2018安庆市中考必备数学模拟试卷(12)附详细试题答案
2018年安徽省中考模拟试卷-(数学)-有答案
2018年安徽中考模拟卷一、选择题(本大题共10小题,每小题4分,满分40分) 1.-5的绝对值是( )A .-5B .5C .±5D .-152.计算2a 2+a 2,结果正确的是( ) A .2a 4 B .2a 2 C .3a 4 D .3a 23.如图所示的工件,其俯视图是( )4.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )A .1×106B .100×104C .1×107D .0.1×1085.不等式组⎩⎪⎨⎪⎧2x -1≥1,x -2<0的解集在数轴上表示为( )6.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°第 6题图 第7题图7.某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )A .样本中位数是200元B .样本容量是20C .该企业员工捐款金额的平均数是180元D .该企业员工最大捐款金额是500元8.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2015年年收入为200美元,预计2017年年收入将达到1000美元,设2015年到2017年该地区居民年人均收入平均增长率为x ,可列方程为( )A .200(1+2x )=1000B .200(1+x )2=1000C .200(1+x 2)=1000D .200+2x =10009.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +a 与反比例函数y =a +b +cx在同一坐标系内的图象大致为( )10.如图,在矩形ABCD 中,AD =6,AE ⊥BD ,垂足为E ,DE =3BE ,点P ,Q 分别在BD ,AD 上,则AP +PQ 的最小值为( )A .2 2 B. 2 C .2 3 D .3 3二、填空题(本大题共4小题,每小题5分,满分20分) 11.16的算术平方根是________.12.分解因式:2x 2-8y 2=__________________. 13.如图,已知AB 是⊙O 的直径,延长AB 至C 点,使AC =3BC ,CD 与⊙O 相切于D 点.若CD =3,则劣弧AD ︵的长为________.第13题图 第14题图14.如图,在四边形纸片ABCD 中,AB =BC ,AD =CD ,∠A =∠C =90°,∠B =150°.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD =________________.三、(本大题共2小题,每小题8分,满分16分) 15.计算:2-1+3·tan30°-38-(2018-π)0.16.“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?四、(本大题共2小题,每小题8分,满分16分)17.小明、小华利用五一假期结伴游览某旅游景点,他们想测量景点内一条小河的宽度,如图,已知观测点C 距离地面高度CH =40m ,他们测得正前方河两岸A 、B 两点处的俯角分别为45°和30°,请计算出该处的河宽AB 约为多少(结果精确到1m ,参考数据:2≈1.414,3≈1.732).18.如图,在边长均为1的正方形网格中有一个△ABC ,顶点A 、B 、C 及点O 均在格点上,请按要求完成以下操作或运算:(1)将△ABC 向上平移4个单位,得到△A 1B 1C 1(不写作法,但要标出字母); (2)将△ABC 绕点O 旋转180°,得到△A 2B 2C 2(不写作法,但要标出字母); (3)求点A 绕着点O 旋转到点A 2所经过的路径长l .五、(本大题共2小题,每小题10分,满分20分)19.图①是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图①倒置后与原图①拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为1+2+3+…+n =n (n +1)2.如果图③和图④中的圆圈都有13层.(1)我们自上往下,在图③的每个圆圈中填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是________;(2)我们自上往下,在图④的每个圆圈中填上一串连续的整数-23,-22,-21,-20,…,则最底层最右边这个圆圈中的数是________;(3)求图④中所有圆圈中各数之和(写出计算过程).20.如图,在四边形ABCD 中,AD =BC ,∠B =∠D ,AD 不平行于BC ,过点C 作CE ∥AD 交△ABC 的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分∠BCE .六、(本题满分12分)21.“热爱劳动,勤俭节约”是中华民族的光荣传统.某小学为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图①)和扇形统计图(图②).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”“经常做”“偶尔做”都统计成帮助父母做家务,那么该校三至六年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.七、(本题满分12分)22.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间y (单位:分钟)是关于x 的一次函数,其关系如下表:(1)求y 1关于x (2)李华骑单车的时间y 2(单位:分钟)也受x 的影响,其关系可以用y 2=12x 2-11x +78来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图①,点G 为线段CM 上的一点,且∠AGB =90°,延长AG 、BG 分别与边BC 、CD 交于点E 、F . ①求证:BE =CF ; ②求证:BE 2=BC ·CE .(2)如图②,在边BC 上取一点E ,满足BE 2=BC ·CE ,连接AE 交CM 于点G ,连接BG 并延长交CD 于点F ,求tan ∠CBF 的值.参考答案与解析1.B 2.D 3.B 4.A 5.C 6.A 7.A 8.B9.D 解析:观察二次函数图象可知开口方向向上,对称轴直线x =-b2a>0,当x =1时y =a +b +c<0,∴a >0,b <0,∴一次函数y =bx +a 的图象经过第一、二、四象限,反比例函数y =a +b +cx的图象在第二、四象限,只有D 选项图象符合.故选D.10.D 解析:设BE =x ,则DE =3x .∵四边形ABCD 为矩形,∴∠BAD =90°,∴∠BAE +∠DAE =90°.∵AE ⊥BD ,∴∠AED =∠BEA =90°,∴∠ABE +∠BAE =90°,∴∠ABE =∠DAE ,∴△ABE ∽△DAE ,∴AE 2=BE ·DE ,即AE 2=3x 2,∴AE =3x .在Rt △ADE 中,由勾股定理可得AD 2=AE 2+DE 2,即62=(3x )2+(3x )2,解得x =3,∴AE =3,DE =3 3.如图,设A 点关于BD 的对称点为A ′,连接A ′D ,P A ′,则A ′A =2AE =6,A ′D =AD =6,∴△AA ′D 是等边三角形.∵AP =A ′P ,∴AP +PQ =A ′P +PQ ,∴当A ′,P ,Q 三点在一条线上时,AP +PQ 的值最小.由垂线段最短可知当PQ ⊥AD 时,AP +PQ 的值最小,∴AP +PQ =A ′P +PQ =A ′Q =DE =3 3.故选D.11.4 12.2(x +2y )(x -2y ) 13.2π314.4+23或2+3 解析:如图①,当四边形ABCE 为平行四边形时,作AE ∥BC ,延长AE 交CD于点N ,过点B 作BT ⊥EC 于点T .∵AB =BC ,∴四边形ABCE 是菱形.∵∠BAD =∠BCD =90°,∠ABC =150°,∴∠ADC =30°,∠BAN =∠BCE =30°,∴∠NAD =60°,∴∠AND =90°.设BT =x ,则CN =x ,BC =EC =2x .∵四边形ABCE 面积为2,∴EC ·BT =2,即2x ×x =2,解得x =1,∴AE =EC =2,EN =22-12=3,∴AN =AE +EN =2+3,∴CD =AD =2AN =4+2 3.如图②,当四边形BEDF 是平行四边形,∵BE =BF ,∴平行四边形BEDF 是菱形.∵∠A =∠C =90°,∠ABC =150°,∴∠ADB =∠BDC =15°.∵BE =DE ,∴∠EBD =∠ADB =15°,∴∠AEB =30°.设AB =y ,则DE =BE =2y ,AE =3y .∵四边形BEDF 的面积为2,∴AB ·DE =2,即2y 2=2,解得y =1,∴AE =3,DE =2,∴AD =AE +DE =2+ 3.综上所述,CD 的值为4+23或2+ 3.15.解:原式=12+1-2-1=-32.(8分)16.解:设鸡有x 只,兔有y 只,根据题意得⎩⎪⎨⎪⎧x +y =35,2x +4y =94,(4分)解得⎩⎪⎨⎪⎧x =23,y =12.(7分) 答:笼中有鸡23只,兔12只.(8分) 17.解:由题意得∠CAH =45°,∠CBH =30°.(2分)在Rt △ACH 中,AH =CH =40m ,在Rt △CBH 中,BH =CHtan ∠CBH=403m ,∴AB =BH -AH =403-40≈29(m).(7分)答:河宽AB 约为29m.(8分)18.解:(1)△A 1B 1C 1如图所示.(3分) (2)△A 2B 2C 2如图所示.(6分)(3)l =180π×4180=4π.(8分) 19.解:(1)79(3分) (2)67(6分)(3)图④中共有91个数,分别为-23,-22,-21,…,66,67,所以图④中所有圆圈中各数的和为(-23)+(-22)+…+(-1)+0+1+2+…+67=-(1+2+3+…+23)+(1+2+3+…+67)=-23×242+67×682=2002.(10分) 20.证明:(1)由圆周角定理的推论1得∠B =∠E .又∵∠B =∠D ,∴∠E =∠D .∵CE ∥AD ,∴∠D +∠ECD =180°,∴∠E +∠ECD =180°,∴AE ∥CD ,∴四边形AECD 为平行四边形.(5分)(2)过点O 作OM ⊥BC 于M ,ON ⊥CE 于N .(6分)∵四边形AECD 为平行四边形,∴AD =CE .又∵AD =BC ,∴CE =CB ,∴OM =ON .又∵OM ⊥BC ,ON ⊥CE ,∴CO 平分∠BCE .(10分)21.解:(1)中位数为12(45+55)=50.(3分)(2)3000×(1-25%)=2250(人).(5分)答:该校三至六年级学生帮助父母做家务的大约是2250人.(6分) (3)画树状图如下:(10分)由树状图可知共有12种等可能结果,其中抽中甲和乙的结果有2种,所以P (抽取的两人恰好是甲和乙)=212=16.(12分) 22.解:(1)设y 1=kx +b ,将(8,18),(9,20)代入得⎩⎪⎨⎪⎧8k +b =18,9k +b =20,解得⎩⎪⎨⎪⎧k =2,b =2.故y 1关于x 的函数解析式为y 1=2x +2.(5分)(2)设李华从文化宫回到家所需的时间为y 分钟,则y =y 1+y 2=2x +2+12x 2-11x +78=12x 2-9x +80=12(x-9)2+39.5,(8分)∴当x =9时,y 有最小值,y min =39.5.(10分)故李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.(12分)23.(1)证明:①∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =∠BCF =90°,∴∠ABG +∠CBF =90°.∵∠AGB =90°,∴∠ABG +∠BAG =90°,∴∠BAG =∠CBF ,∴△ABE ≌△BCF ,∴BE =CF .(4分)②∵∠AGB =90°,点M 为AB 的中点,∴MG =MA =MB ,∴∠GAM =∠AGM .∵∠CGE =∠AGM ,∴∠GAM =∠CGE .由①可知∠GAM =∠CBG ,∴∠CGE =∠CBG .又∵∠ECG =∠GCB ,∴△CGE ∽△CBG ,∴CE CG =CGCB,即CG 2=BC ·CE .∵MG =MB ,∴∠MGB =∠MBG .∵四边形ABCD 是正方形,∴AB ∥CD ,∴∠MBG =∠CFG .又∵∠CGF =∠MGB ,∴∠CFG =∠CGF ,∴CF =CG .由①可知BE =CF ,∴BE =CG ,∴BE 2=BC ·CE .(9分)(2)解:延长AE ,DC 交于点N .(10分)∵四边形ABCD 是正方形,∴AB =BC ,AB ∥CD ,∴△CEN ∽△BEA ,∴CE BE =CNBA,即BE ·CN =AB ·CE .∵AB =BC ,BE 2=BC ·CE ,∴CN =BE .∵AB ∥DN ,∴△CGN ∽△MGA ,△CGF ∽△MGB ,∴CN MA =CG MG ,CG MG =CF MB ,∴CN MA =CFMB.∵点M 为AB 的中点,∴MA =MB ,∴CN =CF ,∴CF=BE .设正方形的边长为a ,BE =x ,则CE =BC -BE =a -x .由BE 2=BC ·CE 可得x 2=a ·(a -x ),解得x 1=5-12a ,x 2=-5-12a (舍去),∴BE BC =5-12,∴tan ∠CBF =CF BC =BEBC =5-12.(14分)。
最新-安庆市2018年中考第二次模拟考试数学试卷 精品
安庆市2018届第二次模拟考试数学试卷(满分:,时间:)命题:方融中审校:方融中一、选择题(本大题共10小题,每小题4分,满分40分)1、的相反数是()A.B.C.﹣2 D.22.下列计算中,正确的是()A.x3•x2=x6B.x3﹣x2=x C.(﹣x)2•(﹣x)=﹣x3D.x6÷x2=x33.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.94.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110°D.120°5.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.6.不等式3(x﹣1)+4≥2x的解集在数轴上表示为()A.B.C.D.7.2018年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)成绩(个/分钟)140 160 169 170 177 180人数 1 1 1 2 3 2则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.方差是135 B.平均数是170 C.中位数是173.5 D.众数是1778.在△ABC中,∠ABC=60°,∠ACB=50°,如图所示,I是△ABC的内心,延长AI交△ABC 的外接圆D,则∠ICD的度数是()A.50°B.55°C.60°D.65°9.菱形ABCD的对角线AC、BD的长分别为4和2,若直线l满足:①点A到直线l的距离为;②B、D两点到直线l的距离相等.则符合题意的直线l的条数为( )A.1 B.2 C.3 D.4(第9题)(第10题)10.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x 之间的函数关系的是()A.B. C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:3x 2﹣12y 2= .12.如图⊙O 的半径是1,A 、B 、C 是圆周上的三点,∠BAC=30°,则弦BC 所对的劣弧长是 .(第12题) (第13题) (第14题)13.如图,点B 、E 在反比例函数y=的图象上,矩形OABC 的顶点A 在y 轴的正半轴上,正方形CDEF 的顶点C 、D 在x 轴的正半轴上,顶点F 在BC 上.若正方形CDEF 的边长为2,且CB=3CF ,则反比例函数的关系式为 .14.如图,在△ABC 中,∠ACB=90°,AB=5,BC=3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B ′CP ,连接B ′A ,则下列判断: ①当AP=BP 时,AB ′∥CP ; ②当AP=BP 时,∠B ′PC=2∠B ′AC③当CP ⊥AB 时,AP=; ④B ′A 长度的最小值是1.其中正确的判断是 (填入正确结论的序号)三、(本大题共2小题,每题8分,满分16分)15、(1+π)0﹣|1﹣|﹣cos45°16、先化简,再求值:)211(342--∙--a a a ,其中3-=a .四、(本大题共2小题,每题8分,满分16分)17、如图,方格纸中的每个小方格都是边长为1的正方形,△ABC 的顶点都在格点上,请完成下列任务:(1)将△ABC绕点C按顺时针方向旋转90°后得到△A1B1C;(3)以点O为位似中心,位似比为2,将△A1B1C放大得到△A2B2C2(在网格之内画图).18、下面是小明一家看到“关于最近汽油价格连续上涨”的新闻后的一段对话:爸爸:咱家4月份汽油用量比2月份减少了20%妈妈:可是我们家4月份汽油的费用只比2月份减少了3.2%小明:用我们所学的数学知识,我能够求出3、4月份汽油价格的平均增长率.假如你就是小明,你是怎样计算的?请给出完整的解答过程。
(真题)安徽省2018年中考数学试题(有答案)
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键. 17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点. (1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
2018年安徽省安庆市中考模拟一模数学试题(含答案解析)
六、(本题满分12分)
21.课外活动时间,甲、乙、丙、丁 4 名同学相约进行羽毛球比赛. (1)如果将 4 名同学随机分成两组进行对打,求恰好选中甲乙两人对打的概率; (2)如果确定由丁担任裁判,用“手心、手背”的方法在另三人中竞选两人进行比赛.竞选规 则是:三人同时伸出“手心”或“手背”中的一种手势,如果恰好只有两人伸出的手势相同, 那么这两人上场,否则重新竞选.这三人伸出“手心”或“手背”都是随机的,求一次竞选 就能确定甲、乙进行比赛的概率.
8. 由于各地雾霾天气越来越严重,2018 年春节前夕,安庆市政府号召市民,禁放烟花炮竹.学校向
3000 名学生发出“减少空气污染,少放烟花爆竹”倡议书,并围绕“A 类:不放烟花爆竹;B 类:
少放烟花爆竹;C 类:使用电子鞭炮;D 类:不会减少烟花爆竹数量”四个选项进行问卷调查(单 选),并将对 100 名学生的调查结果绘制成统计图(如图所示).根据抽样结果,请估计全校“使用 电子鞭炮”的学生有
(1)请建立适当的平面直角坐标系 xOy,使得 A
点的坐标为(-3,-1),在此坐标系下,B
点的坐标为
;
(2)将线段 BA 绕点 B 逆时针旋转 90°得线段
BC,画出 BC;在第(1)题的坐标系下,C 点
的坐标为
;
(3) 在 第 (1) 题 的 坐 标 系 下 , 二 次 函 数
y ax2 bx c(a 0) 的图象过 O、B、C
……………4 分 ……………6 分
2018年安徽省安庆市中考数学一模试卷
2018年安徽省安庆市中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣3的绝对值是()A.﹣3 B.﹣C.D.32.不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.3.如图,是一个平放在桌面上的瓷碗,它的主视图是()A. B.C.D.4.在“百度”搜索中输入“新版中小学生则”,相关结果约1660000个,这个数据可用科学记数法表示为()A.166×104B.1.66×105C.1.66×106D.0.166×1075.下列图形中对称轴的条数为4的图形的个数有()A.1个B.2个C.3个D.4个6.如图,AB∥CD,AD⊥BD,∠1=55°,则∠2的大小是()A.25°B.30°C.35°D.40°7.如图,由于各人的习惯不同,双手交叉时左手大拇指或右手大拇指在上是一个随机事件,曾老师对他任教的学生做了一个调查,统计结果如下表所示:根据表格中的数据,你认为在这个随机事件中,右手大拇指在上的概率可以估计为()A.0.6B .0.5C .0.45 D.0.48.如图,在▱ABCD中,∠A=65°,DE⊥AB,垂足为点E,点F为边AD上的中点,连接FE,则∠AFE 的度数为()A.40°B.50°C.60°D.70°9.如图,在Rt△ABC中,∠C=90°,∠A=20°,BC=3,以点C为圆心,BC的长为半径的⊙C交AB于点D,交AC于点E,则(劣弧)的长为()A.πB.πC.πD.π10.将一些相同的图形“●”按如图所示的规律依次摆放,观察每个图形中“●”的个数,若第n个图形中有272个“●”,则n的值是()A.88 B.89 C.90 D.91二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:x3﹣xy2=.12.计算:2xy2﹣3xy2=.13.如图,在平面直角坐标系中,点P的坐标为(2,0),直线y=x+4与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM的最小值为.14.在矩形纸片ABCD中,AB=16,AD=12,点P在边AB上,若将△DAP沿DP折叠,使点A恰好落在矩形对角线上的点A′处,则AP的长可能为.(把所有正确结论的序号都选上)①5;②6;③8;④9.三、(本大题共2小题,每小题8分,满分16分)15.计算:+(﹣)﹣2﹣|1﹣|16.先化简,再求值:(﹣)÷,其中x=3.四、(本大题共2小题,每小题8分,满分16分)17.在同一平面直角坐标系中有5个点:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2,﹣2),E(0,﹣3).(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;(2)若直线l经过点D(﹣2,﹣2),E(0,﹣3),判断直线l与⊙P的位置关系.18.某班开展安全知识竞赛活动,满分为100分,得分为整数,全班同学的成绩都在60分以上.班长将所有同学的成绩分成四组,并制作了所示的统计图表:根据图表信息,回答下列问题:(1)该班共有学生人;表中a=;(2)丁组的五名学生中有2名女生,3名男生,现从丁组中随机挑选两名学生参加学校的决赛,请借助树状图、列表或列举等方式,求参加决赛的两名学生是一男、一女的概率.五、(本大题共2小题,每小题10分,满分20分)19.已知抛物线C:y=x2﹣4x+3.(1)求该抛物线关于y轴对称的抛物线C1的解析式.(2)将抛物线C平移至C2,使其经过点(1,4).若顶点在x轴上,求C2的解析式.20.我国宣布划设东海防空识别区如图所示,具体范围为六点连线与我领海线之间空域.其A、B、C三点的坐标数据如表:(1)A点与B或C两点的经度差为(单位:度).(2)通过测量发现,∠BAC=95°,∠BCA=30°,已知北纬31°00′(即点A所在的纬度)处两条相差1°的经线之间的实际距离为96km.我空军一架巡逻机在该区域执行巡逻任务,飞行速度为30km/min,求飞机沿东经125°经线方向从B点飞往C点大约需要多少时间.(已知tan35°=0.7,tan55°=,结果保留整数)六、(本题满分12分)21.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D是边AC的中点,点E是斜边AB 上的动点,将△ADE沿DE所在的直线折叠得到△A1DE.(1)当点A1落在边BC(含边BC的端点)上时,折痕DE的长是多少?(可在备用图上作图)(2)连接A1B,当点E在边AB上移动时,求A1B长的最小值.七、(本题满分12分)22.某园林门票每张10元,只供一次使用,考虑到人们的不同需求,园林管理处还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年).年票分A、B、C三类:A 类年票每张120元,持票者进人园林时无需再购买门票;B类年票每张60元,持票者进入园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购票方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,从以上4种购票方式中找出进入该园林次数最多的购票方式;(2)设一年中进园次数为x,分别写出购买B、C两类年票的游客全年的进园购票费用y与x的函数关系;当x≥10时,购买B、C两类年票,哪种进园费用较少?(3)求一年中进入该园林至少超过多少次时,购买A类门票进园的费用最少.八、(本题满分14分)23.如图①,平行四边形ABCD中,AB=AC,CE⊥AB于点E,CF⊥AC交AD的延长线于点F.(1)求证:△BCE∽△AFC;(2)连接BF,分别交CE、CD于G、H(如图②),求证:EG=CG;(3)在图②中,若∠ABC=60°,求.2018年安徽省安庆市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣3的绝对值是()A.﹣3 B.﹣C.D.3【考点】绝对值.【专题】计算题.【分析】根据绝对值的定义直接解答即可.【解答】解:∵﹣3的绝对值表示﹣3到原点的距离,∴|﹣3|=3,故选D.【点评】本题考查了绝对值的定义,知道绝对值表示某点到原点的距离是解题的关键.2.不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>﹣1,由②得,x≤1,故不等式组的解集为:﹣1<x≤1.在数轴上表示为:.故选D.【点评】本题考查的是在数轴上表示不等式组得解集,熟知实心圆点与空心圆点的区别是解答此题的关键.3.如图,是一个平放在桌面上的瓷碗,它的主视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看是母线为弧线的圆台,故C正确;故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.4.在“百度”搜索中输入“新版中小学生则”,相关结果约1660000个,这个数据可用科学记数法表示为()A.166×104B.1.66×105C.1.66×106D.0.166×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1660000=1.66×106,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列图形中对称轴的条数为4的图形的个数有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形及对称轴的定义求解.【解答】解:第一个是轴对称图形,有6条对称轴;第二个是轴对称图形,有4条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有4条对称轴;故对称轴的条数为4的图形的个数有2个.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.如图,AB∥CD,AD⊥BD,∠1=55°,则∠2的大小是()A.25°B.30°C.35°D.40°【考点】平行线的性质.【分析】先根据AB∥CD,∠1=55°求出∠BDC的度数,再由AD⊥BD得出∠ADB=90°,进而可得出结论.【解答】解:∵AB∥CD,∠1=55°,∴∠BDC=180°﹣55°=125°.∵AD⊥BD,∴∠ADB=90°,∴∠2=∠BDC﹣∠ADB=125°﹣90°=35°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.7.如图,由于各人的习惯不同,双手交叉时左手大拇指或右手大拇指在上是一个随机事件,曾老师对他任教的学生做了一个调查,统计结果如下表所示:根据表格中的数据,你认为在这个随机事件中,右手大拇指在上的概率可以估计为( )A .0.6B .0.5C .0.45D .0.4 【考点】利用频率估计概率.【分析】求得几次频率的平均数,看最接近哪个数即可.【解答】解:频率的平均数为:(0.509+0.518+0.5+0.49+0.5)=0.5034≈0.5, 故选B .【点评】本题考查了用频率估计概率的知识,解题的关键是能够了解大量重复试验中,事件发生的频率约等于概率.8.如图,在▱ABCD 中,∠A=65°,DE ⊥AB ,垂足为点E ,点F 为边AD 上的中点,连接FE ,则∠AFE 的度数为( )A .40°B .50°C .60°D .70° 【考点】平行四边形的性质.【分析】由直角三角形斜边上的中线性质得出EF=AD=AF ,由等腰三角形的性质得出∠FEA=∠A=65°,再由三角形内角和定理即可得出结果. 【解答】解:∵DE ⊥AB , ∴∠AED=90°,∵点F 为边AD 上的中点, ∴EF=AD=AF ,∴∠FEA=∠A=65°,∴∠AFE=180°﹣∠A﹣∠FEA=50°.故选:B.【点评】本题考查了直角三角形斜边上的中线性质、等腰三角形的性质、三角形内角和定理;由直角三角形斜边上的中线性质得出EF=AF是解决问题的关键.9.如图,在Rt△ABC中,∠C=90°,∠A=20°,BC=3,以点C为圆心,BC的长为半径的⊙C交AB于点D,交AC于点E,则(劣弧)的长为()A.πB.πC.πD.π【考点】弧长的计算.【专题】计算题.【分析】连接CD,只需求出∠BCD的度数,然后运用圆弧长公式就可解决问题.【解答】解:连接CD,如图所示,∵∠C=90°,∠A=20°,∴∠B=70°.∵CB=CD,∴∠BDC=∠B=70°,∴∠BCD=40°,∴的长为=.故选A.【点评】本题主要考查了直角三角形的两锐角互余、等腰三角形的性质、圆弧长公式等知识,其中圆弧长公式为l=.10.将一些相同的图形“●”按如图所示的规律依次摆放,观察每个图形中“●”的个数,若第n个图形中有272个“●”,则n的值是()A.88 B.89 C.90 D.91【考点】规律型:图形的变化类.【分析】根据题意,图形中“●”的个数是序数的3倍加2,据此规律可知第n个图形中“●”的个数,再根据题意列出方程可求得n的值.【解答】解:∵第1个图形中“●”的个数为:2+1×3=5个;第2个图形中“●”的个数为:2+2×3=8个;第3个图形中“●”的个数为:2+3×3=11个;…∴第n个图形中“●”的个数为:2+n×3=3n+2个;当3n+2=272时,解得:n=90.故选:C.【点评】此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:x3﹣xy2=x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.计算:2xy2﹣3xy2=﹣xy2.【考点】合并同类项.【专题】计算题.【分析】直接根据合并同类项的法则运算即可.【解答】解:原式=﹣xy2.故答案为﹣xy2.【点评】本题考查了合并同类项:把多项式中同类项合成一项,叫做合并同类项;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.13.如图,在平面直角坐标系中,点P的坐标为(2,0),直线y=x+4与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM的最小值为4.【考点】相似三角形的判定与性质;一次函数图象上点的坐标特征;垂线段最短.【分析】当PM⊥AB时,PM的长取得最小值,根据y=x+4,求得AO=3,BO=4,根据勾股定理得到AB==5,根据全等三角形的性质即可得到结论.【解答】解:当PM⊥AB时,PM的长取得最小值,y=x+4,令x=0,得y=4,令y=0,得x=﹣3,∴AO=3,BO=4,∴AB==5,AP=0A+OP=5,在△AOB和△AMP中,,∴△AOB≌△AMP,∴PM=BO=4,故答案为:4.【点评】本题考查了全等三角形的性质,一次函数图象上点的坐标特征,勾股定理,垂线段的性质,熟练掌握垂线段最短是解题的关键.14.在矩形纸片ABCD中,AB=16,AD=12,点P在边AB上,若将△DAP沿DP折叠,使点A恰好落在矩形对角线上的点A′处,则AP的长可能为②④.(把所有正确结论的序号都选上)①5;②6;③8;④9.【考点】翻折变换(折叠问题);矩形的性质.【分析】分两种情况探讨:点A落在矩形对角线BD上,点A落在矩形对角线AC上,在直角三角形中利用勾股定理列出方程,通过解方程可得答案.【解答】解:,①点A落在矩形对角线BD上,如图1,∵AB=16,BC=12,∴BD=20,根据折叠的性质,AD=A′D=12,AP=A′P,∠A=∠PA′D=90°,∴BA′=8,设AP=x,则BP=16﹣x,∵BP2=BA′2+PA′2,∴(16﹣x)2=x2+82,解得:x=6,∴AP=6;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴=,AP==9,故答案为:②④.【点评】本题考查了折叠问题、勾股定理,矩形的性质以及三角形相似的判定与性质;解题中,找准相等的量是正确解答题目的关键.三、(本大题共2小题,每小题8分,满分16分)15.计算:+(﹣)﹣2﹣|1﹣|【考点】实数的运算;负整数指数幂.【专题】计算题;实数.【分析】原式第一项化为最简二次根式,第二项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=3+4﹣+1=2+5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.先化简,再求值:(﹣)÷,其中x=3.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=,当x=3时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.四、(本大题共2小题,每小题8分,满分16分)17.在同一平面直角坐标系中有5个点:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2,﹣2),E(0,﹣3).(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;(2)若直线l经过点D(﹣2,﹣2),E(0,﹣3),判断直线l与⊙P的位置关系.【考点】直线与圆的位置关系;点与圆的位置关系;作图—复杂作图.【专题】压轴题;探究型.【分析】(1)在直角坐标系内描出各点,画出△ABC的外接圆,并指出点D与⊙P的位置关系即可;(2)连接PE,用待定系数法求出直线PD与PE的位置关系即可.【解答】解:(1)如图所示:△ABC外接圆的圆心为(﹣1,0),点D在⊙P上;(2)方法一:连接PD,设过点P、D的直线解析式为y=kx+b,∵P(﹣1,0)、D(﹣2,﹣2),∴,解得,∴此直线的解析式为y=2x+2;设过点D、E的直线解析式为y=ax+c,∵D(﹣2,﹣2),E(0,﹣3),∴,解得,∴此直线的解析式为y=﹣x﹣3,∵2×(﹣)=﹣1,∴PD⊥DE,∵点D在⊙P上,∴直线l与⊙P相切.方法二:连接PE,PD,∵直线l过点D(﹣2,﹣2 ),E (0,﹣3 ),∴PE2=12+32=10,PD2=5,DE2=5,..∴PE2=PD2+DE2.∴△PDE是直角三角形,且∠PDE=90°.∴PD⊥DE.∵点D在⊙P上,∴直线l与⊙P相切.【点评】本题考查的是直线与圆的位置关系,根据题意画出图形,利用数形结合求解是解答此题的关键.18.某班开展安全知识竞赛活动,满分为100分,得分为整数,全班同学的成绩都在60分以上.班长将所有同学的成绩分成四组,并制作了所示的统计图表:根据图表信息,回答下列问题:(1)该班共有学生40人;表中a=20;(2)丁组的五名学生中有2名女生,3名男生,现从丁组中随机挑选两名学生参加学校的决赛,请借助树状图、列表或列举等方式,求参加决赛的两名学生是一男、一女的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由两个统计图可求得该班学生数与a的值;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与参加决赛的两名学生是一男、一女的情况,再利用概率公式即可求得答案.【解答】解:(1)该班共有学生:10÷25%=40(人),a=40×50%=20(人);故答案为:40,20;(2)画树状图得:∵共有20种等可能的结果,参加决赛的两名学生是一男、一女的有12种情况,∴参加决赛的两名学生是一男、一女的概率为:=.【点评】此题考查了列表法或树状图法求概率以及扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.五、(本大题共2小题,每小题10分,满分20分)19.已知抛物线C:y=x2﹣4x+3.(1)求该抛物线关于y轴对称的抛物线C1的解析式.(2)将抛物线C平移至C2,使其经过点(1,4).若顶点在x轴上,求C2的解析式.【考点】二次函数图象与几何变换.【分析】(1)利用原抛物线上的关于y轴对称的点的特点:纵坐标相同,横坐标互为相反数就可以解答.(2)设平移后的解析式为:y=(x﹣h)2,代入点(1,4)求得h的值即可.【解答】解:(1)配方,y=x2﹣4x+3=(x﹣2)2﹣1.∴抛物线C:顶点(2,﹣1),与y 轴交点(0,3)∵C1与C关于y轴对称,∴C1顶点坐标是(﹣2,﹣1),且与y轴交点(0,3).设C1的解析式为y=a(x+2)2﹣1、把(0,3)代入,解得:a=1,∴C1的解析式为y=x2+4x+3.(2)由题意,可设平移后的解析式为:y=(x﹣h)2,∵抛物线C2经过点(1,4),∴(1﹣h)2=4,解得:h=﹣1或h=3,∴C2的解析式为:y=(x+1)2或y=(x﹣3)2,即y=x2+2x+1或y=x2﹣6x+9.【点评】本题考查了二次函数的图象与几何变换,解决本题的关键是抓住关于y轴对称的坐标特点和平移的规律.20.我国宣布划设东海防空识别区如图所示,具体范围为六点连线与我领海线之间空域.其A、B、C三点的坐标数据如表:(1)A点与B或C两点的经度差为(单位:度).(2)通过测量发现,∠BAC=95°,∠BCA=30°,已知北纬31°00′(即点A所在的纬度)处两条相差1°的经线之间的实际距离为96km.我空军一架巡逻机在该区域执行巡逻任务,飞行速度为30km/min,求飞机沿东经125°经线方向从B点飞往C点大约需要多少时间.(已知tan35°=0.7,tan55°=,结果保留整数)【考点】解直角三角形的应用-方向角问题.【分析】(1)用A点的经度值减去B点的经度值即可;(2)过点A作AD⊥BC于D,则AD=×96=320(km),解直角△ABD,求出BD,解直角△ACD,求出CD,那么BC=BD+CD,再根据时间=路程÷速度即可求解.【解答】解:(1)128°20′﹣125°=3°20′=()°.故答案为;(2)过点A作AD⊥BC于D.则AD=×96=320(km).∵在△ABD中,∠B=180°﹣95°﹣30°=55°,∴BD=AD÷tan∠B=320×0.7=224(km),∵在△ACD中,CD=AD÷tan∠C==320≈554(km),∴BC=BD+CD≈778(km),∴778÷30≈26(min).【点评】此题考查了解直角三角形的应用﹣方向角问题,路程、速度与时间的关系,三角函数定义.对于解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.六、(本题满分12分)21.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D是边AC的中点,点E是斜边AB 上的动点,将△ADE沿DE所在的直线折叠得到△A1DE.(1)当点A1落在边BC(含边BC的端点)上时,折痕DE的长是多少?(可在备用图上作图)(2)连接A1B,当点E在边AB上移动时,求A1B长的最小值.【考点】翻折变换(折叠问题);全等三角形的判定与性质;勾股定理;三角形中位线定理.【分析】(1)点A1落在边BC即点A1与点C重合,可知此时DE为△ABC的中位线,得DE=BC;(2)Rt△BCD中求出BD的长,由折叠可得A1D=AD=1,根据A1B+A1D≥BD可得A1B长的最小值.【解答】解:(1)∵点D到边BC的距离是DC=DA=1,∴点A1落在边BC上时,点A1与点C重合,如图1所示.此时,DE为AC的垂直平分线,即DE为△ABC的中位线,∴DE=BC=1;(2)连接BD,DE,在Rt△BCD中,BD==,由折叠知△A1DE≌△ADE,∴A1D=AD=1,由A1B+A1D≥BD,得:A1B≥BD﹣A1D=﹣1,∴A1B长的最小值是﹣1.【点评】本题考查了折叠的性质、勾股定理及三角形全等的判定与性质,关键是熟练掌握折叠变换的性质.七、(本题满分12分)22.某园林门票每张10元,只供一次使用,考虑到人们的不同需求,园林管理处还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年).年票分A、B、C三类:A 类年票每张120元,持票者进人园林时无需再购买门票;B类年票每张60元,持票者进入园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购票方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,从以上4种购票方式中找出进入该园林次数最多的购票方式;(2)设一年中进园次数为x,分别写出购买B、C两类年票的游客全年的进园购票费用y与x的函数关系;当x≥10时,购买B、C两类年票,哪种进园费用较少?(3)求一年中进入该园林至少超过多少次时,购买A类门票进园的费用最少.【考点】一次函数的应用.【分析】(1)根据题意分别求出不购年票和购买年票一年进入园林的次数,再进行比较就可以求出结论;(2)设一年去园林的次数为x次,购买年票的一年的费用为y B元,不购卖年票的一年的费用为y C 元,由W B>W C建立不等式求出其解即可;(3)设一年中进入该园林x次,根据题意列出不等式组解答即可.【解答】解:(1)若不购买年票,则能够进入该园林80÷10=8(次);因为80<120,所以不可能选择A类年票;若只选择购买B类年票,则能够进入该园林(80﹣60)÷2=10(次);若只选择购买C类年票,则能够进入该园林(80﹣40)÷3≈13(次).所以,一年中用80元购买门票,进园次数最多的购票方式是购买C类年票.(2)由题意得y B=2x+60;y C=3x+40;由2x+60>3x+40,解得x<20,又∵x≥10,∴一年中进园次数10≤x<20时,选择C类年票花费较少;当x=20时,选择B、C两种方式花费一样多;当x>20时,选择B类年票花费较少.(3)设一年中进入该园林x次,根据题意,得:,解得x>30.答:一年中进入该园林至少超过30次时,购买A类年票比较合算.【点评】此题主要考查了一次函数的实际运用,一元一次不等式组的应用,关键是正确理解题意,找出题目中的数量关系,列出函数解析式与不等式组解决问题.八、(本题满分14分)23.如图①,平行四边形ABCD中,AB=AC,CE⊥AB于点E,CF⊥AC交AD的延长线于点F.(1)求证:△BCE∽△AFC;(2)连接BF,分别交CE、CD于G、H(如图②),求证:EG=CG;(3)在图②中,若∠ABC=60°,求.【考点】相似形综合题.【分析】(1)根据垂直的定义得到∠BEC=∠ACF=90°,由四边形ABCD是平行四边形,得到AB∥CD,根据等腰三角形的性质即可得到结论;(2)根据相似三角形的性质得到,根据平行线分线段成比例定理得到,推出△BGE≌△HGC,根据全等三角形的性质即可得到结论;(3)根据等边三角形的判定定理得到△ABC是等边三角形,由全等三角形的性质得到BE=CH,等量代换得到CH=DH,于是得到结论.【解答】(1)证明:∵CE⊥AB,CF⊥AC,∴∠BEC=∠ACF=90°,∵四边形ABCD是平行四边形,∴AB∥CD,又∵AB=AC,∴∠EBC=∠ACB=∠CAF,∴△BCE∽△AFC;(2)证明:∵△BCE∽△AFC,∴,∵AD∥BC,AB∥CD,∴,∴BE=CH,∵AB∥CD,∴∠BEG=∠HCG,∠EBG=∠CHG,在△BGE与△HGC中,,∴△BGE≌△HGC,∴EG=CG;(3)解:∵∠ABC=60°,∴△ABC是等边三角形,∵CE⊥AB,∴BE=AE,∵△BGE≌△HGC,∴BE=CH,∴CH=DH,∵AD∥BC,∴BH=FH,∵BG=GH,∴BG:GF=1:3.【点评】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,等边三角形的判定和性质,平行线的性质,平行线分线段成比例,平行四边形的性质,证得△BGE≌△HGC是解题的关键.。
安徽省安庆市实验中学2018年中考模拟(二模)数学试题(含答案)
安徽省安庆市实验中学2018年中考模拟(二模)数学试题一.选择题(满分40分,每小题4分)1.在﹣7,5,0,﹣3这四个数中,最大的数是( ) A .﹣7B .5C .0D .﹣32.地球的表面积约为510000000km 2,将510000000用科学记数法表示为( ) A .0.51×109B .5.1×108C .5.1×109D .51×1073.下列运算正确的有( ) A .5ab ﹣ab =4 B .(a 2)3=a 6C .(a ﹣b )2=a 2﹣b 2D .=±34.如图,下列选项中不是正六棱柱三视图的是( )A .B .C .D .5.下列的式子一定是二次根式的是( )A .B .C .D .6.某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x ,那么可列出的方程是( ) A .100(1+x )2=364B .100+100(1+x )+100(1+x )2=364C .100(1+2x )=364D .100+100(1+x )+100(1+2x )=3647.已知点A (x 1,y 1),(x 2,y 2)是反比例函数y =图象上的点,若x 1>0>x 2,则一定成立的是( ) A .y 1>y 2>0B .y 1>0>y 2C .0>y 1>y 2D .y 2>0>y 18.小明家承包了一个鱼塘,快到年底了,爸爸想知道这个鱼塘大约有多少条鱼.小明采用“捉放法”先随机抓1000条鱼做上标记,再放回鱼塘过一段时间后再随机抓1000条鱼发现有5条鱼是做标记的,再以此来估算整个池塘的鱼大约有( ) A .10000条B .100000C .200000条D .2000000条9.平行四边形具有的特征是( ) A .四边相等 B .对角线相等 C .对角线互相平分D .四个角都是直角10.如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE =.设AB =x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .二.填空题(满分20分,每小题5分) 11.因式分解:9a 3b ﹣ab = . 12.方程x (x ﹣3)=0的解为 .13.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α= .14.如图,AB 是⊙O 的弦,点C 是劣弧的中点,若∠BAC =30°,劣弧的长为π,则⊙O 的半径为 .三.解答题15.(8分)计算:()﹣2﹣+(﹣4)0﹣cos45°.16.(8分)解不等式组,并把不等式组的解集在数轴上表示出来.四.解答题17.(8分)如图所示,△AOB 的各点坐标为A (﹣1,2)、O (0,0)、B (1,6).有一个二次函数图象经过原点O 、D (5,0)和E (﹣1,﹣1).(1)若将△AOB 绕点O 顺时针旋转90°,得到△A 'OB ',则请你作出△A 'OB ',并写出各顶点坐标; (2)求出二次函数解析式,并验证点A '、B '是否都在此函数图象上.18.(8分)已知a +b =1,ab =﹣1,设S 1=a +b ,S 2=a 2+b 2,S 3=a 3+b 3,…,S n =a n +b n (1)计算S 2.(2)请阅读下面计算S 3的过程:∵a +b =1,ab =﹣1∴S 3=a 3+b 3=(a +b )(a 2+b 2)﹣ab (a +b )=1×S 2﹣(﹣1)=S 2+1= . 你读懂了吗?请你先填空完成(2)中S 3的计算结果,再用你学到的方法计算S 4(3)试写出S n ﹣2,S n ﹣1,S n 三者之间的数量关系式(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 7. 五.解答题19.(10分)如图是某路灯在铅垂面内的示意图,灯柱BC 的高为10米,灯柱BC 与灯杆AB 的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE 的长为13.3米,从D 、E 两处测得路灯A 的仰角分别为α和45°,且tan α=6.求灯杆AB的长度.20.(10分)如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于点D,过点D作DE∥AB交CA延长线于点E,连接AD、BD(1)△ABD的面积是;(2)求证:DE是⊙O的切线.(3)求线段DE的长.21.(12分)某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)六.解答题22.(12分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.七.解答题23.(14分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.(1)如图1,求证:∠ANE=∠DCE;(2)如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.参考答案一.选择题1.解:﹣7<﹣3<0<5,即在﹣7,5,0,﹣3这四个数中,最大的数是:5. 故选:B .2.解:510000000=5.1×108, 故选:B .3.解:A 、5ab ﹣ab =4ab ,故本选项错误;B 、(a 2)3=a 6,故本选项正确;C 、(a ﹣b )2=a 2﹣2a b ﹣b 2,故本选项错误;D 、=3,故本选项错误;故选:B .4.解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A .5.解:A 、当x =0时,﹣x ﹣2<0,无意义,故本选项错误;B 、当x =﹣1时,无意义;故本选项错误;C 、∵x 2+2≥2,∴符合二次根式的定义;故本选项正确;D 、当x =±1时,x 2﹣2=﹣1<0,无意义;故本选项错误;故选:C .6.解:设月平均增长的百分率是x ,则该超市二月份的营业额为100(1+x )万元,三月份的营业额为100(1+x )2万元,依题意,得:100+100(1+x )+100(1+x )2=364. 故选:B . 7.解:∵k =2>0, ∴函数为减函数, 又∵x 1>0>x 2,∴A ,B 两点不在同一象限内, ∴y 2<0<y 1; 故选:B .8.解:1000÷=200000条.故选:C .9.解:平行四边形的对角线互相平分. 故选:C .10.解:设AB =x ,则AE =EB =由折叠,FE =EB =则∠AFB =90°由tan ∠DCE =∴BC =,EC =∵F 、B 关于EC 对称 ∴∠FBA =∠BCE ∴△AFB ∽△EBC∴∴y =故选:D . 二.填空题11.解:原式=ab (9a 2﹣1)=ab (3a +1)(3a ﹣1). 故答案为:ab (3a +1)(3a ﹣1) 12.解:x (x ﹣3)=0, 可得x =0或x ﹣3=0, 解得:x 1=0,x 2=3. 故答案为:x 1=0,x 2=3 13.解:∵对边平行, ∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:64°.14.解:设⊙O的半径为R,连接OA、OB,∵点C是劣弧的中点,∠BAC=30°,∴的度数是120°,∴∠AOB=120°,∵劣弧的长为π,∴=π,解得:R=1,故答案为:1.三.解答题15.解:原式=4﹣3+1﹣×=2﹣1=1.16.解:,解不等式①,得:x≥﹣1,解不等式②,得:x<3,则不等式组的解集为﹣1≤x <3, 将不等式组的解集表示在数轴上如下:四.解答题17.解:(1)如图所示,△A 'O B '即为所求,O (0,0)、A ′(2,1)、B ′(6,﹣1);(2)由图可知抛物线过(2,1)、(5,0)、(0,0), 设抛物线的解析式为y =ax (x ﹣5), 将点(2,1)代入,得:﹣6a =1,解得:a =﹣,所以抛物线的解析式为y =﹣x (x ﹣5)=﹣x 2+x , 由图知点A ′(2,1)显然在抛物线上,当x =6时,y =﹣×36+×6=﹣1, 即抛物线过点B ′(6,﹣1).18.解:(1)S 2=a 2+b 2=(a +b )2﹣2ab =12﹣2×(﹣1)=3;(2)S 3=S 2+1=3+1=4;∵S 4=a 4+b 4=( a 2+b 2)2﹣2a 2b 2=( a 2+b 2)2﹣2(ab )2, 又∵a 2+b 2═3,ab =﹣1, ∴S 4=7, 故答案为:4.(3)∵S1=1,S2=3,S3=4,S4=7,∴S1+S2=S3,S2+S3=S4.猜想:S n﹣2+S n﹣1=S n.∵S3=4,S4=7,∴S5=S3+S4=4+7=11,∴S6=S4+S5=7+11=18,∴S7=S5+S6=11+18=29.五.解答题19.解:过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=10.由题意得∠ADE=α,∠E=45°.设AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF===,∵DE=13.3,∴x+=13.3.∴x=11.4.∴AG=AF﹣GF=11.4﹣10=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°.∴AB=2AG=2.8,答:灯杆AB的长度为2.8米.20.解:(1)∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∴=,∴AD=BD,∵直径AB=10,∴∠ADB=90°,∴AD=BD==5,∴△ABD的面积为=25,故答案为:25;(2)如图,连接OD,∵AB为直径,CD平分∠ACB∴∠ACD=45°,∴∠AOD=2∠ACD=90°,∵DE∥AB,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(3)∵AB=10、AC=6,∴BC==8,过点A作AF⊥DE于点F,则四边形AODF是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴,即,∴EF=,∴DE=DF+EF=+5=.21.解:可能出现的所有结果列表如下:共有4种可能的结果,且每种的可能性相同,其中恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的结果有1种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为.六.解答题22.解:(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1 h或6.25 h,两车之间的距离为500km.七.解答题23.解:(1)∵AE是AM和AN的比例中项∴=,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴=,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴=,∴AM=,∵=,∴AN=,∴MN=;(3)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,当△AEC与以点E、M、N为顶点所组成的三角形相似时①∠ENM=∠EAC,如图2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如图3,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE===,设DE=3x,则HE=3x,AH=4x,AE=5x,又AE+DE=AD,∴5x+3x=8,解得x=1,∴DE=3x=3,综上所述,DE的长分别为或3.。
2018年安徽省数学中考试卷及答案解析(精析版)
2018年安徽省初中毕业学业考试数学试题解析本试卷共8大题,计23小题,满分150分,考试时间120分钟。
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.(2018安徽,1,4分)下面的数中,与-3的和为0的是………………………….()A.3 B.-3 C.31D.311. 解析:根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A 符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3.解答:A .点评:本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础. 2. (2018安徽,2,4分)下面的几何体中,主(正)视图为三角形的是()A. B. C. D.2. 解析:根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个靠着的矩形.解答:C .点评:此题是由立体图形到平面图形,熟悉常见几何体的三视图,如果要求画出几何体的三视图,要注意它们之间的尺寸大小,和虚实线.3. (2018安徽,3,4分)计算32)2(x 的结果是()A.52x B. 68x C.62x D.58x 3. 解析:根据积的乘方和幂的运算法则可得.解答:解:6323328)()2()2(x x x 故选B .点评:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些都是易错的地方,要熟练掌握,关键是理解乘方运算的意义.4. (2018安徽,4,4分)下面的多项式中,能因式分解的是()A.n m 2B. 12m mC. n m 2D.122m m 4. 解析:根据分解因式的方法,首先是提公因式,然后考虑用公式,如果项数较多,要分组分解,本题给出四个选项,问哪个可以分解,对照选项中的多项式,试用所学的方法分解.就能判断出只有D 项可以. 解答:解:22)1(12m m m 故选D .点评:在进行因式分解时,首先是提公因式,然后考虑用公式,(两项考虑用平方差公式,三项用完全平方公式,当然符合公式才可以.)如果项数较多,要分组分解,最后一定要分解到每个因式不能再分为止. 得分评卷人。
2018年安徽省数学中考试卷及答案解析(精析版)
2018年安徽省初中毕业学业考试数学试题解析本试卷共8大题,计23小题,满分150分,考试时间120分钟。
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2018安徽,1,4分)下面的数中,与-3的和为0的是 ………………………….( )A.3B.-3C.31D.31- 1. 解析:根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A 符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3.解答:A .点评:本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.2. (2018安徽,2,4分)下面的几何体中,主(正)视图为三角形的是( )A. B. C. D.2. 解析:根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个靠着的矩形.解答:C .点评:此题是由立体图形到平面图形,熟悉常见几何体的三视图,如果要求画出几何体的三视图,要注意它们之间的尺寸大小,和虚实线.3. (2018安徽,3,4分)计算32)2(x -的结果是( )A.52x -B. 68x -C.62x -D.58x -3. 解析:根据积的乘方和幂的运算法则可得.解答:解:6323328)()2()2(x x x -=-=- 故选B .点评:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些都是易错的地方,要熟练掌握,关键是理解乘方运算的意义.4. (2018安徽,4,4分)下面的多项式中,能因式分解的是()A.n m +2B. 12+-m mC. n m -2D.122+-m m4. 解析:根据分解因式的方法,首先是提公因式,然后考虑用公式,如果项数较多,要分组分解,本题给出四个选项,问哪个可以分解,对照选项中的多项式,试用所学的方法分解.就能判断出只有D 项可以.解答:解:22)1(12-=+-m m m 故选D .点评:在进行因式分解时,首先是提公因式,然后考虑用公式,(两项考虑用平方差公式,三项用完全平方公式,当然符合公式才可以.)如果项数较多,要分组分解,最后一定要分解到每个因式不能再分为止.得分 评卷人。
2018年安徽省中考数学模拟试卷(解析版)
安徽省安庆市中考数学模拟试卷一、选择题1.﹣的相反数等于()A.B.﹣C.4D.﹣42.下列式子计算的结果等于a6的是()A.a3+a3B.a3•a2C.a12÷a2D.(a2)33.2017年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×1010C.3.34×109D.3.34×1024.如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.5.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n26.由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A.16(1+a)2=25B.25(1﹣2a)=16C.25(1﹣a)2=16D.25(1﹣a2)=16 7.如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN翻折得△EMN,若EM∥AB,EN∥AD,则∠C的度数为()A.110°B.115°C.120°D.125°8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:则得分的众数和中位数分别是()人数2341分数80859095A.90和87.5B.95和85C.90和85D.85和87.59.如图,点c是⊙O的直径AB延长线上一点,CD切⊙O于点D,DE为⊙O的弦,若∠AED=60°,⊙O的半径是2.则CD的长()A.4B.3C.D.10.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.10B.9C.8D.6二、填空题11.的立方根是.12.方程+x=1的解为.13.在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为.14.如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB丁点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列四个结论:①∠ACD=30°;②S△AOE =S△OBE;③S平行四边形ABCD=AC•AD;④OE:OA=1:,其中结论正确的序号是.(把所有正确结论的序号都选上)三、解答题15.计算:﹣|1﹣|+(﹣)0.16.解不等式组:,并把它的解集在数轴上表示出来.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B (3,﹣3),C(1,﹣1).(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)请将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2.18.观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×+1=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.如图,在楼AB与楼CD之间有一旗杆EF,从AB顶部A点处经过旗杆顶部E 点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼AB的G点,BG=1米,且俯角为30°,己知楼AB高20米,求旗杆EF的高度.(结果精确到1米)20.如图,直线y=﹣x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c 过点B,C.(1)求b、c的值;(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.21.为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.22.已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上与A地相距105km的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两下车同时到达B地,两车的速度始终保持不变,设两车山发x 小时后,甲、乙两车距离A地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR和线段OR.(1)求乙车从A地到B地所用的时间;(2)求图中线段PQ的解析式(不要求写自变量的取值范围);(3)在甲车返回到C地取货的过程中,当x=,两车相距25千米的路程.23.如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM=y,求出y与x的函∥DG交KG于点M,PN∥KG交DG于点N,设PD=x,S△PMN数关系式.参考答案与试题解析一、选择题1.﹣的相反数等于()A.B.﹣C.4D.﹣4【考点】14:相反数.【分析】根据相反数的概念即可解答.【解答】解:﹣的相反数等于.故选A.2.下列式子计算的结果等于a6的是()A.a3+a3B.a3•a2C.a12÷a2D.(a2)3【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a3+a3=2a3,故本选项错误;B、a3•a2=a3+2=a5,故本选项错误;C、a12÷a2=a12﹣2=a10,故本选项错误;D、(a2)3=a2×3=a6,故本选项正确.故选D.3.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×1010C.3.34×109D.3.34×102【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:把334亿用科学记数法可表示为3.34×1010,故选:B.4.如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:A.5.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n2【考点】58:实数范围内分解因式.【分析】分别利用完全平方公式以及平方差公式和提取公因式法分解因式得出即可.【解答】解:A、x3+2x=x(x2+2),故此选项错误;B、a2+b2无法分解因式,故此选项正确.C、=(y+)2,故此选项错误;D、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;故选:B.6.由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A.16(1+a)2=25B.25(1﹣2a)=16C.25(1﹣a)2=16D.25(1﹣a2)=16【考点】AC:由实际问题抽象出一元二次方程.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每次下调的百分率为x,根据“由原来每斤16元下调到每斤9元”,即可得出方程.【解答】解:设平均每次下调的百分率为x,则第一次每斤的价格为:25(1﹣x),第二次每斤的价格为25(1﹣x)2=16;所以,可列方程:25(1﹣x)2=16.故选C.7.如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN翻折得△EMN,若EM∥AB,EN∥AD,则∠C的度数为()A.110°B.115°C.120°D.125°【考点】L3:多边形内角与外角;JA:平行线的性质.【分析】根据平行线的性质,可得∠EMC,∠END,根据翻折的性质,可得∠NMC,∠MNC,根据三角形的内角和,可得答案.【解答】解:由若EM∥AB,EN∥AD,得∠EMC=∠B=60°,∠END=∠D=50°.由将△CMN沿MN翻折得△EMN,得∠NMC=∠EMC=30°,∠MNC=ENC=25°,由三角形的内角和,得∠C=180°﹣∠NMC﹣∠MNC=125°,故选:D.8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:则得分的众数和中位数分别是()人数2341分数80859095A.90和87.5B.95和85C.90和85D.85和87.5【考点】W5:众数;W4:中位数.【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【解答】解:∵得分为90分的人数为4人,人数最多,∴众数为90,∵总人数为10人,∴中位数为第5和6人的得分的平均值,∴中位数为(85+90)÷2=87.5,故选:A.9.如图,点c是⊙O的直径AB延长线上一点,CD切⊙O于点D,DE为⊙O的弦,若∠AED=60°,⊙O的半径是2.则CD的长()A.4B.3C.D.【考点】MC:切线的性质.【分析】先证明△OAE为等边三角形得到∠1=60°,则∠2=60°,再根据切线的性质得∠ODC=90°,然后利用正切的定义计算CD的长.【解答】解:如图,∵OA=OB,∠E=60°,∴△OAE为等边三角形,∴∠1=60°,∴∠2=60°,∵CD切⊙O于点D,∴OD⊥CD,∴∠ODC=90°,在Rt△ODC中,tan∠2=,∴CD=2tan60°=2.故选C.10.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.10B.9C.8D.6【考点】G5:反比例函数系数k的几何意义;L8:菱形的性质;T7:解直角三角形.【分析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF =S菱形OBCA,结合菱形的面积公式即可得出结论.【解答】解:过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a=a2=12,解得:a=5,或a=﹣5(舍去).∴AM=4,OM=3,OB=OA=5.∵四边形OACB是菱形,点F在边BC上,∴S△AOF =S菱形OBCA=OB•AM=10.故选A.二、填空题11.的立方根是.【考点】24:立方根.【分析】根据立方根的定义即可得出答案.【解答】解:的立方根是;故答案为:.12.方程+x=1的解为x=1.【考点】86:解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:x﹣1+3x=3,移项合并得:4x=4,解得:x=1,故答案为:x=113.在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为(﹣,).【考点】D1:点的坐标.【分析】根据“影子点”的定义先求出P′,再求出P″即可.【解答】解:点P(a,b)的“影子点”是点P’为(,﹣),∵=﹣,﹣=,∴点P’的“影子点”P''的坐标为(﹣,).故答案为:(﹣,).14.如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB丁点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列四个结论:①∠ACD=30°;②S△AOE=S△OBE;③S平行四边形ABCD=AC•AD;④OE:OA=1:,其中结论正确的序号是①②③④.(把所有正确结论的序号都选上)【考点】S9:相似三角形的判定与性质;KF:角平分线的性质;L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故③正确,根据直角三角形的性质得到AC=BC,根据三角形的中位线的性质得到OE=BC,AE=BE,于是得到;②S△AOE =S△OBE;OE:AC=:6;故②④正确.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故③正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=BC,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6,故③正确;∵AE=BE,∴S△AOE =S△OBE,故②正确;故选:①②③④.三、解答题15.计算:﹣|1﹣|+(﹣)0.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式﹣|1﹣|+(﹣)0的值是多少即可.【解答】解:﹣|1﹣|+(﹣)0=3﹣+1+1=2+216.解不等式组:,并把它的解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x>﹣3,解不等式②,得:x≤2,在数轴上表示其解集为:所以,原不等式组的解集为﹣3<x≤2.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B (3,﹣3),C(1,﹣1).(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)请将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【分析】(1)利用点平移的规律写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点A2、B2、C2,从而得到△A2B2C2.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.18.观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×30+1=312;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【考点】1G:有理数的混合运算.【分析】(1)观察已知等式确定出第五个等式即可;(2)归纳总结得到一般性规律,验证即可.【解答】解:(1)根据题意得:32×30+1=312;故答案为:30;312;(2)根据题意得:2n(2n+2)+1=(2n+1)2,∵左边=4n2+4n+1,右边=4n2+4n+1,∴左边=右边.19.如图,在楼AB与楼CD之间有一旗杆EF,从AB顶部A点处经过旗杆顶部E 点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼AB的G点,BG=1米,且俯角为30°,己知楼AB高20米,求旗杆EF的高度.(结果精确到1米)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】过点G作GP⊥CD于点P,与EF相交于点H.设EF的长为x米,在Rt △GEH中利用锐角三角函数的定义可得出GH的长,再由BD=BF+FD=GH+FD即可得出结论.【解答】解:过点G作GP⊥CD于点P,与EF相交于点H.设EF的长为x米,由题意可知,FH=GB=1米,EH=EF﹣FH=(x﹣1)米,又∵∠BAD=∠ADB=45°,∴FD=EF=x米,AB=BD=20米,在Rt△GEH中,∠EGH=30°,∵tan∠EGH=,即=,∴GH=(x﹣1)米,∵BD=BF+FD=GH+FD,∴(x﹣1)+x=20,解得,x≈8米,答:旗杆EF的高度约为8米.20.如图,直线y=﹣x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c 过点B,C.(1)求b、c的值;(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.【考点】HA:抛物线与x轴的交点;F8:一次函数图象上点的坐标特征;H7:二次函数的最值.【分析】(1)由直线解析式求得点B、C的坐标,代入抛物线解析式即可得;(2)设点D的横坐标为m,则点D的坐标为(m,m2﹣5m+),点E的坐标为(m,﹣m+),由DE=﹣m+﹣(m2﹣5m+)=﹣(m﹣)2+可得答案.【解答】解:(1)对于直线,当x=0时,y=;当y=0时,x=.把(0,)和(,0)代入y=x2+bx+c,得:,解得:b=﹣5,c=;(2)由(1)知,抛物线的解析式为y=x2﹣5x+,当y=0时,有x2﹣5x+=0,解得:x=或x=,即A(,0)、B(,0),设点D的横坐标为m,则点D的坐标为(m,m2﹣5m+),点E的坐标为(m,﹣m+).∴DE=﹣m+﹣(m2﹣5m+)=﹣(m﹣)2+,∵﹣1<0,∴当时,线段DE的长度最大.将x=m=代入y=x2﹣5x+,得y=﹣.而<m<,∴点D的坐标为.21.为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由A的人数和其所占的百分比即可求出总人数;(2)由总人数求出B等级人数,根据其占被调查人数的百分比可求出其所对应扇形的圆心角的度数;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)参加本次比赛的学生有:4÷8%=50(人);(2)B等级的学生共有:50﹣4﹣20﹣8﹣2=16(人).∴所占的百分比为:16÷50=32%∴B等级所对应扇形的圆心角度数为:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生)=.22.已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上与A地相距105km的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两下车同时到达B地,两车的速度始终保持不变,设两车山发x 小时后,甲、乙两车距离A地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR和线段OR.(1)求乙车从A地到B地所用的时间;(2)求图中线段PQ的解析式(不要求写自变量的取值范围);(3)在甲车返回到C地取货的过程中,当x=,两车相距25千米的路程.【考点】FH:一次函数的应用.【分析】(1)根据函数图象可以解答本题;(2)根据函数图象中的数据可以求得图中线段PQ的解析式;(3)根据函数图象中的数据可以求得乙车对应的函数解析式,然后根据题意即可求得甲车返回到C地取货的过程中,当x为何值时,两车相距25千米的路程.【解答】解:(1)解:由图象可知,乙车从A地到B地所用的时间是5小时;(2)由题意可得,甲车的速度为:180÷2=90km/h,∴甲车到点Q时,离A地的距离是105km,用的时间为:÷90=(h),∴点Q的坐标为(,105),设图中线段PQ的解析式为y=kx+b,,得,即图中线段PQ的解析式为:y=﹣90x+360;(3)设乙车对应的函数解析式为y=ax,则5a=300,得a=60,∴乙车对应的函数解析式为y=60x,∴|60x﹣(﹣90x+360)|=25,(2≤x≤)解得,x1=,x2=,即甲车返回到C地取货的过程中,当x=或时,两车相距25千米的路程.23.如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM=y,求出y与x的函∥DG交KG于点M,PN∥KG交DG于点N,设PD=x,S△PMN数关系式.【考点】LO:四边形综合题.【分析】(1)利用AAS即可证得;(2)证明△ABF是等腰直角三角形,四边形AFGK是平行四边形即可证得;(3)过点G作GI⊥KD于点I,首先求得△DGK的面积,然后根据△DKG∽△PKM ∽△DPN,利用相似三角形的面积的比等于相似比的平方,用x表示出△PKM和△DPN的面积,则函数解析式即可求得.【解答】解:(1)∵在矩形ABCD中,AD∥BC∴∠KDO=∠GBO,∠DKO=∠BGO∵点O是BD的中点∴DO=BO∴在△DCK和△BOG中,,∴△DOK≌△BOG(AAS),(2)∵四边形ABCD是矩形∴∠BAD=∠ABC=90°,AD∥BC又∵AF平分∠BAD∴∠BAF=∠BFA=45°∴AB=BF∵OK∥AF,AK∥FG∴四边形AFGK是平行四边形∴AK=FG∵BG=BF+FG∴BG=AB+AK;(3)如图,过点G作GI⊥KD于点I,由(2)知,四边形AFGK是平行四边形,△ABF为等腰直角三角形.∴AF=KG=2,AB=AF=,∵四边形ABCD是矩形,=KD•GI=×2×=.∴GI=AB=,S△DNG∵PD=x∴PK=2﹣x∵PM ∥DG ,PN ∥KG∴四边形PMGN 是平行四边形,△DKG ∽△PKM ∽△DPN , ∴=()2=,即S △DPN =S △DKG =x 2.同理,S △KPM =,S平行四边形PMGN =S △DKG ﹣S △DPN ﹣S △KPM =﹣ x 2﹣,则S △PMN =S 平行四边形PMGN =﹣x 2+x .(0<x <2).。
2018年安徽省中考数学试卷(答案解析版)
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得 x-8>2,移项,得 x>2+8,合并同类项,得 x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点 A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD 是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可. 【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键.16. 《孙子算经》中有过样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键.19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
最新-安徽省安庆市2018年中考数学模拟考试(一)人教新
2018年安庆市初三模拟考试(一)注意事项:本卷共八大题,计23小题,满分150分.考试时间120分钟. 一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A ,B ,C ,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题;选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下列运算结果等于1的是 ( ) A .-2+1 B .-12C .-(-1)D . -|-1| 2.计算(-3a 2b )2的结果正确的是 ( ) A .246b a - B .246b a C .249b a - D .249b a3.在“2018北京”奥运会国家体育场“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460 000 000帕的钢材,这个数据用科学记数法表示应为( ) A . 46×118 B .4.6×118 C .4.6×118 D .0.46×1184.如图,直线a b ,被直线c 所截,若a b ∥,∠1=40°, 则∠2的度数为 ( ) A .400B .500C .900D . 14005.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确是 ( )A .⎩⎨⎧=+=+94235y x y xB .⎩⎨⎧=+=+944235y x y xC .⎩⎨⎧=+=+942435y x y xD .⎩⎨⎧=+=+942235y x y x6. 在闭合电路中,电压U 为220(伏特)时,电流I (安培)与电阻R (欧姆)的函数关系的大致图象是 ( )7.已知等腰三角形中的一条边长为3cm ,另一条边长为5cm ,则它的周长为 ( )A .11cmB .12cmC .13cmD .11cm 或13cm 8.如果∠A 为锐角,cosA =33,那么∠A 取值范围是 ( ) A. 0°< ∠A ≤30° B. 30°< ∠A ≤45° C. 45°<∠ A ≤60° D. 60°< ∠A < 90°9.如图,若将ABC △绕点C 顺时针旋转90后得到A B C '''△,则A 点的对应点A '的1 2第4题图cab坐标是 ( ) A2 ) C .(2,1) D .(-3,-2)10.如图,有三条绳子穿过一片木板,两同学分别站在木板的左、右两边,各选该边的一条绳子.若每边每条绳子被选中的机会相等,则两人选到同一条绳子的概率是 ( ) A .21 B .31 C . 61 D .91二、填空题(本题共4小题,每小题5分,满分20分) 11.4的平方根是 .12.请给出一元二次方程x 2-4x + =0的一个常数项,使这个方程有两个不相等的实数根.13.如图,小昆家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在他家北偏东60度400m 处,AB 是 m.14.如图,在梯形ABCD 中, DC ∥AB ,AC 与BD 相交于O 点,且2=OA ,S △COD =12 ,则△ABC 的面积是 .三、(本题共2小题,每小题8分,满分16分) 15.化简:()1112-∙⎪⎭⎫⎝⎛-+a a a .[解]16.解不等式-21x +1>3(x -2),并将解集在数轴上表示出来.[解]四、(本题共2小题,每小题8分,共16分)第9题图17.某包装盒的展开图,尺寸如图所示(单位:cm ). (1)这个几何体的名称是 ; (2)求这个包装盒的表面积. [解]18.已知:如图,ABC △内接于⊙O ,AB 是非直径的弦,∠CAE =∠B . 求证:AE 与⊙O 相切于点A . 证明:五、(本大题共2小题,每小题10分,满分20分) 19.如图,AC 是平行四边形ABCD 的对角线.(1)请按如下步骤在图8中完成作图(保留作图痕迹): ①分别以A C ,为圆心,以大于12AC 长为半径画弧,弧在AC 两侧的交点分别为P Q ,; ②连结PQ PQ ,分别与AB AC CD ,,交于点E O F ,,.(2)如果CF =5,求AE 的长度. (1)[解](2)[解]20.受金融危机的影响,某厂家生产的电器出现了滞销情况,为促进销售,这种电器经过连续两次降价,利润由800元下降到344元.已知降价前该商品的利润率是50%,如果两次降价的百分率一样,求每次降价的百分率.(商品利润率=商品进价商品利润)[解]六、(本题满分12分)青少年学生阳光体育运动21.为推动青少年学生“阳光体育”运动,我省今年中考体育学科为30分,成绩记入考试总分. 某校为了了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按A B C D ,,,四个等级进行统计,并将结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(其中:A 级:25~30分;B 级:21~24分;C 级:18~20分;D 级:18分以下) (1)求出扇形统计图中C 级所在的扇形圆心角的度数; (2)该班学生体育测试成绩的中位数落在哪个等级内;(3)若该校九年级学生共有600人,请你估计这次考试中A 级和B 级的学生共有多少人? [解]七、(本题满分12分)22.某航空公司经营A 、B 、C 、D 四个城市之间的客运业务. 若机票价格y(元)是两城市间的距离x(千米)的一次函数. 今年“清明节”期间部分机票价格如下表所示: (1)求该公司机票价格y (元)与距离x (千米)的函数关系式;(2)判断A 、B 、C 、D 这四个城市中,哪三个城市在同一条直线上?请说明理由; (3)若航空公司准备从旅游旺季的7月开始增开从B 市直接飞到D 市的旅游专线,且按以上规律给机票定价,那么机票定价应是多少元? (1)[解](3)[解](4)[解]八、(本题满分14分)23.抛物线()02≠++=a c bx ax y 交x 轴于A 、B 两点,交y 轴于点C ,已知抛物线的对450称轴为直线x =-1,B(1,0),C(0,-3).(1)求二次函数()02≠++=a c bx ax y 的解析式; (2)求使y ≥0的x 的取值范围;(3)在抛物线对称轴上是否存在点P ,使点C 到点P 和到直线174x =-的距离相等?若存在,求出点P 坐标;若不存在,请说明理由. (1)[解](2)[解](3)[解]安庆市2018年中考模拟数学试题(一)参考答案及评分标准1.如果学生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.2.评阅试卷,不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;明显笔误,可酌情少扣;如果有严重概念性错误的,不记分;在一道题解答过程中.对发生第二次错误起的部分,不记分.3.涉及计算过程,允许合理省略非关键性步骤.4.以下解答右端所注分数,表示学生正确做到这一步应得的累加分数.一、选择题(本题共10小题,每小题4分,满分40分)题号 1 2 3 4 5 6 7 8 9 10 答案CDBABCDCAB二、填空题(本题共4小题,每小题5分,满分20分)11.±2 12.1(答案不唯一) 13.200 14.72三、(本题共2小题,每小题8分,满分16分) 15.解:()1112-∙⎪⎭⎫⎝⎛-+a a a=()112-+a a a-()12-a ……3分 =a (a -1)-(a 2-1) ……5分 =1-a ……8分16.解:原不等式可化为:-21x +1>3x -6 ……2分 -21x -3x >-1-6, 即-27x >-7解得x <2∴原不等式的解集为x <2. ……6分 在数轴上表示如下:……8分四、(本题共2小题,每小题8分,共16分)17.解:(1)圆柱; ……3分(2)表面积为:2πr 2+2πr h =2π×52+2π×5×20=250π. 这个包装盒的表面积是250πcm 2. ……8分18.解:连结AO 并延长交⊙O 于点D ,连接CD .∴∠B =∠ADC . ……3分 ∵AD 是⊙O 直径, ∴∠DAC +∠ADC =90°. 又∵∠CAE =∠B ,∴∠DAC +∠CAE =∠DAC +∠B=∠DAC +∠ADC =90°. ……7分∵点A D 在⊙O 上,∴AE 与⊙O 相切于点A . ……8分五、(本大题共2小题,每小题10分,满分20分)19.解:(1)作图如右 (4)(2)解:根据作图知,PQ 是AC 的垂直平分线, ∴AO CO =,且EF AC ⊥. …………6分又∵ABCD 是平行四边形, ∴OAE OCF ∠=∠.∴OAE OCF △≌△.∴AE CF ==5. …………10分20.解:该商品的进价为元)(1600%50800=,则原售价为1600+800=2400(元) ……2分 设每次降价的百分率为x ,概括题意,得:2400(1-x )2-1600=344. ……6分 解这个方程,得x =1±0.9 .由于降价的百分率不可能大于1,所以x =1.9不符合题意,因此符合本题要求 的x =0.1=10%.答:每次降价的百分率为10% . ……10分六、(本题满分12分)21.解:(1)由题意知该班总人数为:13÷26%=50,∴C 级学生的人数为50-(13+25+2)=10,∴C 级所在的扇形圆心角的度数=10÷50×360=72. ………5分 (2)B . ………8分 (3)∵A 级和B 级学生数和占全班总人数的(13+25)÷50=76%,600×76%=456.∴估计这次考试中A 级和B 级的学生共有456人. ………12分七、(本题满分12分)22.(1)解:设y kx b =+,由题意得 10002050,8001650k b k b +=⎧⎧⎨⎨+=⎩⎩k=2解得b=50, 250(0)y x x ∴=+>. …………4分 (2)当y =2550时,代入上式得x =1250,即AD =1250.8004501250AC CD AD +=+== A C D ∴、、三个城市在同一条直线上。
安庆市数学中考模拟试卷(6月)
安庆市数学中考模拟试卷(6月)姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·扬州模拟) 下列各数中,属于无理数的是()A . 0.010010001B .C . 3.14D .2. (2分)(2013·绍兴) 地球半径约为6400000米,则此数用科学记数法表示为()A . 0.64×109B . 6.4×106C . 6.4×104D . 64×1033. (2分)下列运算正确的是A .B .C .D .4. (2分)如图,由几个小正方体组成的立体图形的左视图是()A .B .C .D .5. (2分)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为A .B .C .D .6. (2分)下列命题正确的是()A . 两直线与第三条直线相交,同位角相等B . 两直线与第三条直线相交,内错角相等C . 两直线平行,内错角相等D . 两直线平行,同旁内角相等7. (2分)方程的根是()A .B .C .D .8. (2分) (2016九上·山西期末) 如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A . 26°B . 116°C . 128°D . 154°9. (2分)(2018·潍坊) 某篮球队10名队员的年龄结构如下表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()年龄192021222426人数11x y21A . 22,3C . 21,3D . 21,410. (2分)如果两个图形可通过旋转而相互得到,则下列说法中正确的有().①对应点连线的中垂线必经过旋转中心.②这两个图形大小、形状不变.③对应线段一定相等且平行.④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.A . 1个B . 2个C . 3个D . 4个11. (2分)直线a、b、c、d的位置如图所示,如果∠1=80°,∠2=80°,∠3=70°,那么∠4等于()A . 70°B . 80°C . 100°D . 110°12. (2分)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有()A . 2个B . 3个C . 4个二、填空题 (共6题;共6分)13. (1分) (2020九下·台州月考) 分解因式:2a2-a=________.14. (1分)圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥母线长为________ m.15. (1分) (2017八下·宁德期末) 如图,已知等边△ABC,AB=6,点D在AB上,点F在AC的延长线上,BD=CF,DF交BC于点P,作DE⊥BC于点E,则EP的长是________.16. (1分) (2019九上·南阳月考) 如图,在矩形ABCD中,AB=3,AD=7,点E是AD边上的一点,连接BE,将BE绕点E顺时针旋转90°至B′E,连接B′D,当△B′ED是直角三角形时,线段AE的长为________.17. (1分) (2016九上·新泰期中) sin260°+cos260°﹣tan45°=________.18. (1分) (2016九下·邵阳开学考) 一等腰三角形的两边长分别为4cm和6cm,则其底角的余弦值为________.三、解答题 (共8题;共40分)19. (5分) (2018九下·福田模拟) 先化简,再求值:,其中a=-120. (5分) (2019八下·江苏月考) 一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:实验次数n2003004005006007008001000摸到红球次数m151221289358429497568701摸到红球频率0.750.740.720.720.720.71a b(1)表格中a=________,b=________;(2)估计从袋子中摸出一个球恰好是红球的概率约为________;(精确到0.1)(3)如果袋子中有14个红球,那么袋子中除了红球,还有多少个其他颜色的球?21. (5分)图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.22. (5分)(2017·房山模拟) 如图,一次函数的图象与反比例函数的图象交于A (-1,3),B(-3,n)两点,直线与轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.23. (5分)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)24. (5分) (2019八上·郑州期中) 某种型号汽车油箱容量为40升,每行驶100千米耗油10升.设一辆加满油的该型号汽车行驶路程为x(千米),行驶过程中油箱内剩余油量为y(升).(1)求y与x之间的函数表达式;(2)该辆汽车以80千米/时的速度从甲地出发开往距离甲地1050千米的B地,为了有效延长汽车使用寿命,厂家建议每次加油时,油箱内剩余油量不低于油箱容量的,按此建议,求该辆汽车最多行驶多长时间就需再一次加油?此次加油后,剩余路程至少还需再加几次油?25. (5分)(2018·青羊模拟) 如图,已知一个三角形纸片ACB,其中∠ACB=90°,AC=8,BC=6,E、F分别是AC、AB边上的点,连接EF.(1)如图1,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=4S△EDF,求ED的长;(2)如图2,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图3,若FE的延长线与BC的延长线交于点N,CN=2,CE= ,求的值.26. (5分) (2020八上·甘州期末) 如图,直线L:与x轴、y轴分别交于A、B两点,在y 轴上有一点C(0,4),线段OA上的动点M(与O,A不重合)从A点以每秒1个单位的速度沿x轴向左移动。
2018年安庆市中考模拟考试数学答案
2018年安庆市中考模拟考试数学试题参考答案及评分标准一、选择题(本大题共10小题,每小题4分,满分40分)1. 【考点】实数的大小比较.【解析】因为-2<-1< 0 <,所以选D.2. 【考点】科学记数法.-【解析】根据科学记数法的定义可知:亿=×1010所以选C.3. 【考点】根式运算,整式运算.【解析】A.绝对值应为非负数。
正确为π-3.B.完全平方有三项,少了+2ab项.C.幂的乘方,底数不变,指数相乘应为6a.所以选D.4. 【考点】三视图的相关知识.【解析】根据三视图的特征,不管从主视图,俯视图还是左视图看三棱柱都不会是平行四边形,故应选B.5. 【考点】数的特性及数的开平方.【解析】48=3×42,48n能开平方最小只要乘以3即可,故应选A.6. 【考点】平均增长率问题,列一元二次方程解应用题.;【解析】因两年的增长率相同,故应选C.7. 【考点】反比例函数的相关知识.【解析】A.当x=-2时,y=-1,正确.B.因为k=2>0,函数经过一、三象限,正确.C.因为k=2>0,在每个象限内y随x的增大而减小,错误.C.正确.8. 【考点】抽样调查,统计图,用样本估计总体.【解析】全校“使用电子鞭炮”的学生有:15÷100×3000=450.故应选D.9. 【考点】平行四边形一顶点和对边中点的连线一定三等分平行四边形的一对角线与中线的性质定理.—【解析】由题意可得:M 、N 为线段BD 的三等分点,∴S △AMN =31S △ABD ,S △CMN =31S △CBD ,∴S 四边形AMCN =31S □ABCD . 故应选B.数学试题参考答案(共6页)第1页10.【考点】轴对称,连接两点的线中直线段最短,勾股定理,次函数的图象与性质.【分析】点O 关于直线AB 的对称点C ,则C (2,2),连接CP ,则OM +MP 的最小值为此时的CP ,记CP 2=s ,所以s =CP 2=AC 2+AP 2=22+(2-x )2.故应选A.二、填空题(本大题共4小题,每小题5分,满分20分)(a +2b )(a -2b ) 12. x 1=2+7,x 2 =2-7 13. 65° 14.①②③11.【考点】因式分解.【解析】2a 2﹣8b 2=2(a 2-4b 2)=2(a +2b )(a -2b ). .12.【考点】解一元二次方程.【解析】13.【考点】平行线的性质,三角形内、外角性质,角的计算. 【解析】∠α=∠1+∠2-180°=65°.14.【考点】圆的相关性质综合应用,弧长计算.【解析】①∠CBE 为圆内接四边形ABCD 的外角,则∠CBE =∠ADE , CB =CE ,所以∠CBE=∠E ,因此∠ADE =∠E .②∠A=∠BCE =70°,∴∠AOB=40°,AB ︵的长==34.③由题意知:AC ⊥DE ,由∠ADE =∠E 得AD =AE ,。
安徽省安庆市2018届九年级下学期第二次模拟考试数学试题(含答案和解析)
安徽省安庆市2018届九年级下学期第二次模拟考试数学试题一.选择题(每小题4分,满分40分)1.﹣6的倒数是()A.B.﹣C.6D.﹣62.89岁的侯云德院士获得2017年国家最高科学技术奖,这位著名的医学病毒学专家发现最小的病毒的半径仅有0.000009毫米,将0.000009用科学记数法表示应是()A.9×10﹣6B.9×10﹣5C.0.9×10﹣6D.0.9×10﹣53.下列运算正确的是()A.x2+x3=x5B.(x2)3=x5C.2x2•x3=2x5D.(2x2)3=2x6 4.某几何体的主视图和左视图如图所示,则该几何体的俯视图可能是()A.B.C.D.5.下列四个多项式中,能因式分解的是()A.a2+b2B.a2﹣4b C.a2+4a+4b2D.a2b+4ab+4b6.设a=﹣8,a在两个相邻整数之间,则这两个整数是()A.2和3B.﹣2和﹣3C.﹣3和﹣4D.﹣4和﹣57.如图,AB,AC为⊙O的两条弦,OD⊥AB于D,OE⊥AC于E,已知∠BOC=160°,则∠DOE=()A.90°B.95°C.100°D.110°8.小明对本校部分同学寒假课外阅读总时间进行了抽样调查,所得数据整理后制作成如图所示的频数分布直方图(每小组端点包含最小值,不包含最大值).观察这个频数分布直方图,给出如下结论,正确的是()A.小明调查了100名同学B.所得数据的众数是40小时C.所得数据的中位数是30小时D.全区5000名学生寒假阅读总时间在20小时(含20小时)以上的约有3750名9.若二次函数y=﹣x2+x+c的图象与x轴没有交点,则二次函数y=﹣x2+x+c的图象与反比例函数y=的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限10.已知:如图,BD为△ABC的内角平分线,CE为△ABC的外角平分线,AD⊥BD于D,AE⊥CE于E,延长AD交BC的延长线于F,连接DE,设BC=2,AC=3,AB=4,则DE的长为()A .B .C .D .二.填空题(每小题5分,满分20分)11.= .12.某企业因生产转型,二月份产值比一月份下降20%,转型成功后生产呈现良好上升势头,三、四月份稳步增长,月平均增长率为x ,设该企业一月份产值为a ,则该企业四月份的产值y 关于x 的函数关系式为13.如图,在平行四边形ABCD 中,过A 作AO ⊥BC 于O ,OC =CD =6,∠B =60°,若直线CD 是以O 为圆心的圆的切线,则这个圆的半径为 .14.如图,在三角形纸片中,AB =40cm ,∠ACB =90°,∠A =30°,将∠A 折叠,使得点A 落在AB 边上的D 处,折痕为EF ,当△CDE 为直角三角形时,AF 的长为 cm三.(每小题8分,满分16分)15.(8分)计算:3tan30°﹣﹣(3﹣π)016.(8分)我国古代有一道著名的估算题,原文如下:甲,乙二人隔溪牧羊,二人相互商量,甲云得乙羊九只,多乙一倍正当;乙云得甲羊九只,两人羊数一样.甲,乙羊各几何?译文为:甲,乙两人在小河边放羊,甲说:如果你给我9只羊,那么我的羊的数量比你的多1倍;乙说:如果你给我9只羊,我们俩的羊就一样多了,问甲、乙两人各有多少只羊? 请回答上述问题.四.(每小题8分,满分16分)17.(8分)观察下列等式:(1)1﹣+=1;(2)﹣+=;(3)﹣+=;…根据上述规律解决下列问题:(1)写出第(4)个等式:()﹣()+()=()(2)写出你猜想的第(n)个等式,并证明.18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD (顶点是网格线的交点)和格点O.(1)画出一个格点四边形,使它与四边形ABCD关于BC所在的直线对称;(2)将四边形ABCD绕O点逆时针旋转90°,得到四边形A2B2C2D2.五.(每小题10分,满分20分)19.(10分)如图,在同一平面内,两条平行的高速公路之间有AB,CD两条道路连通,AB,CD相交于O点,∠ABC=45°,∠BCD=60°,AB=40km,求CD的长(结果保留根号)20.(10分)在一个不透明的袋子中装有3个完全相同的小球,分别标有数字1,2,3.(1)如果从袋子中随机摸出两个小球,分别用小球上的数字作为十位上的数字和个位上的数字组成一个两位数,共能组成多少个不同的两位数?(2)如果先从袋子里随机摸出一个球,用小球上的数字作为十位上的数字;再将小球放回袋中,摇匀后再随机摸出一个球,并用小球上的数字作为个位上的数字,求组成的两位数是偶数的概率.六.(本题满分12分)21.(12分)如图,一次函数y=ax+b与反比例函数y=(x>0)的图象交于点A(6,1),与y轴交于点B(0,﹣2)(1)求a,b,k的值;(2)请你在反比例函数y=(x>0)的图象上找一点P,使得S△AOP =S△BOP,并写出点P的坐标.七.(本题满分12分)22.(12分)某水果销售商发现一种高档水果市场需求量较大,经过市场调查发现月销售量y(箱)与销售单价为x(元/箱)之间的函数关系式为y=﹣x+800,而这种水果的进价z(元/箱)与进货量y(箱)之间的函数关系式为z=﹣y+400(假定:进货量=销售量),已知每月为此支付员工工资和场地租金等费用总计20000元.(1)求月获利w(元)与x之间的函数关系式;(2)当销售单价x为何值时,月获利最大?并求出这个最大值.八.(本题满分14分)23.(14分)△ABC中,∠ACB=90°,∠BAC=30°,点C为等边△DEF的边DE的中点.(1)如图1,当DE与BC在同一条直线上时,已知=,求的值;(2)如图2,当DE与AC在同一条直线上时,分别连接AF,BD,试判断BD和AF的位置关系并说明理由;(3)如图3,当DE与△ABC的边均不在一条直线上时,分别连接AF,BD,求证:∠F AC=∠CBD.参考答案一.选择题1.解:∵(﹣6)×(﹣)=1,∴﹣6的倒数是﹣.故选:B.2.解:将0.000009用科学记数法表示应是9×10﹣6.故选:A.3.解:A、x2与x3不是同类项,不能合并,故本选项错误;B、原式=x6,故本选项错误;C、原式=2x5,故本选项正确;D、原式=8x6,故本选项错误.故选:C.4.解:由题意可得:该几何体是球体与立方体的组合图形,则其俯视图为圆形中间为正方形,故选项B正确.故选:B.5.解:A、a2+b2,无法分解因式,故此选项错误;B、a2﹣4b,无法分解因式,故此选项错误;C、a2+4a+4b2,无法分解因式,故此选项错误;D、a2b+4ab+4b=b(a2+4a+4)=b(a+2)2,故此选项正确.故选:D.6.解:∵4<<5,∴﹣3<﹣8<﹣4.故选:C.7.解:连接OA,由圆周角定理得,∠BAC=∠BOC=80°,∵OD⊥AB,OE⊥AC,∴∠ADO=90°,∠AEO=90°,∴∠DOE=360°﹣90°﹣90°﹣80°=100°,故选:C.8.解:A、参与调查的总人数为:10+20+40+30+20=120人,故此选项错误;B、由于频数分布直方图不能确定各分组数据的具体时间,所以不能确定数据的众数,故此选项错误;C、由于频数分布直方图不能确定各分组数据的具体时间,所以不能确定数据的中位数,故此选项错误;D、寒假阅读总时间在20小时(含20小时)以上的有:×5000=3750(人),故此选项正确;故选:D.9.解:∵二次函数y=﹣x2+x+c的图象与x轴没有交点,∴令y=0时,﹣x2+x+c=0的判别式△<0,即b2﹣4ac=1+4c<0,解得c<﹣.∴反比例函数y=的图象分别在第二,四象限,又∵二次函数y=﹣x2+x+c的图象经过第三,四象限,∴二次函数y=﹣x2+x+c的图象与反比例函数y=的图象的交点在第四象限,故选:D.10.解:延长A E交BF的延长线于G,在△ABD和△FBD中,,∴△ABD≌△FBD(ASA),∴BF=BA=4,AD=DF,∴CF=BF﹣BC=2,同理△ACE≌△GCE,∴CG=CA=3,AE=EG,∴FG=1,∵AD=DF,AE=EG,∴DE=FG=,故选:A.二.填空题(本大题共4小题,每小题5分,满分20分)11.解:=﹣2.故答案为:﹣2.12.解:设该企业一月份产值为a,则该企业四月份的产值y关于x的函数关系式为:y=a(1﹣20%)(1+x)2.故答案为:y=a(1﹣20%)(1+x)2.13.解:作OE⊥CD于E,交AB于F,如图,∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD=6,∴EF⊥AB,∵∠B=60°∴∠BOF=30°,∴∠COE=30°,在Rt△OCE中,CE=OC=3,∴OE=OC=3,∵直线CD是以O为圆心的圆的切线,∴这个圆的半径为3.故答案为3.14.解:∵AB=40cm,∠ACB=90°,∠A=30°,∴BC=20cm.由翻折的性质可知AF=DF,∠A=∠EDF=30°.如图1所示:当∠EDC=90°时,则∠CDB=60°.∵∠A=30°,∠ACB=90°,∴∠B=60°.∴△BCD为等边三角形.∴BD=BC=20cm.∴AD=20cm.∴AF=10cm.如图2所示:当点B与点D重合时,△CDE为直角三角形,∴AF=AB=20cm.故答案为:10或20.三.(本大题共2小题,每小题8分,满分16分)15.解:原式=3×﹣×2﹣1=﹣﹣1=﹣1.16.解:设甲有x只羊,乙有y只羊,,解得,,答:甲有63只羊,乙有45只羊.四.(本大题共2小题,每小题8分,满分16分)17.解:(1)∵左边的第2项和第3项的分母分别是连续的奇数和偶数,右边的分母为是左边第2项和第3项的分母之积,∴第(4)个等式为:﹣+=;故答案为:;;;(2)第n个等式为:,证明:左边=,右边=,∴左边=右边,∴原式成立.18.解:(1)如图所示:(2)如图所示:五.(本大题共2小题,每小题10分,满分20分)19.解:过A,D分别作AE⊥BC于E,DF⊥BC于F,在直角△ABE中,AB=40km,∠ABC=45°,∵sin∠ABC=,∴AE=20km,∵DF=AE,∴DF=20km,在直角△CDF中,DF=20km,∠BCD=60°,∵sin∠DCF=,∴CD=20÷=(km).答:CD的长为km.20.解:(1)列表得:所有等可能的情况有6种,分别为21,31,12,32,13,23;(2)列表如下:由表可知,共有9种等可能结果,其中组成的两位数是偶数的有3种结果,所以组成的两位数是偶数的概率为=.六.(本题满分12分)21.解:(1)依题意,k=6×1=6,把A(6,1),B(0,﹣2)代入y=ax+b得,解得:a=,b=﹣2;(2)设P (m ,)且m >0, ∵S △AOP =S △BOP ,∴(1+)×(6﹣m )=×2•m ,解得m =2,∴P (2,).七.(本题满分12分)22.解:(1)由题意可得:月获利 w =(x ﹣z )y ﹣20000=[x ﹣(﹣y +400)](﹣x +800)﹣20000=(x ﹣x ﹣240)(﹣x +800)=﹣x 2+880x ﹣212000;(2)w =﹣x 2+880x ﹣212000=﹣(x ﹣550)2+30000,当销售单价为550元时,月获利最大,最大值为30000元. 八.(本题满分14分)23.解:(1)∵点C 为等边△DEF 的边DE 的中点, ∴∠EFC =∠CFD =30°, ∵∠BAC =30°, ∴∠CFD =∠BAC , ∴DF ∥AB ,∵,∴,∵ED =2CD ,∴;(2)连接CF ,延长BD 交AF 于G ,则BD ⊥AF 于G ,如图2:∵,∠ACF=∠BCD=90°,∴△ACF∽△BCD,∴∠F AC=∠CBD,∵∠BDC+∠DBC=90°,∴∠ADG+∠DAG=90°,即BD⊥AF于G;(3)连接CF,如图3:∵点C为等边△DEF的边DE的中点,∴FC⊥DE,∴∠FCD=90°,∵∠FCA+∠ACD=∠BCD+∠ACD=90°,∴∠FCA=∠BCD,∵,∴△ACF∽△BCD,∴∠F AC=∠CBD.。
安徽省2018年中考数学试题及答案解析(Word版)
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点. (1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。