2012年全国硕士研究生入学考试数学(一)考试大纲
2012考研数学三考试大纲
2012考研数学2011年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sinlim1xxx→=1lim1xxex→∞⎛⎫+=⎪⎝⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle )定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学 考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学 考试内容多元函数的概念 二元函数的几何意义二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及p级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解xe .sin x.cos x .ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式.六、常微分方程与差分方程 考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念. 6.了解一阶常系数线性差分方程的求解方法. 7.会用微分方程求解简单的经济应用问题.线 性 代 数一、行列式 考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为()00xe f x x λλ-⎧=⎨≤⎩若x>0若5.会求随机变量函数的分布.三、多维随机变量及其分布 考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布221212(,;,;)N u u σσρ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩2χ分布t 分布F 分布分位数 正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2211()1n i i S X X n ==--∑2.了解产生2χ变量、t 变量和F 变量的典型模式;了解标准正态分布、2χ分布、t 分布和F 分布得上侧α分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法 最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.。
2012考研《数学》大纲解析及备考指导汇总
2012考研《数学》大纲综述及备考指导2011年9月15日教育部考试中心发布了2012年全国硕士研究生入学统一考试数学考试大纲,与去年相比考试内容和考试要求上没有变化,具体如下:试卷题型结构为:单项选择题 8小题,每小题4分,共32分;填空题 6小题,每小题4分,共24分;解答题(包括证明题) 9小题,共94分.数学一高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.数学二高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.数学三2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.农学数学高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.大纲在考试要求和考试内容上没有变化,对于考生来说可以按照既定的复习计划,按部就班的进行备考了。
与此同时,同学们最好能够根据考试大纲上的知识点再系统的复习一下相应的考试点,一方面可以起到巩固提高的作用,另外一方方面,可以形成知识体系脉络。
硕士学位研究生入学资格考试
信息确认后,考生可加紧复习或者报一个辅导班,然后等待10月考试的到来。 数数时间离2011年GCT考试时间大概还有三个多月。其中GCT入学考试为初试、复试两个阶段: (一)初试 Ⅰ、初试时间:2011年10月29、30日。 Ⅱ、考试科目:GCT(含语言、数学、逻辑、英语) (二)复试 Ⅰ、复试时间:根据学校下发通知。资格审查一般都会安排在这个时期,审查的时候一般都会要求考生把在 网上下载的“资格审查表”加盖所在单位人事部门(或档案管理部门)签字、盖章后递交报考院校。
示范性软件学院
“从2014年起,示范性软件学院不再自行组织考试招收软件工程领域工程硕士,招生工作纳入全国联考统一 管理。”
作为国家培养亟需的软件工程人才的重要途径,随着我国的经济腾飞及与之伴随的产业结构转型的到来,软 件工程自主招生已经实现了国家起初设立的初衷。从2014年起,学位办将根据我国现状把软件工程取消自主招生 纳入全国联考统一管理。
各单位将根据考生入学考试成绩(含复试)择优录取。除工程、农业推广、兽医和风景园林硕士外,其余类 别专业学位调剂限在考生报考院校所在省(自治区、直辖市)的院校之间进行,不允许跨省调剂录取。高校、中 职教师在职攻读硕士学位,泰祺MBA辅导不得跨校调剂录取,校内跨专业调剂仅限于相同一级学科下的不同二级 学科之间。
北京林业大学研招办负责人表示,第二阶段考试包括专业课考试及综合面试。考生要留意所报考学校在其网 站上公布的安排,提前为复试做好准备。
2000年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准
x y2
f12)
1 y2
f2
1 y
(xf21
x y2
f
22
)
1 x2
g
y x3
g
2000 年 • 第 2 页
f1
1 y2
f2 ' xyf11
x y3
f22
1 x2
g
y x3
g .
„„5 分
五、(本题满分 6 分)
计算曲线积分 I
L
xdy ydx 4x2 y2
,其中
L
是以点(1,0)为中心,R
三、(本题满分 5 分)
1
求
lim(
x0
2
ex
4
sin x
x) .
1 ex
1
4
3
解:因
lim
x0
(
2
ex
4
sin x
2e
) lim (
x
x0
x e
4
x
sin x) 1 x
,
1 ex
e x 1
1
1
2 ex
lim (
x0
4
sin x) x
2 ex
lim (
x0
4
sin x) 2 1 1, x
(5) 设二维随机变量 X ,Y 服从二维正态分布,则随机变量 X Y 与 X Y 不相关
的充分必要条件为
(B)
(A) E(X)=E(Y)
(B) E X 2 E X 2 E Y 2 E Y 2
(C) E X 2 E Y 2
(D) E X 2 E X 2 E Y 2 E Y 2
为半径的圆周(R>1).取逆时
2012考研《数学一、二、三》大纲
二、职业分析
育内 认 育 要 或的 为 教 求 每 文教 我 育 千 一 艺育 可 的 差 个 各事 以 专 万 行 种业 从 业 别 业 俱, 事 的 。 对 乐从 于 学 而 求 部事 校 生 作 职 工于 外 , 为 者 作体 校 我 体 的 。
三、确定目标
列夫·托尔斯泰曾说过: “一个埋头脑力劳动的人, 如果不经常活动四肢,那 是一件极其痛苦的事情。” 我从小就喜欢运动,我的 性格乐观开朗,积极向上。 作为体教的一名学生,我 争取:学习好专业知识, 掌握好各类体育项目技能, 塑照好形象,全面提高各 方面的素质,以便更好地 适应未来。
原因是用人单位认为应届毕业生只学到书本知识而没有握学习 方法、实际解决问题的能力弱、缺乏团队精神、人际沟通能 力和自我认知能力,而且对未来的发展盲目,没有规划。大 学作为大学生职业生涯规划的第一站,我们该如何对职业生 涯进行规划呢?
认知与分析
一、自我诘问 二、职业分析 三、确定目标 四、培养实践能力 五、参加职业训练 六、评估与修订
写在最后
在这里,这份职业生涯规划也差不多落
入尾声了,然而,我的真正行动才仅仅 开始。现在我要做的是,迈出艰难的一 步,朝着这个规划的目标前进,要以满 腔的热情去获取最后的胜利。有了成功的
目标。明确自己人生的大目标,对把握好目 标有直接的促进作用。认真策划人生每一步。 有道是:"凡事预则立,不预则废",千真万确。 对自己做的或将要做的事没有任何准备,就 是在为失败做准备。
NO.3面向未来
NO.1就业策略
就业技能准备
Text2
就业政策了解
Text3
对自己合适的 定位
Text1
Text4 Text5
2012考研《数学一、二、三》大纲
第17页,共24页。
目标管理的含义
• 明确目标 • 参与决策 • 规定期限 • 反馈绩效
第18页,共24页。
• 目标设置的方法——自己制定个人目标 • 目标间的关系——完成组织目标就是完成个
第20页,共24页。
(三)目标管理的流程
图1-1 ห้องสมุดไป่ตู้标管理流程图
第21页,共24页。
需要层次理论与人性假设
第22页,共24页。
(五)实施目标管理的哲学基础
麦格雷戈 的Y理论:
• 人并不是生来就厌恶工作
• 人完全能够实现自我指挥和自我控制。 • 对目标做出贡献是同获得成就的报酬直接相关的。
• 人们不但能接受而且主动承担责任。 • 多数人具有想象力和创造力。 • 人们并非天生就对组织的要求采取消极的或抵制的态度 管理的基本任务是使人们的潜能充分发挥出来,更好地为实现组织的目
目标管理
第1页,共24页。
摸高试验
• 把十个成员分成两组进行摸高比赛,看 哪一组摸得更高。第一组十个学生,不规定 任何目标,由他们自己随意制定摸高的高度; 第二组规定每个人首先定一个标准,比如要 摸到1.60米或1.80米。试验结束后,把两组 的成绩全部统计出来进行评比,结果发现规 定目标的第二组的平均成绩要高于没有制定 目标的第一组。
第8页,共24页。
思考
• 公司的共同愿景是什么?与目标有何 关系?
第9页,共24页。
(三)目标与计划
• 德国大众设定的目标为赶超日本丰田汽车公 司,成为世界第三大汽车制造商,全面提高 品牌的知名度 。
全国硕士研究生入学统一考试数学(一)模拟试卷二
2014年全国硕士研究生入学统一考试数学(一)模拟试卷二考生注意事项1.答题前。
考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号.2.答案必须书写在答题纸指定位置的边框区域内。
写在其他地方无效.3.填(书)写必须使用蓝(黑)色字迹钢笔,圆珠笔或签字笔.4.考试结束,将答题纸和试题一并装入试题袋中交回.一、选择题(l~8小题,每小题4分。
共32分.下列每题给出的四个选项中,只有一个选项符合题目要求.请将所选项前的字母填在答题纸指定的位置上)(1)(2)(A)函数y(x)单调减小,曲线y=y(x)是凹的.(B)函数y(x)单调减小,曲线y=y(x)是凸的.(C)函数y(x)单调增加,曲线y=y(x)是凹的.(D)函数y(x)单调增加,曲线y=y(x)是凸的.(3)累次积分(4)考虑以下命题:其中正确的个数是(A)1.(B)2.(C) 3.(D)4.(5)设A是,n×m矩阵,B是m×n矩阵,且m>n,若AB=E,其中E是n阶单位矩阵,则必有(A)矩阵A的列向量组线性相关,矩阵B的行向量组线性相关.(B)矩阵A的列向量组线性相关,矩阵B的列向量组线性相关.(C)矩阵A的行向量组线性相关,矩阵B的行向量组线性相关.(D)矩阵A的行向量组线性相关,矩阵B的列向量组线性相关.(6)(7)设A,B为随机事件,且BCA.考虑下列式子①P(A+B)=P(A);②P(AB)=P(B);③P(B—A)=P(B)一P(A);④P(B|A)=P(B),其中正确的个数为(A)1.(B)2.(C)3.(D)4.(8)本均值,则二、填空题(9~14小题。
每小题4分。
共24分,请将答案写在答题纸指定位置上)(9)数a=____.(10(11)(12)(13)(14)三、解答题(15-23小题。
共94分,请将解答写在答题纸指定的位置上.解答应写出文字说明。
证明过程或演算步骤)(15)(本题满分l0分)(16)(本题满分l0分)(17)(本题满分l0分)(18)(本题满分l0分)(19)(本题满分ll分)(20)(本题满分ll分)(21)(本题满分ll分)(22)(本题满分ll分)(23)(本题邋分l0分)2014年全国硕士研究生入学统一考试数学(一)模拟试卷二解析一、选择题(1)应选(B).分析本题考查分段函数在分段点处的连续性与可导性问题——讨论分段函数在分段点处的连续性、可导性问题,必须用相应的定义求解.(2)应选(A).(3)应选(A).分析本题考查将二重积分的极坐标系下的累次积分转换为直角坐标系下的累次积分问题,按二重积分交换次序的方法步骤“找边界,画草图,换次序’’(详见《考研数学复习教程》)求解即可.解由题设所给极坐标累次积分可画出积分区域D如图所示,其边界曲线分别为(5)应选(A).分析本题考查向量组的线性相关性问题.数值型的情形一般用秩分析;抽象型的情形一般利用线性相关性的结论研究分析,但若能寻求其秩时当然用秩分析求解简便.所以对于讨论向量组的线性相关性问题,“能找秩就找秩”!即矩阵A的列向量组线性相关,矩阵8的行向量组线性相关.注由本题条件及上述分析求解过程还可得出——矩阵A的行向量组与矩阵B的列向量组都线性无关.(6)应选(C).(8)应选(B).分析本题考查样本函数的协方差与方差的计算问题,利用“运算性质法’’与“已知分布法”(详见《考研数学复习教程》相关章节)求解即可,求解过程中要注意简单随机样本是相互独立且与总体是同分布的.二、填空题(9)应填-2.分析本题考查无穷小阶的问题——见到确定无穷小阶的问题,就想“三法”——等价无穷小代换定阶法、泰勒公式定阶法、求导定阶法.此处用等价无穷小代换与求导定阶法分分析本题考查求解一阶微分方程问题,要先判定其类型,再用相应的方法求解即可.本题为变量可分离微分方程,先分离变量后两边积分可得.解原方程变形为故(13)应填2.分析本题考查求抽象向量组的秩的问题,可用初等变换法求解,也可由题设条件建立一个矩阵的等式——见到一组向量由另一组向量线性表示,就要想到“三个东西”(详见《考研数学复习教程》相关章节),由此矩阵等式可得.解1 因(16)分析本题考查函数不等式的证明——见到函数不等式证明问题,就要想到利用单调性证之,其方法步骤为简单移项作函数,认认真真求导数;搞清增减找定点,比较大小得归宿.注意,移项构造辅助函数前,要先将不等式恒等变形,否则繁琐.(17)分析本题综合考查梯度、方向导数以及多元函数的条件极值问题.先由题意求出方向导数,再用拉格朗日乘数法求相应的条件极值即可.(18)分析本题考查求幂级数的收敛域与和函数问题.这是一个标准形式的幂级数,可先求其收敛半径,定出收敛区间,再讨论端点处的收敛性可得收敛域,然后用间接法即逐项求导、积分等分析运算性质求解.(20)分析本题考查求两个齐次线性方程组的非零公共解,其一般方法有联立法和代入法(详见《考研数学复习教程》).下面以联立法解之,所以要先把方程组(Ⅱ)由其基础解系“还原”出来.解由齐次线性方程组(Ⅱ)的基础解系可得以(Ⅱ)略.(22)分析本题考查求二维连续型随机变量的边缘概率密度、条件概率密度及求概率问题.见到已知联合概率密度求边缘概率密度问题,求关于“谁”的边缘概率密度就把联合概率密度的非零区域向“谁’,轴上投影,先定出所求边缘概率密度的非零区间,再穿线定上下限.求条件概率密度只需把联合概率密度与相应的边缘概率密度作商即可.对于求概率 P{X>y),就想“基本法”与“化二维为一维法”,此处可用“基本法”——“找交集、定类型,重转定,,计算.由于(x,y)服从均匀分布,故用几何概型求之较为简捷.注第(Ⅲ)问求概率若用“基本法”计算,虽然要先将积分区域分块再计算也并不复杂,请读者练习.(23)分析本题考查参数的点估计问题,要先从题设所给的分布函数判断出X是连续型总体,然后求导得其概率密度,再按矩估计法的方法步骤“求两矩作方程,解方程得估计”。
2012年全国硕士研究生入学统一考试数学二试题及答案详解
2012年全国硕士研究生入学统一考试数学二试题及答案详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)曲线221x xy x +=-的渐近线条数为( )(A )0 (B )1 (C )2 (D )3【答案】应选(C ).【详解】由2211lim lim 11x x x x xx x →→+==∞--,知曲线有1条垂直渐进线; 由22lim 11x x xx →∞+=-,知曲线有1条水平渐进线;曲线无斜渐近线. (2)设函数2()(1)(2)()xxnx f x e e e n =---L ,其中n 为正整数,则(0)f '=( )(A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n -【答案】应选(A ). 【详解一】由导数定义,200()(0)(1)(2)()(0)lim limx x nx x x f x f e e e n f x x→→----'==L21lim(2)()(1)(1)!x nx n x e e n n -→=--=--L【详解二】由22()(2)()(1)(2)()x x nx x x nxf x e e e n e e e n ''⎡⎤⎡⎤=--+---⎣⎦⎣⎦L L ,得1(0)(1)(1)!n f n -'=--(3)设()01,2,n a n >=L ,12n n S a a a =+++L ,则数列{}n S 有界是数列{}n a 收敛的( )(A )充分必要条件 (B )充分非必要条件(C )必要非充分条件 (D )既非充分条件又非必要条件 【答案】应选(B ).【详解】由{}n S 单调递增,若{}n S 有界,则{}n S 收敛,从而()11lim lim lim lim 0n n n n n n n n n a S S S S --→∞→∞→∞→∞=-=-=.反过来若{}n a 收敛,推不出{}n S 有界,例如1n a =. (4)设2sin k x k I e xdx π=⎰,()1,2,3k =,则有( )(A )123I I I << (B )321I I I << (C )231I I I << (D )213I I I << 【答案】应选(D ).【详解】210sin 0,xI e xdx π=>⎰()222222211sin sin sin sin x x x x I e xdx e xdx e xdx I exdx I ππππππ+==+=-<⎰⎰⎰⎰()()2222332321020sin sin sin sin x x x x I e xdx I e xdx I exdx exdxπππππππ++==+=-+⎰⎰⎰⎰()()222110sin x x I e exdx Iπππ++⎡⎤=+->⎢⎥⎣⎦⎰(5)设函数(,)f x y 可微,且对任意,x y 都有(,)0f x y x∂>∂,(,)0f x y y ∂<∂,则使不等式1122(,)(,)f x y f x y <成立的一个充分条件是( )(A )1212,x x y y ><(B )1212,x x y y >>(C )1212,x x y y << (D )1212,x x y y <> 【答案】应选(D ). 【详解】由(,)0f x y x∂>∂,若12x x <,则1121(,)(,)f x y f x y <; 由(,)0f x y y∂<∂,若12y y >,则2122(,)(,)f x y f x y <,于是有1122(,)(,)f x y f x y <. (6)设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)Dx y dxdy -=⎰⎰( )(A )π(B )2(C )-2(D )π-【答案】应选(D ). 【详解】由奇偶性,得1arcsin 1151112(1)(1)(arcsin )22yDDx y dxdy dxdy dy dx y dy dy ππππ-----=-=-=-+=-=-⎰⎰⎰⎰⎰⎰⎰⎰(7)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的是( )(A ) 123,,ααα (B ) 124,,ααα (C ) 134,,ααα (D ) 234,,ααα 【答案】应选(C ).【详解一】由34500c αα⎛⎫⎪+= ⎪ ⎪⎝⎭与1α线性相关,知134,,ααα线性相关.【详解二】由13411110c c c --=,知134,,ααα线性相关. (8)设A 为三阶矩阵,P 为三阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,若()123,,P ααα=,()1223,,Q αααα=+,则 1Q AQ -=( ) (A ) 100020001⎛⎫⎪⎪ ⎪⎝⎭(B )100010002⎛⎫⎪ ⎪ ⎪⎝⎭ (C ) 200010002⎛⎫⎪ ⎪ ⎪⎝⎭ (D ) 200020001⎛⎫⎪ ⎪ ⎪⎝⎭【答案】应选(B ). 【详解】由题设,()()1223123100,,,,110001Q ααααααα⎛⎫⎪=+= ⎪ ⎪⎝⎭从而111100100110110001001Q AQ P AP ---⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1100100100100110010110010001002001002-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)()y y x =是由方程21yx y e -+=所确定的隐函数,则0x y =''= .【答案】1【详解】代入0x =,得(0)0y =.等式两边同时对x 求导,得2y x y e y ''-=,(0)0y '=求二阶导,得22y y y e y e y '''''-=+,(0)1y ''=(10)2222111lim 12n n n n n n →∞⎛⎫+++=⎪+++⎝⎭L . 【答案】4π【详解】由积分定义,122222201111111lim lim 12141n n n i n dx n nn n n x i n π→∞→∞=⎛⎫+++===⎪++++⎝⎭⎛⎫+ ⎪⎝⎭∑⎰L (11)设1(ln )z f x y =+,其中函数()f u 可微,则2z zx y x y∂∂+=∂∂ 【答案】0 【详解】()1z f u x x ∂'=⋅∂,()21z f u y y ⎛⎫∂'=- ⎪∂⎝⎭,所以20z zx y x y ∂∂+=∂∂(12)微分方程2(3)0ydx x y dy +-=满足条件11x y ==的解为【答案】y =【详解】方程可整理为13dx x y dy y+=,将x 看作因变量,一阶线性非齐次微分方程的通解为()11313dy dy y y x e ye dy C y C y -⎛⎫⎰⎰=+=+ ⎪ ⎪⎝⎭⎰.又(1)1y =,得特解y =(13)曲线()20y x x x =+<的点的坐标为 .【答案】(-1,0)【详解】21,2y x y '''=+=,代入曲率公式()3221y K y ''='+32221(21)x =⎡⎤++⎣⎦,解得1x =-或1x =.又0x <,故1,0x y =-=.(14)设A 为三阶矩阵,3A =,*A 为A 的伴随矩阵,若交换A 的第一行与第二行得到矩阵B ,则*BA =_________ 【答案】应填-27. 【详解】设12010100001E ⎛⎫⎪= ⎪ ⎪⎝⎭则12B E A =,从而3**1227BA E AA A ==-=-.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)已知函数()11sin x f x x x+=- 记()0lim x a f x →=(1)求a 的值;(2)当0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.【详解】(1)()3222200001sin sin 6lim lim lim 1lim 1sin x x x x xx x x x x x a f x x x x x →→→→+-+-====+=(2)方法一:利用泰勒公式()()3323212000166sin sin lim lim lim 0sin k k k x x x x x x x x x x o x f x x x x x x x x x x++→→→⎛⎫⎛⎫+----+ ⎪ ⎪-+--⎝⎭⎝⎭==≠解得1k =.方法二:利用等价无穷小量代换()()()21sin sin sin 1sin sin x x x x x x x x f x x x x x+-+---==当0x →时,()3211616xf x x x -=:,所以1k =.(16)求函数222(,)x y f x y xe +-=的极值.【详解】令()2222222100x y x x y y f e x f xye+-+-⎧'=-=⎪⎪⎨⎪'=-=⎪⎩ 解得1,0,x y =⎧⎨=⎩ 1.0.x y =-⎧⎨=⎩()()22222223222123x y x y x y xxA f xe x xex x e+++---''==---=-()2222x y xyB f x y y e +-''==-()2222x y yyC f xy x e +-''==-代入(1,0),得122A e -=-,0B =,12C e-=-,从而20AC B ->,0A <,所以(,)f x y 在(1,0)取得极大值,极大值为12e -;代入(-1,0),得122A e-=,0B =,12C e-=,从而20AC B ->,0A >,所以(,)f x y 在(-1,0)取得极小值,极小值为12e--.(17)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 及x 轴围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积. 【详解】设切点A 坐标为00(,ln )x x ,则切线斜率为01x ,切线方程为0001ln ()y x x x x -=-,代入(0,1)点,解得20x e =,从而切线方程为211y x e=+,B 点坐标为2(,0)e -,所以 区域D 的面积2220(1)1y S e e y dy e ⎡⎤=--=-⎣⎦⎰. D 绕x 轴旋转一周所得旋转体的体积22222211(1)(ln )e e e V x dx x dxeππ-=+-⎰⎰2222118ln |ln 3e e e x x xdx ππ⎡⎤=--⎢⎥⎣⎦⎰()2228222233e e e ππππ=--=+ (18)计算二重积分Dxyd σ⎰⎰,其中区域D 为曲线1cos (0)r θθπ=+≤≤与极轴围成.【详解】利用极坐标变换,1cos 3401cos sin cos sin (1cos )4Dxyd d r dr d πθπσθθθθθθθ+==+⎰⎰⎰⎰⎰ 144011116cos (1cos )cos (1)4415d t t dt πθθθ-=-+=+=⎰⎰(19)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e '+=(1)求()f x 的表达式; (2)求曲线220()()xy f x f t dt =-⎰的拐点.【详解】(1)方法一:()()2()0f x f x f x '''+-=的特征方程为220r r +-=,特征根为121,2r r ==-,通解为212x x C e C e -+,代入()()2x f x f x e '+=,解得120,1C C ==,故 ()x f x e =.方法二:()()2()0f x f x f x '''+-=的特征方程为220r r +-=,特征根为121,2r r ==-,通解为212x x C e C e -+.又()()2x f x f x e '+=的通解为2()x x e e C -+,比较得()x f x e =.(2)方法一:()()2222x xx t y f xf t dt e e dt-=-=⎰⎰2212xxt y xe e dt-'=+⎰()2220224xxt y x x e e dt-''=++⎰()2223044128x xt y x x x e e dt-'''=+++⎰当且仅当0x =时,二阶导数等于零.又(0)40y '''=≠,所以(0,0)为曲线的拐点.方法二:()()2222x xx t y f xf t dt e e dt-=-=⎰⎰2212xxt y xe e dt-'=+⎰()2220224xxt y x x e e dt-''=++⎰当且仅当0x =时,二阶导数等于零;当0x >时,()0y x ''>;当0x <时,()0y x ''<; 所以(0,0)为曲线的拐点.(20)证明:21ln cos 1,12x x x x x ++≥+-(11)x -<< 【证明一】令()21ln cos 112x x f x x x x +=+---,则()00f =. 由()f x 为偶函数,只需证当01x <<时,()0f x >.()111lnsin 111x f x x x x x x x +⎛⎫'=++-- ⎪-+-⎝⎭,()00f '= ()()()2211112cos 11111f x x x x x x x ⎛⎫⎛⎫''=++-+-- ⎪ ⎪ ⎪+-⎝⎭+-⎝⎭()()222411cos 1111x x x x x ⎛⎫=+-+-- ⎪ ⎪-+-⎝⎭当01x <<时,2441x >-,()()2211011x x x ⎛⎫-+> ⎪ ⎪+-⎝⎭,cos 12x --≥-,从而 ()0f x ''>,于是()f x '单调递增,所以()()00f x f ''>=,因此()f x 单调递增,所以()()21ln cos 10012x x f x x x f x +=+-->=-,得证21lncos 1,(11)12x x x x x x ++≥+-<<- 【证明二】令()21ln cos 112x x f x x x x +=+---,则()00f =. 由()f x 为偶函数,只需证当01x <<时,()0f x >.()2211111ln sin ln sin 11111x x x f x x x x x x x x x x x +++⎛⎫'=++--=+- ⎪-+---⎝⎭g ,()00f '=当01x <<时,2211ln 0,sin sin 011x x x x x x x x ++>->->--g ,从而()0f x '>,于是()f x 单调递增,所以()()21ln cos 10012x x f x x x f x +=+-->=-,得证 21ln cos 1,(11)12x x x x x x ++≥+-<<-(21)(1)证明:方程11n n x x x -+++=L (n 为大于1的整数)在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根;(2)记(1)中实根为n x ,证明lim n n x →∞存在,并求此极限.【详解】(1)令()11nn f x x xx -=+++-L ,则()110f n =->,1111111022222n n n f -⎛⎫⎛⎫⎛⎫=+++-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L由零点定理,()f x 在区间1,12⎛⎫⎪⎝⎭上至少有一个零点. 又()1210n n f x nxx --'=+++>L ,从而()f x 在1,12⎛⎫⎪⎝⎭上单调递增,所以()f x 在区间1,12⎛⎫ ⎪⎝⎭上有且仅有一个零点,即方程11n n x x x -+++=L 在区间1,12⎛⎫ ⎪⎝⎭内有且仅有一个实根.(2)比较11n nnn n x x x -+++=L 及1111111n n n n n n n xx x x -+++++++++=L ,得1n n x x +<,从而数列{}n x 单调递减有下界,所以lim n n x →∞存在.设lim n n x a →∞=,对11n n nn n x x x -+++=L 两边取极限,()1lim111nn n n nx x a x a →∞-==--,解得12a =,即1lim 2n n x →∞=.(22)设10010101,00100010a a A a aβ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(1)计算A ;(2)当实数a 取何值时,Ax β=有无穷多解,并求其通解. 【详解】(1)按照第一列展开,得5441(1)1A a a =+-=-.(2)若Ax β=有无穷多解,则0A =,即410a -=,解得1a =或1a =-. 当1a =时,1100 11100 10110 10110 1001 1 0001 1 0100 1 00000 2A ⎛⎫⎛⎫⎪⎪--⎪ ⎪=→ ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭()()r A r A <,方程组Ax β=无解.当1a =-时,1100 11100 10110 10110 1001 1 0001 1 0100 1 00000 0A --⎛⎫⎛⎫ ⎪ ⎪----⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭()()34r A r A ==<,方程组Ax β=有无穷多解,其通解为11110101k ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中k 为任意常数 (23)已知110111001A a a ⎛⎫⎪⎪= ⎪- ⎪-⎝⎭,二次型123(,,)()T Tf x x x x A A x =的秩为2(1)求实数a 的值;(2)求正交变换x Qy =将f 化为标准形. 【详解】(1)对A 初等行变换,1011010110111000101000A a a a ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪=→⎪ ⎪-+ ⎪ ⎪-⎝⎭⎝⎭由()()2,Tr A r A A ==得1a =-.(2)101111120201101010221011010224011T A A ⎛⎫--⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪-- ⎪ ⎪- ⎪⎝⎭⎝⎭--⎝⎭由T A A 的特征多项式202202022(2)22224024T E A A λλλλλλλλ-----=--=--------- 102102(2)122(2)024(2)(6)024024λλλλλλλλλ--=----=---=------ 得矩阵T A A 的特征值12λ=,26λ=,30λ=.当12λ=时,解得(2)0T E A A x -=的基础解系1(1,1,0)T α=-;当26λ=时,解得(6)0TE A A x -=的基础解系2(1,1,2)T α=; 当30λ=时,解得(0)0TE A A x -=的基础解系3(1,1,1)T α=-; 由于123,,ααα已是正交向量组,只需单位化,1231111,1,1021γγγ⎛⎫⎛⎫⎛⎫⎪⎪⎪=-==⎪⎪⎪⎪⎪⎪-⎭⎭⎭令()123,,Q γγγ=,经过正交变换Qy x =,二次型123(,,)()T T f x x x x A A x =化成标准形2212312(,,)26f x x x y y =+.。
2012数学一考试大纲
考试内容
行列式的概念和基本性质行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
对比:
考试内容
矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换对比:
中重要的基本概
初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.念之一,
在理解矩阵相关概念的基础上,握矩阵的运算,于篇幅所限,
重难考点的深度解析与可命题角度详见
全国硕士研究生入学统一考试数学考试大纲配套强化指导》
分,第二篇。
[整理]考研数二大纲
2012年全国硕士研究生入学统一考试数学考试大纲--数学二考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学78% 线性代数22%四、试卷题型结构试卷题型结构为:单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求:1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求:1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式:考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容:向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求:1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。
考研数学线性代数重点内容及典型题型
考研数学线性代数重点内容及典型题型2012年9月14日教育部考试中心发布了2013年全国硕士研究生入学统一考试数学考试大纲,主要内容与2012年全国硕士研究生入学统一考试数学考试大纲相同。
为了帮助考生有效地进行考研复习,我们认识一下考研数学线性代数部分的重点内容和典型题型。
线性代数在考研数学中占有重要地位,必须予以高度重视。
线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,必须注重计算能力。
线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的,下面就将线代中重点内容和典型题型做了总结,希望对大家学习有帮助。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。
如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。
行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。
但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。
另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。
常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算。
矩阵是线性代数的核心,是后续各章的基础。
矩阵的概念、运算及理论贯穿线性代数的始终。
这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。
涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。
这几年还经常出现有关初等变换与初等矩阵的命题。
常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。
全国硕士研究生入学统一考试数学一考试大纲
全国硕士研究生入学统一考试数学一考试大纲标准化管理部编码-[99968T-6889628-J68568-1689N]全国硕士研究生入学统一考试数学一考试大纲高等数学一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容:原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程、直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标). 3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容:常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶系数与傅里叶级数狄利克雷定理函数的傅里叶级数函数的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件. 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x,sinx, cosx,ln(1+x) 及(1+x)α的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将函数展开为傅里叶级数,会将函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解概念. 2.掌握变量可分离的微分方程及一阶线性微分方程解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程4.会用降阶法解下列形式的微分方程:.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容: 线性方程组的克莱姆法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考研老师私人扣扣:概率论与数理统计一、随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫不等式切比雪夫大数定律伯努利大数定律辛钦大数定律棣莫弗-拉普拉斯定理列维-林德伯格定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) .六、数理统计的基本概念考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩卡方分布 T分布 F分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解卡方分布、T分布 F分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容:显着性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显着性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.考研老师私人扣扣:。
全国硕士研究生入学统一考试数学(一)模拟题
全国硕士研究生入学统一考试数学(一)模拟题(江南博哥)1 [单选题]A.不连续B.连续但不可导C.可导但导数不连续D.导数连续正确答案:D参考解析:2 [单选题]A.P>N>M.B.N>P>M.C.N>M>P.D.P>M>N.正确答案:D参考解析:3 [单选题]A.取得极小值B.取得极大值C.取得极大值eD.不取得极值正确答案:A参考解析:由4 [单选题]设向量组α1,α2,α3,α4线性无关,则下列向量组线性无关的是().A.α1+α2,α2+α3,α3+α4,α4+α1B.α1+α2,α2+α3,α3+α4,α4-α1C.α1+α2,α2-α3,α3+α4,α4-α1D.α1-α2,α2-α3,α3-α4,α4-α1正确答案:B参考解析:5 [单选题]设A,B,C,D都是n阶矩阵,且A~C,B~D,则必有A.(A+B)~(C+D).B.C.AB~CD.D.正确答案:B参考解析:6 [单选题]二次型f(x1,x2,x3)=x1x2+x2x3 ,的正、负惯性指数分别为().A.p=1,q=1B.p=1,q=2C.p=1,q=0D.p=0,q=2正确答案:A参考解析:求正、负惯性指数,可通过标准形(规范形)或特征值得到,已知二次型厂中没有平方项,先作可逆线性变换产生平方项,再化为标准形或求其矩阵的特征值.7 [单选题]设0<P(C)<1,且P(A+B|C)=P(A|C)+P(B|C),则下列正确的是( ).A.P(A+B|)=P(A|)+P(B|)B.P(AC+BC)=P(AC)+P(BC)C.P(A+B)=P(A|C)+P(B|C)D.P(C)=P(A)P(C|A)+P(B)P(C|A)正确答案:B参考解析:8 [单选题]设随机变量x在[0,]上服从均匀分布,U=sinX,V=cosX,则U 与V的相关系数ρUV为().A.ρUV=0B.|ρUV|=1C.0<ρUV<lD.-1<ρUV<0正确答案:D参考解析:9 [单选题]已知总体X的期望EX=0,方差DX=σ2.X1,…,X n是来自总体X 的简单随机样本.其均值为,则可以作出σ2的无偏估计量为A.B.C.D.正确答案:C参考解析:由于EX=0,DX=EX2=σ2,故10 [单选题]总体X~N(μ,52),则总体参数β的置信度为1-α的置信区间的长度( ).A.与α无关B.随α的增加而增加C.随α的增大而减少D.与α有关但与α的增减性无关正确答案:C参考解析:11 [填空题]参考解析:【解析】12 [填空题]参考解析:【解析】13 [填空题]参考解析:14 [填空题]参考解析:【解析】15 [填空题]参考解析:【解析】16 [填空题]设随机变量X,Y相互独立,D(X)=4D(y),令U=3X+2Y,V=3X-2Y,则ρUV=_______ 参考解析:17 [简答题]参考解析:18 [简答题]参考解析:19 [简答题]参考解析:将L满足的微分方程y'=f(x,y)代入被积表达式,得20 [简答题]参考解析:21 [简答题]设A是3阶实对称矩阵,存在可逆矩阵P,使得P-1AP=diag(1,2,-1),且α1=(1,k+1,2)T,α2=(k-1,-k,1)T分别为A的特征值λ1=1,λ2=2的特征向量,A*的特征值λ0对应的特征向量β=(2,-5k,2k+1)T.(Ⅰ)求λ0与k的值;(Ⅱ)求矩阵(A-1)*.参考解析:(Ⅰ)设λ3=-1对应的特征向量为α3=(x1,x2,x3)T,由A是实对称矩阵,知α1,α2,α3两两正交,故(Ⅱ)22 [简答题](1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.参考解析:(1)(2)。
2012年全国硕士研究生入学统一考试数学一试题及答案
2012年全国硕士研究生入学统一考试数学一试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数为 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】C【考点】函数图形的渐近线 【难易度】★★【详解】本题涉及到的主要知识点:(i )当曲线上一点M 沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
(ii )渐近线分为水平渐近线(lim ()x f x b →∞=,b 为常数)、垂直渐近线(0lim ()x x f x →=∞)和斜渐近线(lim[()()]0x f x ax b →∞-+=,,a b 为常数)。
(iii )注意:如果(1)()limx f x x→∞不存在;(2)()lim x f x a x→∞=,但lim[()]x f x ax →∞-不存在,可断定()f x 不存在斜渐近线。
在本题中,函数221x x y x +=-的间断点只有1x =±.由于1lim x y →=∞,故1x =是垂直渐近线.(而11(1)1lim lim(1)(1)2x x x x y x x →-→-+==+-,故1x =-不是渐近线).又211lim lim111x x x y x→∞→∞+==-,故1y =是水平渐近线.(无斜渐近线) 综上可知,渐近线的条数是2.故选C. (2) 设函数2()(1)(2)()xxnx f x e ee n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -【答案】A【考点】导数的概念 【难易度】★★【详解一】本题涉及到的主要知识点:00000()()()limlimx x f x x f x yf x x x→→+-'==. 在本题中,按定义200()(0)(1)(2)()(0)lim lim0x x nx x x f x f e e e n f x x →→----'==-1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--.故选A.【详解二】本题涉及到的主要知识点:()[()()]()()()()f x u x v x u x v x u x v x ''''==+.在本题中,用乘积求导公式.含因子1xe -项在0x =为0,故只留下一项.于是20(0)[(2)()]x x nx x f e e e n ='=--1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--故选(A ).(3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限00(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y →→+存在,则(,)f x y 在(0,0)处可微(C) 若(,)f x y 在(0,0)处可微,则极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)limx y f x y x y →→+存在【答案】B【考点】全微分存在的必要条件和充分条件【难易度】★★★【详解】本题涉及到的主要知识点:全微分存在的充分条件 如果函数(,)z f x y =的偏导数z x ∂∂、zy∂∂在点(,)x y 连续,则函数在该点可微分. 在本题中,若2200(,)limx y f x y x y →→+记()A ∃,则00lim (,)0x y f x y →→=又(,)f x y 在(0,0)连续(0,0)0f ⇒=.于是2222000(,)(,)(0,0)limlim x x y y f x y f x y f A x y x y →→→→-==++ 由极限与无穷小的关系220(,)(0,0)(1)0x f x y f A o y x y →⎛⎫-⇒=+ ⎪→+⎝⎭,其中(1)o 为无穷小.2222(,)(0,0)()()(1)f x y f A x y x y o ⇒-=+++00()(0)x y o ρρ=⋅+⋅+→,其中0ρ=.因此(,)f x y 在(0,0)可微.故选(B ).(A )不正确,如(,)f x y x y =+满足条件,但(,)f x y 在(0,0)不存在偏导数,故不可微.(C )不正确,如(,)f x y x =在(0,0)可微,但0limx y xx y→→+不存在.(D )也不正确,如(,)f x y x =在(0,0)可微,但2200limx y xx y →→+不存在.(4)设2sin (1,2,3)k x K e xdx k π==⎰I ,则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I << 【答案】D【考点】定积分的基本性质 【难易度】★★★【详解】本题涉及到的主要知识点:设a c b <<,则()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.在本题中,210sin x I e xdx π=⎰,2220sin x I e xdx π=⎰,2330sin x I e xdx π=⎰222121sin 0x I I e xdx I I ππ-=<⇒<⎰,2332322sin 0x I I e xdx I I ππ-=>⇒>⎰,222323312sin sin sin x x x I I e xdx e xdx e xdx ππππππ-==+⎰⎰⎰2233()22sin()sin t x et dt e xdx ππππππ-=-+⎰⎰223()312[]sin 0x x e exdx I I πππ-=->⇒>⎰因此213I I I <<.故选D.(5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα 【答案】C【考点】向量组的线性相关与线性无关 【难易度】★★【详解】本题涉及到的主要知识点:n 个n 维向量相关12,,,0n ααα⇔=在本题中,显然134123011,,0110c c c ααα-=-=, 所以134,,ααα必线性相关.故选C.(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)Q αααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫ ⎪ ⎪ ⎪⎝⎭【答案】B【考点】矩阵的初等变换;初等矩阵 【难易度】★★★【详解】本题涉及到的主要知识点: 设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵. 在本题中,由于P 经列变换为Q ,有12100110(1)001Q P PE ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,那么111112121212[(1)][(1)](1)()(1)Q AQ PE A PE E P AP E ----==100110011101110100120012⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故选B.(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}P X Y <=( )(A)15 (B) 13(C) 25 (D) 45 【答案】A【考点】常见随机变量的分布 【难易度】★★★【详解】本题涉及到的主要知识点:若随机变量X 的概率密度为,0,()0,0,x e x f x x λλ-⎧>=⎨≤⎩则称X 服从参数为λ(0)λ>的指数分布.在本题中,依题设知X ,Y 的概率密度分别为,0,()0,0,x X e x f x x -⎧>=⎨≤⎩ 44,0,()0,0,y Y e y f y y -⎧>=⎨≤⎩ 又X 与Y 相互独立,从而X 与Y 的联合概率密度为(4)4,0,0,(,)()()0,x y X Y e x y f x y f x f y -+⎧>>=⋅=⎨⎩其他 于是{}(4)(4)01(,)445x y x y x Dx yP X Y f x y dxdy edxdy dx e dy +∞+∞-+-+<<====⎰⎰⎰⎰⎰⎰故选A.(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为 ( )(A) 1 (B)12 (C) 12- (D)1- 【答案】D【考点】相关系数的性质 【难易度】★★【详解】本题涉及到的主要知识点:若X aY b =+,则当0a >时,1XY ρ=;当0a <时,1XY ρ=-.在本题中,设其中一段木棒长度为X ,另一段木棒长度为Y ,显然1X Y +=,即1X Y =-,Y 与X 之间有明显的线性关系,从而1XY ρ=-.故选D. 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)若函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=,则()f x = 【答案】xe【考点】二阶常系数齐次线性微分方程【难易度】★★【详解】本题涉及到的主要知识点:二阶常系数齐次线性微分方程0y py qy '''++=的特征方程20r pr q ++=有两个不同的实根,微分方程的通解形式为1212r xr xy C e C e =+. 在本题中,因()f x 满足()()2()0f x f x f x '''+-= ① ()()2x f x f x e ''+= ②由①、②,得()3()2xf x f x e '-=-,两边乘以3xe -得32[()]2xx ef x e --'=-积分得32()xx ef x e C --=+,即3()x x f x e Ce =+代入②式得3392xxxxx e Ce e Cee +++=0C ⇒=,于是()xf x e =代入①式自然成立.因此求得()xf x e =.(10)2x =⎰【答案】2π 【考点】定积分的换元积分法 【难易度】★★★【详解】本题涉及到的主要知识点: 第一类换元法 [()]()()baf t t dt f x dx βαϕϕ'=⎰⎰在本题中,22111(x =x t x t -==-+⎰⎰⎰111022ππ--=+=+=⎰⎰,其中1-⎰是半单位圆的面积.(11)(2,1,1)()|zgrad xy +y=【答案】{}1,1,1【考点】梯度 【难易度】★★★【详解】本题涉及到的主要知识点:(,,)(,,)f f f gradf x y z x y z∂∂∂=∂∂∂在本题中,记zu xy y=+,则 uy x∂=∂,2u z x y y ∂=-∂,1u z y ∂=∂ (2,1,1)(2,1,1)|(,,)|(1,1,1)f f fgradu x y z∂∂∂⇒==∂∂∂ 因此(2,1,1)()|(1,1,1)zgrad xy +y=(12)设(){},,1,0,0,0x y z x y z x y z ∑=++=≥≥≥,则2y ds ∑=⎰⎰【考点】曲面积分的计算 【难易度】★★★★【详解】本题涉及到的主要知识点:曲面积分公式:(,,)[,,(,xyD f x y z ds f x y z x y ∑=⎰⎰⎰⎰在本题中,投影到xy 平面上.∑在xy 平面上的投影区域为{}(,)01,01xy D x y x y x =≤≤≤≤-由∑的方程1z x y =--1zx∂⇒=-∂,1z y ∂=-∂现将曲面积分化为二重积分,然后求出积分值.1122200xyxyx D D y ds y y dxdy dx y dy -∑===⎰⎰⎰⎰⎰1134001(1)[(1)]33412x dx x =-=⋅--=⎰(13)设α为3维单位列向量,E 为3阶单位矩阵,则矩阵TE αα-的秩为 【答案】2【考点】矩阵的特征值的性质;实对称矩阵的相似对角矩阵 【难易度】★★★【详解】本题涉及到的主要知识点: (i )若()1r A =,则11nnn ii i E A a λλλ-=-=-∑;(ii )实对称矩阵必可对角化.在本题中,设123a a a α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则有2221231T a a a αα=++=,又211121322123212232331323(,,)T a a a a a a A a a a a a a a a a a a a a a a αα⎡⎤⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 易见秩()1r A =.那么3222232123()E A a a a λλλλλ-=-++=-,所以矩阵A 的特征值为1,0,0,从而E A -的特征值为0,1,1. 又因E A -为对称矩阵,从而011E A⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦,故()2T r E αα-=. (14)设A ,B ,C 是随机事件,A 与C 互不相容,()()()11,,23p AB P C p AB C === 【答案】34【考点】条件概率 【难易度】★★【详解】本题涉及到的主要知识点: 条件概率公式()()(()0)()P AB P B A P A P A => 在本题中,由于A 与C 互不相容,所以AC =∅,ABC =∅,从而()0P ABC =.于是1()()()()32()11()1()4()13P ABC P AB P ABC P AB P AB C P C P C P C -=====---.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)证明:21ln cos 1(11)12x x x x x x ++≥+-<<-【考点】函数单调性的判别 【难易度】★★★【详解】本题涉及到的主要知识点:函数单调性的判定法 设函数()y f x =在[,]a b 上连续,在(,)a b 内可导. ①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少.证明:令()21ln cos 1(11)12x x f x x x x x +=+---<<-,则转化为证明()0f x ≥((1,1)x ∈-)因()()f x f x =-,即()f x 为偶函数,故只需考察0x ≥的情形. 用单调性方法.()111111lnsin ln sin 111111x x f x x x x x x x x x x x x ++⎛⎫'=++--=+--- ⎪-+---+⎝⎭, 221111()cos 111(1)(1)f x x x x x x ''=+++--+--+, 22331122()sin 0((0,1])(1)(1)(1)(1)f x x x x x x x '''=-++-+>∈+--+,其中22110(1)(1)x x ->-+,33112[]0(1)(1)x x ->-+,sin 0((0,1))x x >∈ 因(0,1)x ∈时(3)()0f x >,又()f x ''在[0,1)连续()f x ''⇒在[0,1),()(0)20f x f ''''>=>((0,1]x ∈),同理()f x '在[0,1),()(0)0((0,1])f x f x ''>=∈()f x ⇒在[0,1),()(0)0((0,1])f x f x >=∈.又因()f x 为偶函数()0((1,1),0)f x x x ⇒>∈-≠,(0)0f =.即原不等式成立.(16)求函数222(,)x y f x y xe+-=的极值.【考点】多元函数的极值 【难易度】★★★★【详解】本题涉及到的主要知识点:二元函数取得极值的充分条件:设(,)z f x y =在点00(,)x y 的某邻域有连续的二阶偏导数,又00(,)0x f x y '=,00(,)0y f x y '=,令00(,)xx f x y A ''=,00(,)xy f x y B ''=,00(,)yy f x y C ''=,则(1)当20AC B ->时,(,)f x y 在00(,)x y 取极值,且当0A >时取极小值,0A <时取极大值; (2)当20AC B -<时,00(,)x y 不是(,)f x y 的极值点;(3)当20AC B -=时,仅此不足以判断00(,)x y 是否是(,)f x y 的极值点,还需另作讨论. 在本题中,先求函数的驻点.()()()()()2222222222222,10,0x y x y xy x y f x y e xe x ex xf x y xe y y+++---+-⎧∂=+-=-=⎪∂⎪⎨∂⎪=-=⎪∂⎩解得驻点为(1,0)-,(1,0)又()()()()()()()()22222222222222222222,21,1,1x y x y x y x y f x y A xe e x x x f x y B e x y x y f x y C xe y y++--+-+-⎧∂==-+--⎪∂⎪⎪∂⎪==--⎨∂∂⎪⎪∂⎪==-∂⎪⎩ 根据判断极值的第二充分条件, 代入(1,0),得122A e-=-,0B =,12C e-=-,从而20AC B ->,0A <,所以(,)f x y 在(1,0)取得极大值,极大值为12e -;代入(-1,0),得122A e-=,0B =,12C e-=,从而20AC B ->,0A >,所以(,)f x y 在(-1,0)取得极小值,极小值为12e--.(17)求幂级数22044321nn n n x n ∞=+++∑的收敛域及和函数. 【考点】幂级数的收敛域、和函数【难易度】★★★★【详解】本题涉及到的主要知识点: (i )求幂级数nn n a x∞=∑收敛域的步骤:(1)求收敛半径:设1limn n na l a +→∞=,则1/,0,0,,,0l l R l l <<+∞⎧⎪==+∞⎨⎪+∞=⎩(2)讨论端点的敛散性:如果0R <<+∞,则需进一步讨论0nn n a x∞=∑在x R =±处的敛散性;(3)写出幂级数的收敛域.(ii )和函数的性质:(1)和函数()S x 在(,)R R -内可导,并且有逐项求导公式:10()()nn n n n n S x a x na x ∞∞-==''==∑∑;(2)在幂级数的收敛域上逐项积分公式成立,即10()1xxnn n n n n a S t dt a t dt x n ∞∞+====+∑∑⎰⎰.本题中,直接用求收敛半径的公式,先求2124(1)4(1)3212(1)1lim lim lim 4432(1)121n n n n nn n a n n l n n a n n +→∞→∞→∞+++++++===+++++ 2222221111324(1)4()4(1)4(1)3lim 134344324n n n n n n n n n n n n n→∞+++++++++⋅=⋅=+++++ 于是收敛半径1R =当1x =时,原级数=2044321n n n n ∞=+++∑,第n 项的极限即2443lim 021n n n n →∞++=∞≠+,所以当1x =时,原级数发散;同理可证,1x =-时,原级数也是发散的. 因此,原级数的收敛域为(1,1)-.和函数22222000044322()[(21)](21)212121n n nn n n n n n n S x x n x n x x n n n ∞∞∞∞====++==++=+++++∑∑∑∑(1)x < 令210()(21)nn S x n x ∞==+∑,2202()21nn S x x n ∞==+∑, 因为22112()(21)1xxnn n n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰(1)x <, 所以212221()()1(1)x x S x x x +'==--(1)x <. 因为21202()21n n xS x x n ∞+==+∑,所以2222002[()]221nn n n xS x x x x ∞∞=='===-∑∑(1)x < 所以2220002111()[()]()ln 1111xxx xxS x tS t dt dt dt t t t x +'===+=-+--⎰⎰⎰(1)x < 当0x ≠时,211()ln 1xS x x x+=-; 当0x =时,1(0)1S =,2(0)2S =.所以212223,0,()()()111ln ,1,0(1)1x S x S x S x x xx x x x x =⎧⎪=+=++⎨+<≠⎪--⎩(18)已知曲线(),:(0),cos 2x f t L t y tπ=⎧≤<⎨=⎩其中函数()f t 具有连续导数,且(0)0f =,()0f t '>(0)2t π<<.若曲线L 的切线与x 轴的交点到切点的距离恒为1,求函数()f t 的表达式,并求以曲线L 及x 轴和y 轴无边界的区域的面积. 【考点】导数的几何意义、定积分的应用 【难易度】★★★★【详解】本题涉及到的主要知识点:(i )曲线()y f x =在点00(,)M x y 处的切线方程为000()()y y f x x x '-=-.(ii )由曲线()y f x =(()0)f x ≥及直线x a =,()x b a b =<与x 轴所围成的曲边梯形的面积A 是定积分()baA f x dx =⎰.(Ⅰ)求()f t . 当02t π≤<时,曲线L 在切点((),cos )A f t t 处的切线斜率为/sin /()dy dy dt t dx dx dt f t -==',切线方程为sin cos [()]()ty t x f t f t =--' 令0y =得切线与x 轴的交点B 的x 坐标为cos ()()sin tf t x f t t'=+于是B 点坐标为cos ()((),0)sin tf t f t t'+,切点A 的坐标为((),cos )f t t依题设,A 与B1=, 化简得2sin ()cos tf t t'=,积分得22200sin sin 11()(0)sin cos 1sin tt xx f t f dx d x x x-+=+=-⎰⎰ 0111sin ()sin 21sin 1sin t t d x x x=-+++-⎰2211sin 1(1sin )sin ln sin ln 21sin 2cos t t t t t t++=-+=-+-sin ln sec tan t t t =-++(Ⅱ)求无界区域的面积S曲线(),:(0)cos 2x f t L t y tπ=⎧≤<⎨=⎩可表为()(0)y g x x =≤<+∞,当02t π→-时x →+∞当()x f t =时()cos g x t =,于是20()()cos ()S g x dxx f t tdf t π+∞==⎰⎰22222000sin cos ()cos sin cos 4t t f t dt t dt tdt t ππππ'=⋅=⋅==⎰⎰⎰ (19)已知L 是第一象限中从点(0,0)沿圆周22+2x y x =到点(2,0),再沿圆周22+4x y =到点(0,2)的曲线段,计算曲线积分233d (2)d LJ x y x x x y y =++-⎰【考点】格林公式 【难易度】★★★★【详解】本题涉及到的主要知识点: 格林公式:()LDQ Pdxdy Pdx Qdy x y∂∂-=+∂∂⎰⎰⎰在本题中,记LJ Pdx Qdy=+⎰1)22(31)31Q P x x x y∂∂-=+-=∂∂; 2)曲线L 不封闭,添加辅助线1:L 沿y 轴由点(0,2)B 到点(0,0)O .122(0,)224LL Pdx Qdy Q y dy ydy ydy +==-==⎰⎰⎰⎰;3)在1L 与L 围成的区域D 上用格林公式(边界取正向,即逆时针方向):1()1L L DDQ P Pdx Qdy d d x y σσ+∂∂+=-=∂∂⎰⎰⎰⎰⎰221121422πππ=⋅-⋅=, 因此42LJ Pdx Qdy π=+=-⎰(20)设10010101,00100010a a A a a β⎡⎤⎛⎫ ⎪⎢⎥- ⎪⎢⎥== ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭(I )计算行列式A ;(II )当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解.【考点】行列式按行(列)展开定理;非齐次线性方程组有解的充分必要条件 【难易度】★★★【详解】本题涉及到的主要知识点:(i )行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122(1,2,,)i i i i in in D a A a A a A i n =+++=,或1122(1,2,,)j j j j nj nj D a A a A a A j n =+++=.(ii )设A 是m n ⨯矩阵,方程组Ax b =,则方程组有无穷多解()()r A r A n ⇔=< (I )按第一列展开,即得4141000101(1)10100101a a A a a a a a+=⋅+-=-(II )因为0A =时,方程组Ax β=有可能有无穷多解.由(I )知1a =或1a =- 当1a =时,11001110010110101101()00110001101001000002A β⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,由于()3r A =,()4r A =,故方程组无解.因此,当1a =时不合题意,应舍去. 当1a =-时,11001100100110101011()00110001101001000000A β⎡-⎤⎡-⎤⎢⎥⎢⎥----⎢⎥⎢⎥=→⎢⎥⎢⎥--⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦, 由于()()3r A r A ==,故方程组Ax β=有无穷多解.选3x 为自由变量,得方程组通解为:(0,1,0,0)(1,1,1,1)T T k -+(k 为任意常数).(21)已知1010111001A a a ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦,二次型123(,,)()T T f x x x x A A x =的秩为2 (I )求实数a 的值;(II )求正交变换x Qy =将f 化为标准形.【考点】二次型的秩;实对称矩阵的特征值和特征向量;用正交变换化二次型为标准形 【难易度】★★★【详解】本题涉及到的主要知识点:(i )实对称矩阵的特性:不同特征值的特征向量互相正交. (ii )任给二次型,1()nij ijijji i j f a x x aa ===∑,总有正交变换x Py =,使f 化为标准形2221122n n f y y y λλλ=+++,其中12,,,n λλλ是f 的矩阵()ij A a =的特征值.(I )二次型()T T x A A x 的秩为2,即()2Tr A A = 因为()()Tr A A r A =,故()2r A =.对A 作初等变换有101110110111000101000A a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥-+⎢⎥⎢⎥-⎣⎦⎣⎦, 所以1a =-.(II )当1a =-时,202022224TA A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.由202022(2)(6)224T E A A λλλλλλλ---=--=-----,可知矩阵TA A 的特征值为0,2,6.对0λ=,由(0)0TE A A x -=得基础解系(1,1,1)T--, 对2λ=,由(2)0TE A A x -=得基础解系(1,1,0)T-,对6λ=,由(6)0T E A A x -=得基础解系(1,1,2)T.实对称矩阵特征值不同特征向量相互正交,故只需单位化.11,1,1)T γ=--,21,1,0)T γ=-,32)T γ=.那么令1122330x yx y x y ⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎢⎣,就有2223()26T T T x A A x y y y y =Λ=+.(22)设二维离散型随机变量(,)X Y 的概率分布为(Ⅰ)求{}2P X Y =; (Ⅱ)求Cov(,)X Y Y -.【考点】随机变量的数学期望、方差;协方差及其性质 【难易度】★★★【详解】本题涉及到的主要知识点: (i )22()DX EX EX =-;(ii )(,)()Cov X Y E XY EX EY =-⋅,(,)Cov X X DX =,1212(,)(,)(,)Cov X X Y Cov X Y Cov X Y +=+.(Ⅰ)由随机变量(,)X Y 的概率分布可知,{}{}{}1120,02,1044P X Y P X Y P X Y ====+===+= (Ⅱ)由条件知12111236X⎛⎫ ⎪ ⎪ ⎪⎝⎭,012111333Y ⎛⎫ ⎪ ⎪ ⎪⎝⎭,01471112312XY ⎛⎫ ⎪ ⎪ ⎪⎝⎭,从而11120122363EX =⋅+⋅+⋅=, 1110121333EY =⋅+⋅+⋅=,222211150123333EY =⋅+⋅+⋅=,7112()014123123E XY =⋅+⋅+⋅=又2252()133DY EY EY =-=-=,于是(,)(,)(,)()Cov X Y Y Cov X Y Cov Y Y E XY EX EY DY -=-=-⋅-222213333=-⋅-=-. (23)设随机变量X 与Y 相互独立且分别服从正态分布2(,)N μσ与2(,2)N μσ,其中σ是未知参数且0σ>.设.Z X Y =-(Ⅰ)求Z 的概率密度2(,);f z σ (Ⅱ)设12,,,n z z z 为来自总体Z 的简单随机样本,求2σ的最大似然估计量2σ(Ⅲ)证明2σ为2σ的无偏估计量【考点】常见随机变量的分布;最大似然估计法;估计量的评选标准【难易度】★★★★【详解】本题涉及到的主要知识点: (i )正态分布202()2()x f x μσ--=,x -∞<<+∞(ii )似然函数 121()(,,,;)(;)nn i i L L x x x p x θθθ===∏,对数似然方程ln ()0dL d θθ= (iii )若估计量12ˆˆ(,,,)n X X X θθ=的数学期望ˆ()E θ存在,且对于任意θ∈Θ有ˆ()E θθ=,则称ˆθ是未知参数θ的无偏估计量. (Ⅰ)由条件知Z 服从正态分布,且()0EZ E X Y EX EY =-=-=,2()3DZ D X Y DX DY σ=-=+=,即2(0,3)ZN σ,从而Z 的概率密度为2222(0)2236(;)z z f z σσσ---⋅==,z -∞<<+∞.(Ⅱ)由条件知似然函数为22122226611()(;)ni i i z z nni i i L f z σσσσ=--==∑===∏,i z -∞<<+∞,1,2,,i n =,222211ln ()ln 6ln 226nii n n L zσπσσ==---∑,希望对大家有所帮助,多谢您的浏览!20 / 2120 令222241ln()110()26n i i d n z d σσσσ==-⋅+=∑,解得22113n i i z n σ==∑. 于是2σ的最大似然估计量为2211ˆ3n i i Z n σ==∑. (Ⅲ)由于222211111ˆ()()333n n i i i i E E Z E Z nEZ n n n σ=====⋅∑∑ 22211[()](30)33DZ EZ σσ=+=+=, 从而可知,2ˆσ为2σ的无偏估计量.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20120122年全国硕士研究生入学考试年全国硕士研究生入学考试数学数学数学((一)考试大纲考试科目:数学高等数学、线性代数、概率论与数理统计试卷结构(一)题分及考试时间试卷满分为150分,考试时间为180分钟。
(二)内容比例高等教学约60%线性代数约20%概率论与数理统计20%(三)题型比例填空题与选择题约40%解答题(包括证明题)约60%高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性(有界和收敛的关系存在正数M 使f(x)<M 恒成立则有界,不存在M 则无界,注意与无穷大的区别-如振荡型函数)、单调性、周期性(注意周期函数的定积分性质)和奇偶性(奇偶性的前提是定义域关于原点对称)复合函数(两个函数的定义域值域之间关系)、反函数(函数必须严格单调,则存在单调性相同的反函数且与其原函数关于y=x 对称)、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立(应用题)数列极限(转化为函数极限单调有界定积分夹逼定理)与函数极限(四则变换无穷小代换积分中值定理洛必塔法则泰勒公式-要齐次展开)的定义及其性质(局部保号性)函数的左极限与右极限(注意正负号)无穷小(以零为极限)和无穷大(大于任意正数)的概念及其关系无穷小的性质(和性质积性质)及无穷小的比较(求导定阶)极限的四则运算(要在各自极限存在的条件下)极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念(点极限存在且等于函数值)函数间断点的类型(第一型(有定义):可去型,跳跃型第二型(无定义):无穷型,振荡型)初等函数的连续性闭区间上连续函数的性质(零点定理介值定理)考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试内容。
导数和微分的概念(点可导与域可导的关系)导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数(数学归纳法赖布妮子公式法)一阶微分形式的不变性微分中值定理(闭区间连续开区间可导ζ不是常数)洛必达(L’Hospital)法则(注意使用条件洛必塔求解不存在时,原极限可能存在)函数单调性的判别(利用导数)函数的极值(极值的判定:定义一阶去心邻域可导且左右邻域导数异号二阶可导且该点一阶导为零)函数图形的凹凸性(证明)、拐点及渐近线(求解步骤:垂直水平斜)函数图形的描绘函数最大值和最小值弧微分曲率的概念(有绝对值注意参数方程公式)曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分(后面要加上dx).3.了解高阶导数的概念,会求简单函数的n阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理(典型函数的展开),了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.(洛必达法则受阻时:拆项积分中值中值定理)7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法(一阶导定点二阶导定性),掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念(被积函数的要求连续只是原函数存在的充分条件)不定积分的基本性质(线性和差与求导互逆)基本积分公式定积分的概念(求极限的应用)和基本性质(注意上下限的位置线性分区间上限大于下限时比大小估值定理)定积分中值定理用定积分表达和计算质心积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法(换元要彻底,不要忘了dx定积分换元要注意上下限也要换)与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分概定积分的应用考试要求1.理解原函数概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法(常见代换:倒代换三角换元万能代换不要跳步计算,以免出现毁灭性的低级失误).3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数(用处远非于此,常与罗尔定理结合解决零点问题),掌握牛顿一莱布尼茨公式.5.了解广义积分的概念,会计算广义积分(用极限的观点).6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值等.四、向量代数和空间解析几何考试内容向量的概念(自由移动)向量的线性运算向量的数量积(是数可交换)和向量积(是向量交换后变号)向量的混合积(交换的性质与行列式性质相同几何意义用于求异面直线的距离)两向量垂直(数量积为零)、平行(向量积与零向量)的条件两向量的夹角(面面线线线面)向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程(点法式截距式一般式平面束方程)、直线方程(对称式参数式一般式)平面与平面、平面与直线、直线与直线的以及平行、垂直的条件(转化为向量之间的关系)点到平面和点到直线的距离(利用平行四边形)球面母线平行于坐标轴的柱面旋转轴为坐标轴的旋转曲面的方程常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示。
2.掌握向量的运算(线性运算、数量积(求向量夹角判定垂直)、向量积(平行四边形面积及点到直线的距离)、混合积(求六面体体积及异面直线公垂线长判定三个向量是否共面)),了解两个向量垂直、平行的条件。
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。
4.掌握平面方程(点法式混合积)和直线方程(点向失一般式)及其求法。
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互絭(平行、垂直、相交等)解决有关问题。
6.会求点到直线以及点到平面的距离。
7.了解曲面方程和空间曲线方程的概念。
8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求其方程。
五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限(极限存在的判定)和连续的概念有界闭区域上多元连续函数的性质(有界性最值存在介值定理)多元函数偏导数和全微分(和全增量的区别)全微分存在的必要条件(连续偏导存在任意方向的方向导数存在)和充分条件(偏导存在且连续)多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面(参数方程—注意以x,y,z为参数方程组)曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义。
2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。
4.理解方向导数与梯度的概念并掌握其计算方法。
5.掌握多元复合函数一阶、二阶偏导数的求法。
6.了解隐函数存在定理,会求多元隐函数的偏导数。
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。
8.了解二元函数的二阶泰勒公式。
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值(解方程时要小心哦),会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。
六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件(注意单连通域与复连通域的区别)已知全微分求原函数两类曲线积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(STOKES)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
4.掌握计算两类曲线积分的方法。
5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式、斯托克斯公式计算曲面、曲线积分。
7.了解散度与旋度的概念,并会计算。
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。
七、无穷级数考试内容常数项级数(级数是数列和的概念)的收敛与发散的概念收敛级数的和(和函数)的概念级数的基本性质与收敛的必要条件(一般项趋零)几何级数与p级数以及它们的收敛性正项级数收敛性的判别法(比较根值比值)交错级数与莱布尼茨定理(一般项趋零递减)任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数(有收敛域的要求)幂级数在其收敛区间内的基本性质(阿贝尔定理及其推论连续性可积可导且收敛区间不变)简单幂级数的和函数的求法(有收敛域的要求)初等幂级数展开式(有收敛域的要求)函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dlrichlei)定理函数在[-l,l]上的傅里叶级数函数在[0,l]上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。