶52. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长 A 、4 cm B 、8 cmC 、10 cmD 、12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25B 、14C 、7D 、7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) A 、13 B 、8 C 、25 D 、645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )72425207152024257252024257202415(A)(B)(C)(D)6. 在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为( ). A .16π B .12π C .10π D .8π7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) A 、 25 B 、 12.5 C 、 9 D 、 8.58. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A 、 等边三角形B 、 钝角三角形C 、 直角三角形D 、 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). A 、0a 元 B 、600a 元 C 、1200a 元 D 、1500a 元10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).A 、12B 、7C 、5D 、13二、填一填,要相信自己的能力!(每小题3分,共18分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要_____米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14.如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是________.(第14题) (第15题) (第16题)15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.三、做一做,要注意认真审题呀!(5大题,17—20题每题10分,21题12分,共52分)17. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.密 封 线 内 不 得 答 题C18、 如图,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?19.如图,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格,证明你的结论.20. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?21、去年某省将地处A 、B 两地的两所大学合并成了一所综合性大学,为了方便A 、B 两地师生的交往,学校准备在相距2km 的A 、B 两地之间修筑一条笔直公路(即图中的线段AB ),经测量,在A 地的北偏东60°方向、B 地的西偏北45°方向C 处有一个半径为0.7km 的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)ABC DL。

勾股定理1

勾股定理1

勾股定理-初中数学组卷1一.选择题(共30小题)1.(2014•钦州)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A、1种B、2种C、3种D、4种2.(2014•荆州)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A .4dm B.2dm C.2dm D.4dm3.(2014•龙东地区)一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)()A .10πcm B.10cm C.5πcm D.5cm4.(2013•安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A、8米B、10米C、12米D、14米5.(2013•鄂州)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A、6 B、8 C、10 D、126.(2013•济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A .12m B.13m C.16m D.17m7.(2011•金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A .600m B.500m C.400m D.300m8.(2011•台湾)已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?()A .100 B.180 C.220 D.2609.(2011•广安)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A .B.5cm C.D.7cm10.(2010•新疆)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A .3m B.5m C.7m D.9m11.(2010•达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了()A .7米B.6米C.5米D.4米12.(2010•铁岭)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A .米B.米C.(+1)米D.3米13.(2010•锦州)如图,△ABC为的边长6cm的等边三角形,BC为圆锥的底面直径,P为AC上一点,AP=4cm,一只蚂蚁沿圆锥侧面从点B爬到点P,它需要爬行的最短路程是()A10cm B2cm C2cm D4cm....14.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A .5 B . 25 C .10+5 D. 35 15.(2009•乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为()A .B.2C.3D.316.(2007•茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A .12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤1317.(2007•资阳)如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是()A .6 B.7 C.8 D.918.(2006•湘西州)在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答()A .一定不会B.可能会C.一定会D.以上答案都不对19.(2006•荆门)园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是()A、24米2 B、36米2 C、48米2 D、72米220.(2006•内江)有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是()A .cm B.cm C.cm D.cm21.(2006•南充)如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是()A .2πB.C.D.522.(2006•孝感)已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为()A .B.C.D.23.(2005•贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A .6cm B.12cm C.13cm D.16cm24.(2005•山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A .40cm B.20cm C.20cm D.10cm25.(2004•淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A .(3+2)cmB.cm C.cm D.cm26.(2004•梅州)如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为()A .a B.(1+)a C.3a D.a27.(2004•济宁)如图,正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从M点沿正方体的表面爬到D1点,蚂蚁爬行的最短距离是()A、B、3 C、5 D、28.(2003•贵阳)如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短距离为()A .B .C .D .29.(2002•湛江)如图,小红从A 地向北偏东30°,方向走100米到B 地,再从B 地向西走200米到C 地,这时小红距A 地( )A . 150米B . 100米C . 100米D .50米30.(2002•滨州)如图,沿AC 方向开山修路,为加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=120°,BD=210m ,∠D=30°,要正好能使A 、C 、E 成一直线,那么E 、D 两点的距离等于( )A . 105mB . 210mC . 70mD .105m一.选择题(共30小题)1.(2014•钦州)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A 点到B 点只能沿图中的线段走,那么从A 点到B 点的最短距离的走法共有( )A . 1种B . 2种C . 3种D .4种2.(2014•荆州)如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A . 4dmB . 2dmC . 2dmD .4dm3.(2014•龙东地区)一圆锥体形状的水晶饰品,母线长是10cm ,底面圆的直径是5cm ,点A 为圆锥底面圆周上一点,从A 点开始绕圆锥侧面缠一圈彩带回到A 点,则彩带最少用多少厘米(接口处重合部分忽略不计)( ) A . 10πcm B . 10cm C . 5πcm D .5cm4.(2013•安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )A . 8米B . 10米C . 12米D .14米5.(2013•鄂州)如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A . 6B . 8C . 10D .126.(2013•济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,发现此时绳子末端距离地面2m ,则旗杆的高度为(滑轮上方的部分忽略不计)为( )A . 12mB . 13mC . 16mD .17m7.(2011•金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600m B.500m C.400m D.300m8.(2011•台湾)已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?()A、100.B、180.C、220.D、260.9.(2011•广安)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A .B.5cm C.D.7cm10.(2010•新疆)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A .3m B.5m C.7m D.9m11.(2010•达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了()A . 7米B . 6米C . 5米D .4米12.(2010•铁岭)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2米,则树高为( )A . 米B . 米C . (+1)米D .3米 13.(2010•锦州)如图,△ABC 为的边长6cm 的等边三角形,BC 为圆锥的底面直径,P 为AC 上一点,AP=4cm ,一只蚂蚁沿圆锥侧面从点B 爬到点P ,它需要爬行的最短路程是( )A . 10cmB . 2cmC . 2cmD .4cm 14.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A . 5B . 25C . 10+5D . 35 15.(2009•乐山)如图,一圆锥的底面半径为2,母线PB 的长为6,D 为PB 的中点.一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D ,则蚂蚁爬行的最短路程为( ) A B 2 C 3 D 316.(2007•茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤1317.(2007•资阳)如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是()A .6 B.7 C.8 D.918.(2006•湘西州)在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答()A .一定不会B.可能会C.一定会D.以上答案都不对19.(2006•荆门)园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是()A .24米2B.36米2C.48米2D.72米220.(2006•内江)有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是()A .cm B.cm C.cm D.cm21.(2006•南充)如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是()A .2πB.C.D.522.(2006•孝感)已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为()A .B.C.D.23.(2005•贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A .6cm B.12cm C.13cm D.16cm24.(2005•山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A .40cm B.20cm C.20cm D.10cm25.(2004•淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A .(3+2)cmB.cm C.cm D.cm26.(2004•梅州)如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为()A .a B.(1+)a C.3a D.a27.(2004•济宁)如图,正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从M 点沿正方体的表面爬到D 1点,蚂蚁爬行的最短距离是( )A. B . 3 C . 5 D .28.(2003•贵阳)如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿着圆柱的侧面移动到BC 的中点S 的最短距离为( )A .B .C .D .29.(2002•湛江)如图,小红从A 地向北偏东30°,方向走100米到B 地,再从B 地向西走200米到C 地,这时小红距A 地( )A . 150米B . 100米C . 100米D . 50米30.(2002•滨州)如图,沿AC 方向开山修路,为加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=120°,BD=210m ,∠D=30°,要正好能使A 、C 、E 成一直线,那么E 、D 两点的距离等于( )A . 105mB . 210mC . 70mD .105m勾股定理-初中数学组卷1参考答案与试题解析1、C .2、A .3、B4、B5、B6、D7、B8、C9、B 10、A11、B 12、C 13、B 14、B 15、C 16、A 17、D 18、A 19、B 20、C21、B 22、B 23、B 24、C 25、C 26、D 27、A 28、A 29、B 30、A。

1、勾股定理真题1

1、勾股定理真题1

勾股定理复习题卷一.选择题(共10小题)1.如图,在△ABC中,∠A=∠B=45°,AB=4,以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2B.4C.8D.162.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.253.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b24.已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.485.如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=()A.4B.8C.12D.326.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对7.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.808.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米9.如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8B.9.6C.10D.4 510.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2二.填空题(共8小题)11.如图,在△ABC中,AB=AC=10cm,BC=12cm,AD⊥BC于点D,则AD=cm.12.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=.13.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.14.如图将4个长、宽分别均为a、b的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是.15.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是.16.如图,△ABC中,AC=3,BC=4,AB=5,AB上的高CD=.17.如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是.18.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米.三.解答题(共9小题)19.如图,在四边形ABCD中,∠BAD=∠B=∠C=90°,AD=BC=20,AB=DC=16.将四边形ABCD 沿直线AE折叠,使点D落在BC边上的点F处.(1)求BF的长.(2)求EC的长.20.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米(即AC=5)处,已知木杆原长为25米.(1)求木杆断裂处离地面(即AB的长)多少米?(2)求△ABC的面积.21.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)22.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.23.已知:△ABC中AB=AC=20,BC=32,D是BC上一点,且AD⊥AC,求BD的长.24.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?25.如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2,求△CDE的周长.26.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.27.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.勾股定理复习题卷参考答案与试题解析一.选择题(共10小题)1.如图,在△ABC中,∠A=∠B=45°,AB=4,以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2B.4C.8D.16【解答】解:因为在△ABC中,∠A=∠B=45°,AB=4,所以AC==2,所以这个正方形的面积为=8,故选:C.2.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.25【解答】解:如图所示:AB==5.故选:A.3.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【解答】解:由题意可得,正方形的边长为(a+b),故正方形的面积为(a+b)2,又∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故选:C.4.已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.48【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.5.如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=()A.4B.8C.12D.32【解答】解:∵S1=4,∴BC2=4,∵S2=12,∴AC2=8,∴在Rt△ABC中,BC2+AC2=AB2=4+8=12,∴S3=AB2=12.故选:C.6.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.7.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.80【解答】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD﹣S△ABE,=AB2﹣×AE×BE=100﹣×6×8=76.故选:C.8.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米【解答】解:Rt△ABC中,AC=1米,AB=2米;由勾股定理,得:BC==米;∴树的高度为:AC+BC=(+1)米;故选:C.9.如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8B.9.6C.10D.4 5【解答】解:作AD⊥BC于D,如图所示:则∠ADB=90°,∵AB=AC,∴BD=BC=6,由勾股定理得:AD==8,当BM⊥AC时,BM最小,此时,∠BMC=90°,∵△ABC的面积=AC•BM=BC•AD,即×10×BM=×12×8,解得:BM=9.6,故选:B.10.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.二.填空题(共8小题)11.如图,在△ABC中,AB=AC=10cm,BC=12cm,AD⊥BC于点D,则AD=8cm.【解答】解:∵在△ABC中,AB=AC=10cm,BC=12cm,AD⊥BC于点D,∴BD=BC=6cm.在Rt△ABD中,∵AB=10cm,BD=6cm,∴AD===8cm.故答案为:8.12.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=17.【解答】解:∵S1=5,∴BC2=5,∵S2=12,∴AC2=12,∴在Rt△ABC中,BC2+AC2=AB2=5+12=17,∴S3=AB2=17.故答案为:17.13.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于13.【解答】解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得AB=5.在直角三角形ABD中,BD=12,根据勾股定理,得AD=13.14.如图将4个长、宽分别均为a、b的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是(a+b)2﹣(a﹣b)2=4ab.【解答】解:观察图形得:大正方形边长为:a+b,小正方形边长为:a﹣b,根据大正方形面积﹣小正方形面积=阴影面积得:(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab.15.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是47.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=32+52=34;y2=22+32=13;z2=x2+y2=47;即最大正方形E的边长为:,所以面积为:z2=47.故答案为:47.16.如图,△ABC中,AC=3,BC=4,AB=5,AB上的高CD=.【解答】解:∵△ABC中,AC=3,BC=4,AB=5,∴AB2=AC2+BC2,即52=32+42,∴△ABC是直角三角形,∵CD⊥AB,∴AC•BC=AB•CD,即3×4=5×CD,解得CD=.故答案为:.17.如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是3≤DE≤5.【解答】解:当E与C重合时,DE最长,在Rt△ABC中,AB=,∵点D是线段AB的中点,∴CD=5,当DE⊥BC时,DE最短,DE=,所以DE长度的取值范围是3≤DE≤5,故答案为:3≤DE≤518.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需7米.【解答】解:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,已知AB=5米,AC=3米,且在直角△ABC中,AB为斜边,则BC==4米,则AC+BC=3米+4米=7米.故答案为:7.三.解答题(共9小题)19.如图,在四边形ABCD中,∠BAD=∠B=∠C=90°,AD=BC=20,AB=DC=16.将四边形ABCD 沿直线AE折叠,使点D落在BC边上的点F处.(1)求BF的长.(2)求EC的长.【解答】解:(1)∵△AFE是△ADE折叠得到的,∴AF=AD=20,∴在Rt△ABE中,BF===12.(2)∵△AFE是△ADE折叠得到的,∴EF=ED.设EC=x,则EF=ED=16﹣x,在Rt△EFC中,FC=BC﹣BF=8,∠C=90°,∴EF2=FC2+EC2,即(16﹣x)2=82+x2,解得:x=6,∴EC的长度为6.20.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米(即AC=5)处,已知木杆原长为25米.(1)求木杆断裂处离地面(即AB的长)多少米?(2)求△ABC的面积.【解答】解:(1)设木杆断裂处离地面x米,由题意得x2+52=(25﹣x)2,解得x=12.答:木杆断裂处离地面12米;(2)△ABC的面积=AC•AB=30平方米.21.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB==12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,∴CD=13﹣0.5×10=8(米),∴AD===(米),∴BD=AB﹣AD=12﹣(米),答:船向岸边移动了(12﹣)米.22.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.【解答】证明:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理,得AC2=202+152=625.又CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°.∴∠A+∠C=360°﹣180°=180°.23.已知:△ABC中AB=AC=20,BC=32,D是BC上一点,且AD⊥AC,求BD的长.【解答】解:作AE⊥BC于点E,∵△ABC中AB=AC=20,BC=32,∴CE=16,∴cos∠C=,∵AD⊥AC,∴∠CAD=90°,∴cos∠C=,∴,解得,CD=25,∵BC=32,∴BD=7.24.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,B C′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.25.如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2,求△CDE的周长.【解答】(1)证明:∵∠ACB=90°,CD是AB边上的中线,∴CD=AD=DB.∵∠B=30°,∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高,∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED,又AC=2,∴CD=2,ED=1.∴.∴△CDE的周长=.26.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.【解答】解:(1)∵在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB2=AC2+BC2,解得AB=25.答:AB的长是25;(2)AC•BC=×20×15=150.答:△ABC的面积是150;(3)∵CD是边AB上的高,∴AC•BC=AB•CD,解得:CD=12.答:CD的长是12.27.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.【解答】解:在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB==10,=AB•CD=AC•BC,∵S△ABC∴CD===4.8.。

勾股定理测试题(1)附答案

勾股定理测试题(1)附答案

C勾股定理测试题(1)附答案一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )72425207152024257252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.C三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。

勾股定理练习题(含答案) (1)

勾股定理练习题(含答案) (1)

勾股定理练习题(含答案)一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定 4.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 5.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .6.假如有一个三角形是直角三角形,那么三边a 、b 、c 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边a 、b 、c 满足222b c a =+,那么这个三角形是 三角形,其中b 边是 边,b 边所对的角是 . 7.一个三角形三边之比是6:8:10,则按角分类它是 三角形.8. 若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .9.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .10. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .二、综合发展:11.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.AB12.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?13.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.14.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?答案: 一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长. 答案:C . 4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=. 答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC所以以直角边9=BC 为直径的半圆面积为10.125π. 答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5. 二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴ 12=x (cm ).答案:12=x (cm ).13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m, 所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解. 答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h . 答案:这辆小汽车超速了.。

第一章勾股定理单元测试题(含答案)

第一章勾股定理单元测试题(含答案)

第一章 勾股定理单元测试题一、选择题(每小题3分,共30分)1. 下列各组中,不能构成直角三角形的是下列各组中,不能构成直角三角形的是 ( ). (A )9,12,15 (B )15,32,39 (C )16,30,32 (D )9,40,41 2. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ). (A )6 (B )8 (C )10 (D )12 3. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为则图中阴影部分的面积为 ( ). (A )9 (B )3 (C )49 (D )294. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为(的长为( ). (A )11 (B )10 (C )9 (D )8 5. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是(,则此三角形是( ). (A )锐角三角形)锐角三角形 (B )钝角三角形)钝角三角形 (C )等腰直角三角形)等腰直角三角形 (D )直角三角形)直角三角形 6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为,则这个直角三角形斜边上的高为 ( ). (A )6 (B )8.5 (C )1320 (D )13607. 高为3,底边长为8的等腰三角形腰长为的等腰三角形腰长为 ( ). (A )3 (B )4 (C )5 (D )6 8. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需沿边长爬行一周需 ( ). (A )6秒 (B )5秒 (C )4秒 (D )3秒9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2)(b a + 的值为的值为 ( ). (A )49 (B )25 (C )13 (D )1 10. 如图5所示,在长方形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE=12,BF=16,则由点E 到F 的最短距离为的最短距离为 ( ). (A )20 (B )24 (C )28 (D )32 二、填空题(每小题3分,共30分) 11. 写出两组直角三角形的三边长写出两组直角三角形的三边长 .(要求都是勾股数)(要求都是勾股数) 12. 如图6(1)、(2)中,(1)正方形A 的面积为的面积为 . (2)斜边x= . 个直角三角形为 .,∠B=90°,求四边形ABCD 的面积的半圆,的半圆,其边缘其边缘AB=CD=20m ,点E 在CD20.(8分)如图13(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图13(2)所示.已知展开图中每个正方形的边长为1. (1)求该展开图中可画出最长线段的长度,并求出这样的线段可画几条. (2)试比较立体图中∠ABC与平面展开图中///CBAÐ的大小关系. 21.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?米吗?22.(8分)有一块直角三角形的绿地,量得两直角边长分别为6m m,8.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.为直角边的直角三角形,求扩充后等腰三角形绿地的周长.4322+212´´AE=)4(1822»+p 定理可知,定理可知,BC=4000500022=-)10;(,所以梯子向后滑动了8米. 45,)45253,的周长为80m 3ADABAD。

第一章--勾股定理同步练习(16页)

第一章--勾股定理同步练习(16页)

第一章勾股定理测试1 勾股定理(一)一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A →B→C所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).(A)4 (B)6 (C)8 (D)1028.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2(C)225cm2(D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个(C)3个(D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;图②(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.图③测试2 勾股定理(二)课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m路,却踩伤了花草.3题图4.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m.4题图二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( ).5题图(A)5m (B)7m (C)8m (D)10m6.如图,从台阶的下端点B到上端点A的直线距离为( ).6题图(A)212(B)310(C)56(D)58三、解答题7.在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC 为______米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______( 取3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.测试3 勾股定理(三)课堂学习检测一、填空题1.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______.2.在△ABC 中,若AB =AC =20,BC =24,则BC 边上的高AD =______,AC 边上的高BE =______.3.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 二、选择题6.已知直角三角形的周长为62 ,斜边为2,则该三角形的面积是( ).(A)41(B)43(C)21(D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A)7 (B)7或41(C)24(D)24或7三、解答题8.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.综合、运用、诊断10.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.11.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE的长.12.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少? 15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE 为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.测试4 勾股定理的逆定理课堂学习检测一、填空题1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a2+b2>c2,则∠c为____________;②若a2+b2=c2,则∠c为____________;③若a2+b2<c2,则∠c为____________.5.若△ABC中,(b-a)(b+a)=c2,则∠B=____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC是______三角形.7.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为______.8.△ABC的两边a,b分别为5,12,另一边c为奇数,且a+b+c是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a=6,b=8,c=10 (B)3,2,1===cba(C)43,1,45===cba(D)6,3,2===cba10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4 (C)9∶25∶26 (D)25∶144∶169 11.已知三角形的三边长为n、n+1、m(其中m2=2n+1),则此三角形( ).(A)一定是等边三角形(B)一定是等腰三角形 (C)一定是直角三角形 (D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.13.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.14.已知:如图,在正方形ABCD中,F为DC的中点,E为CB的四等分点且CE=CB41,求证:AF⊥FE.15.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.第十八章勾股定理全章测试一、填空题1.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.2.若等边三角形的边长为2,则它的面积为______.3.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10cm2,则其中最大的正方形的边长为______cm.3题图4.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC的距离是______米.4题图5.已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D,E,F分别是垂足,且BC=8cm,CA=6cm,则点O到三边AB,AC和BC的距离分别等于______cm.5题图6.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.6题图7.△ABC中,AB=AC=13,若AB边上的高CD=5,则BC=______.8.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.8题图二、选择题9.下列三角形中,是直角三角形的是( )(A)三角形的三边满足关系a+b=c(B)三角形的三边比为1∶2∶3(C)三角形的一边等于另一边的一半(D)三角形的三边为9,40,4110.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( ).10题图(A)450a元 (B)225a元 (C)150a元 (D)300a元11.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=( ).(A)2 (B)3 (C)22 (D)3212.如图,Rt△ABC中,∠C=90°,CD⊥AB于点D,AB=13,CD=6,则AC+BC等于( ).(A)5 (B)135 (C)1313 (D)59三、解答题13.已知:如图,△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足,求AD 的长.14.如图,已知一块四边形草地ABCD,其中∠A=45°,∠B=∠D=90°,AB=20m,CD=10m,求这块草地的面积.15.△ABC中,AB=AC=4,点P在BC边上运动,猜想AP2+PB·PC的值是否随点P位置的变化而变化,并证明你的猜想.16.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,求BC.17.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过四个侧面缠绕一圈到达点B,那么所用细线最短需要多长?如果从点A开始经过四个侧面缠绕n圈到达点B,那么所用细线最短需要多长?18.如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都为3,另一种纸片的两条直角边长分别为1和3.图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.图1 图2 图3(1)请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,并把你所拼得的图形按实际大小画在图1、图2、图3的方格纸上(要求:所画图形各顶点必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹);(2)三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的面积各是多少;(3)三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的周长各是多少.19.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案 勾股定理 测试1 勾股定理(一)1.a 2+b 2,勾股定理. 2.(1)13; (2)9; (3)2,3; (4)1,2. 3.52. 4.52,5. 5.132cm . 6.A . 7.B . 8.C . 9.(1)a =45cm .b =60cm ; (2)540; (3)a =30,c =34; (4)63; (5)12.10.B . 11..5 12.4. 13..310 14.(1)S 1+S 2=S 3;(2)S 1+S 2=S 3;(3)S 1+S 2=S 3.测试2 勾股定理(二)1.13或.119 2.5. 3.2. 4.10. 5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元.13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试3 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a 5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-AB AF ,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得x =3. 13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB15.128,2n -1.测试4 勾股定理的逆定理1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3). 4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17. 9.D . 10.C . 11.C . 12.CD =9. 13..51+14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0. 18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数)参考答案 勾股定理全章测试1.8. 2..3 3..10 4.30. 5.2.6.3.提示:设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程. 7.26或.2658.6.提示:延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt △. 9.D . 10.C 11.C . 12.B13..2172提示:作CE ⊥AB 于E 可得,5,3==BE CE 由勾股定理得,72=BC 由三角形面积公式计算AD 长.14.150m 2.提示:延长BC ,AD 交于E . 15.提示:过A 作AH ⊥BC 于HAP 2+PB ·PC =AH 2+PH 2+(BH -PH )(CH +PH ) =AH 2+PH 2+BH 2-PH 2 =AH 2+BH 2=AB 2=16. 16.14或4.17.10; .16922n +18.(1)略; (2)定值, 12;(3)不是定值,.10226,1028,268+++ 19.在Rt △ABC 中,∠ACB =90°,AC =8,BC =6由勾股定理得:AB =10,扩充部分为Rt △ACD ,扩充成等腰△ABD ,应分以下三种情况.①如图1,当AB =AD =10时,可求CD =CB =6得△ABD 的周长为32m .图1②如图2,当AB =BD =10时,可求CD =4图2由勾股定理得:54=AD ,得△ABD 的周长为.m )5420(+. ③如图3,当AB 为底时,设AD =BD =x ,则CD =x -6,图3由勾股定理得:325=x ,得△ABD 的周长为.m 380。

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(有答案解析)(1)

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(有答案解析)(1)

一、选择题1.如图,动点P 从点A 出发,沿着圆柱的侧面移动到BC 的中点S ,若8BC =,点P 移动的最短距离为5,则圆柱的底面周长为( )A .6B .4πC .8D .102.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,已知3AC =,4BC =,则BD =( )A .125B .95C .23D .1653.如图,已知正方体纸盒的高为1,已知一只蚂蚁从其中一个顶点A ,沿着纸盒的外部表面爬行至另一个顶点B ,则蚂蚁爬行的最短距离是( )A 3B .2C 5D 21 4.如图,用64个边长为1cm 的小正方形拼成的网格中,点A ,B ,C ,D ,E ,都在格点(小正方形顶点)上,对于线段AB ,AC ,AD ,AE ,长度为无理数的有( ).A .4条B .3条C .2条D .1条 5.下列数组是勾股数的是( ) A .2,3,4B .0.3,0.4,0.5C .5,12,13D .8,12,15 6.若ABC 的三边长a 、b 、c 满足222681050a b c a b c ++=++-,那么ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形7.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .103B .256C .203D .1548.如图所示,有一块直角三角形纸片,90C ∠=︒,12AC cm =,9BC cm =,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CD 的长为( )A .4cmB .5cmC 17cmD .94cm 9.如图,分别以直角三角形ABC 的三边为斜边向外作直角三角形,且AD CD =,CE BE =,AF BF =,这三个直角三角形的面积分别为1S ,2S ,3S ,且19S =,216S =,则S 3S =( )A .25B .32C .7D .1810.如图,在ABC 中,点D 是BC 上一点,连结AD ,将ACD △沿AD 翻折,得到AED ,AE 交BD 于点F .若2BD DC =,AB AD =,2AF EF =,2CD =,DFE △的面积为1,则点D 到AE 的距离为( )A .1B .65C .5D .211.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB =1;再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,那么点P 表示的数是( )A .2.2B 5C .1+2D 612.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .169二、填空题13.如图所示的正方形网格中,A ,B ,C ,D ,P 是网格线交点.若∠APB =α,则∠BPC 的度数为 ____(用含α的式子表示).14.如图,在ABC 中,90C =∠,AB 的中垂线DE 交AB 于E ,交BC 于D ,若5AB =,3AC =,则ACD △的周长为__________.15.如图,在4×4方格中,小正方形格的边长为1,则图中阴影正方形的边长是____.16.在Rt △ABC 中,∠C =90°,如果AB =15,AC =12,那么Rt △ABC 的面积是_____. 17.我国古代数学善作《九章算术》中有这样一个问题:“分有池方一文,葭生其中央,出水一尺.引葭赴岸,适与岸齐,闻水深、度长各几何.”译文:“有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度和这根芦苇的长分别是多少?”这根芦苇的长度为__________尺.18.如图,90AOB ∠=︒,9OA m =,3OB m =,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球,如果小球滚动的速度与机器人行走的速度相等,则机器人行走的路程BC 为__________.19.若一个直角三角形的两条直角边长分别是4和6,则斜边长为__________. 20.如图,它是四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积为13,小正方形的面积为1,直角三角形的较短的直角边长为a ,较长的直角边为b ,那么+a b 的值为__________.三、解答题21.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.22.如图,ABC 中,∠C=90°,BC=5厘米,AB=55厘米,点P 从点A 出发沿AC 边以2厘米/秒的速度向终点C 匀速移动,同时,点Q 从点C 出发沿CB 边以1厘米/秒的速度向终点B 匀速移动,P 、Q 两点运动几秒时,P 、Q 两点间的距离是210厘米?23.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?24.如图,在△ABC 中,AD ⊥BC 于点D ,且AC +AD =32,BD =5,CD =16,试确定AB 的长.25.如图,小区有一块三角形空地ABC ,为响应沙区创文创卫,美化小区的号召,小区计划将这块三角形空地进行新的规划,过点D 作垂直于AB 的小路DE .经测量,15AB =米,13AC =米,12AD =米,5DC =米.(1)求BD 的长;(2)求小路DE 的长.26.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据圆柱的侧面展开图,利用勾股定理求出AB 即可求解.【详解】解:圆柱的侧面展开图如图,点P 移动的最短距离为AS=5,根据题意,BS=12BC=4,∠ABS=90°, ∴22AS BS -2254-,∴圆柱的底面周长为2AB=6,故选:A .【点睛】本题考查圆柱的侧面展开图、最短路径问题、勾股定理,熟练掌握圆柱的侧面展开图,得出点P 移动的最短距离是AS 是解答的关键.2.D解析:D【分析】勾股定理求出AB =5,设BD=x ,AD=5-x ,根据勾股定理列方程即可.【详解】解:∵90ACB ∠=︒,3AC =,4BC =, ∴2222AB AC BC 345=+=+=,设BD=x ,AD=5-x ,∵CD AB ⊥∴∠CDA=∠CDB=90°,2222AC AD BC BD -=-,22223(5)4x x --=-,解得,x=165, 故选:D .【点睛】 本题考查了勾股定理求线段长,解题关键是设未知数,根据勾股定理列方程. 3.C解析:C【分析】从正方体外部可分三类走法直接走AB 对角线,先走折线AD-DB ,或走三条棱,求出其长度,比较大小即可【详解】方法一:走两个正方形两接的面展开成日字形的对角线在三角形ABC 中,由勾股定理AB=2222AC +BC =2+1=5;方法二:走一面折线AD-BD,由勾股定理;方法三折线AE-ED-DB即AE+ED+DB=3;在正方体外部表面走有这三类走法,∵5<9,∴3,∵2>1,∴>,1∴>,2∴>,2+3∴)25>,∴>故选择:C.【点睛】本题考查蚂蚁爬行最短路径问题是考查勾股定理的应用,掌握勾股定理的应用方法,会利用图形分析行走路径是解题关键.4.C解析:C【分析】先根据勾股定理求出AB,AC,AD,AE这4条线段的长度,即可得出结果.【详解】根据勾股定理计算得:=,5==,10长度为无理数的有2条,故选:C.【点睛】本题主要考查了勾股定理及无理数.勾股定理:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.5.C解析:C【分析】勾股数就是可以构成一个直角三角形三边的一组正整数,再利用勾股定理的逆定理逐一判断各选项即可得到答案.【详解】解:22223134,+=≠ 故A 不符合题意;0.3,0.4,0.5首先不是正整数,故B 不符合题意;22251216913,+== 故C 符合题意;2228126414420815,+=+=≠ 故D 不符合题意;故选:.C【点睛】本题考查的是勾股数的含义,勾股定理的逆定理的应用,掌握以上知识是解题的关键. 6.B解析:B【分析】先用完全平方公式进行因式分解求出a 、b 、c 的值,再确定三角形的形状即可.【详解】解:222681050a b c a b c ++=++-,移项得,2226810500a b c a b c ++---+=,2226981610250a a b b c c +++++--=-,222(3)4)(0(5)a b c -+-+-=,30,40,50a b c -=-=-=,3,4,5a b c ===,2229,16,25a b c ===,222+=a b c , ABC 是直角三角形,故选:B .【点睛】本题考查了运用完全平方公式因式分解,勾股定理逆定理,非负数的性质,解题关键是通过等式的变形,恰当的拆数配成完全平方,再根据非负数的性质求边长.7.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°, ∴6BC ===,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.8.A解析:A【分析】根据勾股定理可将斜边AB 的长求出,根据折叠的性质知,AE=AB ,已知AC 的长,可将CE 的长求出,再根据勾股定理列方程求解,即可得到CD 的长.【详解】解:在Rt △ABC 中,12AC cm =,9BC cm =,22AC BC +,根据折叠的性质可知:AE=AB=15cm ,∵AC=12cm ,∴CE=AE-AC=3cm ,设CD=xcm ,则BD=9-x=DE ,在Rt △CDE 中,根据勾股定理得CD 2+CE 2=DE 2,即x 2+32=(9-x )2,解得x=4,即CD 长为4cm .故选:A .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠前后的对应相等关系.解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.9.A解析:A【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可.【详解】解:∵△ADC 为直角三角形,且AD=CD ,∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即AC =, ∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB , ∵∠ACB=90︒,∴222AB AC BC =+,即312111444S S S =+, ∴312S S S =+,∵19S =,216S =,∴3129+16=25S S S =+=,故答案为:A .【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.10.B解析:B【分析】过A 作AG BC ⊥于点G ,根据2AF EF =可得3ADE ACD S S ∆∆==,再由勾股定理求得5AE AC ==,最后由三角形面积公式可求出点D 到AE 的距离.【详解】解:过A 作AG BC ⊥于点G∵1DFE S ∆=,2AF EF =∴2ADF S ∆=∴3ADE ACD S S ∆∆== ∵12ADC S CD AG ∆=⋅⋅ ∴3AG =∵AB AD =,AG BC ⊥∴2BD GB =由2BD CD =得,2GD CD ==∴224GC GD DC =+=+=在Rt AGC ∆中,225AC AG GC =+=∴5AE AC == ∴236255ADE S h AE ∆⨯=⋅== 故选:B .【点睛】 本题考查了折叠问题,勾股定理定理,等腰三角形的性质以及三角形面积公式的应用,熟练运用这些性质进行推理是本题的关键.11.B解析:B【分析】根据题意可知AOB 为直角三角形,再利用勾股定理即可求出OB 的长度,从而得出OP 长度,即可选择.【详解】∵AB OA ⊥∴AOB 为直角三角形.∴在Rt AOB 中,22OB OA AB +根据题意可知2=1OA AB =,, ∴2221=5OB +又∵OB OP =,∴P故选:B .【点睛】本题考查数轴和勾股定理,利用勾股定理求出OB 的长是解答本题的关键.12.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】 解:由条件可得:22131131240a b ab a b ⎧+=⎪-⎪=⎨⎪>>⎪⎩, 解之得:32a b =⎧⎨=⎩. 所以2()25a b +=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力. 二、填空题13.【分析】由图可知AC 的长根据勾股定理可以求得PAPC 的长再利用勾股定理的逆定理可以判断△PAC 的形状从而可以得到∠CPA 的度数然后即可得到∠BPC=∠CPA−∠APB 的度数【详解】设网格的长度为1则解析:90-α︒【分析】由图可知AC 的长,根据勾股定理可以求得PA 、PC 的长,再利用勾股定理的逆定理可以判断△PAC 的形状,从而可以得到∠CPA 的度数,然后即可得到∠BPC=∠CPA−∠APB 的度数.【详解】设网格的长度为1,则== ,AC=6222AP PC AC +=∴ △PAC 为等腰直角三角形∴∠CPA=90︒∴∠BPC=∠CPA−∠APB=90-α︒︒故答案为:90-α【点睛】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.14.7【分析】先根据勾股定理求出BC的长再由线段垂直平分线的性质得出AD=BD即AD+CD=BC再由AC=6即可求出答案【详解】解:∵△ABC中∠C=90°AB=5AC=3∴BC==4∵DE是线段AB的解析:7【分析】先根据勾股定理求出BC的长,再由线段垂直平分线的性质得出AD=BD,即AD+CD=BC,再由AC=6即可求出答案.【详解】解:∵△ABC中,∠C=90°,AB=5,AC=3,∴=4,∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD,即AD+CD=BC,∴△ACD的周长=AC+CD+AD=AC+BC=3+4=7.故答案为:7.【点睛】本题考查了勾股定理及线段垂直平分线的性质,能根据线段垂直平分线的性质求出AD+CD=BC是解题的关键.15.【分析】根据勾股定理即可得出结果【详解】解:正方形的边长=故答案为:【点睛】本题主要考查的是勾股定理掌握勾股定理的计算方法是解题的关键【分析】根据勾股定理即可得出结果.【详解】解:正方形的边长.【点睛】本题主要考查的是勾股定理,掌握勾股定理的计算方法是解题的关键.16.54【分析】在Rt△ABC中利用勾股定理可求出BC的长度即可解决问题【详解】解:∵在Rt△ABC中∠C=90°AB=15AC=12∴BC===9∴S△ABC=×9×12=54故答案为:54【点睛】本解析:54【分析】在Rt △ABC 中,利用勾股定理可求出BC 的长度,即可解决问题.【详解】解:∵在Rt △ABC 中,∠C =90°,AB =15,AC =12,∴BC =22AB AC - =221512-=9.∴S △ABC =12×9×12=54 故答案为:54.【点睛】本题考查勾股定理的知识,属于基础题,解题关键是掌握勾股定理的形式.17.13【分析】可以将其转化为数学几何图形如图所示根据题意可知EB 的长为10尺则BC =5尺设出芦苇长度AB =AB =x 尺表示出水深AC 根据勾股定理建立方程即可【详解】依题意画出图形设芦苇长AB =AB′=x解析:13【分析】可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为10尺,则B'C =5尺,设出芦苇长度AB =AB'=x 尺,表示出水深AC ,根据勾股定理建立方程即可.【详解】依题意画出图形,设芦苇长AB =AB′=x 尺,则水深AC =(x ﹣1)尺,因为B'E =10尺,所以B'C =5尺, 在Rt △AB'C 中,∵CB′2+AC 2=AB′2,∴52+(x ﹣1)2=x 2,解得:x=13,故答案为:13.【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.18.5m 【分析】由题意根据小球滚动的速度与机器人行走的速度相等得到BC=AC 设BC=AC=xm 根据勾股定理求出x 的值即可【详解】解:∵小球滚动的速度与机器人行走的速度相等∴BC=AC设BC=AC=xm则解析:5m【分析】由题意根据小球滚动的速度与机器人行走的速度相等,得到BC=AC,设BC=AC=xm,根据勾股定理求出x的值即可.【详解】解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,设BC=AC=xm,则OC=(9-x)m,在Rt△BOC中,∵OB2+OC2=BC2,∴32+(9-x)2=x2,解得x=5.故答案为:5m.【点睛】本题考查的是勾股定理的应用,熟知在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.19.【分析】直接根据勾股定理求解可得【详解】解:∵直角三角形的两条直角边长分别是4和6∴斜边长为故答案为:【点睛】本题考查勾股定理在任何一个直角三角形中两条直角边长的平方之和一定等于斜边长的平方即如果直解析:【分析】直接根据勾股定理求解可得.【详解】解:∵直角三角形的两条直角边长分别是4和6,∴故答案为:【点睛】本题考查勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.20.5【分析】根据题意结合图形求出ab与a2+b2的值原式利用完全平方公式化简后代入计算即可求出值【详解】解:根据题意得:c2=a2+b2=134×ab=13-1=12即2ab=12则(a+b)2=a2解析:5【分析】根据题意,结合图形求出ab 与a 2+b 2的值,原式利用完全平方公式化简后代入计算即可求出值.【详解】解:根据题意得:c 2=a 2+b 2=13,4×12ab=13-1=12,即2ab=12, 则(a+b )2=a 2+2ab+b 2=13+12=25,则a+b=5故答案为:5.【点睛】本题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解题的关键.三、解答题21.224cm .【分析】连接AC ,勾股定理计算AC=222234AD CD +=+,应用勾股定理的逆定理判定三角形ABC 是直角三角形,计算两个直角三角形的面积差即可.【详解】解:连接AC∵AD DC ⊥∴∠ADC=90°,在Rt △ADC 中,根据勾股定理,得AC=222234AD CD +=+ =5,在△ABC 中,∴22222251213AC BC AB +=+==,△ABC 是直角三角形,∴=-ABC ACD ABCD S SS 四边形 =51234-22⨯⨯ =242m ().【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.【分析】设P、Q两点运动x秒时,P、Q两点间的距离是210厘米,先利用勾股定理求出AC的长度,得到AP=2x厘米,CQ=x厘米,CP=(10﹣2x)厘米,再利用勾股定理得到(10﹣2x)2+x2=(210)2求出x的值.【详解】解:设P、Q两点运动x秒时,P、Q两点间的距离是210厘米.在△ABC中,∠C=90°,BC=5厘米,AB=55厘米,∴AC=2222-=-=10(厘米),(55)5AB BC∴AP=2x厘米,CQ=x厘米,CP=(10﹣2x)厘米,在Rt△CPQ内有PC2+CQ2=PQ2,∴(10﹣2x)2+x2=(210)2,整理得:x2﹣8x+12=0,解得:x=2或x=6,当x=6时,CP=10﹣2x=﹣2<0,∴x=6不合题意舍去.∴P、Q两点运动2秒时,P、Q两点间的距离是210厘米.【点睛】此题考查勾股定理,动点问题与几何图形,熟练掌握勾股定理的计算公式并运用解决问题是关键.23.6【分析】在吸管(杯内部分)、杯底直径、杯高构成的直角三角形中,由勾股定理可求出杯内吸管部分的长度,再加上外露部分的长度即可求出吸管的总长.【详解】解:如图;杯内的吸管部分长为AC,杯高AB=12cm,杯底直径BC=5cm;Rt△ABC中,AB=12cm,BC=5cm;由勾股定理得:AC=13cm故吸管的长度最少要:13+4.6=17.6cm.24.13【分析】设AD=x,则AC=32﹣x,根据勾股定理可求出x的值,在直角三角形ABD中,再利用勾股定理即可求出AB的长.解:设AD =x ,则AC =32﹣x ,∵AD ⊥BC 于点D ,∴△ADC 和△ADB 是直角三角形,∵CD =16,∴x 2+162=(32﹣x )2,解得:x =12,∴AD =12,在直角三角形ABD 中,AB =13.【点睛】本题考查了勾股定理解直角三角形,解题的关键是设出未知数,利用勾股定理列出方程求解.25.(1)9米;(2)365米. 【分析】(1)先由13125AC AD CD ===,,,证明90,ADC ∠=︒ 可得90,ADB ∠=︒ 再由勾股定理可求BD 的长;(2)由,,DE AB AD BC ⊥⊥ 可得,AB DE AD BD =代入数据从而可得答案.【详解】解:(1)13125AC AD CD ===,,, 22222212516913,AD CD AC ∴+=+===90ADC ∴∠=︒,90ADB ∴∠=︒,15AB =,9.BD ∴====BD ∴为9米.(2),,DE AB AD BC ⊥⊥11,22ABD S AB DE AD BD ∴== ,AB DE AD BD ∴= 15129DE ∴=⨯, 36.5DE ∴=DE ∴为365米. 【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,利用等面积法求解直角三角形斜边上的高,掌握以上知识是解题的关键.26.2米【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】解:在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒,2A D '=米,222BD A D A B +'=',222 6.25BD ∴+=,2 2.25BD ∴=,0BD >,1.5BD ∴=米,0.7 1.5 2.2CD BC BD ∴=+=+=米,答:小巷的宽度为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。

勾股定理(一)

勾股定理(一)

34A .16B .18A .225B .22C .D .5....3.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.5米B.3米C.(5+1)米D.3米5.(2013•池州一模)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:距离为___ .A.(4+ )cm B.5cm C.35cm D.7cm2.如图,若圆柱的底面周长是30cm,高是40cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处做装饰,则这条丝线的最小长度是()A.80cm B.70cm C.60cm D.50cm3.如图,为了庆祝“五•一”,学校准备在教学大厅的圆柱体柱子上贴彩带,已知柱子的底面周长为1m ,高为3m .如果要求彩带从柱子底端的A 处均匀地绕柱子4圈后到达柱子顶端的B 处(线段AB 与地面垂直),那么应购买彩带的长度为( )A . 45mB .3mC .4mD .5mA .12cmB . 97cmC .15cmD . 21cm5.(2014•博山区模拟)如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )A .3B . 2+2C . 10D .46.(2013•荆州模拟)如图所示,有一圆柱形油罐,现要以油罐底部的一点A 环绕油罐建梯子(图中虚线),并且要正好建到A 点正上方的油罐顶部的B 点,已知油罐高AB=5米,底面的周长是的12米,则梯子最短长度为___ 米.7.(2013•盐城模拟)如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为___ cm .8.(2014•西湖区一模)如图,是一个无盖玻璃容器的三视图,其中俯视图是一个正六边形,A、B两点均在容器顶部,现有一只小甲虫在容器外A点正下方距离顶部5cm处,要爬到容器内B点正下方距离底部5cm处,则这只小甲虫最短爬行的距离是___ cm.9.(2013•贵阳模拟)请阅读下列材料:问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)(1)设路线1的长度为L1,则L12=______.设路线2的长度为L2,则L22=______.所以选择路线______(填1或2)较短.(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:L12=______.路线2:L22=______.所以选择路线______(填1或2)较短.(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.。

(典型题)初中数学八年级数学上册第一单元《勾股定理》检测题(包含答案解析)(1)

(典型题)初中数学八年级数学上册第一单元《勾股定理》检测题(包含答案解析)(1)

一、选择题1.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个结,然后将绳子底端拉到离旗杆底端5米的地面某处,发现此时绳子底端距离打结处约1米,则旗杆的高度是( )A .12B .13C .15D .242.下列各组数据,不能作为直角三角形的三边长的是( )A .5、6、7B .6、8、10C .1.5、2、2.5D .3、2、7 3.在下列四组数中,属于勾股数的是( ) A .0.3,0.4,0.5B .9,40,41C .2,3,4D .1,2,34.《九章算术》奠定了中国传统数学的基本框架,是中国古代最重要的数学著作之一.其中第九卷《勾股》章节中记载了一道有趣的“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”.意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子底部3尺远,问原处还有多高的竹子?(备注:1丈10=尺)这个问题的答案是( )A .4尺B .4.5尺C .4.55尺D .5尺5.下列几组数中,能作为直角三角形三边长度的是( ) A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c ===6.下列各组数中是勾股数的是( ) A .4,5, 6B .1.5,2, 2.5C .11,60, 61D .13,2 7.下列四组数中,是勾股数的是( ) A .5,12,13B .4,5,6C .2,3,4D .2,58.如图,已知ABC 中,45ABC ∠=︒,F 是高AD 和BE 的交点,5AC =2BD =,则线段DF 的长度为( )A.22B.2 C.3D.19.如图,分别以直角三角形ABC的三边为斜边向外作直角三角形,且AD CD=,CE BE=,AF BF=,这三个直角三角形的面积分别为1S,2S,3S,且19S=,216S=,则S3S=()A.25 B.32 C.7 D.1810.一个长方体盒子长24cm,宽10cm,在这个盒子中水平放置一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.10cm B.24cm C.26cm D.28cm11.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5 C.15,8,17 D.35,45,112.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.514 B.8 C.16 D.64二、填空题13.直角三角形纸片的两直角边长分别为6,8.现将ABC如图那样折叠,使点A与点B重合,折痕为DE.则CECB的值是__________.14.如图,在直线l 上依次摆放着7个正方形,斜放置的三个正方形的面积分别是4,6,8,正放置的四个正方形的面积分别是1234,,,S S S S ,则1234S S S S +++=__________.15.如图,折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处,已知CD =1,∠B =30°,则AC 的长是__________.16.如图所示的正方形网格中,A ,B ,C ,D ,P 是网格线交点.若∠APB =α,则∠BPC 的度数为 ____(用含α的式子表示).17.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是_________18.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的是________________.19.如图,圆柱形容器中,高为1m,底面周长为4m,在容器内壁离容器底部0.4m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为______m(容器厚度忽略不计).20.一根长16cm牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中.牙刷露在杯子外面的长度为hcm,则h的取值范围是___.三、解答题21.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,(1)求证△ACD≌△BCE;(2)求AD的长.22.如图,△ABC中,AB=AC,BC=4cm,作AD⊥BC,垂足为D,若AD=4cm,求AB的长.23.学校要对如图所示的一块地ABCD进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米.(1)若连接AC,试证明:OABC是直角三角形;(2)求这块地的面积.24.在如图所示的方格纸中,每个小正方形的边长为1个单位长度,我们称每个小正方形的顶点为“格点”.(1)若格点C 在线段AB 右侧,且满足AC BC =,则当ABC ∆的周长最小时,ABC ∆的面积等于 .(2)若格点D 在线段AB 左侧,且满足AD BD ⊥,则ABD ∆的面积等于 (以上两问均直接写出结果即可).25.勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止已有400多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图1所示摆放,其中b a >,点E 在线段AC 上,点B 、D 在边AC 两侧,试证明:222+=a b c .证明:如图2,连结DB 、DC ,过点D 作BC 边上的高DF ,则DF EC b a ==-. ∵ABC DAE △≌△, ∴ABC DAE ∠=∠. ∵ABC 是直角三角形,90ACB ∠=︒,∴90ABC BAC ∠+∠=︒,∴DAB ∠=______+______=_______. ∵ADB DCB ADCB S S S =+=△△四边形_________. ∴222+=a b c . 26.问题背景:在ABC 中,AB 、BC 、AC 51013积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC (即ABC 三个顶点都在小正方形的顶点处),如图①所示.这样不需求ABC 的高,而借用网格就能计算出它的面积.(1)请你求出ABC 的面积; 思维拓展:(2)我们把上述求ABC 面积的方法叫做构图法.若ABC 5a 、2a 、17a (0a >),请利用图②的正方形网格(每个小正方形的边长为a )画出相应的ABC ,并求出它的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5,利用勾股定理即可解答. 【详解】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5m , 在Rt ABC 中,222AC BC AB +=()22251x x ∴+=+解得:12x = 故选:A . 【点睛】本题考查了勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,利用勾股定理与方程的结合解决实际问题.2.A解析:A 【分析】利用勾股定理的逆定理计算判断即可. 【详解】∵2256253661+=+=≠2749=, ∴5、6、7不能作为直角三角形的三边长, ∴选项A 错误;∵22866436100+=+==210100=, ∴6、8、10能作为直角三角形的三边长, ∴选项B 正确;∵221.52 2.254 6.25+=+==22.5 6.25=, ∴1.5、2、2.5能作为直角三角形的三边长, ∴选项C 正确;∵222347+=+==27=, ∴2能作为直角三角形的三边长,∴选项D 正确; 故选A . 【点睛】本题考查了勾股定理的逆定理,熟练掌握逆定理并进行准确计算是解题的关键.3.B解析:B 【分析】根据勾股数的定义:满足222+=a b c 的三个正整数,成为勾股数,据此可判断. 【详解】A .0.3、0.4、0.5,不是正整数,所以不是勾股数,选项错误;B .9、40、41,是正整数,且满足22294041+=,是勾股数,选项正确;C .2、3、4,是正整数,但222234+≠,所以不是勾股数,选项正确;D .1 故选:B . 【点睛】本题考查了勾股数的判定方法,解题关键是要看这组数是否为正整数,且满足最小两个数的平方和等于最大数的平法.4.C解析:C 【分析】竹子折断后刚好构成一直角三角形,设原处还有x 尺的竹子,则斜边为(10−x )尺,利用勾股定理解题即可. 【详解】解:设竹子折断处离地面x 尺,则斜边为(10−x )尺,根据勾股定理得:x 2+32=(10−x )2, 解得:x =4.55 故选C . 【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.5.C解析:C 【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案. 【详解】 解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意; 22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C 【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键6.C解析:C 【分析】根据勾股数的定义判断即可. 【详解】解:A 、42+52≠62,不是勾股数,故此选项不合题意; B 、1.5, 2.5不是正整数,不是勾股数,故此选项不合题意; C 、112+602=612,三个数都是正整数,是勾股数,故此选项符合题意;D 不是正整数,不是勾股数,故此选项不合题意; 故选:C . 【点睛】此题主要考查了勾股数,关键是掌握满足a 2+b 2=c 2的三个正整数,称为勾股数.7.A解析:A 【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方. 【详解】解:A. ∵5,12,13是正整数,且52+122=132,∴5,12,13是勾股数;B. ∵42+52≠62,∴4,5,6不是勾股数;C. ∵22+32≠42,∴2,3,4不是勾股数;D. ∵∴1故选A . 【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a ,b ,c 为正整数,且满足a 2+b 2=c 2,那么,a 、b 、c 叫做一组勾股数.8.D解析:D 【分析】先证明△BDF ≌△ADC ,得到 【详解】解:∵AD 和BE 是△ABC 的高线, ∴∠ADB=∠ADC=∠BEC=90°, ∴∠DBF+∠C=90°,∠CAD+∠C=90°, ∴∠DBF=∠CAD , ∵45ABC ∠=︒, ∴∠BAD=45°, ∴BD=AD , ∴△BDF ≌△ADC , ∴在Rt △BDF 中,1==.故选:D 【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识,证明△BDF ≌△ADC 是解题关键.9.A解析:A 【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可. 【详解】解:∵△ADC 为直角三角形,且AD=CD , ∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即AC =,∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB , ∵∠ACB=90︒,∴222AB AC BC =+,即312111444S S S =+,∴312S S S =+, ∵19S =,216S =, ∴3129+16=25S S S =+=, 故答案为:A . 【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.10.C解析:C 【分析】根据题意可知木棒最长是底面长方形的对角线的长,利用勾股定理求解即可. 【详解】解:长方体的底面是长方形,水平放置木棒,当木棒为该正方形的对角线时木棒最长,26=, 则最长木棒长为26cm , 故选:C . 【点睛】本题考查立体图形、勾股定理,由题意得出木棒最长是底面长方形的对角线的长是解答的关键.11.C解析:C 【分析】根据勾股数的定义,逐一判断选项,即可. 【详解】A. 1中不全是正整数,不是勾股数,不符合题意,B. 0.3,0.4,0.5中都不是正整数,不是勾股数,不符合题意,C. 152+82=172,且15,8,17都是正整数,是勾股数,符合题意,D.35,45,1中不全是正整数,不是勾股数,不符合题意, 故选C . 【点睛】本题主要考查勾股数的定义,熟练掌握“满足222+=a b c ,且a ,b ,c 是正整数,则a ,b ,c 叫做勾股数”是解题的关键.12.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.二、填空题13.【分析】先设CE=x 再根据图形翻折变换的性质得出AE=BE=8-x 再根据勾股定理求出x 的值进而可得出的值【详解】解:设CE=x 则AE=8-x ∵△BDE 是△ADE 翻折而成∴AE=BE=8-x 在Rt △B 解析:724【分析】先设CE =x ,再根据图形翻折变换的性质得出AE =BE =8-x ,再根据勾股定理求出x 的值,进而可得出CE CB的值. 【详解】 解:设CE =x ,则AE =8-x ,∵△BDE 是△ADE 翻折而成,∴AE =BE =8-x ,在Rt △BCE 中,BE 2=BC 2+CE 2,即(8-x )2=62+x 2,解得x =74,∴CE CB=746=724, 故答案为:724. 【点睛】本题考查的是图形翻折变换的性质及勾股定理,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.14.12【分析】如图易证△CDE ≌△ABC 得AB2+DE2=DE2+CD2=CE2同理FG2+LK2=HL2S1+S2+S3+S4=4+8=12【详解】解:如图∵∴∵在△CDE 和△ABC 中∴△CDE ≌△解析:12【分析】如图,易证△CDE ≌△ABC ,得AB 2+DE 2=DE 2+CD 2=CE 2,同理FG 2+LK 2=HL 2,S 1+S 2+S 3+S 4=4+8=12.【详解】解:如图,∵EDC CBA ACE 90∠∠∠===︒,EC CA =,ECD ACB ACB CAB 90∠∠∠∠+=+=︒,∴ECD ACB ∠∠=, ∵在△CDE 和△ABC 中,EDC CBA ECD CAB EC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△ABC (AAS ),∴AB=CD ,BC=DE ,∴AB 2+DE 2=DE 2+CD 2=CE 2=8,同理可证FG 2+LK 2=HL 2=4,∴S 1+S 2+S 3+S 4=CE 2+HL 2=4+8=12.故答案为:12.【点睛】本题考查了全等三角形的证明,考查了勾股定理的灵活运用,本题中证明AB 2+DE 2=DE 2+CD 2=CE 2是解题的关键.15.【分析】由折叠的性质可得CD=DE=1∠C=∠AED=90°由直角三角形的性质可求BD的长再运用勾股定理可求解【详解】解:∵将△ABC折叠使点C落在斜边AB上的点E处∴CD=DE=1∠C=∠AED=【分析】由折叠的性质可得CD=DE=1,∠C=∠AED=90°,由直角三角形的性质可求BD的长,再运用勾股定理可求解.【详解】解:∵将△ABC折叠使点C落在斜边AB上的点E处,∴CD=DE=1,∠C=∠AED=90°,∵∠B=30°,∴BD=2DE=2,AB=2AC,∴BC=BD+CD=2+1=3,由勾股定理得,222=+AB BC AC∴4222=+AC BC AC∴AC=【点睛】本题考查了勾股定理与折叠问题,熟练掌握折叠的性质是本题关键.16.【分析】由图可知AC的长根据勾股定理可以求得PAPC的长再利用勾股定理的逆定理可以判断△PAC的形状从而可以得到∠CPA的度数然后即可得到∠BPC=∠CPA−∠APB的度数【详解】设网格的长度为1则︒解析:90-α【分析】由图可知AC的长,根据勾股定理可以求得PA、PC的长,再利用勾股定理的逆定理可以判断△PAC的形状,从而可以得到∠CPA的度数,然后即可得到∠BPC=∠CP A−∠APB的度数.【详解】设网格的长度为1,则==,AC=6222+=AP PC AC∴△PAC为等腰直角三角形∴∠CPA=90︒∴∠BPC=∠CPA−∠APB=90-α︒︒故答案为:90-α【点睛】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.17.2021【分析】根据勾股定理求出生长了1次后形成的图形中所有的正方形的面积和结合图形总结规律根据规律解答即可【详解】解:如图由题意得正方形A的面积为1由勾股定理得正方形B的面积+正方形C的面积=1∴解析:2021【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.【详解】解:如图,由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故答案为:2021.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.18.①②③【分析】①由条件证明△ABD≌△ACE就可以得到结论;②由△ABD≌△ACE就可以得出∠ABD=∠ACE就可以得出∠BDC=90°而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°由∠解析:①②③【分析】①由条件证明△ABD≌△ACE,就可以得到结论;②由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°,由∠DBC+∠ACE=90°,就可以得出结论;④△BDE为直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2≠BD2就可以得出结论.【详解】解:①∵∠BAC=∠DAE,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE .在△ABD 和△ACE 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴BD=CE .故①正确;∵△ABD ≌△ACE ,∴∠ABD=∠ACE .∵∠CAB=90°,∴∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACE+∠ACB=90°,∴∠BDC=180°-90°=90°.∴BD ⊥CE ;故②正确;③∵∠BAC=90°,AB=AC ,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,故③正确;④∵BD ⊥CE ,∴BE 2=BD 2+DE 2.∵∠BAC=∠DAE=90°,AB=AC ,AD=AE ,∴DE 2=2AD 2,BC 2=2AB 2.∵BC 2=BD 2+CD 2≠BD 2,∴2AB 2=BD 2+CD 2≠BD 2,∴BE 2≠2(AD 2+AB 2).故④错误.故答案为:①②③.【点睛】本题考查了全等三角形的性质和判定的应用,垂直的性质和判定的应用,等腰直角三角形的性质的应用,勾股定理的应用,能利用全等三角形的性质和判定求解是解此题的关键. 19.【分析】将容器侧面展开建立A 关于EC 的对称点A′根据两点之间线段最短可知A′B 的长度即为所求【详解】如图将容器侧面展开作A 关于EC 的对称点A′连接A′B 交EC 于F 则A′B 即为最短距离∵高为1m 底面周【分析】将容器侧面展开,建立A 关于EC 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为1m,底面周长为4m,在容器内壁离容器底部0.4m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,∴A′D=42=2(m),BD=1+0.6-0.4=1.2(m),∴在直角△A′DB中,A′B=2222234A'D BD2 1.25+=+=(m),故答案是:234.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.20.3≤h≤4【分析】先根据题意画出图形再根据勾股定理解答即可【详解】解:当牙刷与杯底垂直时h最大h最大=16-12=4cm当牙刷与杯底及杯高构成直角三角形时h最小如图所示:此时AB==13cm故h=1解析:3≤h≤4【分析】先根据题意画出图形,再根据勾股定理解答即可.【详解】解:当牙刷与杯底垂直时h最大,h最大=16-12=4cm.当牙刷与杯底及杯高构成直角三角形时h最小,如图所示:此时,==13cm ,故h=16-13=3cm .故h 的取值范围是3≤h≤4.故答案是:3≤h≤4.【点睛】此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,有一定难度.三、解答题21.(1)见解析;(2)AD=9.【分析】(1)根据已知条件先证出∠BCE=∠ACD ,根据SAS 证出△ACD ≌△BCE ;(2)根据(1)中△ACD ≌△BCE 得出AD=BE ,再根据勾股定理求出AB ,然后根据∠BAC=∠CAE=45°,求出∠BAE=90°,在Rt △BAE 中,根据AB 、AE 的值,求出BE ,从而得出AD .【详解】解:(1)∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE ,即∠BCE=∠ACD ,又∵AC=BC ,DC=EC ,在△ACD 和△BCE 中,AC BC BCE ACD DC EC ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE (SAS ).(2)∵△ACD ≌△BCE (SAS ),∴AD=BE ,∵AC=BC=6,∴,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt △BAE 中,AE=3,∴,∴AD=9.【点睛】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、勾股定理,关键是根据题意作出辅助线,证出△ACD ≌△BCE .22.25【分析】根据等腰三角形的性质和勾股定理即可得到结论.【详解】解:∵AB=AC,BC=4cm,AD⊥BC,∴BD=12BC=2,∵AD=4cm,∴在直角三角形ABD中AB=22AD BD+=25cm.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.23.(1)见解析;(2)这块地的面积是24平方米.【分析】(1)先根据勾股定理求出AC的长,再根据勾股定理的逆定理解答即可;(2)根据三角形的面积公式求解即可.【详解】(1)∵AD=4,CD=3,AD⊥DC,由勾股定理可得:AC=2222435AD CD+=+=,又∵AC2+BC2=52+122=132=AB2 ,∴△ABC是直角三角形;(2)△ABC的面积-△ACD的面积=115123422⨯⨯-⨯⨯=24(m2),所以这块地的面积是24平方米.【点睛】本题考查了勾股定理及勾股定理逆定理的应用,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.反之也成立.24.(1)2.5;(2)2或2.5或1.5【分析】(1)根据格点C在线段AB右侧,且满足AC=BC,画出周长最小的格点△ABC,即可求出△ABC的面积;(2)根据格点D在线段AB左侧,且满足AD⊥BD,分别画出格点△ABD,即可得三角形的面积.【详解】解:(1)如图,△ABC 即为所求;△ABC 的面积为:1552⨯⨯=2.5, 故答案为:2.5;(2)如图点D 1,D 2,D 3 即为所求;△ABD 的面积分别为:12222⨯⨯=2, 1552⨯⨯=2.5, 1132⨯⨯=1.5, 故答案为:2或2.5或1.5.【点睛】此题主要考查了格点图形的性质,把握格点图形的定义,正确画出格点三角形是解决问题的关键.25.见详解【分析】先推出DAB ∠=90°,再根据ADB DCB ADCB S S S =+=△△四边形ADC ACB S S +△△,即可得到结论.【详解】证明:如图2,连结DB 、DC ,过点D 作BC 边上的高DF ,则DF EC b a ==-. ∵ABC DAE △≌△,∴ABC DAE ∠=∠.∵ABC 是直角三角形,90ACB ∠=︒, ∴90ABC BAC ∠+∠=︒,∴DAB ∠=∠DAE+∠BAC=90°. ∵ADB DCB ADCB S S S =+=△△四边形212c +1()2a b a -. 又∵21122ADC ACB ADCB S S S b ab =+=+△△四边形,∴212c +1()2a b a -=21122b ab +, ∴222+=a bc .【点睛】本题主要考查勾股定理的证明,添加辅助线,利用割补法表示图形的面积,是解题的关键.26.(1) 3.5ABC S =△;(2)作图见解析;23ABC S a =△.【分析】(1)利用网格图及割补法求解图形面积;(2)结合勾股定理作图,然后利用割补法求图形面积【详解】解:(1)11133123132 3.5222ABC S ⎛⎫=⨯-⨯⨯+⨯⨯+⨯⨯= ⎪⎝⎭△ (2)22512AB a a ==+;2222211BC a a ==+;221714AC a a ==+. 所做ABC 如图所示21112422243222ABC S a a a a a a a a a ⎛⎫=⨯-⨯⨯+⨯⨯+⨯⨯= ⎪⎝⎭△. 【点睛】本题考查了勾股定理及作图的知识,解答本题关键是仔细理解问题背景,构图法求三角形的面积是经常用到的,同学们注意仔细掌握.。

《第17章 勾股定理》测试卷(1)

《第17章 勾股定理》测试卷(1)

《第17章勾股定理》测试卷(1)一、选择题(共10小题)1.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣12.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12B.7+C.12或7+D.以上都不对3.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m4.满足下列条件的三角形中,不是直角三角形的是()A.三内角的度数之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角的度数之比为3:4:55.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,6,96.我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x27.在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是()A.统计思想B.分类思想C.数形结合思想D.函数思想8.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8B.9C.D.109.下列是勾股数的有()①3,4,5 ②5,12,13 ③9,40,41④13,14,15 ⑤⑥11,60,61A.6组B.5组C.4组D.3组10.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.二、填空题(共10小题)11.如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是m.12.课本中有这样一句话:“利用勾股定理可以作出,,…线段(如图所示).”即:OA=1,过A作AA1⊥OA且AA1=1,根据勾股定理,得OA1=;再过A1作A1A2⊥OA1且A1A2=1,得OA2=;…以此类推,得OA2018=.13.如图,阴影部分是一个正方形,此正方形的面积为cm2.14.已知:△ABC中,AB=4cm,AC=3cm,BC=5cm,则△ABC的面积是cm2.15.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.16.有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为.17.下列四组数:①0.6,0.8,1;②5,12,13;③8,15,17;④4,5,6.其中是勾股数的组数为.18.下列各组数:①1、2、3;②,,2;③0.3、0.4、0.5;④9、40、41,其中是勾股数的是(填序号).19.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若a+b=,ab=2,则小正方形的面积为.20.我国古代著作《周髀算经》中记载了“赵爽弦图”.如图,若勾AE=6,弦AD=10,则小正方形EFGH的面积是.三、解答题(共10小题)21.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点.当它靠在另一侧墙上时,梯子的顶端在D点,已知梯子长2.5m,D点到地面的垂直距离DE=1.5m,两墙的距离CE长3.5m.求B点到地面的垂直距离BC.22.如图,一架25米长的云梯AC斜靠一面竖直的墙AB上,这时梯子底端C离墙7米.(1)这个梯子的顶端A距离地面多远?(2)如果梯子的顶端A下滑了4米,那么梯子底端C在水平方向滑动了4米吗?23.如图,从帐篷支撑竿AB的顶部A向地面拉一根绳子AC固定帐篷,若绳子的长度为5.5米,固定点C到帐篷支撑杆底部B的距离是4.5米,现有一根高为3.2米的竿,它能否做帐篷的支撑竿,请说明理由.24.如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.25.如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.26.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.27.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求(a+b)2的值.28.通过整式乘法的学习,我们进一步了解了利用图形面积来说明法则、公式等的正确性的方法,例如利用图甲可以对平方差公式(a+b)(a﹣b)=a2﹣b2给予解释.图乙中的△ABC是一个直角三角形,∠C=90°,人们很早就发现直角三角形的三边a,b,c满足a2+b2=c2的关系.图丙是2002年国际数学家大会的会徽,选定的是我国古代数学家赵爽用来证明勾股定理的弦图,弦图是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,求出(a+b)2的值.29.我们知道,以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),可以看作(22﹣1,2×2,22+1);同时8,6,10也为勾股数组,记为(8,6,10),可以看作(32﹣1,2×3,32+1).类似的,依次可以得到第三个勾股数组(15,8,17).(1)请你根据上述勾股数组规律,写出第5个勾股数组;(2)若设勾股数组中间的数为2n(n≥2,且n为整数),根据上述规律,请直接写出这组勾股数组.30.课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决.(1)请你根据上述的规律写出下一组勾股数:11、、;(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律4=,12=,24=…,于是他很快表示了第二数为,则用含a的代数式表示第三个数为;(3)用所学知识加以说明.。

勾股定理经典题目[1]

勾股定理经典题目[1]

《勾股定理》(A )一、选择题(每小题3分,共30分)1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .321,421,521 C .3,4,5 D .4,721,821 2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A .1倍 B .2倍 C .3倍 D .4倍 3.在下列说法中是错误的( )A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形B .在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3则△ABC 为直角三角形 C .在△ABC 中,若a =53c ,b =54c ,则△ABC 为直角三角形 D .在△ABC 中,若a ∶b ∶c =2∶2∶4,则△ABC 为直角三角形4.四组数:①9,12,15;②7,24,25;③32,42,52;④3a ,4a ,5a (a >0)中,可以构成直角三角形的边长的有( )A .4组B .3组C .2组D .1组5.三个正方形的面积如图1,正方形A 的面积为( ) A . 6 B . 36 C . 64 D . 86.一块木板如图2所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( ) A .60 B .30 C .24 D .127.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( ) A .6cm B .8.5cm C .1330cm D .1360cm8.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm9.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( )A .8cmB .10cmC .12cmD .14cm10.在△ABC 中,∠ACB =90°,AC =40,CB =9,M 、N 在AB 上且AM =AC ,BN =BC ,则MN 的长为( )A .6B .7C .8D .9 二、填空题(每小题3分,共30分)11.在△ABC 中,∠C =90°,若 a =5,b =12,则 c =___. 12.在△ABC 中,∠C =90°,若c =10,a ∶b =3∶4,则ab = .A D BC图213.等腰△ABC 的面积为12cm 2,底上的高AD =3cm ,则它的周长为___. 14.等边△ABC 的高为3cm ,以AB 为边的正方形面积为___. 15.直角三角形三边是连续整数,则这三角形的各边分别为___. 16.在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2=___.17.有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了___米.18.一座桥横跨一江,桥长12m ,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m ,则小船实际行驶___m .19.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是___. 20.在Rt △ABC 中,∠C =90°,中线BE =13,另一条中线AD 2=331,则AB =___. 三、解答题(每小题8分,共40分)21.某车间的人字形屋架为等腰△ABC ,跨度AB =24m ,上弦AC =13m .求中柱CD (D 为底AB 的中点).22.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺.求竹竿高与门高.23.如图3,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m 处,已知旗杆原长16m ,你能求出旗杆在离底部什么位置断裂的吗?请你试一试.24.如图4所示,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m .现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离为3m ,同时梯子的顶端B 下降到B ′,那么BB ′也等于1m 吗?25.在△ABC 中,三条边的长分别为a ,b ,c ,a =n 2-1,b =2n ,c =n 2+1(n >1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角?与同伴一起研究.图3 OB ′ 图4 BA A ′《勾股定理》复习题B一、填空题(每题3分,共24分)1.三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是( ) A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定2.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2十338=10a +24b +26c ,则△ABC 的面积是( ) A.338 B.24 C.26 D.303.若等腰△ABC 的腰长AB =2,顶角∠BAC =120°,以 BC 为边的正方形面积为( ) A.3 B.12 C.427 D.316 4.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A.42B.32C.42 或32D.37 或 335.直角三角形三条边的比是3∶4∶5.则这个三角形三条边上的高的比是( )A.15∶12∶8B. 15∶20∶12C. 12∶15∶20D.20∶15∶12 6.在△ABC 中,∠C =90°,BC =3,AC =4.以斜边AB 为直径作半圆,则这个半圆的面积等于( )A.258π B. 254π C. 2516πD.25π 7.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A.2cmB.3 cmC.4 cmD.5 cm8.如图2,一个圆桶儿,底面直径为16cm ,高为18cm ,则一只小虫底部点A 爬到上底B 处,则小虫所爬的最短路径长是(π取3)( )A.20cmB.30cmC.40cmD.50cm 二、填空题(每小题3分,共24分)9.在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的长方形的面积是___.10.一个长方体同一顶点的三条棱长分别是3、4、12,则这个长方体内能容下的最长的木棒为___.11.在△ABC 中,∠C =90°,BC =60cm ,CA =80cm ,一只蜗牛从C 点出发,以每分20cm 的速度沿CA →AB →BC 的路径再回到C 点,需要___分的时间.12.如图3,一艘船由岛A 正南30海里的B 处向东以每小时20海里的速度航行2小时后到达C 处.则AC 间的距离是___.13.在△ABC 中,∠B =90°,两直角边AB =7,BC =24,三角形内有一点P 到各边的距离相等,则这个距离是___.14.已知两条线段长分别为5cm 、12cm ,当第三条线段长为___时,这三条线段可以组成一个直角三角形,其面积是___.15.观察下列一组数:列举:3、4、5,猜想:32=4+5; 列举:5、12、13,猜想:52=12+13;A CBE图1 D 16cm18cm图2B A 图3列举:7、24、25,猜想:72=24+25;…… ……列举:13、b 、c ,猜想:132=b +c ;请你分析上述数据的规律,结合相关知识求得b =___,c =___.16.已知:正方形的边长为1.(1)如图4(a ),可以计算出正方形的对角线长为2;如图(b ),两个并排成的矩形的对角线的长为___;n 个并排成的矩形的对角线的长为___.(2)若把(c )(d )两图拼成如图5“L ”形,过C 作直线交DE 于A ,交DF 于B .若DB =53,则 DA 的长度为___.三、解答题(共58分)17.如图6,折叠长方形一边AD ,点D 落在BC 边的点F 处,BC =10cm ,AB =8cm ,求:(1)FC 的长;(2)EF 的长.18.为了丰富少年儿童的业余生活,某社区要在如图7所示AB 所在的直线建一图书室,本社区有两所学校所在的位置在点C 和点D 处,CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB =25km ,CA =15km ,DB =10km ,试问:图书室E 应该建在距点A 多少km 处,才能使它到两所学校的距离相等?19.一艘渔船正以30海里/时的速度由西向东追赶渔群,在A 处看见小岛C 在船北偏东 60°.40分钟后,渔船行至 B 处,此时看见小岛 C 在船的北偏东30°,已知小岛C 为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续航行(追赶鱼群),是否有进入危险区的可能?20.在Rt △ABC 中,AC =BC ,∠C =90°,P 、Q 在AB 上,且∠PCQ =45°试猜想分别以线段AP 、BQ 、PQ 为边能组成一个三角形吗?若能试判断这个三角形的形状.21.如图8,有一块塑料矩形模板ABCD ,长为10cm ,宽为4cm ,将你手中足够大的直角三角板 PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P :①能否使你的三角板两直角边分别通过点B 与点C ?若能,请你求出这时 AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P 在AD 上移动,直角边PH 始终通过点B ,另一直角边PF 与DC 的延长线交于点Q ,与BC 交于点E ,能否使CE =2cm ?若能,请你求出这时AP 的长;若不能,请你说明理由.图8 图5EFB CAD 图4 (a (b(c (d图6 图7EDCBA《勾股定理》复习题(A )参考答案: A 卷:一、1.B 2.B 3.D 4.B 5.B 6.C 7.D 8.B 9.C 10.C二、11.13 12.48 13.18 14.12 15.3、4、5 16.8 17.5 18.13 19.2400 20.20 三、21.5米22.设门高为x 尺,则竹杆长为(x +1)尺,依题意由勾股定理,得x 2+42=(x +1)2,解得x =7.5,所以门高为7.5尺,则竹杆长为8.5尺.23.设旗杆在离底部x m 位置断裂,则根据题意,得(x +1)2-x 2=64,解得x =6,即旗杆在离底部6m 位置断裂. 24.在Rt △ABO 中,梯子AB 2=AO 2+BO 2=22+72=53.在Rt △A ′B ′O 中,梯子A ′B ′2=53=A ′O 2+B ′O 2=32+B ′O 2,所以,B ′O =2×3=6.所以BB ′=OB -OB ′<1.25.因为a 2=n 4-2n 2+1,b 2=4n ,c 2=n 4+2n 2+1,a 2+b 2=c 2,所以△ABC 是直角三角形,∠C 为直角.《勾股定理》复习题B 参考答案一、1.A 2.D 3.B 4.C 5.D.提示:由三角形面积公式,可得12·AB ·CD =12·BC ·AC .设BC =3k ,AC =4k ,AB =5k ,则5k ·CD =2k ·4k .所以CD =135k .所以AC ∶BC ∶CD =4k ∶3k ∶125k =20∶15∶12;6.A.提示:在Rt △ABC 中,由勾股定理可以得到AB 2=42+32=25,所以AB =5.所以半圆的面积S =12π252⎛⎫ ⎪⎝⎭=258π;7.B 8.B. 二、9.108 10.13 11.12 12.由勾股定理,可以得到AB 2+BC 2=AC 2,因为AB =30,BC =20×2=40,所以302+202=AC 2,所以AC =50,即AC 间的距离为50海里;13.3 14.13cm ,30cm 2或522 15.84、85 1652. 三、17.(1)在Rt △ABC 中,由勾股定理可以得到AF 2=AB 2+BF 2,也就是 102=82+BF 2.所以BF =6,FC =4(cm) (2)在Rt △ABC 中,由勾股定理,可以得到EF 2=FC 2+(8-EF )2.也就是EF 2=42+(8-EF )2.所以EF =5(cm)18.10米;19.设小岛C 与AB 的垂直距离为a ,则易求得a 2=300>102,所以这艘渔船继续航行不会进入危险区;20.能组成一个三角形,且是一个以PQ 为斜边的直角三角形.理由是:可将△CBQ 绕点C 顺时针旋转90°,则CB 与CA 重合,Q 点变换到Q ′点,此时,AQ ′=BQ ,△APQ ′是直角三角形,即AP 2+AQ ′2=PQ ′2,另一方面,可证得△CPQ ′≌△CPQ (SAS ),于是,PQ ′=PQ ,则AP 2+BQ 2=PQ 2.21.①能.设AP =x 米,由于BP 2=16+x 2,CP 2=16+(10-x )2,而在Rt △PBC 中,有BP 2+ CP 2=BC 2,即16+x 2+16+(10-x )2=100,所以x 2-10x +16=0,即(x -5)2=9,所以x -5=±3,所以x =8,x =2,即AP =8或2,②能.仿照①可求得AP =4.。

(必考题)初中数学八年级数学上册第一单元《勾股定理》检测(含答案解析)(1)

(必考题)初中数学八年级数学上册第一单元《勾股定理》检测(含答案解析)(1)

一、选择题1.如图所示,数轴上的点A 所表示的数为a ,则a 的值是( )A .51+B .51-+C .51-D .52.如图,在Rt △ABC 中,∠BAC =90°,以Rt △ABC 各边为斜边分别向外作等腰Rt △ADB 、等腰Rt △AFC 、等腰Rt △BEC ,然后将等腰Rt △ADB 和等腰Rt △AFC 按如图方式叠放到等腰Rt △BEC 中,其中BH =BA ,CI =CA ,已知,S 四边形GKJE =1,S 四边形KHCJ =8,则AC 的长为( )A .2B .52C .4D .63.下列各组数中是勾股数的是( )A .4,5, 6B .1.5,2, 2.5C .11,60, 61D .1,3,2 4.如图,小彬到雁江区高洞产业示范村参观,看到一个贴有大红“年”字的圆柱状粮仓非常漂亮,回家后小彬制作了一个底面周长为10cm ,高为5cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为( )A .10πcmB .20πcmC .2cmD .2cm 5.如图所示,有一块直角三角形纸片,90C ∠=︒,12AC cm =,9BC cm =,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CD 的长为( )A .4cmB .5cmC .17cmD .94cm 6.下列以a ,b ,c 为边的三角形,不是直角三角形的是( )A .1,1,2a b c ===B .1,3,2a b c ===C .3,4,5a b c ===D .2,2,3a b c === 7.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,下列条件不能判断△ABC 是直角三角形的是( )A .∠B =∠C +∠AB .a 2=(b +c )(b ﹣c )C .∠A :∠B :∠C =3:4:5D .a :b :c =3:4:58.如图,已知ABC 中,45ABC ∠=︒,F 是高AD 和BE 的交点,5AC =,2BD =,则线段DF 的长度为( )A .22B .2C .3D .19.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A 处有一滴蜜糖,在玻璃杯的外壁,A 的相对方向有一小虫P ,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A 处的最短距离是( )A 73B .10厘米C .82D .8厘米 10.下列各组数是勾股数的是( )A .123B .0.6,0.8,1C .3,4,5D .5,11,12 11.已知Rt ABC 的两直角边分别是6cm ,8cm ,则Rt ABC 的斜边上的高是( )A .4.8cmB .2.4cmC .48cmD .10cm 12.在平面直角坐标系中,点P(1-,3)到原点的距离是( )A .10B .4C .22D .2 二、填空题13.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是_____寸.14.将一根24cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱体中,如图,设筷子露出在杯子外面长为h cm ,则h 的最小值__,h 的最大值__.15.一个直角三角形,一边长5cm ,另一边长4cm ,则该直角三角形面积为____ 16.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .17.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为__________米.18.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.19.如图,圆柱形玻璃板,高为12cm ,底面周长为18cm ,在杯内离杯底3cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的A 处,则蚂蚁到达蜂蜜的最短距离______cm .20.如图,阴影部分是两个正方形,其它部分是两个直角三角形和一个正方形.若右边的直角三角形ABC 中,34AC =,30BC =,则阴影部分的面积是_________.三、解答题21.在△ABC 中,AB=8,AC=5,若BC 边上的高等于4,求BC 的长.22.八年级(2)班的小明和小亮同学学了“勾股定理”之后,为了测得图中风筝的高度CE ,他们进行了如下操作:①测得BD 的长为15米(注:BD CE ⊥);②根据手中剩余线的长度计算出风筝线BC 的长为25米;③牵线放风筝的小明身高1.6米.(1)求风筝的高度CE .(2)过点D 作DH BC ⊥,垂足为H ,求BH 、DH .23.如图,一艘渔船正以30海里/小时的速度由西向东赶鱼群,在A 处看风小岛C 在船的北偏东60°.40分钟后,渔船行至B 处,此时看见小岛C 在船的北偏东30°.已知以小岛C 为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区的可能.24.如图,在△ABC 中,AD ⊥BC 于点D ,且AC +AD =32,BD =5,CD =16,试确定AB 的长.25.先阅读下列一段文字,再回答问题.已知平面内两点P 1(x 1,y 1),P 2(x 2,y 2),这两点的距离P 1P 2222121))((x x y y =-+-.同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知点A (2,4),B (﹣3,﹣8),试求A ,B 两点间的距离;(2)已知点A ,B 所在的直线平行于y 轴,点B 的纵坐标为﹣1,A ,B 两点间的距离等于6.试求点A 的纵坐标;(3)已知一个三角形各顶点的坐标分别为A (﹣3,﹣2),B (3,6),C (7,﹣2),你能判断三角形ABC 的形状吗?说明理由.26.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据勾股定理求出直角三角形的斜边,即可得出选项.【详解】解:BC=BA=22+=,125∵数轴上点A所表示的数为a,∴a=51-故选:C.【点睛】本题考查了数轴和实数,勾股定理的应用,能读懂图象是解此题的关键.2.D解析:D【分析】设AD=DB=a,AF=CF=b,BE=CE=c,由勾股定理可求a2+b2=c2,由S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,可求b=2,即可求解.【详解】解:设AD=DB=a,AF=CF=b,BE=CE=c,∴AB2=,=,AC2=,BC2∵∠BAC=90°,∴AB2+AC2=BC2,∴2a2+2b2=2c2,∴a2+b2=c2,∵将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC,∴BG=GH=a,∵S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,∴1(a+c)(c﹣a)=9,2∴c2﹣a2=18,∴b2=18,∴b=2∴AC2==6,故选:D.【点睛】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.3.C解析:C【分析】根据勾股数的定义判断即可.【详解】解:A 、42+52≠62,不是勾股数,故此选项不合题意;B 、1.5, 2.5不是正整数,不是勾股数,故此选项不合题意;C 、112+602=612,三个数都是正整数,是勾股数,故此选项符合题意;D 、3不是正整数,不是勾股数,故此选项不合题意;故选:C .【点睛】 此题主要考查了勾股数,关键是掌握满足a 2+b 2=c 2的三个正整数,称为勾股数. 4.C解析:C【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,圆柱的侧面展开图为长方形,AC =A 'C ,且点C 为BB '的中点,∵AB =5cm ,BC =12×10=5cm , ∴装饰带的长度=2AC =22222255102AB BC +=+=cm ,故选:C .【点睛】本题考查平面展开-最短距离问题,正确画出展开图是解题的关键.5.A解析:A【分析】根据勾股定理可将斜边AB 的长求出,根据折叠的性质知,AE=AB ,已知AC 的长,可将CE 的长求出,再根据勾股定理列方程求解,即可得到CD 的长.【详解】解:在Rt △ABC 中,12AC cm =,9BC cm =,22AC BC +,根据折叠的性质可知:AE=AB=15cm ,∵AC=12cm ,∴CE=AE-AC=3cm ,设CD=xcm ,则BD=9-x=DE ,在Rt △CDE 中,根据勾股定理得CD 2+CE 2=DE 2,即x 2+32=(9-x )2,解得x=4,即CD 长为4cm .故选:A .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠前后的对应相等关系.解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.6.D解析:D【分析】根据勾股定理的逆定理对四个选项分别进行判定,则可得出结论.【详解】解:A 、因为12+12)2,所以此三角形是直角三角形,故此选项不符合题意;B 、因为122=22,所以此三角形是直角三角形,故此选项不符合题意;C 、因为32+42=52,所以此三角形是直角三角形,故此选项不符合题意;D 、因为22+22≠32,所以此三角形不是直角三角形,故此选项符合题意.故选:D .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.C解析:C【分析】由三角形的内角和定理求解B 可判断,A 由勾股定理的逆定理可判断,B 由三角形的内角和定理求解 ,C ∠ 可判断,C 设()30,a k k =≠ 则4,5,b k c k == 利用勾股定理的逆定理可判断.D【详解】解:,180,B C A A B C ∠=∠+∠∠+∠+∠=︒2180B ∴∠=︒,90B ∴∠=︒,故A 不符合题意;()()222,a b c b c b c =+-=-222,a c b ∴+=90B ∴∠=︒,故B 不符合题意; ::3:4:5,A B C ∠∠∠=51807512C ∴∠=⨯︒=︒, ABC ∴不是直角三角形,故C 符合题意,::3:4:5,a b c =设()30,a k k =≠ 则4,5,b k c k ==()()()222222234255,a b k k k k c ∴+=+===90C ∴∠=︒,故D 不符合题意, 故选:.C【点睛】本题考查的是三角形的内角和定理,勾股定理的逆定理的应用,掌握以上知识是解题的关键. 8.D解析:D【分析】先证明△BDF ≌△ADC ,得到【详解】解:∵AD 和BE 是△ABC 的高线,∴∠ADB=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠CAD+∠C=90°,∴∠DBF=∠CAD ,∵45ABC ∠=︒,∴∠BAD=45°,∴BD=AD ,∴△BDF ≌△ADC ,∴在Rt △BDF 中,1==.故选:D【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识,证明△BDF ≌△ADC 是解题关键. 9.B解析:B【分析】把圆柱沿着点A 所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.【详解】把圆柱沿着点A 所在母线展开,如图所示,作点A 的对称点B ,连接PB ,则PB 为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【点睛】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.10.C解析:C【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A 23A 错误;B 、0.6,0.8,不是整数,故B 错误;C 、3,4,5是整数,且222345+=,故C 正确;D 、5,11,12是整数,但22251112+≠,故D 错误;故选:C .【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形.11.A解析:A【分析】先根据勾股定理求出直角三角形的斜边长,再根据“面积法”求出斜边上的高,即可.【详解】∵Rt ABC 的两直角边分别是6cm ,8cm ,∴斜边cm ,∴斜边上的高=68=4.810⨯cm , 故选A【点睛】本题主要考查求直角三角形斜边上的高,掌握勾股定理以及“面积法”是解题的关键. 12.A解析:A【分析】根据平面直角坐标系中,两点间的距离公式,即可求解.【详解】∵P(1-,3),原点坐标为(0,0),∴点P(1-,3)到原点的距离=故选A .【点睛】本题主要考查平面直角坐标系中,两点间的距离公式,掌握“若A(x 1,y 1),B(x 2,y 2),则”,是解题的关键.二、填空题13.101【分析】取AB 的中点O 过D 作DE ⊥AB 于E 根据勾股定理解答即可得到结论【详解】解:取AB 的中点O 过D 作DE ⊥AB 于E 如图2所示:由题意得:OA =OB =AD =BC 设OA =OB =AD =BC =r 寸则解析:101【分析】取AB 的中点O ,过D 作DE ⊥AB 于E ,根据勾股定理解答即可得到结论.【详解】解:取AB 的中点O ,过D 作DE ⊥AB 于E ,如图2所示:由题意得:OA =OB =AD =BC ,设OA =OB =AD =BC =r 寸,则AB =2r (寸),DE =10寸,OE =12CD =1寸, ∴AE =(r ﹣1)寸,在Rt △ADE 中,AE 2+DE 2=AD 2,即(r ﹣1)2+102=r 2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故答案为:101【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.14.11cm12cm【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h最大当筷子与杯底及杯高构成直角三角形时h最小利用勾股定理计算即可【详解】解:当筷子与杯底垂直时h最大h最大=24﹣12=12(cm解析:11cm 12cm【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h最大,当筷子与杯底及杯高构成直角三角形时h最小,利用勾股定理计算即可.【详解】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12(cm).当筷子与杯底及杯高构成直角三角形时h最小,此时,在杯子内的长度22+=13(cm),512故h=24﹣13=11(cm).故h的取值范围是11≤h≤12cm.故答案为:11cm;12cm.【点睛】此题考查勾股定理的实际应用,正确理解题意、掌握勾股定理的计算公式是解题的关键.15.10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可【详解】解:当5为直角边时4也为直角边则该直角三角形的面积为5×4÷2=10;当5为斜边时由勾股定理得另一直角边为=3则该直角三角形解析:10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可.【详解】解:当5为直角边时,4也为直角边,则该直角三角形的面积为5×4÷2=10;当522-,54则该直角三角形的面积为3×4÷2=6,综上,该直角三角形的面积为10或6,故答案为:10或6.【点睛】本题考查直角三角形的面积、勾股定理,利用分类讨论的思想求解是解答的关键.16.7【解析】∵在△ABC中∠B=90°AB=3AC=5∴BC=∵△ADE是△CDE翻折而成∴AE=CE∴AE+BE=BC=4∴△ABE的周长=AB+BC=3+4=7故答案是:7解析:7【解析】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=2222-=-=.534AC AB∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案是:7.17.【分析】如图由于倒下部分与地面成30°夹角所以∠BAC=30°由此得到AB=2CB而离地面米处折断倒下即BC=4米所以得到AB=8米然后即可求出这棵大树在折断前的高度【详解】如图∵∠BAC=30°∠解析:【分析】如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.【详解】如图,∵∠BAC=30°,∠BCA=90°,∴AB=2CB,而BC=4米,∴AB=8米,∴这棵大树在折断前的高度为AB+BC=12米.故答案为12.【点睛】本题考查了含30度角的直角三角形的边长的性质,牢牢掌握该性质是解答本题的关键. 18.9cm【分析】由可知为直角三角形利用勾股定理可分别计算求得BC和CD 从而完成BD求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.【详解】∵90C ∠=︒ ∴222217815BC AB AC =-=-=同理 22221086CD AD AC =-=-=∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.19.15【分析】在侧面展开图中过C 作CQ ⊥EF 于Q 作A 关于EH 的对称点A′连接A′C 交EH 于P 连接AP 则AP+PC 就是蚂蚁到达蜂蜜的最短距离求出A′QCQ 根据勾股定理求出A′C 即可【详解】解:沿过A 的圆解析:15【分析】在侧面展开图中,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A′,连接A′C 交EH 于P ,连接AP ,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,求出A′Q ,CQ ,根据勾股定理求出A′C 即可.【详解】解:沿过A 的圆柱的高剪开,得出矩形EFGH ,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A′,连接A′C 交EH 于P ,连接AP , 则AP+PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E ,A′P=AP ,∴AP+PC=A′P+PC=A′C ,∵CQ=12×18cm=9cm ,A′Q=12cm -3cm+3cm=12cm ,在Rt△A′QC中,由勾股定理得:A′C=2222+=+=15(cm),A'Q CQ129故答案为:15.【点睛】本题考查了平面展开-最短路径问题,勾股定理的应用,同时也考查了学生的空间想象能力.将图形侧面展开,利用轴对称的性质和勾股定理进行计算是解题的关键.20.256【分析】两个阴影正方形的面积和等于直角三角形另一未知边的平方利用勾股定理即可求出【详解】解:两个阴影正方形的面积和为342-302=256故答案为:256【点睛】本题考查了直角三角形中勾股定理解析:256【分析】两个阴影正方形的面积和等于直角三角形另一未知边的平方.利用勾股定理即可求出.【详解】解:两个阴影正方形的面积和为342-302=256.故答案为:256.【点睛】本题考查了直角三角形中勾股定理的运用,考查了正方形面积的计算,本题中根据勾股定理求阴影部分的边长是解题的关键.三、解答题21.BC=43+3或43-3【分析】作AD⊥BC于D,分点D在线段BC上和BC的延长线上两种情况,根据勾股定理计算即可.【详解】解:作AD⊥BC于D,分两种情况:①高BD在线段BC上,如图1所示:在Rt△ABD中,22228443-=-=AB AD在Rt△ACD中,2222-=-,54AC AD∴3;②高AD在CB的延长线上,如图2所示:BC=BD-CD=43-3; 综上所述,BC 的长为43+3或43-3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.22.(1)21.6(米);(2)DH=12(米),BH=9(米).【分析】(1)利用勾股定理求出CD ,进一步即可求出CE 的高度;(2)如图,利用“等面积法”求出DH 长度,然后再利用勾股定理即可求出BH 的长度.【详解】(1)在Rt CDB ∆中,由勾股定理,得:2222251520CD CB BD =-=-=(米). ∴20 1.621.6CE CD DE =+=+=(米);(2)如图所示:由题意得:1122BD DC BC DH ⨯=⨯, ∴15201225DH ⨯==(米), ∴在Rt BHD ∆中,229BH BD DH =-=(米) 【点睛】本题主要考查了勾股定理的实际应用,熟练掌握相关概念是解题关键.23.不可能.【分析】根据题意实质是比较C 点到AB 的距离与10的大小.因此作CD ⊥AB 于D 点,求CD 的长.【详解】解:作CD ⊥AB 于D ,根据题意,AB=30×23=20,∠CAD=30°,∠CBD=60°,在Rt△ACD中,AD=CD=3tan30︒CD,在Rt△BCD中,BD=CD3=tan60︒CD,∵AB=AD﹣BD,∴3CD﹣3CD=20,CD=103>10,所以不可能.【点睛】本题考查解直角三角形的应用-方向角问题.24.13【分析】设AD=x,则AC=32﹣x,根据勾股定理可求出x的值,在直角三角形ABD中,再利用勾股定理即可求出AB的长.【详解】解:设AD=x,则AC=32﹣x,∵AD⊥BC于点D,∴△ADC和△ADB是直角三角形,∵CD=16,∴x2+162=(32﹣x)2,解得:x=12,∴AD=12,在直角三角形ABD中,AB22512+=13.【点睛】本题考查了勾股定理解直角三角形,解题的关键是设出未知数,利用勾股定理列出方程求解.25.(1)13;(2)﹣7或5;(3)△ABC为等腰三角形,理由见解析.【分析】(1)根据两点间距离公式求解即可.(2)根据与y轴平行的线段的特点以及两点间距离公式求解即可.(3)根据两点间距离公式求该三角形的各边长,从而进行判断即可.【详解】(1)∵点()2,4A ,()3,8B --,∴()()22234813AB =+++=;(2)∵点A ,B 所在的直线平行于y 轴,点B 的纵坐标为﹣1,A ,B 两点间的距离等于6,∴点A 的纵坐标为﹣1﹣6=﹣7或﹣1+6=5;(3)∵()()22332610AB =--+--=, ()()22372210AC =--+-+=, ()()22376245BC =-++=,∴△ABC 为等腰三角形.【点睛】本题考查了两点间的距离公式问题,掌握两点间距离公式、等腰三角形的性质是解题的关键.26.5【分析】过点C 作CE ⊥AB 于点E ,连接AC ,根据题意直接得出AE ,EC 的长,再利用勾股定理得出AC 的长,进而求出答案.【详解】如图所示:过点C 作CE ⊥AB 于点E ,连接AC ,由题意可得:EC =BD =1.2m ,AE =AB−BE =AB−DC =1.3−0.8=0.5m ,∴AC=22221.20.5 1.3CE AE +=+=m ,∴1.3÷0.2=6.5s ,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键.。

第18章《勾股定理》基础测试题(一).doc

第18章《勾股定理》基础测试题(一).doc

第18章《勾股定理》基础测试题(-)班级: ____________ 姓名: ____________ 得分:一、选择题(共6小题,每小题4分,满分24分)1、下列各组数为勾股数的是() A 、6, 12, 13 B 、 3, 4, 7 C 、 15, 17, 8 D 、8, 15, 16 2、 要登上某建筑物,靠墙有一架梯子,底端离建筑物5///,顶端离地面12///,则梯子的长度为( ) A 、12/?7 B 、\3ni C 、14m D 、15m3、直角三角形的两条直角边长分别为&加和&加,则连接这两条直角边中点线段的长为( )A 、3cmB 、4cmC 、5cmD 、12cm4、 一艘小船早晨8: 00出发,以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时 的速度向南航行,上午10: 00两小船相距( )海里.A 、15B 、12C 、13D 、20 5、一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( )二. 填空题(共6小题,每小题4分,满分24分) B 、8 C 、106、在△ABC 中, Z4CB 二90。

,AC=\2, BC=5, AM=AC, BN 二BC 、 则MN 的长为( 4、2 B 、2.6A 、4 笫6ACB第11题7.已知在Rt/\ABC中,ZC=90°. ____ (1)若。

=3, b=4,则;(2)若°=6,尸10,则b= ____________ .8、已知甲乙在同一地点出发,甲往东走了4千米,乙往南走了3千米,这时甲、乙两人相距千米.9、如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路=他们仅仅少走了__________ 步路(假设2步为1米),却踩伤了花草.10.某养殖厂有一个长2米.宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取米.11、如图,隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向成直角的BC方向上任取一点C,若测得CA=50m, CB=40m,那么A、B两点间的距离是__________________ m •12、如果直角三角形的斜边与一条直角边的长分别是13c税和5c/77,那么这个直角三角形的面积是2cm .三、解答题(共4小题,满分52分)塑料薄膜,试求需要多少平方米塑料薄膜?13、如图,要修建一个育苗棚,棚高肛1.8加,棚宽a=2.4 m,棚的长为12加,现要在棚顶上覆盖a14、如图,铁路上A、B两点相距25如?,C、D为两村庄,DA丄AB于A, CB丄AB于B,己知DA=\5km f CB二\0血,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在多少千米处?15、在△ABC 中,ZC=90°, AC=2A cm. BC=2.S cm.(1)求这个三角形的斜边AB的长和斜边上的高CD的长;(2〉求斜边被分成的两部分4D和BD的长.16、在两千多年前我国古算术上记载有“勾三股四弦五”,你知道它的意思吗?它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.(1〉请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC的两条直角边的长分别为AC=7, BC=4,请你研究参考答案与评分标准一、选择题(共6小题,每小题4分,满分24分)1、下列各组数为勾股数的是()A、6, 12, 13B、 3, 4, 7C、15, 17, 8D、 8, 15, 16考点:勾股定理的逆定理;勾股数。

勾股定理练习题及答案(共6套)[1]

勾股定理练习题及答案(共6套)[1]

勾股定理课时练(1)1. 在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是( ) A.2 B.4 C.6 D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是______ cm (结果不取近似值).3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m ,旗杆在断裂之前高多少m ?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7. 如图所示,无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8. 一个零件的形状如图所示,已知AC=3cm ,AB=4cm ,BD=12cm 。

求CD 的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB 的长. 10. 如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222ACBC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。

勾股定理1

勾股定理1

1.已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8,则边BC 的长为( )A.21B.15C.6D.以上答案都不对2.有一块直角三角形的绿地,量得两直角边长分别为6m ,8m ,现在要将绿地扩充成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,求扩充后等腰三角形绿地的周长.3.如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt △ABC 中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是___.4.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )A.13B.26C.47D.945.如图5,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( )(A )CD 、EF 、GH (B )AB 、EF 、GH(C )AB 、CD 、GH (D )AB 、CD 、EF图56.在直线l 上依次摆放着七个正方形(如图6所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________。

图67.如图7,将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G 。

如果M 为CD 边的中点,求证:DE :DM :EM=3:4:5。

图78.△ABC 中,BC=a ,AC=b ,AB=c ,若∠C=90°,如图8(1),根据勾股定理,则a b c 222+=。

若△ABC 不是直角三角形,如图8(2)和8(3),请你类比勾股定理,试猜想a b 22+与c 2的关系,并证明你的结论。

八年级上册勾股定理测试题1

八年级上册勾股定理测试题1

填空1.如图1,△ABC 中,CD 是AB 边上的高,AD =15,BD =6,BC =10,则CD = ,AC = .2.直角三角形的一直角边为3cm ,斜边的长为5cm ,则其面积为 .3.在△ABC 中,∠C =90°,若a =5, b =12, 则c = .4.在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2= .5.把一根12厘米长的铁丝,从一端起顺次截下3厘米和5厘米的两根铁丝,用这三条铁丝摆成的三角形是 .6.一个三角形三边分别为8,15,17,那么最长边上的高为 .7.△DEF 中DE =26cm ,EF =10cm ,DF =24cm ,则△DEF 是 ,DE 边是这个三角形的 边.8.已知2|6||8|(10)0x y z -+-+-=,则由x ,y ,z 为三边的三角形是 .9.写出三个连续的偶数自然数,而且它们恰为勾股数,是 、 和 .10.如图2,△ABC 中,点D 在AB 上,且BC =6,CD =4.8,BD =3.6,AD =6.4,则图中直角三角形的个数为 .二、选择(每小题3分,共24分)1.以直角三角形的两直角边为边长所作正方形的面积分别是9和16,则斜边长为( )A .25B .5C .15D .2252.下列几组数不能作为直角三角形的三边长的是( )A .16,30,34B .9,12,15C .15,36,38D .14,48,503.如果三角形的三边5,m ,n 满足()()25m n m n +-=,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .无法确定4.斜边为17cm ,一条直角边长为15cm 的直角三角形的面积为( )A .60cm 2B .30cm 2C .90cm 2D .120cm 25.三边为2、3、4的三角形不是直角三角形,这个论断的依据是( )A .勾股定理的逆用B .勾股定理C .直角三角形两锐角互余D .以上都不对6.在80米长,宽比长短20米的长方形花园的对角线上修一条小路,这条小路的长为( )A .60米B .100米C .130米D .150米.已知正方形的边长为1,则蚂蚁从其一个顶点爬行到相对顶点的距离的平方为( )A .8B .5C .3D .28.如果将直角三角形的三边同时缩小23,得到的三角形( ) A .一定是直角三角形 B .不一定是直角三角形C .一定不是直角三角形D .可能是直角三角形三、每小题8分,共32分1.(本小题8分)如图3,在四边形ABCD 中,∠BAD =∠DBC =90°,若AD =4cm ,AB =3cm ,BC =12cm ,求CD 的长.2.(本小题8分)在宽8米,长15米的长方形ABCD 花园内修一条长13米的小路EF ,如图4所示,小路出口一端E 选在AD 边上距D 点3米处,另一端出口F 应选在何处?4.(本小题8分)在正方形ABCD 中(如图6),E 是BC 的中点,F 为CD 上一点,且CF =14CD ,试判断△AEF 是否是直角三角形?试说明理由.1.(本小题11分)如图7,已知D 是△ABC 边BC 上的一点,且222AC AD DC =+,小明说,由上面条件可得到2222AB AC BD DC -=-,你说芳芳说得对吗?为什么?3.(本小题12分)如图9,有一立方体,已知侧面ABCD 为正方形,边长为5,BB ′=7,现有一绳子从A 出发,沿正方体表面到达C ′处,问绳子最短是多少米?。

勾股定理知识点及练习题及答案(1)

勾股定理知识点及练习题及答案(1)

勾股定理知识点及练习题及答案(1)一、选择题1.如图,在四边形ABCD 中,90B C ∠=∠=,DAB ∠与ADC ∠的平分线相交于BC 边上的M 点,则下列结论:①90AMD ∠=;②1=2ADM ABCD S S ∆梯形;③AB CD AD +=;④M 到AD 的距离等于BC 的13;⑤M 为BC 的中点;其中正确的有( )A .2个B .3个C .4个D .5个2.如图,等边ABC ∆的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为( )A .1cmB .1.5cmC .2cmD .3cm3.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是( )A .B .C .D .4.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直5.三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .8 6.下列长度的三条线段能组成直角三角形的是( )A .9,7,12B .2,3,4C .1,2,3D .5,11,127.下列命题中,是假命题的是( )A .在△ABC 中,若∠A:∠B:∠C=1:2:3,则△ABC 是直角三角形B .在△ABC 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形 C .在△ABC 中,若∠B=∠C=∠A,则△ABC 是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形8.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对9.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( )A .10B .5C .4D .310.已知三组数据:①2,3,4;②3,4,5;③1,25为三角形的三边长,能构成直角三角形的是( ) A .②B .①②C .①③D .②③二、填空题11.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.12.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.13.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.14.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l 丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)15.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.16.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.17.在等腰Rt ABC △中,90C ∠=︒,2AC =,过点C 作直线lAB ,F 是l 上的一点,且AB AF =,则FC =__________.18.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.19.四边形ABCD 中AB =8,BC =6,∠B =90°,AD =CD =52,四边形ABCD 的面积是_______.20.如图所示,圆柱体底面圆的半径是2π,高为1,若一只小虫从A 点出发沿着圆柱体的外侧面爬行到C 点,则小虫爬行的最短路程是______三、解答题21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒. (1)出发2秒后,求线段PQ 的长;(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;成为等腰三角形的运动时间.(3)点Q在边CA上运动时,求能使BCQ22.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,AD平分∠BAC,BD⊥AD于点D,E是AB的中点,连接CE交AD于点F,BD=3,求BF的长.23.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A、B、C三点的位置如图,请在网格图中标出所有的格点.......D.,使得以A、B、C、D为顶点的四边形为邻和四边形.(3)如图3,△ABC中,∠ABC=90°,AB=2,BC=23,若存在一点D,使四边形ABCD是邻和四边形,求邻和四边形ABCD的面积.24.如图1,在等腰直角三角形ABC中,动点D在直线AB(点A与点B重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由. 25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.26.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E . (1)根据题意用尺规作图补全图形(保留作图痕迹); (2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由. ②若线段2AD EC =,求mn的值.27.如图,点A 是射线OE :y =x (x ≥0)上的一个动点,过点A 作x 轴的垂线,垂足为B,过点B作OA的平行线交∠AOB的平分线于点C.(1)若OA=52,求点B的坐标;(2)如图2,过点C作CG⊥AB于点G,CH⊥OE于点H,求证:CG=CH.(3)①若点A的坐标为(2,2),射线OC与AB交于点D,在射线BC上是否存在一点P 使得△ACP与△BDC全等,若存在,请求出点P的坐标;若不存在,请说明理由.②在(3)①的条件下,在平面内另有三点P1(2,2),P2(2,22),P3(2+2,2﹣2),请你判断也满足△ACP与△BDC全等的点是.(写出你认为正确的点)28.(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,①则线段BC,DC,EC之间满足的等量关系式为;②求证:BD2+CD2=2AD2;(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.29.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+;勾为5时,股112(251)2=-,弦113(251)2=+;请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= . (解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空: (3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.30.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G . (1)如图1,求∠BGD 的度数;(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =43,求菱形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】过M 作ME AD ⊥于E ,得出12MDE CDA ∠=∠,12MAD BAD ∠=∠,求出1()902MDA MAD CDA BAD ∠+∠=∠+∠=︒,根据三角形内角和定理求出AMD ∠,即可判断①;根据角平分线性质求出MC ME =,ME MB =,即可判断④和⑤;由勾股定理求出DC DE =,AB AE =,即可判断③;根据SSS 证DEM DCM ∆≅∆,推出DEM DCM S S =三角形三角形,同理得出AEM ABM S S =三角形三角形,即可判断②. 【详解】解:过M 作ME AD ⊥于E ,DAB ∠与ADC ∠的平分线相交于BC 边上的M 点,12MDE CDA ∴∠=∠,12MAD BAD ∠=∠,//DC AB ,180CDA BAD ∴∠+∠=︒,11()1809022MDA MAD CDA BAD ∴∠+∠=∠+∠=⨯︒=︒,1809090AMD ∴∠=︒-︒=︒,故①正确;DM 平分CDE ∠,90()C MC DC ∠=︒⊥,ME DA ⊥,MC ME ,同理ME MB =,12MC MB ME BC ∴===,故⑤正确; M ∴到AD 的距离等于BC 的一半,故④错误;由勾股定理得:222DC MD MC =-,222DE MD ME =-,又ME MC =,MD MD =, DC DE ∴=, 同理AB AE =,AD AE DE AB DC ∴=+=+,故③正确; 在DEM ∆和DCM ∆中DE DC DM DM ME MC =⎧⎪=⎨⎪=⎩,()DEM DCM SSS ∴∆≅∆,DEM DCM S S ∴=三角形三角形 同理AEM ABM S S =三角形三角形, 12AMD ABCD S S ∴=三角形梯形,故②正确;故选:C .【点睛】本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形的性质和判定等知识点的应用,主要考查学生运用定理进行推理的能力.2.D解析:D【分析】根据折叠的性质可得AD=A'D,AE=A'E,易得阴影部分图形的周长为=AB+BC+AC,则可求得答案.【详解】解:因为等边三角形ABC的边长为1cm,所以AB=BC=AC=1cm,因为△ADE沿直线DE折叠,点A落在点A'处,所以AD=A'D,AE=A'E,所以阴影部分图形的周长=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm).故选:D.【点睛】此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用以及折叠前后图形的对应关系.3.D解析:D【解析】【分析】利用勾股定理和正方形的面积公式,对公式进行合适的变形即可判断各个选项是否争取.【详解】A中,根据勾股定理等于大正方形边长的平方,它就是正方形的面积,故正确;B中,根据小正方形的边长是2它等于三角形较长的直角边减较短的直角边即可得到,正确;C中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D中,根据A可得,C可得,结合完全平方公式可以求得,错误.故选D.【点睛】本题考查勾股定理.在A、B、C选项的等式中需理解等式的各个部分表示的几何意义,对于D选项是由A、C选项联立得出的.4.C解析:C【分析】矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【详解】A、菱形、矩形的内角和都为360°,故本选项错误;B、对角互相平分,菱形、矩形都具有,故本选项错误;C、对角线相等菱形不具有,而矩形具有,故本选项正确D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C.【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键. 5.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A的面积等于100-64=36;故选:B.【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.6.C解析:C【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A、因为92+72≠122,所以三条线段不能组成直角三角形;B、因为22+32≠42,所以三条线段不能组成直角三角形;C、因为12+32= 22,所以三条线段能组成直角三角形;D、因为52+112≠122,所以三条线段不能组成直角三角形.故选C.【点睛】此题考查勾股定理逆定理的运用,注意数据的计算.7.C解析:C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A. △ABC中,若∠B=∠C-∠A,则∠C =∠A+∠B,则△ABC是直角三角形,本选项正确;B. △ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2= a2+c2,则△ABC是直角三角形,本选项正确;C. △ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D. △ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.8.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+=13AC ∴=13AB AC ∴==故ABC 是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.9.B解析:B【分析】根据“在Rt △ABC 中”和“沿BD 进行翻折”可知,本题考察勾股定理和翻折问题,根据勾股定理和翻折的性质,运用方程的方法进行求解.【详解】∵∠A=90°,AB=6,AC=8,∴,根据翻折的性质可得A′B=AB=6,A′D=AD ,∴A′C=10-6=4.设CD=x ,则A′D=8-x ,根据勾股定理可得x 2-(8-x )2=42,解得x=5,故CD=5.故答案为:B .【点睛】本题考察勾股定理和翻折问题,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.10.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③()2221+2=5=5 , 所以能构成直角三角形的是②③.故选D .【点睛】考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形. 二、填空题11.7【分析】连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO =∠DAO =30°,AB =AD =BD ,BO =OD ,通过证明△EDF 是等边三角形,可得DE =EF =DF ,由勾股定理可求OC ,BC 的长.【详解】连接AC ,交BD 于点O ,∵AB =AD ,BC =DC ,∠A =60°,∴AC 垂直平分BD ,△ABD 是等边三角形,∴∠BAO =∠DAO =30°,AB =AD =BD =4,BO =OD =2,∵CE ∥AB ,∴∠BAO =∠ACE =30°,∠CED =∠BAD =60°,∴∠DAO =∠ACE =30°,∴AE =CE =3,∴DE =AD−AE =1,∵∠CED =∠ADB =60°,∴△EDF 是等边三角形,∴DE =EF =DF =1,∴CF =CE−EF =2,OF =OD−DF =1,OC ∴=∴【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.12.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】 本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.13.3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.14.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7×3=21(尺), 222021+=29(尺).答:葛藤长29尺.故答案为:29.【点睛】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.15.72965【分析】分三种情形讨论:(1)如图1中,以点C 所在顶点为直角时;(2)如图2中,以点D 所在顶点为直角时;(3)如图3中,以点A 所在顶点为直角时.【详解】(1)如图1中,以点C 所在顶点为直角时.∵AC =CD =4,BC =3,∴BD =CD +BC =7;(2)如图2中,以点D 所在顶点为直角时,作DE ⊥BC 与E ,连接BD .在Rt △BDE 中DE =2,BE =5,∴BD 2229DE BE +(3)如图3中,以点A 所在顶点为直角时,作DE ⊥BC 于E , 在Rt △BDE 中,DE =4.BE =7,∴BD 2265DE BE + 故答案为:72965【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.16.3.【分析】作点B关于AD的对称点B′,过点B′作B′N⊥AB于N交AD于M,根据轴对称确定最短路线问题,B′N的长度即为BM+MN的最小值,根据∠BAC=60°判断出△ABB′是等边三角形,再根据等边三角形的性质求解即可.【详解】如图,作点B关于AD的对称点B′,由垂线段最短,过点B′作B′N⊥AB于N交AD于M,B′N最短,由轴对称性质,BM=B′M,∴BM+MN=B′M+MN=B′N,由轴对称的性质,AD垂直平分BB′,∴AB=AB′,∵∠BAC=60°,∴△ABB′是等边三角形,∵AB=2,∴B′N=2×32=3, 即BM+MN 的最小值是3. 故答案为3.【点睛】本题考查了轴对称确定最短路线问题,等边三角形的判定与性质,确定出点M 、N 的位置是解题的关键,作出图形更形象直观.17.31+或31-【解析】如图,l AB ,2AC =,作AD l ⊥于点D ,∴1AD =,∵222AF AB ==⋅=,且F 有2个, ∴2212213DF DF ==-=,∵1DC AD ==,∴1113CF CD DF =+=+, 2231CF DF CD =-=-.点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力.18.355【详解】 四边形DEFA 是正方形,面积是4; △ABF,△ACD 的面积相等,且都是 ×1×2=1. △BCE 的面积是:12×1×1=12. 则△ABC 的面积是:4﹣1﹣1﹣12=32. 在直角△ADC 中根据勾股定理得到:222+1=5设AC 边上的高线长是x .则125x=32,解得:x=355.故答案为355. 19.49 【解析】连接AC ,在Rt △ABC 中,∵AB =8,BC =6,∠B =90°,∴AC =22AB BC + =10. 在△ADC 中,∵AD =CD =52,∴AD 2+CD 2=(52)2+(52)2=100.∵AC 2=102=100,∴AD 2+CD 2=AC 2,∴∠ADC =90°,∴S 四边形ABCD =S △ABC +S △ACD =12AB •BC +12AD •DC =12×8×6+12×52×52=24+25=49.点睛:本题考查的是勾股定理及勾股定理的逆定理,不规则几何图形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.5【分析】先将图形展开,再根据两点之间线段最短可知.【详解】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•2π=2,CB=1. ∴22AB +BC 222=5+1故答案为:5. 【点睛】 圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决. 三、解答题21.(1)出发2秒后,线段PQ 的长为213;(2)当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【分析】(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答; (3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.【详解】(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,∵∠B=90°,由勾股定理得:PQ=22224652213BQ BP +=+==∴出发2秒后,线段PQ 的长为213;(2)BQ=2t ,BP=8−t由题意得:2t=8−t解得:t=83∴当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形; (3) ∵∠ABC=90°,BC=6,AB=8,∴AC=2268+=10.①当CQ=BQ 时(图1),则∠C=∠CBQ ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ ,∴BQ=AQ ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ=BC时(如图2),则BC+CQ=12∴t=12÷2=6秒③当BC=BQ时(如图3),过B点作BE⊥AC于点E,∴BE=6824105 AB BCAC⋅⨯==,所以CE=22BC BE-=185=3.6,故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点睛】本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.22.BF的长为32【分析】先连接BF,由E为中点及AC=BC,利用三线合一可得CE⊥AB,进而可证△AFE≌△BFE,再利用AD为角平分线以及三角形外角定理,即可得到∠BFD为45°,△BFD为等腰直角三角形,利用勾股定理即可解得BF.【详解】解:连接BF.∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.23.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23,∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-= ∴S △ADC =1423432⨯⨯=S △ABC =12AB×BC =3, ∴S 四边形ABCD =S △ADC +S △ABC =3②当CD =CB =BD =3∴△BDC为等边三角形,过D作DE⊥BC于E,则∠BDE=160302⨯︒=︒,∴132BE BD==()()22222333DE BD BE=-=-=,∴S△BDC=123333 2⨯=过D作DF⊥AB交AB延长线于F,∵∠FBD=∠FBC-∠DBC=90︒-60︒=30︒,∴DF=123S△ADB=12332⨯=,∴S四边形ABCD=S△BDC+S△ADB=3;③当DA=DC=DB或AB=AD=BD时,邻和四边形ABCD不存在.∴邻和四边形ABCD的面积是3或3【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.24.(1)AE=BD且AE⊥BD;(2)6;(3)PQ为定值6,图形见解析【分析】(1)由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC=45°,可得AE⊥BD;(2)由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长;(3)分两种情况讨论,由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC,可得AE⊥BD,由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长.【详解】解:(1)AE=BD,AE⊥BD,理由如下:∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE ⊥BD ;(2)∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;(3)如图3,若点D 在AB 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.25.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED 2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:22,则AF =22x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF =22AF AE +=22(22)x x +=3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=+,解得x =1,∴AB =22+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-)()22222m m m n m n =++-22222222m n m m n =+-+-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ==== 2AD EC =2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.27.(1)(5,0);(2)见解析;(3)①P (4,2),②满足△ACP 与△BDC 全等的点是P 1、P 2,P 3.理由见解析【分析】(1)由题意可以假设A (a ,a )(a >0),根据AB 2+OB 2=OA 2,构建方程即可解决问题; (2)由角平分线的性质定理证明CH=CF ,CG=CF 即可解决问题;(3)①如图3中,在BC 的延长线上取点P ,使得CP=DB ,连接AP .只要证明△ACP ≌△CDB (SAS ),△ABP 是等腰直角三角形即可解决问题;②根据SAS 即可判断满足△ACP 与△BDC 全等的点是P 1、P 2,P 3;【详解】解:(1)∵点A 在射线y =x (x ≥0)上,故可以假设A (a ,a )(a >0), ∵AB ⊥x 轴,∴AB =OB =a ,即△ABO 是等腰直角三角形,∴AB 2+OB 2=OA 2,∴a 2+a 2=()2,解得a=5,∴点B坐标为(5,0).(2)如图2中,作CF⊥x轴于F.∵OC平分∠AOB,CH⊥OE,∴CH=CF,∵△AOB是等腰直角三角形,∴∠AOB=45°,∵BC∥OE,∴∠CBG=∠AOB=45°,得到BC平分∠ABF,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP和△CDB中,AC ADACP DB CP DB=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△CDB(SAS),∴∠CAP=∠DCB=22.5°,∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,∴AP=AB=OB=2,∴P(4,2).②满足△ACP与△BDC全等的点是P1、P2,P3.理由:如图4中,由题意:AP1=BD,AC=CD,∠CAP1=∠CDB,根据SAS可得△CAP1≌△CDB;AP2=BD,AC=CD,∠CAP2=∠CDB,根据SAS可得△CAP2≌△CDB;AC=CD,∠ACP3=∠BDC,BD=CP3根据SAS可得△CAP3≌△DCB;故答案为P1、P2,P3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.28.(1)①BC=DC+EC,理由见解析;②证明见解析;(2)6.【解析】【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理测试题
一、 用你敏锐的思维,写出简洁的结果(每题3分,共21分) 1.若Rt △ABC 中,90C ︒∠=且c=13,a=12,则b=( ) A 、11 B 、8 C 、5 D 、3
2.下列各组数中以a ,b ,c 为边的三角形不是Rt △的是( ) A 、a=2,b=3, c=4 B 、a=7, b=24, c=25
C 、a=6, b=8, c=10
D 、a=3, b=4, c=5
3.△ABC 的三边分别是a 、b 、c 且满足()2
2a+b 2c ab -=,则此三角形是( )A 锐角三角形 B 钝角三角形 C 直角三角形 D 等腰直角三角形
4.若等腰三角形的腰长为10,底边长为12,则底边上的高为( )
A 、6
B 、7
C 、8
D 、9 5.若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A 、14 B 、4 C 、14或4 D 、以上都不对
6.下列条件中,不能确定三角形是直角三角形的是( )
A. 三角形中有两个角是互为余角
B. 三角形三个内角之比为3∶2∶1
C. 三角形的三边之比为3∶2∶1
D. 三角形中有两个内角的差等于第三个内角 7.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π 取3)是( )
A.20cm;
B.10cm;
C.14cm;
D.无法确定.
二、相信你一定能选对!(每小题3分,共33分) 8. 直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

9.木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线 为100cm ,则这个桌面 。

(填“合格”或
“不合格” )
10.已知,如图长方形ABCD 中,AB=3cm ,
AD=9cm ,将此长方形折叠,使点B 与点D 重合,
折痕为EF ,则△ABE 的面积为
11.如下页图1,正方形A 的面积是144,正方形B 的面积是169,则正方形C 的边长是 。

12.如下页图2,一个梯子AB 长为10米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 间的距离为6米,梯子滑动后停在DE 的位置上,测得DB 的长为2米,则梯子顶端A 下落了 米。

13.如下页图3,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长度是为h cm ,则h 的取值范围是 。

14.如图4,要将楼梯铺上地毯,则需要 米的地毯。

15.若一个三角形的三边长为3、4、x ,则使此三角形是直角三角形的x 的值是 。

16. 如图,学校有一块长方形花铺,有极少数人为了避开拐
角走“捷
径”,在花铺内走出了一条“路”.他们仅仅少走了 步
路(假
设2步为1米),却踩伤了花草.
17.点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个
中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是(---------------)
18.一个直角三角形的两边长分别为6cm 和8cm,则第三边的平方为
三、解答题(共46分)解答时请写出必要的演算过程或推理步骤。

19.(7分)已知如图,四边形ABCD 中,∠B =90°,AB=4,BC=3,CD=12,AD=13,求这个四边形的面积。

_ A _ B
_ C
_ D
A B E F D C

A
B “路”
4m
3m
A
B
C
A B
D
E 10
15
20.(7分)甲、乙两船上午11时同时从港口A 出发,甲船以每小时20海里的速度向东北方向航行,乙船以每小时15海里的速度向东南方向航行,求:下午1时两船之间的距离。

(10分)
21.(7分)在ABC Rt ∆中,∠C =90°,a 、b 、c 分别表示A ∠、B ∠、C ∠的对边(如图)。

已知b =3,∠A =60°,求a 2
22.(7分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:
“平平湖水清可鉴,面上一尺生红莲;出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?” 请用学过的数学知识回答这个问题.
23.(8分)如图,铁路上A 、B 两点相距25km , C 、D 为两村庄,若DA =10km ,CB =15km ,
DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.(1)求E 应建在距A 多远处?
(2)DE 和EC 垂直吗?试说明理由
24.(8分)如图所示, 矩形纸片ABCD 中,把矩形沿BD 折叠,与AD 相交于点E ,已知:BC=8, BE=
25
4。

求AB 的长.
A





B A C
a
b c。

相关文档
最新文档