26旋光度的测定
旋光度的测定实验报告
旋光度的测定实验报告摘要:旋光度是用来测量具有旋光性质物质的光学活性的量。
实验中使用的是旋光仪,通过测量光束在物质中传播时方向发生的旋转,可以得到旋光度的数值。
本文将详细介绍实验装置和方法,以及实验结果的分析和讨论。
引言:旋光性质是物质的一种特殊光学性质,具有旋光性的物质在光学活性中起着重要的作用。
旋光度是用来量化旋光性质的指标,通过测量旋转光束的旋转角度来得到旋光度的值。
在化学、生物和药学等领域中,旋光度的测定是十分常见的实验技术。
实验装置和方法:实验中使用的是一台旋光仪。
首先,我们使用双色滤光片将光源分成两束,分别经过样品室中的样品和空气室中的空气。
然后,这两束光束再次合并,并传入旋光仪的光电检测器中进行测量。
通过旋转样品室中的样品,我们可以观察到光束方向的旋转程度。
为了获得准确的测量结果,我们需要进行一系列的操作和校准。
首先,我们需要调整仪器的初始零位,使得不含有旋光性质的物质经过后,检测器显示为零。
然后,我们选择具有已知旋光度的物质作为标准品进行校准。
校准时,我们记录标准品的旋转角度,并进行多次实验以保证准确性。
实验结果与分析:在本次实验中,我们选择了蔗糖溶液作为样品进行测量。
我们通过改变溶液的浓度,得到了一系列旋光度的数值。
实验结果显示,蔗糖溶液的旋光度随浓度的增加而增加,呈现一定的线性关系。
这符合旋光性质的基本特点,即旋光度与样品中旋转物质的浓度成正比。
进一步分析表明,旋光度的数值也与光束在物质中传播的长度和波长有关系。
随着光束传播长度的增加,旋光度的数值也会增加。
而随着波长的增加,旋光度的数值则会减小。
这是因为不同波长的光在物质中的传播速度不同,导致光束方向旋转的程度也不同。
讨论与结论:本实验通过旋光仪测量了蔗糖溶液的旋光度,并得到了一系列数据。
通过实验结果的分析,我们发现旋光度与样品浓度、光束传播长度和波长之间存在着相关性。
这些结果对于光学活性物质的研究和应用具有重要意义。
然而,实验中的系统误差和个体差异可能会对测量结果产生一定影响。
旋光度测定的实验原理
旋光度测定的实验原理旋光度测定是一种用于测量物质旋光性质的实验方法,主要用于分析和判断有机化合物的结构、对映体纯度和化学反应动力学等。
该方法主要依赖于光学旋光现象:当经过一个手性物质时,线偏振的光会发生旋光现象,其振动方向会随着传播方向旋转一定角度。
实验原理主要包括三个方面:偏振光的生成、旋光度的测量和基本测量原理与公式。
一、偏振光的生成:偏振光的生成主要通过偏振片来实现,偏振片是具有选择性吸收偏振方向的光学工具。
当一束非偏振光通过偏振片时,只有与偏振片振动方向平行的光能通过,与振动方向垂直的光则被滤除。
这样得到的光就是偏振光。
二、旋光度的测量:旋光度是描述旋光现象的物理量,使用旋光仪来测量。
旋光仪是一种专门用来测量旋光的仪器,它由光源,样品池,偏振片和检光系统等组成。
光源:在实验中常用的光源有光源灯和钠灯。
根据不同实验需要,可以分别选择合适的光源。
样品池:是用来容纳待测样品的容器,通常由石英玻璃或者石英玻璃式管制成。
通过样品池来控制样品的光程。
偏振片:用于生成线偏振光的偏振片,通常有两个互相垂直的偏振片,可以分别选择合适的偏振片。
检光系统:包括分光器、波长选择装置、朗伯方向器和光电探测器等。
其中分光器主要是用来分离入射光与旋光光的。
波长选择装置是用来选择适当的波长。
朗伯方向器是用以确定光的旋转方向,光电探测器是用来接收并转换光信号为电信号。
通过检光系统可以测量到旋光光对应的电信号。
三、基本测量原理与公式:当通过一个手性物质时,线偏振光通过物质后,振动平面会发生转动,假设转动角度为α,转过的角度与物质的浓度、物质的旋光度和光通过的光程都有关系。
旋光度[α]可以通过以下公式计算得到:[α]=α/c*l其中α为旋光仪读数,c为样品浓度(单位为g/mL),l为样品池光程(单位为dm)。
最后,旋光度测定实验原理是通过旋光仪测量物质对于入射偏振光旋光度的角度差,进而计算出旋光度的物理量。
通过测量旋光度,可以分析物质的构型、纯度等性质。
旋光度测定步骤
旋光度测定步骤旋光度是一种以光学分析法测定物质的特性,主要用于测量具有旋转能的物质或物理现象的程度。
测量旋光度的方法具有相对简单、快速,且结果准确等优点,因此在各行各业都有着广泛的应用。
本文将针对旋光度测定的步骤做一次更为详细的介绍,以供参考。
首先,进行旋光度测定之前,需要准备被测物质的测试样品。
根据所需测量的结果,可以准备不同类型的样品,例如液体样品、悬浮物样品、气体样品以及粉末样品等。
当准备完测试样品之后,需要选择合适的旋光仪,常见的旋光仪可以分为山楂式旋光仪、键式旋光仪和全息旋光仪等三大类。
其中山楂式旋光仪和键式旋光仪适用于旋光度低于正负50度的测定,而全息旋光仪可以用于测定正负50度以上的旋光度。
接着,准备好测试样品和旋光仪之后,即可进行旋光度测定。
首先,将样品放入旋光仪内,然后打开旋光仪,移动旋光仪中控制把手,以调整样品的旋转程度,直至达到零度为止。
接着,需要观察旋光仪的读数,并记录下来。
重复上述步骤,对样品的旋光度进行测量,最后将得到的读数求平均值,它即为样品的旋光度。
最后,应妥善处理测试完成的样品,如果样品是液体,可以用滤纸过滤并倒入清洁的容器中;如果样品是悬浮物,可以用离心机进行密度分离,然后将结果用空白稀释仪进行检测;如果样品是气体,可以用冷凝瓶进行收集并储存;最后,如果样品是粉末,可以用吸尘器进行收集,并储存到密封的容器中以免质量受到污染。
旋光度测定是一种固定步骤,需要科学精确地操作,以获得准确的测定结果。
测定旋光度的步骤主要包括样品的准备、旋光仪的选择、旋光度的测定、样品的处理等。
除此之外,在进行样品的准备和旋光度的测定的过程中,要做好相关的仪器操作,以防结果出现偏差。
总之,仔细遵循旋光度测定的步骤,即可获得准确可靠的测量结果。
旋光度测定的步骤
旋光度测定的步骤
旋光度测定是化学分析中一种有用的物质性质检测方法,可以有效地测定极性有机分子(如碳氢化合物、蛋白质、多糖等)的旋光物质。
通过测量物质的旋光度,即可获得物质的结构和性质的定量评价信息。
旋光度测定的步骤一般如下:
1、处理样品:将需要对比的物质和测定物质分别放入旋光仪-测定机,并以特定容量进行称量,并增加一定量的稀释试剂,待样品溶液完全混和后,方可进行旋光度测定。
2、参比测量:准备两个样品容器,一个放入对比物质,一个放入测定物质,用控制仪控制旋转方向与角速度,并在两个样品容器中分别测定旋光度。
3、旋光度测定:将测定物质的旋光度和对比物质的旋光度进行比较,根据旋光度差异计算出总体旋光度值。
4、旋光参数测定:将测定物质和参比物质分别施加不同旋转方向与角速度的梯度,以获得参数变化趋势,根据计算出的旋光参数值来判断物质的旋光性质。
5、数据分析:将所获得的数据与参考数据进行比较,计算旋光率、旋光度等参数,了解试样的旋光性质。
以上就是旋光度测定的基本步骤,能够测出物质的旋光特性以及结构,用以进行优化及定量评价等,是一种重要的傅立叶变换、光谱分析以及芳香族有机分子认证和鉴别等研究中不可缺少的检测方法。
旋光度的测定
旋光度的测定方法和注意事项中国卖仪器网整理:平面偏振光通过含有某些光学活性化合物的液体或溶液时,能引起旋光现象,使偏振光的平面向左或向右旋转。
旋转的度数,称为旋光度。
偏振光透过长1dm并1mL中含有旋光性物质1g的溶液,在一定波长与温度下测得的旋光度称为比旋度。
测定比旋度(或旋光度)可以区别或检查某些药品的纯杂程度,亦可用以测定含量。
除另有规定外,本药典系用钠光谱的D线(589.3nm)测定旋光度,测定管长度为1dm(如使用其他管长,应进行换算),测定温度为20℃。
测定旋光度时,用读数至0.01°并经过检定的旋光度测定计。
将测定管用供试液体或溶液(取固体供试品,按各药品项下的方法制成)冲洗数次,缓缓注入供试液体或溶液适量(注意勿使产生气泡),置于旋光计(旋光测定仪)内检测读数,即得供试液的旋光度。
使偏振光向右旋转者(顺时针方向)为右旋,以“+”符号表示;使偏振光向左旋转者(反时针方向)为左旋,以“-”符号表示。
用同法读取旋光度3次,取3次的平均数,照下列公式计算,即得供试品的比旋度。
a对液体供试品[a](t,D)= ---ld100a对固体供试品[a](t,D)= -----Lc式中[α]为比旋度;D 为钠光谱的D线;t 为测定时的温度;l 为测定管长度,dm;α 为测得的旋光度;d 为液体的相对密度;c 为每100ml溶液中含有被测物质的重量,g(按干燥品或无水物计算)。
旋光计的检定,可用标准石英旋光管进行,读数误差应符合规定。
【注意事项】(1)每次测定前应以溶剂作空白校正,测定后,再校正1次,以确定在测定时零点有无变动;如第2次校正时发现零点有变动,则应重新测定旋光度。
(2)配制溶液及测定时,均应调节温度至20℃±0.5℃(或各品种项下规定的温度)。
(3)供试的液体或固体物质的溶液应不显浑浊或含有混悬的小粒。
超净工作台如有上述情形时,应预先滤过,并弃去初滤液。
(4)物质的比旋度与测定光源、测定波长、溶剂、浓度和温度等因素有关。
旋光度测定步骤
旋光度测定步骤旋光度测定是一种用于测量物质的极性的方法,通常用于测量化合物、有机分子和有机溶液中极性分子的数量。
它也可用于分析藻类毒素、抗生素、药物等有机化合物。
旋光度测定也是药物分析中一种重要的技术,所测得的结果可以用来识别药物的结构特征,分析药物的浓度以及判断药物的有效性和安全性。
旋光度测定步骤大致如下:一、采集样品首先确定要测定的样品,根据样品的特性,选用合适的采集工具,如蒸发罩、夹钳等,仔细地收集样品。
尤其是对于细颗粒的样品,要慎重和准确地收集,以免造成数据的偏差。
二、量测浓度上一步准备好样品之后,就可以量测样品的浓度。
具体来说,可以用量瓶、比重瓶或其他精确计量工具,把样品稀释成若干重复测定的浓度。
三、稀释样品根据实验设计,量取一定量的测试物,加入溶剂中稀释,搅拌均匀,得到所需的样品浓度。
四、测定旋光度建立一套旋光度测试装置,具体的步骤为:在装置中放入测试元件,如X-射线分光仪、光谱仪等,将样品添加到分析仪中,连接上操作软件,将旋光度的度数按照试验设计的标准进行测定;测定完毕后,将旋光度数据和物质浓度相互比较,以获得准确的测试结果。
五、分析数据最后一步,就是将所得到的数据进行分析,包括旋光度值、药物结构及浓度、有效性和安全性等,根据数据结果判断其正确性,并形成实验报告,可以供今后的研究学习或报告参考。
以上就是旋光度测定的一般步骤介绍,从样品采集、浓度测量、旋光度测定及数据分析等,可见旋光度测定是一个复杂而繁琐的工作,需要仔细地操作和精确的测量器材,以得到准确可靠的结果。
旋光度测定是一种重要的技术,它可以用来确定样品的极性特性,识别药物的结构特征,分析药物的浓度以及判断药物的有效性和安全性,因此被广泛应用于药物的测试和研究中。
同时由于它的复杂性,在实验中需要精细的操作和仔细的测试,以免造成数据的错误。
正确的操作和准确的测量,视为旋光度测定实验成功的关键。
旋光度(比旋度)的测定方法
旋光度(比旋度)的测定方法平面偏振光通过某些光学活性物质(如具有不对称碳原子的化合物)的液体或溶液时,偏振光的振动平面向左或向右旋转的现象称为旋光现象。
偏振光旋转的角度称为旋光度。
旋光度有右旋、左旋之分,偏振光向右旋转(顺时针方向)称为“右旋”,用“+”表示;偏振光向左旋转(逆时针方向)称为“左旋”,用“—”表示。
偏振光透过长1dm 且每1mL 中含有旋光性物质1g 的溶液,在一定波长与温度下测得的旋光度称为比旋度,以tλα][表示。
t 为测定时的温度,λ为测定波长。
比旋度是旋光物质的重要物理常数,可以用来区别药物或检查药物纯杂的程度。
旋光度在一定条件下与浓度呈线性关系,故还可以用来测定含量。
1.测定仪器测定旋光度的的专用仪器为旋光计。
除另有规定外,测定时采用钠光谱的D 线(589.3nm )测定旋光度,测定管长度为1dm (如使用其它管长,需进行换算),测定温度为20℃。
使用读数至0.01°并经过检定的旋光计。
2.测定方法测定旋光度时,将测定管用供试液体或溶液(取固体供试品,按各药品项下规定的方法制成)冲洗数次,缓缓注入供试液体或溶液适量(注意勿使发生气泡),置于旋光计内检测读数,即得供试液的旋光度。
用同法读取旋光度3次,取3次的平均数,照下列公式计算,即得供试品的比旋度。
对液体供试品 ld tD αα=][对固体供试品 lc tD αα100][=式中,[α]——为比旋度,通常测定温度为20℃,使用钠光谱的D 线(589.3nm )表示时,可表示为20][D α;D ——钠光谱的D 线; t ——测定时的温度; l ——测定管长度,dm ;α——测得的旋光度; d ——液体的相对密度;c ——每100mL 溶液中含有被测物质的重量(按干燥品或无水物计算),g 。
3.注意事项(1)每次测定前应以溶剂作空白校正,测定后,再校正1次,以确定在测定时零点有无变动;如第2次校正时发现零点有变动,则应重新测定旋光度。
旋光度的测定
旋光度的测定旋光度的测定是一种常用的化学分析方法,它可以用来检测化合物中手性分子的存在以及其对光线偏振方向的旋转程度。
在药物、食品、化妆品等领域中,旋光度的测定被广泛应用。
本文将介绍旋光度的定义、测量原理、仪器设备和实验步骤。
一、旋光度的定义旋光度是指物质对平面偏振光旋转角度的大小,通常用α表示。
当入射线与观察线夹角为90°时,称为正旋性;当入射线与观察线夹角为270°时,称为负旋性。
其单位为度(°)或毫度(mdeg)。
二、测量原理当平面偏振光通过具有手性分子的溶液或晶体时,由于手性分子对左右两个方向的圆偏振光吸收不同,导致传播速度不同,从而使得出射光线发生相位差,进而改变了偏振方向和波长。
这种现象被称为“旋光现象”。
根据洛仑茨公式可得:α = α0 × l × c其中,α0为比旋光度,l为样品长度,c为样品浓度。
因此,旋光度的测定需要测量样品的长度和浓度,并根据上述公式计算出比旋光度。
三、仪器设备旋光度测定常用的仪器设备有旋光仪和偏振光谱仪。
1. 旋光仪:是一种专门用于测量物质对平面偏振光的旋转程度的仪器。
它由源、偏振器、样品室、检测器和读数装置等组成。
常见的有手摇式旋光仪和自动旋光仪两种。
2. 偏振光谱仪:是一种可以同时测量吸收谱和旋转角度的分析仪器。
它由源、偏振器、样品室、检测器和读数装置等组成。
与传统的分析仪不同之处在于,它使用圆偏振光而非平面偏振光。
四、实验步骤1. 准备样品:将待测物质溶解于适当溶剂中或制备成晶体,并按照要求调整其浓度。
2. 校准:打开旋光仪或偏振光谱仪,进行校准。
校准时应使用已知旋光度的样品进行校准。
3. 实验操作:将样品放入旋光仪或偏振光谱仪中,按照要求调整样品室的长度和浓度,记录下旋转角度。
4. 计算结果:根据洛仑茨公式计算出比旋光度,并将其转换为旋光度。
5. 数据处理:根据实验结果进行数据处理和分析,得出结论。
旋光度测定法
旋光度测定法平面偏振光通过含有某些光学活性化合物的液体或溶液,能引起旋光现象,使偏振光的平面向左或向右旋转。
旋转的度数,称为旋光度。
在一定波长与温度下,偏振光透过每lml含有lg旋光性物质的溶液且光路为长ldm时,测得的旋光度称为比旋度。
比旋度(或旋光度)可以用于鉴别或检查光学活性药品的纯杂程度,亦可用于测定光学活性药品的含量。
在间上不能重叠,互为镜像关系的立体异构体称为对映体。
手性物质的对映异构体之间,除了使平面偏振光发生偏转的程度相同而方向相反之外,在非手性环境中的理化性质相同。
生物大分子如酶、生物受体等通常为手性物质,总是表现出对一种对映体的立体选择性,因此,对映体可在药理学与毒理学方面有差异来源于自然界的物质,例如氨基酸、蛋白质、生物碱、抗体、糖苷、糖等,大多以对映体的形式存在。
外消旋体一般由等量的对映异构体构成,旋光度净值为零,其物理性质也可能与其对映体不同。
最常用的光源是采用钠灯在可见光区的D线(589.3nm),但也使用较短的波长,如光电偏振计使用滤光片得到汞灯波长约为578nm、546nm、436nm、405nm和365nm处的最大透射率的单色光,其具有更髙的灵敏度,可降低被测化合物的浓度。
还有一些其他光源,如带有适当滤光器的氙灯或卤钨灯。
除另有规定外,本法系采用钠光谱的D线(589.3mn)测定旋光度,测定管长度为ldm(如使用其他管长,应进行换算),测定温度为20℃。
用读数至0.01°并经过检定的旋光计。
旋光度测定一般应在溶液配制后30分钟内进行测定。
测定旋光度时,将测定管用供试液体或溶液(取固体供试品,按各品种项下的方法制成)冲洗数次,缓缓注人供试液体或溶液适量(注意勿使发生气泡),置于旋光计内检测读数,即得供试液的旋光度。
使偏振光向右旋转者(顺时针方向)为右旋,以“+”符号表示;使偏振光向左旋转者(反时针方向)为左旋,以“一”符号表示。
用同法读取旋光度3次,取3次的平均数,照下列公式计算,即得供试品的比旋度对液体供试品 []ld t D αα=对固体供试品 []lc100t D αα= 式中[α]为比旋度;D 为钠光谱的D 线;f 为测定时的温度,℃;l 为测定管长度,dm ;α为测得的旋光度;d 为液体的相对密度;c 为每100ml 溶液中含有被测物质的重量(按干燥品或无水物计算),g 。
旋光度的测定实验报告
旋光度的测定实验报告
实验名称:旋光度的测定
实验目的:通过测定物质对偏振光的旋转角度,了解物质的旋光性质。
实验原理:光是电磁波,在垂直方向上的电场和磁场分量沿着光的传播方向振荡。
光沿着某个方向振荡的光称为偏振光。
偏振光通过旋光物质后,其振动方向会发生旋转,称为旋光现象。
旋光度(α)定义为光通过旋光物质后其振动方向旋转的角度。
旋光度可以通过旋光仪进行测定。
实验步骤:
1. 将旋光仪接通电源,让其预热,并调整入射角度使其波长分别通过起偏器、旋光器和检偏器后,显示为最大值。
2. 用一支梳子挤压柠檬皮,使其表面涂满柠檬汁液体,然后将涂有柠檬汁的部分放在旋光仪的旋转仓内,使之与光路垂直。
3. 旋转旋光仪的度盘,观察仪器的显示,并记录读数。
4. 重复上述实验步骤,分别使用其他旋光物质来进行测定。
实验数据记录:
旋光物质:柠檬汁
读数1:25°
读数2:24°
读数3:26°
平均读数:25°
实验结果与分析:根据实验数据记录,柠檬汁的旋光度为25°。
实验结论:柠檬汁具有旋光性质,旋光度为25°。
实验注意事项:
1. 实验中光线的角度调整要准确,以避免误差。
2. 实验前要清洁旋光仪的仪器,以确保精确测量。
3. 实验中要注意安全操作,避免触碰电源和高温区域。
旋光度测定步骤
旋光度测定步骤旋光度是一种测定化学物质的实验方法,它是通过测定物质所吸收光线所产生的旋光偏振性来测定物质结构的。
旋光度实验比较简单,只需准备两个光源,一个是原光源,另一个是交替光源,在偏振仪上,通过改变光线的偏振角度(用一个可调角度旋转物),以及改变光线的比强度(通过把光线衰减到不同程度),可以测出交替光下物质的旋光度。
旋光度测定的步骤如下:1、准备实验设备。
需要准备一个密闭的光学实验箱,使得实验时室内光线不会干扰实验。
然后准备偏振仪,一个原光源,一个交替光源,以及可调角度的旋转物。
2、测试物质。
将要测试的物质放入实验箱中,关闭实验箱,保持实验环境恒定,并且调节实验箱内的光线强度,使得强度稳定。
3、调节光照条件。
因为旋光度测定是测定光照下物质所产生的旋光偏振性,所以必须调节好光照条件,当原光源亮度稳定时,把交替光源添加到光源系统中,调节好交替光源的光照强度。
4、测量物质旋光角度。
调节好原光源和交替光源的光照强度,利用可调角度的旋转物,调节光线的偏振角度,测量物质在原光源和交替光源下所产生的旋光偏振,从而测得物质的旋光度。
5、记录旋光度数据。
测定完物质的旋光度后,将旋光度数据记录下来,以备后续分析处理。
旋光度测定及其原理的研究自20世纪以来就在不断发展,大大推动了科学与技术的发展和进步,对于我们了解和研究物质的结构具有重要的意义。
在旋光度测定中,条件控制功能也非常重要,如果不能准确控制实验条件,可能会导致测试数据的偏差,从而得出错误的旋光度读数。
因此,在实验中,必须加以重视,及时调整实验条件,以保证实验结果的准确性。
由于旋光度测定对物质的分子结构和构成有重要的化学意义,因此旋光度测定已经广泛应用于医学、农业、生物学实验中,如分子生物学研究等,也被用于食品检测、药物质量控制等领域。
从上面可以看出,旋光度测定不仅具有重要的实验意义,而且操作简单,广泛应用于各种科学和技术领域,对于我们了解物质构成以及分子结构具有重要的作用。
旋光度的测定实验报告
旋光度的测定实验报告实验目的,通过测定样品的旋光度,掌握旋光仪的使用方法,了解旋光现象的基本原理,加深对化学手段分析的理解。
实验仪器,旋光仪、样品管、标准溶液、蒸馏水、玻璃棒、橡胶塞。
实验原理,旋光度是指物质对偏振光产生的旋光现象。
当偏振光通过具有旋光性质的样品时,光的振动方向会随着光线的传播而产生旋转,形成旋光现象。
旋光度是用来表示样品对偏振光旋转程度的物理量,通常用角度表示。
实验步骤:1. 将旋光仪放置在水平台上,并调整水平仪使其水平。
2. 打开旋光仪的仪表电源,预热15分钟。
3. 取两个样品管,一个装入样品,一个装入标准溶液作为对照组。
4. 分别将两个样品管插入旋光仪的样品槽中,注意不要碰触样品槽内壁。
5. 调节旋光仪的角度,使得通过样品管的光线尽可能通过样品管中心。
6. 观察旋光仪的读数,并记录下来。
7. 将两个样品管取出,清洗干净并晾干备用。
实验数据:样品|旋光度(°)。
---|---。
样品1|+15.3。
样品2|-10.5。
标准溶液|+5.2。
实验结果分析:通过实验数据可以看出,样品1的旋光度为+15.3°,样品2的旋光度为-10.5°,而标准溶液的旋光度为+5.2°。
根据实验结果分析,样品1具有正旋光性质,样品2具有负旋光性质,而标准溶液的旋光度为+5.2°。
根据这些数据,我们可以初步判断样品1可能含有右旋化合物,样品2可能含有左旋化合物。
实验结论:通过本次实验,我们成功测定了样品的旋光度,并初步判断了样品可能含有的旋光性质。
同时,我们也掌握了旋光仪的使用方法,加深了对旋光现象的理解。
这对于化学分析和实验技术都具有重要的意义。
实验注意事项:1. 在使用旋光仪时,要注意样品管的清洁和干燥,避免杂质和水分的干扰。
2. 在观察旋光仪读数时,要保持仪器稳定,避免震动和外界干扰。
3. 在实验过程中,要严格按照操作步骤进行,确保实验数据的准确性和可靠性。
旋光度的测定实验报告
旋光度的测定实验报告
1、实验背景
旋光度是衡量物质光学活性的量度单位,是一种较为常用的衡量物质的特性指标之一。
它表示物质在不同光照度下其旋转的视觉特性,非常重要的地方在于,显示物质是非对称分子,它们可以旋转在不同的轴上,从而给出它们电磁性质的不同方位,旋光度的测定也是科学研究中的一个必备技术。
2、实验仪器
(1)旋光仪:由驱动电机,光学仪器及腔体等部件组成。
(2)投射光源:主要用于照明物体。
(3)反射镜:将光反射到物体上。
(4)光电转换器:用于测量物体、投射光源和反射镜的电流强度。
3、实验流程
(1)将样品物体放在旋光仪内,将反射镜放置在投射光源辐射
出的光线中。
(2)调节旋光仪的速度,使其满足实验要求,使样品物体旋转
给定的角度范围,以反映其旋光度。
(3)将测量指标下的光电转换器串联,以检测反射镜反射出的
光线的强度。
(4)记录光电转换器的电流值,并将其转换为旋光度。
4、实验结果
根据检测出的电流值,计算得到的旋光度为:2.3°±0.2°。
5、结论
通过本次实验,可以获得物质的旋光度,从而更好地了解物质的电磁性质。
旋光率的测量
2.27旋光率的测量1911年,阿喇果发现,当线偏振光通过某些透明物质时,它的振动面将会绕光的传播方向转过一定的角度,这种现象就叫旋光效应,光的振动面转过的角度称为旋光度,使光的振动面产生旋转的物质叫做旋光物质(进一步地,迎着光的传播方向看,使光的振动面顺时针转动的物质叫右旋物质,反之则为左旋物质)。
常见的旋光物质有:石英、朱砂、酒石酸、食糖溶液、松节油等。
旋光仪是测定旋光物质旋光度的仪器,通过对旋光度的测定可确定物质的浓度、纯度、比重、含量等,可供一般的成分分析之用,广泛应用于石油、化工、制药、香料、制糖及食品、酿造等工业。
【实验目的】(1)观察偏振光通过旋光物质的现象(2)了解旋光仪的结构原理(3)学习用旋光仪测量旋光性溶液的玄光率和浓度【实验原理】如图l所示,线偏振光通过某些物质的溶液(如蔗糖溶液等)时,偏振光的振动面将旋转一定的角度中,这种现象称为旋光现象,旋转的角度称为旋光度。
ϕ实验证明,线偏振光通过旋光性溶液后,其旋光度与溶液的化学浓度c 成正比,也与光所通过的液体层厚度L成正比,即(1)L c αϕ=式中的单位是°(度),c 的单位是g /cm 3,L的单位是ϕdm (10cm ),表征了物质的旋光性质,称为旋光率,它在数值α上等于线偏振光通过厚度为10cm 、浓度为1cm 3溶液含1g旋光物质的液体层后,其偏振面旋转的角度。
实验还表明,同一旋光物质对不同波长的光有不同的旋光率;在一定温度下,它的旋光率与入射光波长成反比,即随波长的减小而迅速增大,故一般用钠黄光()测定旋光率。
2λλnm 3.589=λ若已知待测旋光性溶液的浓度c 和液层厚度L,测出旋光度后,就可由式(1)求出其旋光率。
ϕ当液体层厚度L不变时,若依次改变浓度c ,测出相应的旋光度,然后画出其曲线~c (旋光曲线),ϕϕ将得到一条直线,其斜率为,从该直线的斜率也可求出旋光率。
在测得某种旋光性溶液~c 曲L ααϕ线后,可测量光通过浓度待测的同种溶液的旋光度,由~c 曲线查出对应的浓度,即待测液体的浓ϕϕ度。
旋光度测定的实验原理
旋光度测定的实验原理引言:旋光度测定是一种常用的实验方法,用于测量物质对光的旋光性质。
通过测量物质对偏振光的旋转角度,可以了解物质的分子结构以及化学性质。
本文将介绍旋光度测定的实验原理,以及实验过程中的注意事项和应用领域。
一、实验原理1. 偏振光偏振光是一种只在一个平面上振动的光,其电矢量只在一个特定方向上振动。
在实验中,常使用偏振片来产生偏振光。
2. 旋光现象某些物质在光的传播过程中,会使偏振光的电矢量在空间中发生旋转,这种现象称为旋光现象。
旋光现象的发生是由于物质分子的空间排列方式不对称所导致的。
3. 旋光度旋光度是衡量物质对光旋转程度的物理量。
旋光度的值可以为正数、负数或零,其中正数表示顺时针旋转,负数表示逆时针旋转,零表示不旋转。
4. 旋光仪旋光度测定常使用旋光仪来测量物质对光的旋转角度。
旋光仪由光源、偏振片、样品室、检测器和旋光度刻度盘等部分组成。
二、实验过程1. 准备工作将旋光仪放置在水平台上,并调节水平仪使其水平。
根据样品特性选择合适的波长和光源强度。
2. 校准使用标准物质(已知旋光度)进行校准,调节旋光度刻度盘使其读数与标准物质的旋光度一致。
3. 测量样品将待测样品倒入样品室,调节偏振片使得通过样品室的光强适中。
转动旋光度刻度盘,直到检测器上的光强最大或最小,记录旋光度刻度盘的读数。
4. 数据处理根据旋光仪的刻度盘读数以及标准物质的旋光度,计算出待测样品的旋光度值。
三、注意事项1. 样品准备:待测样品应保持干燥、纯净,避免杂质的干扰。
2. 仪器校准:在测量前,应使用已知旋光度的标准物质对旋光仪进行校准,确保测量结果的准确性。
3. 光源选择:根据样品特性选择合适的波长和光源强度,以获得准确的旋光度测量结果。
4. 光强调节:通过调节偏振片,使得通过样品室的光强适中,避免光强过弱或过强影响测量结果。
5. 多次测量:为了提高测量结果的准确性,可以进行多次测量,并取平均值作为最终结果。
四、应用领域1. 化学领域:旋光度测定可用于分析化学中物质的结构、构型以及化学反应过程。
旋光度测定
旋光度测定一.实验目的1、学习旋光仪的使用方法.2、掌握旋光度测定的操作及方向判断.二.实验原理旋光仪用于测定旋光性化合物的旋光方向及旋光度。
此方法可用于检测旋光性物质的纯度及鉴定.图旋光仪的结构及工作原理为了准确判断旋光度的大小,测定时通常在视野中分出三分视场(见图)。
a b c当检偏镜的偏振面与通过棱镜的光的偏振面平行时,我们通过目镜可观察到图b所示(当中明亮,两旁较暗);若检偏镜的偏振面与起偏镜偏振面平行时,可观察到图a所示(当中较暗,两旁明亮);只有当检偏镜的偏振面处于1/2φ(半暗角)的角度时,视场内明暗相等如图c. 这一位置作为零度,使游标尺上0°。
对准刻度盘0。
测定时,调节视场内明暗相等,以使观察结果准确。
一般在测定时选取较小的半暗角,由于人的眼睛对弱照度的变化比较敏感,视野的照度随半暗角φ的减小而变弱,所以在测定中通常选几度到十几度的结果。
溶液的比旋光度与旋光度的关系为:αα[ ]D t(溶剂)=c×L式中[α]Dt为比旋光度;t为测定时的温度(℃);D表示钠光(波长λ=589.3nm);α为观测的旋光度;c为溶液的浓度,以g·mL-1为单位;L为样品管的长度,以dm为单位。
如果被测定的旋光性物质为纯液体αα[ ]D t=d×L式中d为纯液体的密度(g·mL-1)三.实验步骤1、预热仪器(5—10min)2、校正零点旋转粗调钮和微调钮至目镜视野中三分视场的明暗程度完全一致(较暗),再按游标尺原理记下读数,如此重复测定五次;取其平均值即为仪器的零点值。
3、测葡萄糖的旋光度将充满待测样品溶液的样品管放入旋光仪内,旋转粗调和微调旋扭,使达到半暗位置,按游标尺原理记下读数,重复五次,取平均值,即为旋光度的观测值)由观测值减去零点值,即为该样品真正的旋光度。
例如,仪器的零点值为-0.05°,样品旋光度的观测值为+9.85°,则样品真正的旋光度为α=+9.85°-(-0.05°)=+9.90°。
旋光度的测定实验报告数据
一、实验目的1. 了解旋光度的概念及其测定原理;2. 掌握旋光仪的使用方法;3. 通过实验,测定样品溶液的旋光度。
二、实验原理旋光度是指旋光物质使偏振光的振动面旋转的角度。
当一束单一的平面偏振光通过旋光物质时,其振动方向会发生改变,此时光的振动面旋转一定的角度。
旋光度的测定方法有旋光仪法、比旋光法等。
本实验采用旋光仪法测定样品溶液的旋光度。
三、实验仪器与试剂1. 仪器:WXG-4圆盘旋光仪、样品试管、蒸馏水、5%葡萄糖溶液、未知浓度的葡萄糖溶液、洗瓶、胶头滴管、滤纸;2. 试剂:5%葡萄糖溶液、未知浓度的葡萄糖溶液。
四、实验步骤1. 样品溶液的配制:准确称取一定量的样品,在50ml的容量瓶中配成溶液。
通常可以选用水、乙醇、氯仿作溶剂。
若用纯液体样品直接测试,则测定前只需确定其相对密度即可。
2. 预热:打开旋光仪电源开关,预热5~10分钟,待完全发出钠黄光后方可观察使用。
3. 旋光度测定:a. 将样品溶液注入样品试管中,将样品试管插入旋光仪中;b. 调节旋光仪,使三分视场均匀暗;c. 观察并记录旋光仪的读数,即旋光度;d. 重复上述步骤,进行多次测量,取平均值。
五、数据处理1. 记录不同浓度的葡萄糖溶液的旋光度;2. 根据旋光率公式,计算旋光率;3. 用作图法处理数据,求得旋光率;4. 用旋光率及测出的旋光度,计算未知浓度的葡萄糖溶液的浓度。
六、实验结果与分析1. 不同浓度的葡萄糖溶液的旋光度及旋光率:| 浓度(g/ml) | 旋光度(°) | 旋光率(°/dm) ||--------------|--------------|----------------|| 0.1 | 2.3 | 23 || 0.2 | 4.6 | 46 || 0.3 | 6.9 | 69 || 0.4 | 9.2 | 92 || 0.5 | 11.5 | 115 |2. 旋光率与浓度的关系图:通过作图法处理数据,得到旋光率与浓度的线性关系,斜率为旋光率,截距为浓度常数。
旋光度的测定
旋光度的测定旋光度的测定是一种常见的化学分析方法,它是通过测量物质对偏振光的旋转角度来确定物质的光学活性度。
在化学、生物、医药等领域中,旋光度的测定被广泛应用于物质的结构分析、纯度检测、反应动力学研究等方面。
旋光度的测定原理是基于光学活性分子对偏振光的旋转作用。
偏振光是指在一个平面内振动方向相同的光,而光学活性分子则是指具有旋光性质的分子,它们能够使偏振光的振动方向发生旋转。
旋光度是指物质对偏振光旋转的角度,通常用度数或弧度表示。
旋光度的大小与物质的浓度、光程、温度、波长等因素有关。
旋光度的测定方法主要有两种:比色法和仪器法。
比色法是通过比较旋光度与标准溶液的比色度数来确定物质的旋光度。
这种方法简单易行,但精度较低,只适用于旋光度较大的物质。
仪器法则是利用旋光仪来测定物质的旋光度。
旋光仪是一种专门用于测量旋光度的仪器,它能够精确测量物质对偏振光的旋转角度,并计算出物质的旋光度。
仪器法精度高、可靠性强,适用于各种旋光度的物质。
旋光度的测定在化学分析中有着广泛的应用。
例如,在有机化学中,旋光度的测定可以用于确定化合物的构型和对映体纯度。
对映体是指具有镜像对称结构的分子,它们的化学性质相同,但旋光度却相反。
因此,通过测定对映体的旋光度可以确定其对映体纯度。
在药物研究中,旋光度的测定可以用于确定药物的光学活性和药效学特性。
例如,左旋多巴是一种常用的抗帕金森病药物,它的右旋异构体则是无效的。
因此,通过测定左旋多巴的旋光度可以确定其光学活性和药效学特性。
除了化学分析外,旋光度的测定在生物学和医学中也有着广泛的应用。
例如,在生物化学中,旋光度的测定可以用于研究蛋白质、核酸等生物大分子的结构和功能。
在医学中,旋光度的测定可以用于检测血糖、血脂等生化指标,以及药物代谢产物的浓度和活性。
旋光度的测定是一种重要的化学分析方法,它在化学、生物、医药等领域中有着广泛的应用。
通过测定物质对偏振光的旋转角度,可以确定物质的光学活性度、结构特征、纯度等信息,为化学研究和应用提供了有力的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、对映体的构型与命名
乳酸 CH3—CH—COOH
OH
COOH
COOH
C*
H
OH CH3
HO H 3C
C*
H
构型表示法(Representation): Fisher投影式
1. 透视式
2. Fisher投影式 H COOH OH
CH3
Fisher投影式
COOH
===
C
H CH3 透视式 OH
(一)---乳酸模型
三、对映异构与手性碳
2.具有两个手性碳原子化合物的对映异构
(1)具有两个不相同手性碳原子化合物的对映异构 含有两个手性碳原子的化合物应有四个立体异 构体,如2-羟基-3-氯丁二酸。 COOH COOH COOH COOH 2 HO 3 H HO H H OH H OH Cl H H Cl Cl H H Cl COOH COOH COOH COOH
一、基本概念
一、基本概念
比旋光度:在一定的温度下,旋光管长度为1dm,样品
浓度为1 g/ml,光源波长为589nm时所测的旋光度。
一、基本概念
手性与对映异构
一、基本概念
手性分子:不能与其镜像叠合的分子。 非手性分子:能与其镜像叠合的分子。 I I Cl H C H Cl C 手性分子 Br Br CH3 CH
三、对映异构与手性碳
(4)旋光度的测定 换放盛有待测样品的测试管,按上述方法测 其旋光度值,重复两次,取其平均值,由葡萄糖 溶液的比旋光度计算浓度。 实验完毕,洗净测定管,再用蒸馏水洗净, 擦干存放。 注意镜片应用软绒布揩擦,勿用手触摸。
学习情境二十六 旋光度的测定
北京电子科技职业学院 生物技术系
一、基本概念 二、构型与命名 三、手性碳 四、旋光度的测定
同分异构
碳链异构 位置异构 构造异构 (成键顺序不同) 官能团异构 互变异构 顺反异构 构型异构 旋光异构
立体异构 (空间排列不同)
构象异构
一、基本概念
1.偏振光
一、基本概念
二、对映体的构型与命名 优先次序
OH H C C H3 COOH
—OH
—COOH
—CH3
顺时针
(R)-乳酸
C6H5
NH 2
C6H5
CH2CH3
CH3
C NH2
CH2CH3
逆时针
(S)-2-苯基-2-氨基丁烷
二、对映体的构型与命名
Fisher投影式命名方法
(1)末优基团在横线上,走向顺时针为(S)型,逆时针
符合以上规则的则为同一物质,反之则为对映体。
二、对映体的构型与命名
相对构型与绝对构型 ☆ 相对构型
标准化合物:甘油醛
CHO H OH CH3
右旋甘油醛 (+)-甘油醛
CHO OH H
CH3
左旋甘油醛 (-)-甘油醛
二、对映体的构型与命名
COOH OH H CH3 H
COOH OH CH3
(+)-乳酸
注意:
化合物的R, S或D, L与旋光方向(+),(-)是
没有绝对关系的.因为旋光方向是化合物固有的
性质, 而对化合物构型的标记是人为规定的.
说明:
一个(+), 另一个(-);一个为R, 另一个必为S。
三、对映异构与手性碳
1. 含一个手性碳原子的化合物
☆有两个旋光异构体互为对映异构体。 ☆ 一定是手性分子。 ☆ 等量对映体的混合物构成外消旋体。
(2R,3R)- 2-羟基-3-氯丁二酸
(2R,3S)-
(2S,3R)-
三、对映异构与手性碳
COOH 2 HO 3 H Cl H COOH
对映体
非对映体
COOH H OH H Cl COOH
COOH COOH HO H H OH H Cl Cl H COOH COOH
对映体
非对映体之间在化学、物理性质 上有较大的区别
三、对映异构与手性碳
三分视场变化示意图 测定时,旋转手轮,调整检偏镜刻度盘,应调节视 场成明暗相等的单一视场,读取刻度盘上所示的刻度值。
三、对映异构与手性碳
读数(同游标卡尺)
读 数 示 意 图
三、对映异构与手性碳
刻度盘分两个半圆分别标出0一180°,固 定游标分为20等分。读数时,先读游标的0落在 刻度盘上的位置(整数值),再用游标尺的刻度盘 画线重合的方法,读出游标尺的数值(可读出两位 小数) 。
旋光性:能使偏光的振动平面发生旋转的性质。
具有旋光性的物质称为旋光性物质或光学活性物 质。不同的旋光性物质使偏光振动平面旋转的能 力不同。
旋光度:a为旋光性物质使偏光的振动平面旋转
的角度。 使偏光的振动平面向右(顺时针)旋转的物 质,成为右旋物质,用“+”或“d”表示。 使偏光的振动平面向左(逆时针)旋转的物 质,成为左旋物质,用“-”或“l”表示。
二、对映体的构型与命名
投影规则
1.碳链数值命名时编号最小
的碳原子在上;
2.以手性碳为投影中心;
3.横前竖后。
二、对映体的构型与命名
判断几种不同的Fisher投影式是否相同: ★ Fisher投影式只能在纸面上旋转180度,而
不能旋转90或270度。
★ Fisher投影式不能离开纸面进行翻转。 ★ Fisher投影式中同一碳原子上所连原子或原子团, 可以两两互换偶数次,但不能互换奇数次。
为(R)型。例:
CH3 HO H CH2CH3
逆时针,(R)
OH H3C H CH2CH3
顺时针,(S)
二、对映体的构型与命名
(2)末优基团在竖线上,走向顺时针为(R)型, 逆时针为(S)型。例:
H HO CH2CH3 CH3
顺时针,(R)
OH H3CH2C H
逆时针,(S)
CH3
二、对映体的构型与命名
3
Cl
C CH3
H
H
C
Cl
ቤተ መጻሕፍቲ ባይዱ
非手性分子
CH3 对映异构体:具有相同的分子构造,在空间的排列互为 物体和镜像关系的两个异构体。
一、基本概念
4、手性与对称因素
A、对称面
Cl CH3 C Cl
H
Cl H i H Cl
H F
B、对称中心
Cl
F H
Cl o Cl Cl Cl Cl Cl Cl Cl Cl Mirror
三、对映异构与手性碳
(2)具有两个相同手性碳原子化合物的对映异构
* * HOOC-CH-CH-COOH 酒石酸 OH OH
*C2 *C3 : OH COOH CHCOOH H OH
COOH H OH HO H COOH
COOH HO H H OH COOH
COOH H OH H OH COOH
COOH HO H HO H COOH
RS
思 考 判断对错:
1、一对对映体总有实物和镜象的关系 2、所有手性分子都有非对映体 3、所有具有手性碳的化合物都是手性分子 4、具有R-构型的手性化合物必定有右旋的旋光方向 5、如果一个化合物有对称平面,它必然是非手性的
6、内消旋和外消旋体都是非手性分子,因为它们都无旋光性
7、对映异构体可以通过单键旋转相互重合 8、由一种异构体转变为其对映体时,必须断裂与手性碳相连
C、对称轴
Cl
Cl
90
具有对称面、对称中心、对称轴的分子,它能与其镜像 叠合,为非手性分子;反之为手性分子。
一、基本概念
5、手性中心
COOH
H C* CH3 乳酸 OH C H3
Br C*
H
Cl C*
H CH3
2-氯-3-溴丁烷
与四个不相同的原子或原子团相连接的C原子,用 “C*” 表示,还有 N*、S*、P*等。
的键
四、旋光度的测定
1. 目的 (1)掌握旋光仪的使用方法。 (2)了解手性化合物的旋光性及其测定的原理、 方法和意义。
2. 旋光 仪构造 (3)外形
三、对映异构与手性碳
3. 测定 从目镜中可观察到的几种情况: (1)中间明亮,两旁较暗。 (2)中间较暗,两旁较明亮。 (3)视场内明暗相等的均一视场。
三、对映异构与手性碳
4. 实验步骤 (1)待测溶液的配制 用天平准确称取10.0-10.5 g葡萄糖和果糖样 品,在 100 mL 容量瓶中配成溶液,溶液若不透明澄 清,用滤纸过滤。
三、对映异构与手性碳
(2)装待测液 洗净测定管后,用少量待测液润洗 2-3 次, 注入待测液,并使管口液面呈凸面。将护片玻 璃沿管口边缘平推盖好 ( 以免使管内留存气泡 ) , 装上橡皮填圈,拧紧螺帽至不漏水(太紧会使玻 片产生应力,影响测量)。用软布擦净测定管, 备用 (如有气泡,应赶至管颈突出处)。
Ⅰ
Ⅱ
Ⅲ
Ⅳ
三、对映异构与手性碳
三、对映异构与手性碳
☆内消旋体(meso):分子内部形成对映两半的化合物。 (有平面对称因素)。 ☆具有两个手性中心的内消旋体一定是(RS)构型。
COOH H OH H OH COOH
☆内消旋体无旋光性 (两个相同取代、构型相 反的手性碳原子,处于同一分子中,旋光性 抵消)。 ☆内消旋体不能分离成光活性化合物。
三、对映异构与手性碳
对映体的性质
☆ 对映体的比旋光度数值相等,方向相反。
其他物理性质相同。
☆对映体的化学性质相似,物理性质不同。
☆不能用一般的分离方法将一对对映体分离。
三、对映异构与手性碳
☆ 非对映体:构造相同, 构型不同, 相互间不是实物 与镜影关系 的旋光异构体。 ☆ 非对映异构体其旋光性不同, 物理性质不同;化学 性质不同;生理性质不同。可用物理方法将非对映体 分离。 ☆ 光活异构体数目= 2n(n=不同手性碳原子数),外消 旋体数目为2n-1。