数字滤波器结构
合集下载
数字滤波器的基本结构(3)-sw_OK
8
5.2 无限长单位冲激响应(IIR)滤波器 的基本结构
一、直接I型
表述一个IIR滤波器的系统函数和差分方程分别 由(5-1)和(5-2)式表述,
M
N
y(n) bk x(n k) ak y(n k)
k 0
k 1
(5-2)
根据(5-2)式可以看出,y(n)可以分为两部分之和
M
第一部分为 bk x(n k) 对应输入x(n)及其各延迟 k 0
(2)将输入x(n)和输出y(n)互换位置。
18
5.2 无限长单位冲激响应(IIR)滤波器 的基本结构
x(n)
b0
b1
z 1 a1
b2
z 1 a2
y(n)
bM 1
bM
z 1
aN 1
z 1
aN
图8 直接 II 型的转置型
19
5.2 无限长单位冲激响应(IIR)滤波器 的基本结构
[例 1]设IIR数字滤波器的系统函数为
图6可以看作是图5的极点网络和零点网络互换级联 位置而成的。
观察图6
∵w1=w2 ∴前后两部分对应的延迟支路输出节点变量 也相等,即图中的w1(n-1)=w2(n-1),w1(n-i)=w2(n-i),
故可将前后两部分对应的延迟支路合并,合并后的信 号流图为
15
5.2 无限长单位冲激响应(IIR)滤波器 的基本结构
H (z) 8z3 4z2 11z 2
(z 1)(z2 z 1)
4
2
试画出该IIR数字滤波器的直接II型及其转置型的结构。
8 4z1 11z2 2z3 解: H (z) 1 5 z1 3 z2 1 z3
448
20
5.2 无限长单位冲激响应(IIR)滤波器 的基本结构
5.2 无限长单位冲激响应(IIR)滤波器 的基本结构
一、直接I型
表述一个IIR滤波器的系统函数和差分方程分别 由(5-1)和(5-2)式表述,
M
N
y(n) bk x(n k) ak y(n k)
k 0
k 1
(5-2)
根据(5-2)式可以看出,y(n)可以分为两部分之和
M
第一部分为 bk x(n k) 对应输入x(n)及其各延迟 k 0
(2)将输入x(n)和输出y(n)互换位置。
18
5.2 无限长单位冲激响应(IIR)滤波器 的基本结构
x(n)
b0
b1
z 1 a1
b2
z 1 a2
y(n)
bM 1
bM
z 1
aN 1
z 1
aN
图8 直接 II 型的转置型
19
5.2 无限长单位冲激响应(IIR)滤波器 的基本结构
[例 1]设IIR数字滤波器的系统函数为
图6可以看作是图5的极点网络和零点网络互换级联 位置而成的。
观察图6
∵w1=w2 ∴前后两部分对应的延迟支路输出节点变量 也相等,即图中的w1(n-1)=w2(n-1),w1(n-i)=w2(n-i),
故可将前后两部分对应的延迟支路合并,合并后的信 号流图为
15
5.2 无限长单位冲激响应(IIR)滤波器 的基本结构
H (z) 8z3 4z2 11z 2
(z 1)(z2 z 1)
4
2
试画出该IIR数字滤波器的直接II型及其转置型的结构。
8 4z1 11z2 2z3 解: H (z) 1 5 z1 3 z2 1 z3
448
20
5.2 无限长单位冲激响应(IIR)滤波器 的基本结构
数字滤波器的基本结构
H (z)
A
m1 N1
m1 N2
(1 ck z1) (11k z1 2k z2 )
k 1
k 1
将单实根因子看作二阶因子的特例:
46
M 1 2
(1 1m z1 2m z2 )
H (z) A m1 N 1 2 (1 1k z1 2k z2 ) k 1
:表示取整。
其中
Hi
(z)
1 1i z1 11i z1
2i 2i
z 2 z 2
,
级联结构:
i 0,1,..., m
X(n) H1(Z)
H2(Z)
。。。
Y(n) Hm(Z)
48
H(Z)的实现结构即可表示为基本二阶节 的级联形式。每个二阶节用典范型实现:
Z-1
Z 1 a1
y(n 1)
Z 1
a2
y(n 2)
Z 1 bM
x(n M )
Z 1
aN 1
y(n N 1)
Z 1
aN
y(n N)
实现N阶差分方程的直接I型结构
36
M=N
37
1)可直接差分方程或系统函数的标准形式画 出。两个网络级联:第一个横向结构M节延 时网络实现零点(分子,输入),第二个有 反馈的N节延时网络实现极点(分母,输 出) 。需要N+M级延时单元。
32
◦ 系统函数 ◦ 差分方程
M
bk z k
H(z)
k 0 N
1 ak zk
Y (z) X (z)
k 1
N
M
y(n) ak y(n k) bk x(n k)
数字信号处理 第五章
+ a2 z-1
数字信号处理—第五章
6
举例:二阶数字滤波器
y ( n ) a 1 y ( n 1) a 2 y ( n 2 ) b 0 x ( n )
x(n) b0 +
-1 a1 z
y(n)
+ a2 z-1
数字信号处理—第五章
7
举例:二阶数字滤波器
y ( n ) a 1 y ( n 1) a 2 y ( n 2 ) b 0 x ( n )
z z
2 2
H (z)
1 1k z 1 1k z
1 1
x(n)
H 1(z)
y (n )
H 2(z)
H k (z)
数字信号处理—第五章
22
数字信号处理—第五章
23
IIR数字滤波器的级联型结构优点
1) 每个二阶或一阶子系统单独控制零、极点。 2)级联顺序可交换,零、极点对搭配任意,因此级联 结构不唯一。有限字长对各结构的影响是不一样的, 可通过计算机仿真确定子系统的组合及排序。 3)级联各节之间要有电平的放大和缩小,以使变量值 不会太大或太小。太大可能导致运算溢出;太小可 能导致信噪比太小。 4)级联系统也属于最少延时单元实现,需要最少的存 储器,但乘法次数明显比直接型要多。 4)级联结构中后面的网络输出不会再流到前面,运算 误差积累比直接型小。
数字信号处理—第五章
4
基本单元(数字滤波器结构)有两种表 示方法
数字信号处理—第五章
5
举例:二阶数字滤波器
y ( n ) a 1 y ( n 1) a 2 y ( n 2 ) b 0 x ( n )
x(n) b0 +
数字滤波器的基本结构ya
三、转置定理 如果将原网络中所有支路方向加以倒转,且将输入 和输出交换其系统函数仍不改变。
x(n)
a1
bb Z1 0 1
a2
b Z1 2
y(n)
bM1
a Z1
N1 bM
aN
Z1
(原网络)
y(n)
b0
b a1
Z1
1
a2
b Z1 2
bM1
x(n)
aN1
aN
b Z1 M
Z1
(转置后的网络)
5.3 FIR滤波器的基本结构
x(n) h(n) y(n)
y(n) x(n) h(n)
进行傅氏变换得:
Y (e j) X (e j) H (e j)
这种关系可用差分方程、单位冲激响应及系统函数进行描述。
X (e j )
0
H (e j )
0
Y(e j )
0
H(ejω)为矩形窗时 的情形
ωc
πω
ωc
πω
ω
πω
二、数字滤波器的系统函数与差分方程
a)输入节点或源节点x,(n) b)输出节点或阱 节点y(,n)
所处的节点; 所处的节点;
c)分支节点,一个输入,一个或一个以上输 出的节点;将值分配到每一支路;
d)相加器(节点)或和点,有两个或两个以 上输入的节点。
支路不标传输系数时,就认为其传输系数为1;
任何一节点值等于所有输入支路的信号之和。
y(n) a1 y(n 1) a2 y(n 2) b0 x(n)
x(n) b0
y(n)
b0x(n) a2 y(n 2)
Z 1
a1
a1y(n 1) Z 1
y(n 1)
数字信号处理第四章-数字滤波器的结构
3).H (z)
Y (z) X (z)
(1 bz1) (1 az1)
y(n) ay(n 1) x(n) bx(n 1)
9
10
11
w w
12
转置流图:
w(n) y(n)
原流图:
w(n) ay(n 1) x(n) bx(n 1) 两边作Z变换:
w(n) x(n) aw(n 1) y(n) w(n) bw(n 1) 两边作Z变换:
乘法系数为复数,运算量增加; 系统的稳定性依赖于零、极点相互抵消,对实
现的精度要求很高。在存在有限字长效应的情 况下,有可能造成系统不稳定。
54
确保所有零点、极点在单位圆内。 55
(h(n)为实数)
第k对 极点, 即第k 个与第 N-k个 谐振器 合并
56
谐振频 率不变
还有两点需要注意:(存在实根) 57
1
前言
线性时不变系统用单位冲击响应来表示 系统函数实际上单位冲击响应的Z变换 系统函数反映线性时不变系统的特性 大多数的信号处理可看成是对信号的滤波操作 数字滤波器实际上就是线性时不变系统
因此数字滤波器可以表示为:
2
前言
M
bk zk
H(z) Y(z) / X (z)
k 0 N
1 ak zk
从信号流图中:
可以清楚地看到系统中的运算步骤和运 算结构。FFT时用到了该特点。
运算结构可以直观反映所需的存储单元 和运算次数。由于是数字实现,必然存 在系统误差,运算结构同时也可以反映 系统误差的累积问题。 下面讨论的IIR和FIR滤波器结构将涉及 上述问题。
14
1
15
无限冲击响应滤波器的特点
82
第四章-数字滤波器的基本结构
将(4-7)式关系代入上式,得
H ( z)
N 11 2
h(n)
[zn
z(N 1n) ]
h(
N
1)
N 1
z2
(4-9)
n0
2
(4-8)(4-9)式中+号代表偶对称,-号代表奇对称。
当h(n)奇对称时,由于
h(n)
h(
N
1
n), 故h(
N 1) 2
0
下面的图19、图20分别画出N为偶数和N为奇数时 的线性相位FIR滤波器的结构。
W k N
WN( N k )
各并联支路的极点为
r
j 2 k
e N
,k
0,1, 2,
, N 1
为使系数为实数,可将共轭根合并,在z平面上 这些共轭根在半径为r的圆周上以实轴为轴成对 称分布,即 zN k zk
也就是 W (N k )
j 2 ( N k )
e N
(e
j
2 k N
)
WNk
27
4.3 有限长单位冲激响应(FIR)滤波器 的基本结构
级联型的每级对应一组由 (0i , 1i , 2i ) 参数决定的零点
6
4.3 有限长单位冲激响应(FIR)滤波器 的基本结构
三、线性相位的FIR滤波器结构: 在许多实际应用,如图像处理中,要求数字滤波器具
有线性相位 具有线性相位特性的滤波器传输函数H(ej)为
H(e j ) H() e j ()
则(4-12)式可写成:
1
N 1
H (z)
N
HC (z)
k 0
HK (z)
(4-13)
N 1
上式表明H(z)可看成是由 HC (z)和 HK (z) 两部分级 k 0
实验四 数字滤波器的结构
制直接型和并联型的信号流图。
六、实验报告要求
简述实验目的和实验原理。
列写练习题的代码并绘制程序产生的图
形。
总结实验中你的收获和体会。
a=[1];
[sos,g]=tf2sos(b,a)
程序运行结果:
sos =1.0000 g =2 级联型的表达式
0.9500
0 1.2500
1.0000 1.0000
0 0
0 0
1.0000 -0.5000
H ( z ) 2(1 0.95 z 1 )(1 0.5 z 1 1.25 z 2 )
一个离散LSI系统可以用系统函数表示:
Y ( z ) b( z ) H ( z) X ( z ) a( z )
m0 N
b
M
m
z m
1 ak z k
k 1
b0 b1 z 1 b2 z 2 ... bm z m 1 a1 z 1 a2 z 2 ... ak z k
实验四 数字滤波器的结构
一、实验目的
加深对数字滤波器分类与结构的了解。 掌握数字滤波器的基本结构及其相互间
的转换方法。
学习利用MATLAB语言进行数字滤波器各
种结构相互间转换。
二、实验原理及方法
数字滤波器的分类
数字滤波器从滤波功能上可以分为低通、高通、带通、
带阻以及全通滤波器;根据系统的单位冲激响应的特 性,又可以分为有限长(FIR)和无限长(IIR)冲激 响应滤波器。
也可用差分方程表示:
y (n) ak y (n k ) bm x(n m)
k 1 m 0 N M
以上两个公式中,当ak至少有一个不为0时,则在有限
数字滤波器的基本结构IV
k1
k0
17
特点:
第一个网络实现零点,即实现x(n)加权延时:
N
bkx(n k)
k0
第二个网络实现极点,即实现y(n)加权延时:
N
ak y(n k)
k 1
可见,第二网络是输出延时,即反馈网络。
*共需(M+N)个存储延时单元。
18
二、直接II(典范)型结构
直接型结构是由两个网络级联组成:
52
这个设备是由输入输出 延时部分、系数ai、bi 存储器、运算器及控制 器组成。
每一部分都可以用数字 硬件来构成。
6
5.1 数字滤波器的基本概念
数字滤波器的描述 数字滤波器的分类
7
5.1 数字滤波器结构的表示方法
一个数字滤波器可以用差分方程来描述:
N
M
y(n)aky(nk)bkx(nk)
46
N为奇数时
N1
H(z) h(n)zn n0 N n 2 1 0 1h(n)znh N 2 1 zN 2 1nN N 1 11h(n)zn 2 令 nN1m N n 2 1 0 1h(n) znz(N 1 n) h N 2 1 zN 2 1
47
h(n)偶对称,取“+”
Hz=
m0 N
1 anzn
Yz X z
n1
将系统函数整理为:
Hz=11 .5 02 .3 .1 zz1 1 00 .2 .4 zz2 2
1.52.1z10.4z2 1 0.3z10.2z2
23
H(z)1.52.1z10.4z2 10.3z10.2z2 得 a1 0.3,a2 0.2 b0 1.5 b1 2.1,b2 0.4 直接I型结构:
数字滤波器结构
第二部分是一 个N节延时链结 构网络。不过 它是对y(n)延时 ,因而是个反 馈网络
➢ 直接I型DF结构的特点
1、两个网络级联:第一个横向结构M节延时网络实 现零点,第二个有反馈的N节延时网络实现极点。
2、共需(N+M)级延时单元。
3、系数ai、bi不是直接决定单个零极点,因而不能很 好地进行滤波器性能控制。
4、极点对系数的变化过于灵敏,从而使系统频率响应 对系统变化过于灵敏,也就是对有限精度(有限字 长)运算过于灵敏,容易出现不稳定或产生较大误 差。
四、数字滤波器的分类
滤波器的种类很多,分类方法也不同。
1、从功能上分;低通、带通、高通、带阻。 2、从实现方法上分:FIR、IIR 3、从设计方法上来分: Butterworth(巴特沃斯)、
Chebyshev(切比雪夫)、 Ellips(椭圆)等。 4、从处理信号分:经典滤波器、现代滤波器
1、经典滤波器
2、现代滤波器
➢ 它主要研究内容是从含有噪声的数据记录(又称时间序列) 中估计出信号的某些特征或信号本身。一旦信号被估计出, 那么估计出的信号将比原信号会有高的信噪比。
➢ 现代滤波器把信号和噪声都视为随机信号,利用它们的统计 特征(如自相关函数、功率谱等)导出一套最佳估值算法, 然后用硬件或软件予以实现。
H ( e j )
2 c c 2
HPAF
………
H ( e j )
3 2 c c 2
BPAF
………
3 2
BPAF
………
3 2
H ( e j )
c1c2 2
H ( e j )
c1c2 2
………
………
3
………
3
数字滤波器的结构
1)
数字滤波器实现的方法有两种
硬件实现——利用专用数字信号处理器或通用数字信号处理器来实
现,通常称为DSP芯片,这类芯片是解决实时处理要求的单片可编程
处理器。
2)
计算机软件实现——利用计算机和通用软件编程实现。把滤波器要 完成的运算编成程序,通过计算机来执行,称为计算机软件实现。 无论是利用硬件实现还是利用计算机软件实现,由于使用的设 备不会是无限精度的。因此用计算机处理数字信号的过程中,都是 用有限字长的算术运算来逼近无限精度的运算,所以运算过程中必 然会引入种种误差,这些误差来源主要有三个方面:
种情况:或者是实根,或者是共轭复根。如果是共轭复根,
则零极点必须共轭成对,也就是说 ci 必有 ci 同时存在。为 了结构上的一致性,可用实系数二阶多项式表示H(Z) 。
H ( z) A
(1
i 1 M i 1
M
1i
z 1 2i z 2 ) z 1 2i z 2 )
H ( z)
1 bi Z i
i 1 N
有影响,分母系数对极点有影响。
要调整滤波器的零、极点,只能间接调整 ai 、bi 的系数, 因为系数 ai 、bi 与系统函数零、极点的关系不是直接的而是 间接关系,所以系数对滤波器的性能控制不明显。
②系统的变化过于灵敏(是指对有限精度运算过于灵敏) 因为系数 ai 、bi 和所有的零、极点有关,所以对 ai 、bi 的精度要求比较高。当阶数越高时,要求的精度就越高 。由于有限字长效应的影响,造成这种结构容易产生较 大误差,甚至系统会出现不稳定的情况。
1、采样信号的量化误差:
模拟信号在数字化过程中,经采样后的采样信号的幅度是一个连续 量,需要把它量化为有限个电平值。如下图:
《第七章 数字滤波器的结构》
2、由基本信号流图求系统函数H(z) 由基本信号流图求系统函数H(z) 对给定的信号流图,设置中间节点变量; 对给定的信号流图,设置中间节点变量; 节点变量w(n)等于该节点的所有输入支路变量之和; 节点变量w(n)等于该节点的所有输入支路变量之和; w(n)等于该节点的所有输入支路变量之和 确定流图的输入与输出关系,求出系统函数H(z)。 确定流图的输入与输出关系,求出系统函数H(z)。 H(z) 已知基本信号流图如下,求其系统函数H(z) [例]:已知基本信号流图如下,求其系统函数H(z) b0
第七章 数字滤波器的结构 本章主要内容
数字滤波器结构的表示方法; 数字滤波器结构的表示方法; 无限长脉冲响应(IIR)数字滤波器的基本结构 无限长脉冲响应( ) 有限长脉冲响应( 有限长脉冲响应(FIR)数字滤波器的基本结构 )
数字滤波器的表示方法 差分方程:描述时域离散系统输入输出之间的关系。 差分方程:描述时域离散系统输入输出之间的关系。 单位脉冲响应:系统对δ 的零状态响应 的零状态响应。 单位脉冲响应:系统对δ(n)的零状态响应。 系统函数:系统单位脉冲响应 系统函数:系统单位脉冲响应h(n)的Z变换 的 变换 如果系统输入输出服从N阶差分方程, 如果系统输入输出服从 阶差分方程,即: 阶差分方程
对于某一确定的差分方程,可对应多种不同的算法,例如: 对于某一确定的差分方程,可对应多种不同的算法,例如:
1 H1(z) = 1− 0.8z−1 + 0.15z−2 −1.5 2.5 H2 (z) = + −1 1− 0.3z 1− 0.5z−1 1 1 H3(z) = ⋅ −1 1− 0.3z 1− 0.5z−1
写出差分方程如下: 写出差分方程如下 解:由H(z)写出差分方程如下:
数字信号处理-第五章数字滤波器的基本结构(new)
1 2 ( 1 p z ) ( 1 z z ) 1k k 2k 1 k 1 N1 1 1 2 ( 1 c z ) ( 1 a z a z ) k 1k 2k k 1 k 1 k 1 N2 M1 M2
H ( z) A
将两个一阶因子组合成二阶因子,则
数字信号处理-第五章 数字滤波器络结构及 FIR数字滤波器的基本网络结构
数字信号处理-第五章 数字滤波器的基本结构
滤波器表示方式
(1)系统函数
k b z k M
Y ( z) H ( z) X ( z)
1 ak z k
k 1
k 0 N
1 ak z k
k 1
k 0 N
N2 M N Ak Bk (1 g k z 1 ) k G z k 1 1 * 1 1 c z ( 1 d z )( 1 d z ) k 1 k 1 k 0 k k k N1
一般IIR滤波器满足
N1
数字信号处理-第五章 数字滤波器的基本结构
5.2 无限长单位冲激响应(IIR)滤波器的基本结构)
IIR滤波器有以下几个特点: (1)系统的单位冲激响应 (2)系统函数
h( n)
是无限长的
H ( z)
在有限z平面(
0 z
)上有极点存在
(3)结构上存在输出到输入的反馈,也就是结构是递归的 1、直接Ⅰ型 一个IIR滤波器的有理系统函数为:
x n
3 1.5 -1.5 0.5
z 1 z 1 z 1
-3.5 2.5
y n
数字信号处理-第五章 数字滤波器的基本结构 级联型:
3z 3 3.5z 2 2.5z 3 3.5z 1 2.5z 2 1 H ( z) 2 2 z z 1 z 0.5 1 z z 1 0.5z 1
H ( z) A
将两个一阶因子组合成二阶因子,则
数字信号处理-第五章 数字滤波器络结构及 FIR数字滤波器的基本网络结构
数字信号处理-第五章 数字滤波器的基本结构
滤波器表示方式
(1)系统函数
k b z k M
Y ( z) H ( z) X ( z)
1 ak z k
k 1
k 0 N
1 ak z k
k 1
k 0 N
N2 M N Ak Bk (1 g k z 1 ) k G z k 1 1 * 1 1 c z ( 1 d z )( 1 d z ) k 1 k 1 k 0 k k k N1
一般IIR滤波器满足
N1
数字信号处理-第五章 数字滤波器的基本结构
5.2 无限长单位冲激响应(IIR)滤波器的基本结构)
IIR滤波器有以下几个特点: (1)系统的单位冲激响应 (2)系统函数
h( n)
是无限长的
H ( z)
在有限z平面(
0 z
)上有极点存在
(3)结构上存在输出到输入的反馈,也就是结构是递归的 1、直接Ⅰ型 一个IIR滤波器的有理系统函数为:
x n
3 1.5 -1.5 0.5
z 1 z 1 z 1
-3.5 2.5
y n
数字信号处理-第五章 数字滤波器的基本结构 级联型:
3z 3 3.5z 2 2.5z 3 3.5z 1 2.5z 2 1 H ( z) 2 2 z z 1 z 0.5 1 z z 1 0.5z 1
FIR数字滤波器的结构.ppt
i 1
i 1
g i 、pi ——实根 hi 、qi ——复根
且 N1 2N2 N M1 2M 2 N
将共轭因子合并为实系数二阶因子,单实根因子看作二阶 因子的一个特例,则
M
H(z) A
i 1
1 a1i z 1 a2i z 2 1 b1i z 1 b2i z 2
M
A Hi (z)
i 1
②乘法运算多于直接型。
图
(3)线性相位型
FIR的重要特点是可设计成具有严格线性相位的滤
波器,此时 h(n) 满足偶对称或奇对称条件。 h(n) 偶对称时,
N 1 2
N为偶数, H (z) h(n)[Z n Z (N 1n) ] n0
N为奇数,
H (z)
N 11 2
h(n)[z n
z ( N 1n) ]
2 sin( N 2
)
梳状滤波器频响
第二部分(IIR部分)是一组并联的一阶网络:
H
k
(z)
H (k) 1WNk z
1
此一阶网络在单位圆上有一个极点:
zK
WNk
e j 2 k N
为 2该k网的络谐在振器 。2N这k处些的并频联响谐为振器的,极是点一正个好谐各振自频抵率
消一N个梳状滤波器的零点,从而使这个频率点的响应
只有输出支路的节点称为输入节点或源点; 只有输入支路的节点称为输出节点或阱点; 既有输入支路又有输出支路的节点叫做混合节点。 通路是指从源点到阱点之间沿着箭头方向的连续 的一串支路,通路的增益是该通路上各支路增益 的乘积。 回路是指从一个节点出发沿着支路箭头方向到达 同一个节点的闭合通路,它象征着系统中的反馈 回路。组成回路的所有支路增益的乘积通常叫做 回路增益。
第九章数字滤波器的分类及结构
画出该滤波器的直接型结构。
解答:如右图所示。 直接型结构的特点:
x ( n) 5/4 -3/4 1/8 z-1 z-1 8 -4 11
y(n)
所需要的延迟单元最少;
系统调整不方便; 受有限字长影响较大。
z-1
-2
3. IIR 滤波器的结构
对系统函数 H(z) 进行因式分解:
H ( z)
M
1.
2. 3. 4. 5.
数字滤波器的分类
数字滤波器结构的表示方法 IIR 滤波器的结构 FIR 滤波器的结构 离散时间系统 的 Lattice 结构
1. 滤波器的分类
根据单位冲激响应 h(n) 的时间特性分类:
无限冲激响应数字滤波器(IIR) 有限冲激响应数字滤波器(FIR)
根据实现方法和形式分类:
r 0
M
3. IIR 滤波器的结构
表示为两个系统级联的形式:
x ( n)
H 1 ( z) b0 z-1
H 1 ( z ) b( r ) z
r 0 M r
y′ (n)
H 2 ( z)
y(n)
x ( n)
y′(n)
-a1 -a2 z-1 z- 1
y(n)
1 1 a(k ) z k
k 1 N
b1
z-1
b2
bM-1
H 2 ( z)
z-1
bM
-aN-1 -aN z-1
称为直接Ⅰ型结构。
3. IIR 滤波器的结构
直接Ⅰ型的变型:
x ( n)
H 2 ( z) y′ (n) H 1 ( z) b0 b1 b2 bM-1 -aN-1
H 1 ( z ) b( r ) z r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、现代滤波器
它主要研究内容是从含有噪声的数据记录(又称时间序列) 中估计出信号的某些特征或信号本身。一旦信号被估计出, 那么估计出的信号将比原信号会有高的信噪比。
现代滤波器把信号和噪声都视为随机信号,利用它们的统计 特征(如自相关函数、功率谱等)导出一套最佳估值算法, 然后用硬件或软件予以实现。 现代滤波器理论源于维纳在40年代及其以后的工作,这一类 滤波器的代表为维纳滤波器,此外,还有卡尔曼滤波器、线 性预测器、自适应滤波器。
第一节 引言
一、什么是数字滤波器
顾名思义:其作用是对输入信号起到滤波的作用; 即DF是由差分方程描述的一类特殊的 离散时间系统。 功能: 把输入序列通过一定的运算变换成输出 序列。不同的运算处理方法决定了滤波 器的实现结构的不同。
二、数字滤波器的工作原理
设:x(n)是系统的输入,X(ej)是其傅立叶变换; y(n)是系统的输出,Y(ej)是其傅立叶变换; 则:
3、带通滤波器(BPAF/BPDF)
(Bandpass analog filter / Bandpass digital filter)
4、带阻滤波器(BSAF/BSDF)
(Bandstop analog filter / Bandstop digital filter)
4、模拟滤波器的理想幅频特性
1、经典滤波器
假定输入信号x(n)中的有用成分和希望去除的成分,各自 占有不同的频带。 当x(n)经过一个线性系统(即滤波器)后即可将欲去除的 成分有效地去除。
|X(ej)|
无用 有用 c
|H
c
如果信号和噪声的频谱相互重叠,那么经典滤波器将 无能为力,此时可以设计现代滤波器来解决。
则这一系统差分方程为:
y( n) a i y( n i ) bi x( n i )
i 1 i 0
N
M
2、直接I型
直接I型流图
y( n) a i y( n i ) bi x( n i )
i 1 i 0
N
M
IIR DF的差分方程就代表了一种最直接的计算公式,用流图表
1、方框图、流图表示法 方框图表示法 信号流图表示法
相加
a
乘常数
a
延时
z-1
z-1
例:二阶数字滤波器:
y(n) a1 y(n 1) a2 y(n 2) b0 x(n)
其方框图及流图结构如下:
x(n) b0 y(n)
x(n) b0
a1 a2
z-1 z-1
y(n)
a1
a2
z-1 z-1
LPAF
H ( j )
c
HPAF
c
H ( j )
c
BPAF
c
H ( j )
c1
BSAF
c2
H ( j )
c2 c1 c1
c2
5、数字滤波器的理想幅频特性
LPAF
H ( e j )
……… ……… ………
2 c c
H ( e j )
2
………
HPAF
3 2 c c
H ( e j )
2
3
………
BPAF
3 2
c 1 c 2 2
H ( e j )
3
………
BPAF
………
3 2
c 1 c 2 2
3
………
说明:可通过流图或方框图看出系统的运算步骤和运算结构。 以后我们用流图来分析数字滤波器结构。
四、数字滤波器的分类
滤波器的种类很多,分类方法也不同。 1、从功能上分;低通、带通、高通、带阻。 2、从实现方法上分:FIR、IIR 3、从设计方法上来分: Butterworth(巴特沃斯)、 Chebyshev(切比雪夫)、 Ellips(椭圆)等。 4、从处理信号分:经典滤波器、现代滤波器
IIR DF类型有:
直接型、级联型、并联型。 直接型结构:
直接I型、直接II型(正准型、典范型)
1、 IIR DF系统函数及差分方程
一个N阶IIR DF有理的系统函数可能表示为:
H (z)
b Z
i 0 N i i 1
M
i
1 ai Z
i
Y (z) X (z)
注:以下我们讨论M<=N情况。
x(n)
LTI系统的输出为:
h(n)
y(n)
y( n)
m
1 j j x ( m ) h ( n m ) F [ X ( e ) H ( e )]
三、数字滤波器表示方法
表示方法:方框图表示法、流图表示法
三种运算:相加、乘以常数、延时 基本运算单元:加法器、单位延时、乘常数的 乘法器。
现出来的实现结构即为直接I型结构(即由差分方程直接实现)。
x(n) 第一部分是一 个对输入x(n)的 M节延时链结构 。即每个延时 抽头后加权相 加,即是一个 横向网络 b0 a1 y(n) z-1 z-1 第二部分是一 个N节延时链结 构网络。不过 它是对y(n)延时 ,因而是个反 馈网络
第二节 IIR DF的基本结构
一、IIR DF特点 1、单位冲激响应h(n)是无限长的:n→∞ 2、系统函数H(z)在有限长z平面(0<|z|<∞) 有极点存在。 3、结构上存在输出到输入的反馈,也即结构上 是递归型的。 4、因果稳定的IIR滤波器其全部极点一定在单位圆内。
二、IIR DF基本结构
注:本课程主要讲经典滤波器
3、模拟滤波器和数字滤波器
经典滤波器从功能上分又可分为: 1、低通滤波器(LPAF/LPDF)
(Low pass analog filter / Low pass digital filter)
2、高通滤波器(HPAF/HPDF)
(High pass analog filter / High pass digital filter)
五、研究数字滤波器结构意义
滤波器的基本特性(如有限长冲激响应FIR与无限 长冲激响应IIR)决定了结构上有不同的特点。 不同结构所需的存储单元及乘法次数不同,前者影 响复杂性,后者影响运算速度。
有限精度(有限字长)实现情况下,不同运算结构 的误差及稳定性不同。
好的滤波器结构应该易于控制滤波器性能,适合于 模块化实现,便于时分复用。