2016年重庆市高考数学二诊试卷(理科)(解析版)
2016年高考理科数学全国卷2(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,{0}1,2M =,2{|320}N x x x =-+≤,则M N = ( )A .{1}B .{2}C .{0,1}D .{1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =( )A .5-B .5C .4i -+D .4i -- 3.设向量a ,b 满足|a +b||a -b|=则a b =( )A .1B .2C .3D .5 4.钝角三角形ABC △的面积是12,1AB =,BC =,则AC =( )A .5BC .2D .15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.456.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59 C .1027D .137.执行如图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7 8.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a =( ) A .0 B .1 C .2D .39.设x ,y 满足约束条件70,310,350,x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥则2z x y =-的最大值为( )A .10B .8C .3D .210.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,O 为坐标原点,则OAB △的面积为 ( )ABC .6332D .94 11.直三棱柱111ABC A B C -中,90BCA ∠=,M ,N 分别是11A B ,11AC 的中点,1BC CA CC ==,则BM 与AN 所成角的余弦值为( )A .110B .25 CD12.设函数π()3sin x f x m,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.10()x a +的展开式中,7x 的系数为15,则a = (用数字填写答案). 14.函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为 .15.已知偶函数()f x 在[0,)+∞上单调递减,(2)0f =,若(1)0f x ->,则x 的取值范围是 .16.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足11a =,131n n aa +=+.(Ⅰ)证明:1{}2n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1211132n a a a ++⋅⋅⋅+<.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设二面角D AE C --为60,1AP =,AD =求三棱锥E ACD -的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:121()()ˆ()nii i ni i tt y y bt t ==--=-∑∑,ˆˆay bt =-.20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数()e e 2x xf x x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时填写试题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π0,2θ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 132016年普通高等学校招生全国统一考试(全国新课标卷2)【解析】集合A B {0,1,2,3}=A B 的值.【解析】向量a(4,m),b(3,2)-,a b (4,m ∴+=-又(a b)b +⊥,12∴-【提示】求出向量a b +的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得答案.【解析】输入的数学试卷第10页(共39页)数学试卷第11页(共39页)数学试卷第12页(共39页)5 / 13:πcos 4⎛- ⎝:π2cos 4⎛⎫-α= ⎝【提示】方法1:利用诱导公式化22π1n 1,π∴=解得e 2=.1数学试卷第16页(共39页)数学试卷第17页(共39页)数学试卷第18页(共39页)(Ⅰ)某保险的基本保费为7 / 13数学试卷 第22页(共39页)数学试卷 第23页(共39页) 数学试卷 第24页(共39页)(Ⅰ)ABCD 是菱形,AC BD ⊥,则,AC 6=,AEOD 1AO=,则, ,又OHEF H =,为坐标原点,建立如图所示空间直角坐标系,AB 5=,C(1,3,0),D (0,0,3)',AB (4,3,0)=,AD (1,3,3)'=-,AC (0,6,0)=,设平面的一个法向量为n (x,y,z)=11n AB 0n AD 0⎧=⎪⎨'=⎪⎩,得3y 03y 3z 0=⎧⎨+=3=,得n (3,4,5)∴=-同理可求得平面AD '的一个法向量n (3,01)=,的平面角为θ,122n n 9255210n n +==,∴二面角9 / 13为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到AB 、AD '、AC的一个法向量n 、n ,设二面角221234k +,由2212121k 413k 341kk =+⎛⎫++- ⎪⎝⎭,由AM =22212121k434k 3k k=+++, 整理可得2(k 1)(4k k 4)0--+=,由24k -212144134⎫=⎪+⎭轴对称,由MA ⊥数学试卷 第28页(共39页)数学试卷 第29页(共39页) 数学试卷 第30页(共39页)226t 3tk +,26t t 3k k+, AN ,可得2226t 6t 21k 1kt 3tk 3k k+=+++, 整理得26k 3kt -=,由椭圆的焦点在x 轴上,11 / 13 当2)(2,)-+∞2)和(2,-+∞x 2e f (0)=2>x 2e a 2⎫+⎪⎭a ∈x x 2(x)e 2-=的值域为t 2e a 2=-,只需t 2e 02≤0,可得t ∈t t 2e e 2t 2=+t e (t +22.【答案】(Ⅰ)DF CE ⊥,Rt DFC Rt EDC ∴△∽△,DF CF ED CD∴=, DE DG =,CD BC =,DF CF DG BC∴=,又GDF DEF BCF ∠=∠=∠, GDF BCF ∴△∽△,CFB DFG ∴∠=∠,GFB GFC CFB GFC DFG DFC 90∴∠=∠+∠=∠+∠=∠=,GFB GCB 180∴∠+∠=,B ∴,C ,G ,F 四点共圆;(Ⅱ)E 为AD 中点,A B 1=,1DG CG DE 2∴===,数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)∴在Rt DFC △中,1GF CD GC 2==,连接GB ,Rt BCG Rt BFG △≌△, BCG BCGF 111S 2S =21=222∴=⨯⨯⨯△四边形.【提示】(Ⅰ)证明B ,C ,G ,F 四点共圆可证明四边形BCGF 对角互补,由已知条件可知BCD 90∠=,因此问题可转化为证明GFB 90∠=;(Ⅱ)在Rt DFC △中,1GF CD GC ==,因此可得BCG BFG △≌△,则BCG BCGF S 2S =△四边形,据此解答.(Ⅰ)圆,22x ρ=+(Ⅱ)直线x α, l C (6,0)-,13 / 13 【考点】圆的标准方程,直线与圆相交的性质24.【答案】(Ⅰ)当1x 2<-时,不等式f (x)2<可化为:11x x 222---<,解得x 1>-, 11x 2∴-<<-, 当11x 22-≤≤时,不等式f (x)2<可化为:11x x 1222-+-=<,此时不等式恒成立, 11x 22∴-≤≤,当1x 2>时,不等式f (x)2<可化为:11x x 222++-<,解得x 1<, 1x 12∴<<,综上可得M (1,1)=-; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,即2222a b 2ab 1a 2ab b +++>++, 即22(ab 1)(a b)+>+,即a b ab 1+<+.【提示】(Ⅰ)分当1x 2<-时,当11x 22-≤≤时,当1x 2>时三种情况,分别求解不等式,综合可得答案; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,配方后,可证得结论. 【考点】绝对值不等式的解法。
2016年高考全国2卷理科数学及答案
绝密★启用前2016年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共12页)(适用地区:贵州,甘肃,青海,西藏,黑龙江,吉林,辽宁,宁夏,新疆,内蒙古,云南,重庆,陕西,海南)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
2. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
3. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答案卡一并交回。
第I 卷一、 选择题:本题共12小题,每小题5分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
(1) 已知i m m z )1()3(−++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3−,1) (B )(1−,3) (C )(1,∞+) (D )(∞−,3−) (2) 已知集合{}3,2,1=A ,{}Z x x x x B∈<−+=,0)2)(1(,则=B A(A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1− (3) 已知向量),1(m a =,)2,3(−=b 且b b a ⊥+)(,则=m(A )8− (B )6− (C )6 (D )8 (4) 圆0138222=+−−+y x y x的圆心到直线01=−+y ax 的距离为1,则=a(A )34−(B )43− (C )3 (D )2(5) 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7) 若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈−=ππ (B ))(62Z k k x ∈+=ππ(C ))(122Z k k x ∈−=ππ (D ))(122Z k k x ∈+=ππ(8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s(A )7 (B )12(C )17 (D )34(9) 若53)4cos(=−απ,则=α2sin(A )257(B )51(C )51− (D )257−(10) 以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )n 4 (B )n 2 (C )m 4 (D )m 2否是 0,0==s kn k >输入n x ,输出s开始 结束输入a1+=+⋅=k k ax s s(11) 已知21,F F 是双曲线E :12222=−by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2(12) 已知函数))((R x x f ∈满足)(2)(x f x f −=−,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i i y x 1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。
2016届重庆市高三2月调研测试数学理试卷
2016年普通高等学校招生全国统一考试2月调研测试卷数学(理工农医类)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题1.设集合{1,0,1}A =-,2{|}B x x x ==,则A B = ( ) A. {1,0,1}- B. {0,1} C. {0} D. {1}2.已知为虚数单位,复数11i-的虚部是( ) A. 12 B. 12- C. 12i D. 12i -3.某田径队有男运动员42人,女运动员30人,用分层抽样的方法从全体运动员中抽取一个容量为n 的样本。
若抽到的女运动员有5人,则n 的值为( ) A. 5 B. 7 C. 12 D. 184.已知“p q ∧”是假命题,则下列选项中一定为真命题的是( )A. p q ∨B. ()()p q ⌝∧⌝C. ()p q ⌝∨D. ()()p q ⌝∨⌝ 5.sin 80sin 40cos80cos 40- 的值为( )A. B. 12- C. 12D. 6.在平行四边形ABCD 中,E 为BC 的中点,设AC mAE nAD =+,则m n +=( ) A.12 B. C. 32D. 2 7.执行如题7图所示的程序框图,若输入1,2,3a b c ===,则输出的结果为( ) A. 0 B. C. 2 D. 38.已知1,2x y >>,(1)(2)4x y --=,则x y +的最小值是( )A. 5B. 7C. 3+D. 119.已知(,)M a b 是圆222:O x y r +=内不在坐标轴上的一点,直线的方程为2ax by r +=,直线m 被圆O 所截得的弦的中点为M ,则下列说法中正确的是( ) A. //m l 且与圆O 相交 B. m l ⊥且与圆O 相切 C. //m l 且与圆O 相离 D. m l ⊥且与圆O 相离 10.已知实数x 、y 满足10230x y x y --≤⎧⎨--≥⎩,在区间(0,5)内任取两数a 、b ,则目标函数z ax by =+的最小值大于 ) A.15 B. 25 C. 35 D. 4511.已知1x y z >>>,2()()log ()[log2log16]9x y yzxz⋅+=,则( )A. 32y x z = B. 32y xz = C. 2y xz = D. 3223y xz = 12.已知定义在正实数集上的函数()f x 的导函数()f x '满足()()f x f x x'<,则对任意1x 、2x ∈(0,)+∞,下列不等式一定成立的是( )A. 1212()()()f x x f x f x +>+B. )()()(2121x f x f x x f +<+C. 1212()()()f x x f x f x >+D. 1212()()()f x x f x f x <+第Ⅱ卷本卷包括必考题和选考题两部分。
2016年高考全国2卷理科数学试题及答案(精校word解析版)
2016年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )()31-, (B )()13-, (C )()1,∞+ (D )()3∞--,2.已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B =(A ){}1(B ){12},(C ){}0123,,, (D ){10123}-,,,, 3.已知向量(1,)(3,2)a m b =-,=,且()a b b +⊥,则m = (A )8- (B )6- (C )6 (D )84.圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=(A )43- (B )34- (C (D )25. 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9 6.右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π 7.若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈8. 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 ( D )349.若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin2α=(A )725 (B )15(C )15-(D )725-10. 从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为 (A )4n m (B )2n m (C )4m n (D )2m n11. 已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为 (A(B )32(C(D )2 12. 已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点 为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m第Ⅱ卷二、选择题:本题共4小题,每小题5分.13. ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b = .14. α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)15. 有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 16. 若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.19. (本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置10OD '=.(I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.20. (本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.21. (本小题满分12分)(I)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20;x x x -++> (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x--> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 22. (本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD ,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F .(I) 证明:B ,C ,G ,F 四点共圆;(II)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.23. (本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B 两点,AB =l 的斜率.24. (本小题满分10分),选修4—5:不等式选讲 已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab+<+.2016年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学参考答案及解析1. 【解析】A∴30m +>,10m -<,∴31m -<<,故选A . 2. 【解析】C()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,, ∴{}01B =,,∴{}0123A B =,,,,故选C .3. 【解析】D ()42a b m +=-,,∵()a b b +⊥,∴()122(2)0a b b m +⋅=--= 解得8m =,故选D . 4. 【解析】A圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d ==,解得43a =-,故选A .5. 【解析】BE F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法 故选B .6. 【解析】C几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l =,21π2S r ch cl =++表4π16π8π=++28π=,故选C .7. 【解析】B平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .8. 【解析】C第一次运算:0222s =⨯+=,第二次运算:2226s =⨯+=, 第三次运算:62517s =⨯+=,故选C . 9. 【解析】D∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .10. 【解析】C由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在 如图所示的阴影中由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .11. 【解析】A离心率1221F F e MF MF =-,由正弦定理得122112sin 31sin sin 13F F Me MF MF F F ====---A .12. 【解析】B由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +, ∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B . 13. 【解析】2113∵4cos 5A =,5cos 13C =, ∴3sin 5A =,12sin 13C =,()63sin sin sin cos cos sin 65B AC A C A C =+=+=, 由正弦定理得:sin sin b aB A=解得2113b =.14. 【解析】②③④ 15. 【解析】 (1,3) 由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足, 若丙(1,3),则乙(2,3),甲(1,2)不满足, 故甲(1,3), 16. 【解析】 1ln2- ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ) ()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++∴()122122111ln 1ln 11xx x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩解得112x =212x =- ∴1ln 11ln 2b x =+=-.17. 【解析】⑴设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===. ⑵记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,; 当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.18. 【解析】 ⑴设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.⑵设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. ⑶解:设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05EX a a a a a =⨯++⨯+⨯+⨯+⨯0.2550.150.250.30.1750.1 1.23a a a a a a a =+++++=, ∴平均保费与基本保费比值为1.23.19. 【解析】⑴证明:∵54AE CF ==, ∴AE CF AD CD=, ∴EF AC ∥. ∵四边形ABCD 为菱形, ∴AC BD ⊥, ∴EF BD ⊥, ∴EF DH ⊥, ∴EF DH'⊥. ∵6AC =, ∴3AO =; 又5AB =,AO OB ⊥, ∴4OB =, ∴1AE OH OD AO=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OH EF H =I , ∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,, ()430AB =uu u r ,,,()'133AD =-uuur ,,,()060AC =uuu r,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-u r ,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴1212cos n n n n θ⋅==u r u u ru r u u r,∴sin θ= 20. 【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,, 则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-= 解得2x =-或228634k x k -=-+,则222861223434k AM k k -=+++因为AM AN ⊥,所以21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >,212124343k k k=++,整理得()()21440k k k --+=,2440k k -+=无实根,所以1k =. 所以AMN △的面积为221112144223449AM⎫==⎪+⎭.⑵直线AM的方程为(y k x =,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得,()222223230tk x x t k t +++-=解得x =x =所以AM =+=所以3AN k k=+因为2AM AN =所以23k k+,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <. 21. 【解析】⑴证明:()2e 2xx f x x -=+()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞,时,()0f x '>∴()f x 在()()22,-∞--+∞,和上单调递增∴0x >时,()2e 0=12xx f x ->-+ ∴()2e 20x x x -++> ⑵ ()()()24e2e xxa x x ax a g x x ----'=()4e 2e2xxx x ax a x -++=()322e 2x x x a x x-⎛⎫+⋅+ ⎪+⎝⎭=[)01a ∈,由(1)知,当0x >时,()2e 2xx f x x -=⋅+的值域为()1-+∞,,只有一解. 使得2e 2tt a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1ee 1e 22t ttt t t a t t h a t t t -++⋅-++===+ 记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+, ∴()k t 单调递增 ∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,. 22. 【解析】(Ⅰ)证明:∵DF CE ⊥ ∴Rt Rt DEF CED △∽△ ∴GDF DEF BCF ∠=∠=∠ DF CFDG BC=∵DE DG =,CD BC = ∴DF CFDG BC= ∴GDF BCF △∽△ ∴CFB DFG ∠=∠ ∴90GFB GFC CFB GFC DFG DFC ∠=∠+∠=∠+∠=∠=︒ ∴180GFB GCB ∠+∠=︒. ∴B ,C ,G ,F 四点共圆.(Ⅱ)∵E 为AD 中点,1AB =, ∴12DG CG DE ===, ∴在Rt GFC △中,GF GC =, 连接GB ,Rt Rt BCG BFG △≌△, ∴1112=21=222BCG BCGF S S =⨯⨯⨯△四边形.23. 【解析】解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=. ⑵记直线的斜率为k ,则直线的方程为0kx y -=,=即22369014k k =+,整理得253k =,则k = 24. 【解析】解:⑴当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.⑵当()11a b ∈-,,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+, 即1a b ab +<+,证毕.。
重庆南开中学2016高三下二诊模拟试题(理)
h a h b a b
,求证:
ab c
ab 。 2
请考生在第 22、23、24 题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号。 22、 (本小题满分 10 分)选修 4-1:几何证明选讲 如图, ABC 内接于 O , AB 是 O 的直径, PA 是过点 A 的直线,且 PAC ABC 。 (1)求证: PA 是 O 的切线; (2)如果弦 CD交AB 于点 E , AC 8 , CE : ED 6 : 5 , AE : EB 2 : 3 ,求
若以点 M 0,8 为圆心, OA 的长为半径的圆交抛物线 C 于 A, B 两点, 且 ABO 为等边三角形,则 p 的值是( A、 ) D、 )
3 8
B、2
C、6
2 3
11、已知 a 2b 1 且 b 1 ,则 A、 2,1 2 2
1 a 的取值范围( a b
4
Go the distance
5
Go the distance
6
Go the distance
7
Go the distance
8
6 .8 2 6 (附: 161 12.7 , 若 z ~ N , 2 , 则 P z 0
,P 2 z 2 0.9544 。 )
19、 (本小题满分 12 分)
AD // BC , BAD 如图①, 在直角梯形 ABCD 中,
1 1 的取值范围。 PM PN
24、 (本小题满分 10 分)选修 4-5:不等式选讲 设不等式 2 x 1 1 的解集为 M ,且 a M , b M 。 (1)试比较 ab 1 与 a b 的大小;
2016年全国统一高考新课标版Ⅱ卷全国2卷理科数学试卷及参考答案与解析
2016年全国统一高考新课标版Ⅱ卷全国2卷理科数学试卷及参考答案与解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是( )A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)2.(5分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B等于( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}3.(5分)已知向量=(1,m),=(3,-2),且(+)⊥,则m=( )A.-8B.-6C.6D.84.(5分)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-B.-C.D.25.(5分)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.96.(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π7.(5分)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为( )A.x=-(k∈Z)B.x=+(k∈Z)C.x=-(k∈Z)D.x=+(k∈Z)8.(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7B.12C.17D.349.(5分)若cos(-α)=,则sin2α=( )A. B. C.- D.-10.(5分)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn构成n个数对(x1,y1),(x2,y2)…(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A. B. C. D.11.(5分)已知F1,F2是双曲线E:-=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为( )A. B. C. D.212.(5分)已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则(xi+yi)=( )A.0B.mC.2mD.4m二、填空题:本题共4小题,每小题5分.13.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b =.14.(5分)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是(填序号)15.(5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.16.(5分)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b =.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)Sn 为等差数列{an}的前n项和,且a1=1,S7=28,记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{bn}的前1000项和.18.(12分)某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.(12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE =CF=,EF交于BD于点H,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B-D′A-C的正弦值.20.(12分)已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.21.(12分)(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x-2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.请考生在第22~24题中任选一个题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率. [选修4-5:不等式选讲]24.已知函数f(x)=|x-|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.2016年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是( )A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)【分析】利用复数对应点所在象限,列出不等式组求解即可.【解答】解:z=(m+3)+(m-1)i在复平面内对应的点在第四象限,可得:,解得-3<m<1.故选:A.【点评】本题考查复数的几何意义,考查计算能力.2.(5分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B等于( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}【分析】先求出集合A,B,由此利用并集的定义能求出A∪B的值.【解答】解:∵集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z}={0,1},∴A∪B={0,1,2,3}.故选:C.【点评】本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.3.(5分)已知向量=(1,m),=(3,-2),且(+)⊥,则m=( )A.-8B.-6C.6D.8【分析】求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.【解答】解:∵向量=(1,m),=(3,-2),∴+=(4,m-2),又∵(+)⊥,∴12-2(m-2)=0,解得:m=8,故选:D.【点评】本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.4.(5分)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-B.-C.D.2【分析】求出圆心坐标,代入点到直线距离方程,解得答案.【解答】解:圆x2+y2-2x-8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y-1=0的距离d==1,解得:a=,故选:A.【点评】本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档.5.(5分)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9【分析】从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,由组合数可得最短的走法,同理从F到G,最短的走法,有C31=3种走法,利用乘法原理可得结论.【解答】解:从E到F,每条东西向的街道被分成2段,每条南北向的街道被分成2段,从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有C42C22=6种走法.同理从F到G,最短的走法,有C31C22=3种走法.∴小明到老年公寓可以选择的最短路径条数为6×3=18种走法.故选:B.【点评】本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题6.(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π【分析】空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.【解答】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.【点评】本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.7.(5分)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为( )A.x=-(k∈Z)B.x=+(k∈Z)C.x=-(k∈Z)D.x=+(k∈Z)【分析】利用函数y=Asin(ωx+φ)(A>0,ω>0)的图象的变换及正弦函数的对称性可得答案.【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.【点评】本题考查函数y=Asin(ωx+φ)(A>0,ω>0)的图象的变换规律的应用及正弦函数的对称性质,属于中档题.8.(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7B.12C.17D.34【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的x=2,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=6,k=2,不满足退出循环的条件;当输入的a为5时,S=17,k=3,满足退出循环的条件;故输出的S值为17,故选:C.【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.9.(5分)若cos(-α)=,则sin2α=( )A. B. C.- D.-【分析】法1°:利用诱导公式化sin2α=cos(-2α),再利用二倍角的余弦可得答案. 法°:利用余弦二倍角公式将左边展开,可以得sinα+cosα的值,再平方,即得sin2α的值【解答】解:法1°:∵cos(-α)=,∴sin2α=cos(-2α)=cos2(-α)=2cos2(-α)-1=2×-1=-,法2°:∵cos(-α)=(sinα+cosα)=,∴(1+sin2α)=,∴sin2α=2×-1=-,故选:D.【点评】本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.10.(5分)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn构成n个数对(x1,y1),(x2,y2)…(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A. B. C. D.【分析】以面积为测度,建立方程,即可求出圆周率π的近似值.【解答】解:由题意,两数的平方和小于1,对应的区域的面积为π•12,从区间[0,1】随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),对应的区域的面积为12.∴=∴π=.故选:C.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.11.(5分)已知F1,F2是双曲线E:-=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为( )A. B. C. D.2【分析】由条件MF1⊥MF2,sin∠MF2F1=,列出关系式,从而可求离心率.【解答】解:由题意,M为双曲线左支上的点,则丨MF1丨=,丨MF2丨=,∴sin∠MF2F1=,∴=,可得:2b4=a2c2,即b2=ac,又c2=a2+b2,可得e2-e-=0,e>1,解得e=.故选:A.【点评】本题考查双曲线的定义及离心率的求解,关键是找出几何量之间的关系,考查数形结合思想,属于中档题.12.(5分)已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则(xi+yi)=( )A.0B.mC.2mD.4m【分析】由条件可得f(x)+f(-x)=2,即有f(x)关于点(0,1)对称,又函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,计算即可得到所求和.【解答】解:函数f(x)(x∈R)满足f(-x)=2-f(x), 即为f(x)+f(-x)=2,可得f(x)关于点(0,1)对称,函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,(x2,y2)为交点,即有(-x2,2-y2)也为交点,…则有(xi +yi)=(x1+y1)+(x2+y2)+…+(xm+ym)=[(x1+y1)+(-x1+2-y1)+(x2+y2)+(-x2+2-y2)+…+(xm+ym)+(-xm+2-ym)]=m.故选:B.【点评】本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题.二、填空题:本题共4小题,每小题5分.13.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.【分析】运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.【解答】解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.【点评】本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.14.(5分)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是②③④(填序号)【分析】根据空间直线与平面的位置关系的判定方法及几何特征,分析判断各个结论的真假,可得答案.【解答】解:①如果m⊥n,m⊥α,n∥β,不能得出α⊥β,故错误;②如果n∥α,则存在直线l⊂α,使n∥l,由m⊥α,可得m⊥l,那么m⊥n.故正确;③如果α∥β,m⊂α,那么m与β无公共点,则m∥β.故正确④如果m∥n,α∥β,那么m,n与α所成的角和m,n与β所成的角均相等.故正确;故答案为:②③④【点评】本题以命题的真假判断与应用为载体,考查了空间直线与平面的位置关系,难度中档.15.(5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是1和3 .【分析】可先根据丙的说法推出丙的卡片上写着1和2,或1和3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.【解答】解:根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;∴根据甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又甲说,“我与乙的卡片上相同的数字不是2”;∴甲的卡片上写的数字不是1和2,这与已知矛盾;∴甲的卡片上的数字是1和3.故答案为:1和3.【点评】考查进行简单的合情推理的能力,以及分类讨论得到解题思想,做这类题注意找出解题的突破口.16.(5分)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=1-ln2 .【分析】先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可【解答】解:设y=kx+b与y=lnx+2和y=ln(x+1)的切点分别为(x1,kx1+b)、(x2,kx2+b);由导数的几何意义可得k==,得x1=x2+1再由切点也在各自的曲线上,可得联立上述式子解得;从而kx1+b=lnx1+2得出b=1-ln2.【点评】本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)Sn 为等差数列{an}的前n项和,且a1=1,S7=28,记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{bn}的前1000项和.【分析】(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解b1,b11,b101;(Ⅱ)找出数列的规律,然后求数列{bn}的前1000项和.【解答】解:(Ⅰ)Sn 为等差数列{an}的前n项和,且a1=1,S7=28,7a4=28.可得a4=4,则公差d=1.an=n,b n =[lgn],则b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.b 100=b101=b102=b103=…=b999=2,b10,00=3.数列{bn}的前1000项和为:9×0+90×1+900×2+3=1893.【点评】本题考查数列的性质,数列求和,考查分析问题解决问题的能力,以及计算能力. 18.(12分)某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.【分析】(Ⅰ)上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,由此利用该险种一续保人一年内出险次数与相应概率统计表根据对立事件概率计算公式能求出一续保人本年度的保费高于基本保费的概率.(Ⅱ)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意求出P(A),P(AB),由此利用条件概率能求出若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率.(Ⅲ)由题意,能求出续保人本年度的平均保费与基本保费的比值.【解答】解:(Ⅰ)∵某保险的基本保费为a(单位:元),上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,∴由该险种一续保人一年内出险次数与相应概率统计表得:一续保人本年度的保费高于基本保费的概率:=1-0.30-0.15=0.55.p1(Ⅱ)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意P(A)=0.55,P(AB)=0.10+0.05=0.15,由题意得若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率:p=P(B|A)===.2(Ⅲ)由题意,续保人本年度的平均保费与基本保费的比值为:=1.23,∴续保人本年度的平均保费与基本保费的比值为1.23.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式、条件概率计算公式的合理运用.19.(12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE =CF=,EF交于BD于点H,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B-D′A-C的正弦值.【分析】(Ⅰ)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得EF⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD;(Ⅱ)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD′与平面AD′C的一个法向量,设二面角二面角B-D′A-C的平面角为θ,求出|cosθ|.则二面角B-D′A-C的正弦值可求.【解答】(Ⅰ)证明:∵ABCD是菱形,∴AD=DC,又AE=CF=,∴,则EF∥AC,又由ABCD是菱形,得AC⊥BD,则EF⊥BD,∴EF⊥DH,则EF⊥D′H,∵AC=6,∴AO=3,又AB=5,AO⊥OB,∴OB=4,∴OH==1,则DH=D′H=3,∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH,又OH∩EF=H,∴D′H⊥平面ABCD;(Ⅱ)解:以H为坐标原点,建立如图所示空间直角坐标系,∵AB=5,AC=6,∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,-3,0),,,设平面ABD′的一个法向量为,由,得,取x=3,得y=-4,z=5.∴.同理可求得平面AD′C的一个法向量,设二面角二面角B-D′A-C的平面角为θ,则|cosθ|=.∴二面角B-D′A-C的正弦值为sinθ=.【点评】本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题.20.(12分)已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.【分析】(Ⅰ)方法一、求出t=4时,椭圆方程和顶点A,设出直线AM的方程,代入椭圆方程,求交点M,运用弦长公式求得|AM|,由垂直的条件可得|AN|,再由|AM|=|AN|,解得k=1,运用三角形的面积公式可得△AMN的面积;方法二、运用椭圆的对称性,可得直线AM的斜率为1,求得AM的方程代入椭圆方程,解方程可得M,N的坐标,运用三角形的面积公式计算即可得到;(Ⅱ)直线AM的方程为y=k(x+),代入椭圆方程,求得交点M,可得|AM|,|AN|,再由2|AM|=|AN|,求得t,再由椭圆的性质可得t>3,解不等式即可得到所求范围.【解答】解:(Ⅰ)方法一、t=4时,椭圆E的方程为+=1,A(-2,0),直线AM的方程为y=k(x+2),代入椭圆方程,整理可得(3+4k2)x2+16k2x+16k2-12=0,解得x=-2或x=-,则|AM|=•|2-|=•,由AN⊥AM,可得|AN|=•=•,由|AM|=|AN|,k>0,可得•=•,整理可得(k-1)(4k2+k+4)=0,由4k2+k+4=0无实根,可得k=1,即有△AMN的面积为|AM|2=(•)2=;方法二、由|AM|=|AN|,可得M,N关于x轴对称,由MA⊥NA.可得直线AM的斜率为1,直线AM的方程为y=x+2,代入椭圆方程+=1,可得7x2+16x+4=0,解得x=-2或-,M(-,),N(-,-),则△AMN的面积为××(-+2)=;(Ⅱ)直线AM的方程为y=k(x+),代入椭圆方程,可得(3+tk2)x2+2t k2x+t2k2-3t=0,解得x=-或x=-,即有|AM|=•|-|=•,|AN|═•=•,由2|AM|=|AN|,可得2•=•,整理得t=,由椭圆的焦点在x轴上,则t>3,即有>3,即有<0,可得<k<2,即k的取值范围是(,2).【点评】本题考查椭圆的方程的运用,考查直线方程和椭圆方程联立,求交点,以及弦长公式的运用,考查化简整理的运算能力,属于中档题.21.(12分)(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x-2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.【分析】从导数作为切入点探求函数的单调性,通过函数单调性来求得函数的值域,利用复合函数的求导公式进行求导,然后逐步分析即可【解答】解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(-∞,-2)∪(-2,+∞)时,f'(x)≥0∴f(x)在(-∞,-2)和(-2,+∞)上单调递增∴x>0时,>f(0)=-1即(x-2)e x+x+2>0(2)g'(x)===a∈[0,1)由(1)知,当x>0时,f(x)=的值域为(-1,+∞),只有一解使得,只需•e t≤0恒成立,可得-2<t≤2,由x>0,可得t∈(0,2]当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(a)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].【点评】该题考查了导数在函数单调性上的应用,重点是掌握复合函数的求导,以及导数代表的意义,计算量较大,难度较大.请考生在第22~24题中任选一个题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.【分析】(Ⅰ)证明B,C,G,F四点共圆可证明四边形BCGF对角互补,由已知条件可知∠BCD=90°,因此问题可转化为证明∠GFB=90°;(Ⅱ)在Rt△DFC中,GF=CD=GC,因此可得△GFB≌△GCB,则S四边形BCGF =2S△BCG,据此解答.【解答】(Ⅰ)证明:∵DF ⊥CE, ∴Rt △DFC ∽Rt △EDC,∴=,∵DE =DG,CD =BC,∴=,又∵∠GDF =∠DEF =∠BCF, ∴△GDF ∽△BCF, ∴∠CFB =∠DFG,∴∠GFB =∠GFC +∠CFB =∠GFC +∠DFG =∠DFC =90°, ∴∠GFB +∠GCB =180°, ∴B,C,G,F 四点共圆.(Ⅱ)∵E 为AD 中点,AB =1,∴DG =CG =DE =,∴在Rt △DFC 中,GF =CD =GC,连接GB,Rt △BCG ≌Rt △BFG, ∴S 四边形BCGF =2S △BCG =2××1×=.【点评】本题考查四点共圆的判断,主要根据对角互补进行判断,注意三角形相似和全等性质的应用.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交与A,B 两点,|AB|=,求l 的斜率.【分析】(Ⅰ)把圆C 的标准方程化为一般方程,由此利用ρ2=x 2+y 2,x =ρcosα,y =ρsinα,能求出圆C 的极坐标方程.(Ⅱ)由直线l 的参数方程求出直线l 的一般方程,再求出圆心到直线距离,由此能求出直线l 的斜率.【解答】解:(Ⅰ)∵圆C 的方程为(x +6)2+y 2=25, ∴x 2+y 2+12x +11=0,∵ρ2=x 2+y 2,x =ρcosα,y =ρsinα,∴C 的极坐标方程为ρ2+12ρcosα+11=0. (Ⅱ)∵直线l 的参数方程是(t 为参数),∴t=,代入y=tsinα,得:直线l的一般方程y=tanα•x,∵l与C交与A,B两点,|AB|=,圆C的圆心C(-6,0),半径r=5,圆心到直线的距离d=.∴圆心C(-6,0)到直线距离d==,解得tan2α=,∴tanα=±=±.∴l的斜率k=±.【点评】本题考查圆的极坐标方程的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线公式、圆的性质的合理运用.[选修4-5:不等式选讲]24.已知函数f(x)=|x-|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.【分析】(I)分当x<时,当≤x≤时,当x>时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a,b∈M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,配方后,可证得结论.【解答】解:(I)当x<时,不等式f(x)<2可化为:-x-x-<2,解得:x>-1,∴-1<x<,当≤x≤时,不等式f(x)<2可化为:-x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:-+x+x+<2,解得:x<1,∴<x<1,综上可得:M=(-1,1);证明:(Ⅱ)当a,b∈M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.【点评】本题考查的知识点是绝对值不等式的解法,不等式的证明,难度中档.第21页,共21页。
2016全国卷Ⅱ高考理科数学试卷及答案(版)(最新整理)
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.
(19) (本小题满分 12 分)
如图,菱形 ABCD 的对角线 AC 与 BD 交于点 O , AB 5 , AC 6 ,点 E, F 分别在 AD,CD 上, AE CF 5 ,
4 EF 交 BD 于点 H .将△DEF 沿 EF 折
到△DEF 的位置,OD 10 . (Ⅰ)证明: DH 平面 ABCD ; (Ⅱ)求二面角 B DA C 的正弦
(19)(本小题满分 12 分)
(I)由已知得 AC BD , AD CD ,又由 AE CF 得 AE CF ,故 AC / / EF . AD CD
因此 EF HD ,从而 EF D'H .由 AB 5 , AC 6 得 DO B0 AB2 AO2 4 . 由 EF / / AC 得 OH AE 1 .所以 OH 1, D'H DH 3 .
(A)24
(B)18
(C)12
(D)9
(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为
(A)20π
(B)24π
23
(C)28π
(D)32π
(7) 若将函数 y 2 sin 2x 的图像向左平移 个单位长度,则平移后图 4 12
像的对称轴为
4
4
(A) x k (k Z ) 26
(A) 8
(B) 6
(C) 6
(D) 8
(4) 圆 x2 y 2 2x 8y 13 0 的圆心到直线 ax y 1 0 的距离为 1,则 a
(A) 4 3
(B) 3 4
(C) 3
(D) 2
(5) 如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于 G 处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为
2016年高考试题:理科数学(全国Ⅱ卷)(解析版)
一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合 题目要求的.
(1)已知 z (m 3) (m 1) i 在复平面内对应的点在第四象限,则实数 m 的取值范围是
(A) (3,1) (B) (1,3) (C) (1, +) (D) (-, 3)
(II)证明:当 a [0,1)
时,函数
g(x)=
ex
ax x2
a
(x
0)
有最小值.设 g(x)的最小值为 h(a) ,求函数 h(a)
的值域.
请考生在 22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
(22)(本小题满分 10 分)选修 4-1:集合证明选讲 如图,在正方形 ABCD,E,G 分别在边 DA,DC 上(不与端点重合),且 DE=DG,过 D 点作 DF⊥CE,垂足为 F. (I) 证明:B,C,E,F 四点共圆; (II)若 AB=1,E 为 DA 的中点,求四边形 BCGF 的面积.
26
26
2 12
2 12
(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的
x=2,n=2,依次输入的 a 为 2,2,5,则输出的 s=
(A)7 (B)12 (C)17 (D)34
π (9)若 cos( –α)=
3,则 sin 2α=
4
5
(A) 7 (B)1 (C)–1 (D)– 7
2016 年普通高等学校招生全国统一考试
理科数学
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.
2016年重庆市高考理科数学试题与答案
2016年重庆市高考理科数学试题与答案(满分150分,时间120分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共5页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共12小题 ,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知Z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(-3,1) (B )(-1,3) (C )()1,+∞ (D )(),3-∞-(2)已知集合{}1,2,3A =,{}|(1)(2)0,B x x x x Z =+-<∈,则AB =(A ){1} (B ){1,2} (C ){0,1,2,3} (D ){-1,0,1,2,3}(3)已知向量a=(1,m ),b=(3,-2),且(a+b )⊥b ,则m=(A )-8 (B )-6 (C )6 (D )8(4)圆22x +y -2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=(A )4-3 (B )3-4(C (D )2 (5)如图,小明从街道的E 处出发,先到F 处与小明回合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数2sin 2y x = 的图像向左平移12π个单位长度,则平移后的图像对称轴为 (A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈(8)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图。
执行该程序框图,若输入的 x=2,n=2,依次输入的a 为2,2,5,则输入的s=(A )7 (B )12 (C )17 (D )34 (9)若cos (4π-α)=35,则sin2α= (A )725 (B )15 (C )-15 (D )-725(10)从区间[]0,1随机抽取2n 个数12,,...,nx x x , 12,,...,n y y y 构成n 个数对11,x (y ),22,x (y ),…,,n n x (y ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11 1F ,2F 是双曲线E :22221a x y b+=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,121sin 3MF F ∠=,则E 的离心率为(A (B )32(C (D )2(12)已知函数f x ∈()(R )满足f x =f x (-)2-(),若函数x 1y=x+与y=f x ()图像的x 1y=f x x +()交点为(1x ,1y );(2x ,2y ),…,(m x ,m y ),则1()mi i i x y =+=∑ (A )0 (B)m (C)2m (D)4m第II 卷本卷包括必考题和选考题两部分,第13~21题为必考题,每个试题考生都必须作答。
重庆市高考数学二诊试卷(理科).docx
2016年重庆市高考数学二诊试卷(理科)一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.设集合A={x||x|<3},B={x|2x>1},则A∩B=()A.(﹣3,0)B.(﹣3,3)C.(0,3)D.(0,+∞)2.已知为纯虚数,则实数a的值为()A.2 B.﹣2 C.﹣ D.3.设单位向量,的夹角为, =+2, =2﹣3,则在方向上的投影为()A.﹣B.﹣C.D.4.在△ABC中,内角A,B,C的对边分别为a,b,c,且a2+b2﹣c2=ab=,则△ABC的面积为()A.B.C.D.5.在区间[1,4]上任取两个实数,则所取两个实数之和大于3的概率为()A.B.C.D.6.某几何体的三视图如图所示,则该几何体的体积为()A.B.2 C.D.37.执行如图所示的程序框图,若输入t的值为5,则输出的s的值为()A.B.C.D.8.若直线y=ax是曲线y=2lnx+1的一条切线,则实数a=()A.e﹣B.2e﹣C.e D.2e9.设x,y满足约束条件,若z=ax+y的最大值为3a+9,最小值为3a﹣3,则a的取值范围是()A.a≤﹣1 B.a≥1 C.﹣1≤a≤1 D.a≥1或a≤﹣110.已知双曲线﹣=1的离心率为,过右焦点的直线与两条渐近线分别交于A,B,且与其中一条渐近线垂直,若△OAB的面积为,其中O为坐标原点,则双曲线的焦距为()A.2 B.2 C.2D.211.设正三棱锥A﹣BCD的所有顶点都在球O的球面上,BC=1,E、F分别是AB,BC的中点,EF⊥DE,则球O的半径为()A.B.C.D.12.设D,E分别为线段AB,AC的中点,且•=0,记α为与的夹角,则下述判断正确的是()A.cosα的最小值为B.cosα的最小值为C.sin(2α+)的最小值为D.sin(﹣2α)的最小值为二、填空题:本大题共有4小题,每小题5分.13.若(+)4展开式的常数项和为54,且a>0,则a=______.14.将函数y=sinx+cosx的图象向右平移φ(φ>0)个单位,再向上平移1个单位后,所得图象经过点(,1),则φ的最小值为______.15.设函数f(x)在[1,+∞)上为增函数,f(3)=0,且g(x)=f(x+1)为偶函数,则不等式g(2﹣2x)<0的解集为______.16.过直线l:x+y=2上任意点P向圆C:x2+y2=1作两条切线,切点分别为A,B,线段AB 的中点为Q,则点Q到直线l的距离的取值范围为______.三、解答题(解答应写出文字说明、证明过程或演算步骤)17.设数列{an }的各项为正数,且a1,22,a2,24,…,an,22n,…成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记Sn 为等比数列{an}的前n项和,若Sk≥30(2k+1),求正整数k的最小值.18.如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=4,BC=,BD⊥AC,垂足为D,E为棱BB1上的一点,BD∥平面AC1E;(Ⅰ)求线段B1E的长;(Ⅱ)求二面角C1﹣AC﹣E的余弦值.19.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:x 2 5 8 9 1 1y 12 10 8 8 7(Ⅰ)求y关于x的回归方程=x+;(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.(Ⅲ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数,δ2近似为样本方差s2,求P(3.8<X<13.4)附:①回归方程=x+中, =, =﹣b.②≈3.2,≈1.8.若X~N(μ,δ2),则P(μ﹣δ<X<μ+δ)=0.6826,P(μ﹣2δ<X<μ+2δ)=0.9544.20.已知椭圆C: +=1(a>b>0)的左顶点为A,上顶点为B,直线AB的斜率为,坐标原点O到直线AB的距离为.(I)求椭圆C的标准方程;(Ⅱ)设圆O:x2+y2=b2的切线l与椭圆C交于点P,Q,线段PQ的中点为M,求直线l的方程,使得l与直线0M的夹角达到最小.21.设f(x)=(x2﹣x+)e mx,其中实数m≠0.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若g(x)=f(x)﹣x﹣5恰有两个零点,求m的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲].22.如图,四边形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC(Ⅰ)求证:A,B,C,P四点共圆;(Ⅱ)若∠CAD=,AB=1,求四边形ABCP的面积.[选修4-4:坐标系与参数方程].23.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以O为原极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ2=4ρsinθ﹣3(Ⅰ)求曲线C1与曲线C2在平面直角坐标系中的普通方程;(Ⅱ)求曲线C1上的点与曲线C2上的点的距离的最小值.[选修4-5:不等式选讲].24.已知函数f(x)=|x﹣a|+|x﹣2a|(Ⅰ)当a=1时,求不等式f(x)>2的解集;(Ⅱ)若对任意x∈R,不等式f(x)≥a2﹣3a﹣3恒成立,求a的取值范围.2016年重庆市高考数学二诊试卷(理科)参考答案与试题解析一、选择题:共12小题,每小题5分,共60分。
2016全国卷Ⅱ高考理科数学试卷及答案(版)(最新整理)
(B) x k (k Z ) 26
理科数学试卷 第 1 页(共 5 页)
(C) x k (k Z ) 2 12
(D) x k (k Z ) 2 12
(8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行
该程序框图,若输入的 x 2 , n 2 ,依次输入的 a 为 2,2,5,则输出的 s
(A)( 3 ,1) (B)( 1, 3 ) (C)(1, )
(D)( , 3 )
(2) 已知集合 A 1,2,3, B x (x 1)(x 2) 0,x Z,则 A B
(A) 1
(B) 1,2
(C) 0,1,2,3
(D) 1,0,1,2,3
(3) 已知向量 a (1, m) , b (3,2) 且 (a b) b ,则 m
5
13
.
(14) , 是两个平面, m, n 是两条直线,有下列四个命题:
①如果 m n , m , n // ,那么 . ②如果 m , n // ,那么 m n . ③如果 // , m ,那么 m // .
④如果 m // n , // , n // ,那么 m 与 所成的角和 n 与 所成的角相等.
1.75a
2a
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数
0
1
2
3
4
5
理科数学试卷 第 3 页(共 5 页)
概率
0.30
0.15
0.20
0.20
0.10
0.05
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出 60%的概率;
2016年高考理科数学全国新课标Ⅱ卷答案及解析
∴ ,∴ ,
故选C.
3.【解析】D
,
∵ ,∴
解得 ,
故选D.
4.【解析】A
圆 化为标准方程为: ,
故圆心为 , ,解得 ,
故选A.
5.【解析】B
有 种走法, 有 种走法,由乘法原理知,共 种走法
故选B.
6.【解析】C
几何体是圆锥与圆柱的组合体,
设圆柱底面圆半径为 ,周长为 ,圆锥母线长为 ,圆柱高为 .
11.【解析】A
离心率 ,由正弦定理得 .
故选A.
12.【解析】B
由 得 关于 对称,
而 也关于 对称,
∴对于每一组对称点 ,
∴ ,故选B.
13.【解析】
∵ , ,
, ,
,
由正弦定理得: 解得 .
14.【解析】②③④
15.【解析】
由题意得:丙不拿(2,3),
若丙(1,2),则乙(2,3),甲(1,3)满足,
2016年普通高等学校招生全国统一考试(新课标Ⅱ)
理科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.
3.全部答案在答题卡上完成,答在本试题上无效.
4.考试结束后,将本试题和答题卡一并交回.
由图得 , ,由勾股定理得: ,
,
故选C.
7.【解析】B
平移后图像表达式为 ,
令 ,得对称轴方程: ,
故选B.
8.【解析】C
第一次运算: ,
第二次运算: ,
第三次运算: ,
故选C.
9.【解析】D
∵ , ,
重庆市2016届高三2月调研测试理科数学(解析版)
重庆市2016届高三2月调研测试数学一、选择题:共12题1.设集合,则A. B. C. D.【答案】B【解析】本题主要考查集合的基本运算..故选B.【备注】集合的基本运算为高考常考内容,要求熟练掌握.2.已知为虚数单位,复数的虚部是A. B. C. D.【答案】A【解析】本题主要考查复数的概念与运算.,虚部是.故选A.3.某田径队有男运动员人,女运动员人,用分层抽样的方法从全体运动员中抽取一个容量为的样本.若抽到的女运动员有人,则的值为A. B. C. D.【答案】C【解析】本题主要考查分层抽样.由题意得,,解得.选C.4.已知“”是假命题,则下列选项中一定为真命题的是A. B. C. D.【答案】D【解析】本题主要考查逻辑联结词.是假命题,所以或为假命题,所以或为真命题,所以为真命题.故选D.5.的值为A. B. C. D.【答案】C【解析】本题主要考查和角公式.===.故选C.【备注】6.在平行四边形中,为的中点,设,则A. B. C. D.【答案】C【解析】本题主要考查平面向量的线性运算.由题意得,,所以,.故选C.7.执行如图所示的程序框图,若输入,则输出的结果为A. B. C. D.【答案】D【解析】本题主要考查流程图.由图知,,此时,,所以,此时,所以,此时,输出的.故选D.8.已知,则的最小值是A. B. C. D.【答案】B【解析】本题主要考查基本不等式.由题意得==7(当且仅当时等号成立);即的最小值是7.故选B.9.已知是圆内不在坐标轴上的一点,直线的方程为,直线被圆所截得的弦的中点为,则下列说法中正确的是A.且与圆相交B.且与圆相切C.且与圆相离D.且与圆相离【答案】C【解析】本题主要考查两直线的位置关系,直线与圆的位置关系.因为直线被圆所截得的弦的中点为,所以直线,而,所以,而,所以.因为是圆内不在坐标轴上的一点,所以,而圆心到直线的距离,所以与圆相离.故选C.10.已知实数满足,在区间内任取两数,则目标函数的最小值大于的概率为A. B. C. D.【答案】D【解析】本题主要考查线性规划问题,几何概型.由题意得,画出可行域(如图所示),当过点时,取得最小值,若,画出可行域(如图正方形所示),直线如图所示,所对应的区域如图五边形形所示,而,所求概率=.故选D.【备注】体会数形结合思想.11.已知,则A. B. C. D.【答案】A【解析】本题主要考查对数运算.若成立,即,则,代入得:====9,即等式成立,所以满足题意.故选A.【备注】逐个验证.12.已知定义在正实数集上的函数的导函数满足,则对任意,下列不等式一定成立的是A. B.C. D.【答案】B【解析】本题主要考查导数在研究函数中的应用.构造函数,则,而,所以0,即函数在区间内单调递减,令,则,即,即,而,所以,所以,即,即=+<,即成立.故选B.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题:共4题每题5分共20分13.已知二项式的展开式中项的系数为,则实数.【答案】【解析】本题主要考查二项式定理.,令,所以,解得.14.已知等差数列的前项和为,则.【答案】【解析】本题主要考查等差数列的前项和公式和通项公式.设等差数列{}首项为,公差为,由得,解得,所以,所以.【备注】等差数列的前项和公式:;通项公式:.15.如图,在Δ中,是上一点,,则.【答案】【解析】本题主要考查余弦定理.过点作,因为=,所以=;因为,由余弦定理得,所以,在Δ中,,所以.16.已知是双曲线的左、右焦点,过点的直线与圆切于点,则该双曲线的离心率为.【答案】【解析】本题主要考查双曲线的标准方程与几何性质.由题意得,因为为圆的切线,求得直线,直线,联立解得,而,即,与联立,整理得双曲线的离心率.【备注】体会数形结合思想.三、解答题:共8题每题12分共96分17.已知函数.(1)求的最小值;(2)在Δ中,角的对边分别是,若且,求角.【答案】(1)所以的最小值为;(2),所以,由余弦定理得;所以,即,所以Δ为等边三角形,.【解析】本题主要考查三角变换,三角函数的最值,余弦定理. (1),所以的最小值为;(2),所以,由余弦定理得,所以Δ为等边三角形,即.【备注】三角函数常考查:诱导公式,三角恒等变换,正余弦定理,三角形的面积公式等.18.某社区为调查当前居民的睡眠状况,从该社区的岁的人群中随机抽取人进行一次日平均睡眠时间的调查.这人中各年龄组人数的频率分布直方图如图所示,统计各年龄组的“亚健康族”(日平均睡眠时间符合健康标准的称为“健康族”,否则称为“亚健康族”)人数及相应频率,得到统计表如表所示.(1)求的值;(2)用分层抽样的方法从年龄在岁的“亚健康族”中抽取人参加健康睡眠体检活动,现从人中随机选取人担任领队,记年龄在岁的领队有人,求的分布列及数学期望.【答案】(Ⅰ)由题知第一组的频率为2.01002.0=⨯、人数为200,故1000=n ,第二组的频率为3.010)005.001.0015.002.002.0(1=⨯++++-65.03.01000195=⨯=∴p 。
重庆市2016届高三数学下学期二诊试卷理附答案
重庆市2016届高三数学下学期二诊试卷(理附答案)重庆南开中学高2016级高三(下)二诊模拟考试数学试题(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟。
第I卷(选择题共60分)一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1、已知函数的定义域为集合,集合,则()A、B、C、D、2、已知为第二象限角,且,则的值是()A、B、C、D、3、已知为实数,则“”是“”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件4、已知,则函数的图像处的切线的斜率为()A、B、C、D、5、已知公差不为0的等差数列满足成等比数列,为数列的前项和,则的值为()A、B、C、2D、36、执行如图所示的程序框图,则输出的值为()A、3B、4C、5D、67、将函数的图象分别向左和向右移动之后的图象的对称中心重合,则正实数的最小值是()A、B、C、D、8、设点是区域内的任意一点,则使函数在区间上是增函数的概率为()A、B、C、D、9、某四棱锥的三视图如图所示,则该四棱锥的外接球的表面积是()A、4B、6C、12D、2410、已知点是抛物线上一点,为坐标原点,若以点为圆心,的长为半径的圆交抛物线于两点,且为等边三角形,则的值是()A、B、2C、6D、11、已知且,则的取值范围()A、B、C、D、12、如图,正方形的边长为6,点、分别在边、上,且,。
如果对于常数,在正方形的四条边上,有且只有6个不同的点使得成立,那么的取值范围是()A、B、C、D、第II卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分。
把答案填写在答题卡相对应位置上。
13、若(为虚数单位),则复数的值为。
14、将甲乙等5名交警分配到三个不同的路口疏通交通,每个路口至少一人,且甲乙在同一路口的分配方案有种。
15、已知,则。
重庆高考理科数学试题及答案2016(清晰版)重庆高考理科数学试题及答案
重庆高考理科数学试题及答案2016(清晰版)重庆高考理科数学试题及答案
2016高考马上就要开始了,面对目标,信心百倍,人生能有几次搏?面对成绩,心胸豁达,条条大陆通罗马。高考频道第一时间为您提供重庆高考理科数学试题及答案2016(清晰版)解析,让各位考生更了解高考,懂的分析成败。更多重庆高考分数线、重庆高考成绩查询、重庆高考志愿填报、重庆高考录取查询信息等信息请关注我们网站的更新!
高考_2016重庆高考理科数学真题及答案
2016重庆高考理科数学真题及答案注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m = (A )-8 (B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43-(B )34-(C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x =k π2–π6(k ∈Z ) (B )x =k π2+π6 (k ∈Z ) (C )x =k π2–π12 (k ∈Z ) (D )x =k π2+π12(k ∈Z ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)= 35,则sin 2α=(A )725 (B )15 (C )–15 (D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,学科&网1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F 1,F 2是双曲线E 22221x y a b -=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(A(B )32(C(D )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅ 则1()miii x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b = . (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n .(3)如果α∥β,m ⊂α,那么m ∥β. 学科.网(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年重庆市高考数学二诊试卷(理科)一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.设集合A={x||x|<3},B={x|2x>1},则A∩B=()A.(﹣3,0)B.(﹣3,3)C.(0,3)D.(0,+∞)2.已知为纯虚数,则实数a的值为()A.2 B.﹣2 C.﹣D.3.设单位向量,的夹角为,=+2,=2﹣3,则在方向上的投影为()A.﹣B.﹣C.D.4.在△ABC中,内角A,B,C的对边分别为a,b,c,且a2+b2﹣c2=ab=,则△ABC 的面积为()A.B.C.D.5.在区间[1,4]上任取两个实数,则所取两个实数之和大于3的概率为()A.B.C.D.6.某几何体的三视图如图所示,则该几何体的体积为()A.B.2C.D.37.执行如图所示的程序框图,若输入t的值为5,则输出的s的值为()A.B.C.D.8.若直线y=ax是曲线y=2lnx+1的一条切线,则实数a=()A.e﹣B.2e﹣C.e D.2e9.设x,y满足约束条件,若z=ax+y的最大值为3a+9,最小值为3a﹣3,则a的取值范围是()A.a≤﹣1 B.a≥1 C.﹣1≤a≤1 D.a≥1或a≤﹣110.已知双曲线﹣=1的离心率为,过右焦点的直线与两条渐近线分别交于A,B,且与其中一条渐近线垂直,若△OAB的面积为,其中O为坐标原点,则双曲线的焦距为()A.2B.2C.2D.211.设正三棱锥A﹣BCD的所有顶点都在球O的球面上,BC=1,E、F分别是AB,BC的中点,EF⊥DE,则球O的半径为()A.B.C.D.12.设D,E分别为线段AB,AC的中点,且•=0,记α为与的夹角,则下述判断正确的是()A.cosα的最小值为B.cosα的最小值为C.sin(2α+)的最小值为D.sin(﹣2α)的最小值为二、填空题:本大题共有4小题,每小题5分.13.若(+)4展开式的常数项和为54,且a>0,则a=______.14.将函数y=sinx+cosx的图象向右平移φ(φ>0)个单位,再向上平移1个单位后,所得图象经过点(,1),则φ的最小值为______.15.设函数f(x)在[1,+∞)上为增函数,f(3)=0,且g(x)=f(x+1)为偶函数,则不等式g(2﹣2x)<0的解集为______.16.过直线l:x+y=2上任意点P向圆C:x2+y2=1作两条切线,切点分别为A,B,线段AB 的中点为Q,则点Q到直线l的距离的取值范围为______.三、解答题(解答应写出文字说明、证明过程或演算步骤)17.设数列{a n}的各项为正数,且a1,22,a2,24,…,a n,22n,…成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记S n为等比数列{a n}的前n项和,若S k≥30(2k+1),求正整数k的最小值.18.如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=4,BC=,BD⊥AC,垂足为D,E为棱BB1上的一点,BD∥平面AC1E;(Ⅰ)求线段B1E的长;(Ⅱ)求二面角C1﹣AC﹣E的余弦值.19.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单x(单位:℃)的数据,如表:(Ⅰ)求y关于x的回归方程=x+;(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.(Ⅲ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数,δ2近似为样本方差s2,求P(3.8<X<13.4)附:①回归方程=x+中,=,=﹣b.②≈3.2,≈1.8.若X~N(μ,δ2),则P(μ﹣δ<X<μ+δ)=0.6826,P(μ﹣2δ<X<μ+2δ)=0.9544.20.已知椭圆C: +=1(a>b>0)的左顶点为A,上顶点为B,直线AB的斜率为,坐标原点O到直线AB的距离为.(I)求椭圆C的标准方程;(Ⅱ)设圆O:x2+y2=b2的切线l与椭圆C交于点P,Q,线段PQ的中点为M,求直线l的方程,使得l与直线0M的夹角达到最小.21.设f(x)=(x2﹣x+)e mx,其中实数m≠0.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若g(x)=f(x)﹣x﹣5恰有两个零点,求m的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲].22.如图,四边形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC (Ⅰ)求证:A,B,C,P四点共圆;(Ⅱ)若∠CAD=,AB=1,求四边形ABCP的面积.[选修4-4:坐标系与参数方程].23.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以O为原极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ2=4ρsinθ﹣3(Ⅰ)求曲线C1与曲线C2在平面直角坐标系中的普通方程;(Ⅱ)求曲线C1上的点与曲线C2上的点的距离的最小值.[选修4-5:不等式选讲].24.已知函数f(x)=|x﹣a|+|x﹣2a|(Ⅰ)当a=1时,求不等式f(x)>2的解集;(Ⅱ)若对任意x∈R,不等式f(x)≥a2﹣3a﹣3恒成立,求a的取值范围.2016年重庆市高考数学二诊试卷(理科)参考答案与试题解析一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.设集合A={x||x|<3},B={x|2x>1},则A∩B=()A.(﹣3,0)B.(﹣3,3)C.(0,3)D.(0,+∞)【考点】交集及其运算.【分析】求出A中不等式的解集确定出A,求出B中不等式的解集确定出B,找出两集合的交集即可.【解答】解:由A中不等式变形得:﹣3<x<3,即A=(﹣3,3),由B中不等式变形得:2x>1=20,即x>0,∴B=(0,+∞),则A∩B=(0,3),故选:C.2.已知为纯虚数,则实数a的值为()A.2 B.﹣2 C.﹣D.【考点】复数的基本概念.【分析】根据两个复数代数形式的乘除法法则花间要求的式子等于为纯虚数,可得2﹣a=0,且1+2a≠0,由此求得实数a的值.【解答】解:已知==为纯虚数,∴2﹣a=0,且1+2a≠0,解得a=2,故选A.3.设单位向量,的夹角为,=+2,=2﹣3,则在方向上的投影为()A.﹣B.﹣C.D.【考点】平面向量数量积的运算.【分析】根据条件便可得到,且,这样进行数量积的运算便可求出,并求出,而可以得出在方向上的投影为,从而可求出该投影的值.【解答】解:;∴===;=;∴在方向上的投影为:=.故选:A.4.在△ABC中,内角A,B,C的对边分别为a,b,c,且a2+b2﹣c2=ab=,则△ABC 的面积为()A.B.C.D.【考点】余弦定理.【分析】利用余弦定理计算cosC,得出sinC,代入面积公式S=即可求出面积.【解答】解:在△ABC中,∵a2+b2﹣c2=ab=,∴cosC==,∴sinC==.∴S△ABC=absinC==.故选:B.5.在区间[1,4]上任取两个实数,则所取两个实数之和大于3的概率为()A.B.C.D.【考点】几何概型.【分析】本题是一个等可能事件的概率,试验发生包含的事件是在区间[0,4]上任取两个数x和y,写出事件对应的集合,做出面积,满足条件的事件是x+y>3,写出对应的集合,做出面积,得到概率.【解答】解:由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是在区间[0,4]上任取两个数x和y,事件对应的集合是Ω={(x,y)|1≤x≤4,1≤y≤4}对应的面积是sΩ=9,满足条件的事件是x+y>3,事件对应的集合是A={(x,y)|1≤x≤4,1≤y≤4,x+y>3}如图对应的图形(阴影部分)的面积是s A=∴根据等可能事件的概率得到P=1﹣=;故选:D.6.某几何体的三视图如图所示,则该几何体的体积为()A.B.2C.D.3【考点】由三视图求面积、体积.【分析】由三视图知几何体是一个三棱柱,且在一个角上截去一个三棱锥,并求出几何元素的长度,利用柱体、椎体的体积公式计算即可.【解答】解:由三视图知几何体是一个三棱柱,且在一个角上截去一个三棱锥C﹣ABD,侧棱与底面垂直,底面是以2为边长的等边三角形,高为3,且D是中点,则BD=1,∴几何体的体积V===,故选:C.7.执行如图所示的程序框图,若输入t的值为5,则输出的s的值为()A.B.C.D.【考点】程序框图.【分析】由已知中的程序框图及已知中输入t=5,可得:进入循环的条件为k<5,即k=2,3,4,模拟程序的运行结果,即可得到输出的S值.【解答】解:模拟执行程序,可得t=5,s=1,k=2满足条件k<t,执行循环体,s=1+=,k=3满足条件k<t,执行循环体,s=﹣=,k=4满足条件k<t,执行循环体,s=+=,k=5不满足条件k<t,退出循环,输出s的值为.故选:D.8.若直线y=ax是曲线y=2lnx+1的一条切线,则实数a=()A.e﹣B.2e﹣C.e D.2e【考点】利用导数研究曲线上某点切线方程.【分析】设出切点坐标,求出函数的导数,利用导数的几何意义求出切线方程,进行比较建立方程关系进行求解即可.【解答】解:函数的定义域为(0,+∞),设切点为(m,2lnm+1),则函数的导数f′(x)=,则切线斜率k=,则对应的切线方程为y﹣(1+2lnm)=(x﹣m)=x﹣2,即y=x+2lnm﹣1,∵y=ax,∴=a且2lnm﹣1=0,即lnm=,则m=e,则a=,故选:B.9.设x,y满足约束条件,若z=ax+y的最大值为3a+9,最小值为3a﹣3,则a的取值范围是()A.a≤﹣1 B.a≥1 C.﹣1≤a≤1 D.a≥1或a≤﹣1【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,对a分类讨论得到最优解,求得最优解的坐标,代入目标函数,求出满足最大值为3a+9,最小值为3a﹣3的a的取值范围.【解答】解:由约束条件作出可行域如图,联立,解得A(3,﹣3),联立,解得B(3,9),联立,解得C(﹣3,3).化目标函数z=ax+y为y=﹣ax+z,由图可知,当﹣1≤﹣a≤1,即﹣1≤a≤1时,直线y=﹣ax+z过A点直线在y轴上的截距最小,z有最小值为3a﹣3;直线y=﹣ax+z过B点直线在y轴上的截距最大,z有最大值为3a+9.当a>1时,直线y=﹣ax+z过C点直线在y轴上的截距最大,z有最大值为﹣3a+3,不合题意,当a<﹣1时,直线y=﹣ax+z过C点直线在y轴上的截距最小,z有最小值为﹣3a+3,不合题意.综上,a的取值范围是﹣1≤a≤1.故选:C.10.已知双曲线﹣=1的离心率为,过右焦点的直线与两条渐近线分别交于A,B,且与其中一条渐近线垂直,若△OAB的面积为,其中O为坐标原点,则双曲线的焦距为()A.2B.2C.2D.2【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,设两条渐近线的夹角为θ,由两直线的夹角公式,可得tanθ=tan∠AOB,求出F到渐近线y=x的距离为b,即有|OB|=a,△OAB的面积可以表示为a•atanθ,结合条件可得a,b的关系,再由离心率公式即可计算得到.【解答】解:由题意可得e==,a2+b2=c2,双曲线﹣=1的渐近线方程为y=±x,设两条渐近线的夹角为θ,则tanθ=tan∠AOB==,设FB⊥OB,则F到渐近线y=x的距离为d==b,即有|OB|=a,则△OAB的面积可以表示为•a•atanθ==,解得a=2,b=,c=,即2c=2.故选:C.11.设正三棱锥A﹣BCD的所有顶点都在球O的球面上,BC=1,E、F分别是AB,BC的中点,EF⊥DE,则球O的半径为()A.B.C.D.【考点】球内接多面体.【分析】根据EF与DE的垂直关系,结合正棱锥的性质,判断三条侧棱互相垂直,再求得侧棱长,根据体积公式计算即可【解答】解:∵E、F分别是AB、BC的中点,∴EF∥AC,又∵EF⊥DE,∴AC⊥DE,取BD的中点O,连接AO、CO,∵三棱锥A﹣BCD为正三棱锥,∴AO⊥BD,CO⊥BD,∴BD⊥平面AOC,又AC⊂平面AOC,∴AC⊥BD,又DE∩BD=D,∴AC⊥平面ABD;∴AC⊥AB,设AC=AB=AD=x,则x2+x2=1⇒x=;所以三棱锥对应的长方体的对角线为,所以它的外接球半径为;故选:B.12.设D,E分别为线段AB,AC的中点,且•=0,记α为与的夹角,则下述判断正确的是()A.cosα的最小值为B.cosα的最小值为C.sin(2α+)的最小值为D.sin(﹣2α)的最小值为【考点】平面向量数量积的运算.【分析】由题意利用两个向量的加减法的法则,以及其几何意义,可得•=()•(+)=0,两个向量的数量积的定义化简求得2AB2+2AC2=5AB•AC•cosA≥4AB•AC,求得cosα≥,检验各个选项,得出结论.【解答】解:∵D,E分别为线段AB,AC的中点,∴BD CD分别为△ABC的中线.∵•=0,记α为与的夹角,∴•=()•(+)=(﹣+﹣)•(﹣+﹣)=(﹣2)•(﹣2)=(﹣2﹣2+4)=0,∴2+2=5•,即2AB2+2AC2=5AB•AC•cosA≥4AB•AC,∴cosA≥,即cosα≥,故排除A、B;∵sin(2α+)=cos2α=2cos2α﹣1≥,故排除C;∵sin(﹣2α)=cos2α=2cos2α﹣1≥,故D满足条件,故选:D.二、填空题:本大题共有4小题,每小题5分.13.若(+)4展开式的常数项和为54,且a>0,则a=3.【考点】二项式定理的应用.【分析】首先写出二项展开式的通项,整理后得到为常数项时的项,得到关于a的等式.【解答】解;(+)4展开式的通项为=,r=2时为常数项=54,a>0,解得a=3;故答案为:3.14.将函数y=sinx+cosx的图象向右平移φ(φ>0)个单位,再向上平移1个单位后,所得图象经过点(,1),则φ的最小值为.【考点】三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.【分析】根据辅助角公式,化简函数得y=2sin(x+),从而得出平移后的图象对应的函数为y=2sin(x+﹣φ).由平移后的图象经过点(,1),根据正弦函数的图象与性质即可得解.【解答】解:y=sinx+cosx=2(sinxcos+cosxsin)=2sin(x+).将函数的图象向右平移φ(φ>0)个单位长度后,得到y=2sin[(x﹣φ)+]=2sin(x+﹣φ)的图象.再向上平移1个单位后,得到y=2sin(x+﹣φ)+1的图象.∵所得图象经过点(,1),∴2sin(+﹣φ)=1,可得:sin(﹣φ)=,∴﹣φ=2kπ+,或﹣φ=2kπ+(k∈Z),∴得到φ的最小正值为.故答案为:.15.设函数f(x)在[1,+∞)上为增函数,f(3)=0,且g(x)=f(x+1)为偶函数,则不等式g(2﹣2x)<0的解集为(0,2).【考点】奇偶性与单调性的综合.【分析】根据函数的平移关系得到函数g(x)的单调递增区间,根据函数的单调性解不等式即可得到结论.【解答】解:∵f(x)在[1,+∞)上为增函数,∴f(x)向左平移1个单位得到f(x+1),则f(x+1)在[0,+∞)上为增函数,即g(x)在[0,+∞)上为增函数,且g(2)=f(2+1)=0,∵g(x)=f(x+1)为偶函数∴不等式g(2﹣2x)<0等价为g(2﹣2x)<g(2),即g(|2﹣2x|)<g(2),则|2﹣2x|<2,则﹣2<2x﹣2<2,即0<2x<4,则0<x<2,即不等式的解集为(0,2),故答案为:(0,2).16.过直线l:x+y=2上任意点P向圆C:x2+y2=1作两条切线,切点分别为A,B,线段AB的中点为Q,则点Q到直线l的距离的取值范围为(,].【考点】直线与圆的位置关系;圆的切线方程.【分析】设P(t,2﹣t),可得过O、A、P、B的圆的方程与已知圆的方程相减可得AB的方程,进而联立直线方程解方程组可得中点Q的坐标,由点Q到直线的距离公式和不等式的性质可得.【解答】解:∵点P为直线l:x+y=2上的任意一点,∴可设P(t,2﹣t),则过O、A、P、B的圆的方程为(x﹣)2+(y﹣)2= [t2+(2﹣t)2],化简可得x2﹣tx+y2﹣(2﹣t)y=0,与已知圆的方程相减可得AB的方程为tx+(2﹣t)y=1,由直线OP的方程为(2﹣t)x﹣ty=0,联立两直线方程可解得x=,y=,故线段AB的中点Q(,),∴点Q到直线l的距离d==|2﹣|,∵t2﹣2t+2=(t﹣1)2+1≥1,∴0<≤1,∴﹣1≤﹣<0,∴1≤2﹣<2,∴≤|2﹣|<,即d∈(,]故答案为:(,]三、解答题(解答应写出文字说明、证明过程或演算步骤)17.设数列{a n}的各项为正数,且a1,22,a2,24,…,a n,22n,…成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记S n为等比数列{a n}的前n项和,若S k≥30(2k+1),求正整数k的最小值.【考点】等比数列的前n项和;等比数列的通项公式.【分析】(Ⅰ)推导出数列{a n}是首项为2,公比为4的等比数列,由此能求出数列{a n}的通项公式.(Ⅱ)先求出等比数列{a n}的前n项和S n=,从而得到≥30(2k+1),由此能求出正整数k的最小值.【解答】解:(Ⅰ)∵列{a n}的各项为正数,且a1,22,a2,24,…,a n,22n,…成等比数列,∴,即a2=8,∴,解得a1=2,∴数列{a n}是首项为a1=2,公比为q==4的等比数列,∴.(Ⅱ)∵数列{a n}是首项为2,公比为4的等比数列,∴等比数列{a n}的前n项和S n==,∵S k≥30(2k+1),∴≥30(2k+1),即2×(2k)2﹣90×2k﹣92≥0,解得2k≥46或2k≤﹣1(舍),∴正整数k的最小值为6.18.如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=4,BC=,BD⊥AC,垂足为D,E为棱BB1上的一点,BD∥平面AC1E;(Ⅰ)求线段B1E的长;(Ⅱ)求二面角C1﹣AC﹣E的余弦值.【考点】二面角的平面角及求法;棱柱的结构特征.【分析】(1)以D为原点,DA为x轴,DB为y轴,过D垂直于平面ABC的直线为z轴,建立空间直角坐标系,利用向量法能求出线段B1E的长.(2)求出平面ACE的法向量和平面ACC1的法向量,利用向量法能求出二面角C1﹣AC﹣E的余弦值.【解答】解:(1)以D为原点,DA为x轴,DB为y轴,过D垂直于平面ABC的直线为z轴,建立空间直角坐标系,D(0,0,0),B(0,,0),B1(0,,4),A(,0,0),C1(﹣,0,4),设E(0,,t),=(0,﹣,0),=(﹣,,t),=(﹣4,0,4),设平面AC1E的法向量为=(x,y,z),则,取x=1,得=(1,,1),∵BD∥平面AC1E,∴=﹣=0,解得t=.∴E(0,,),∴线段B1E的长|B1E|=4﹣=.(2)C(﹣,0,0),=(﹣4,0,0),=(﹣,,),设平面ACE的法向量=(a,b,c),则,取b=15,得=(0,15,﹣),平面ACC1的法向量=(0,1,0),设二面角C1﹣AC﹣E的平面角为θ,cosθ===.∴二面角C1﹣AC﹣E的余弦值为.19.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单x(单位:℃)的数据,如表:(Ⅰ)求y关于x的回归方程=x+;(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.(Ⅲ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数,δ2近似为样本方差s2,求P(3.8<X<13.4)附:①回归方程=x+中,=,=﹣b.②≈3.2,≈1.8.若X~N(μ,δ2),则P(μ﹣δ<X<μ+δ)=0.6826,P(μ﹣2δ<X<μ+2δ)=0.9544.【考点】线性回归方程;正态分布曲线的特点及曲线所表示的意义.【分析】(I)利用回归系数公式计算回归系数,得出回归方程;(II)根据的符号判断,把x=6代入回归方程计算预测值;(III)求出样本的方差,根据正态分布知识得P(3.8<X<13.4)=P(3.8<X<10.2)+P(10.2<X<13.4).【解答】解:(I)解:(I)=×(2+5+8+9+11)=7,=(12+10+8+8+7)=9.=4+25+64+81+121=295,=24+50+64+72+77=287,∴==﹣=﹣0.56.=9﹣(﹣0.56)×7=12.92.∴回归方程为:=﹣0.56x+12.92.(II)∵=﹣0.56<0,∴y与x之间是负相关.当x=6时,=﹣0.56×6+12.92=9.56.∴该店当日的营业额约为9.56千元.(III)样本方差s2=×[25+4+1+4+16]=10,∴最低气温X~N(7,10),∴P(3.8<X<10.2)=0.6826,P(0,6<X<13.4)=0.9544,∴P(10.2<X<13.4)=(0.9544﹣0.6826)=0.1359.∴P(3.8<X<13.4)=P(3.8<X<10.2)+P(10.2<X<13.4)=0.6826+0.1359=0.8185.20.已知椭圆C: +=1(a>b>0)的左顶点为A,上顶点为B,直线AB的斜率为,坐标原点O到直线AB的距离为.(I)求椭圆C的标准方程;(Ⅱ)设圆O:x2+y2=b2的切线l与椭圆C交于点P,Q,线段PQ的中点为M,求直线l的方程,使得l与直线0M的夹角达到最小.【考点】椭圆的简单性质.【分析】(I)由题意可得A(﹣a,0),B(0,b),求得AB的斜率和方程,运用点到直线的距离公式解方程可得a,b,进而得到椭圆方程;(Ⅱ)讨论当直线l的斜率不存在和为0,不为0,设出直线l的方程为y=kx+t,代入椭圆方程可得(1+6k2)x2+12ktx+6t2﹣6=0,运用韦达定理和中点坐标公式,由两直线的夹角公式,结合基本不等式,可得最小值,由直线和圆相切的条件:d=r,进而得到直线方程.【解答】解:(I)由题意可得A(﹣a,0),B(0,b),k AB==,直线AB的方程为y=x+b,由题意可得=,解得b=1,a=,即有椭圆的方程为+y2=1;(Ⅱ)当直线l的斜率不存在时,即有OM⊥l,夹角为90°;当直线l的斜率为0时,不符合题意;设直线l的方程为y=kx+t,代入椭圆方程可得(1+6k2)x2+12ktx+6t2﹣6=0,可得x1+x2=﹣,可得中点M(﹣,),又直线l与圆x2+y2=1相切,可得=1,即1+k2=t2,可得OM的斜率为k'=﹣,直线l和OM的夹角的正切为、|=|﹣k﹣|,当k<0时,﹣k﹣≥2=,当k=﹣时,夹角取得最小值.求得t2=,解得t=±,可得直线l的方程为y═﹣x±,当k>0时,可得k=时,夹角取得最小值.求得t2=,解得t=±,可得直线l的方程为y═±x±,使得l与直线0M的夹角达到最小.21.设f(x)=(x2﹣x+)e mx,其中实数m≠0.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若g(x)=f(x)﹣x﹣5恰有两个零点,求m的取值范围.【考点】利用导数研究函数的单调性;函数零点的判定定理.【分析】(Ⅰ)讨论f(x)的单调性,很容易想到求导数的办法,通过导函数f′(x)的符号判断单调性,注意到导函数中二次函数的部分,判别式的值以及m的符号判断即可.(Ⅱ)g(x)=f(x)﹣x﹣5恰有两个零点,转化为方程有两个解,转化为两个函数有两个交点.判断直线经过的顶点,通过f(x)的导数,曲线的斜率,推出m 的范围.【解答】解:(Ⅰ)f(x)=(x2﹣x+)e mx,其中实数m≠0.可得f′(x)=(mx2﹣x+)e mx,其中实数m≠0.∵e mx>0,∴f′(x)的符号,只与mx2﹣x+的符号有关.令y=mx2﹣x+,m≠0,△=1﹣4m=﹣7<0.当m>0时,y>0恒成立,此时f′(x)>0,恒成立.函数在R上是增函数.当m<0时,y<0恒成立,此时f′(x)<0,恒成立.函数在R上是减函数.(Ⅱ)g(x)=f(x)﹣x﹣5恰有两个零点,即f(x)=x+5恰有两个解,也就是f(x)=(x2﹣x+)e mx,与g(x)=x+5有两个交点.因为g(x)=x+5恒过(0,5),当m=1时,f(x)=(x2﹣3x+5)e x,经过(0,5),并且f′(x)=(x2﹣x+2)e x,此时f′(0)=2,g(x)=2x+5的斜率也为2,如图:当m>1时.两个函数有两个交点.当m∈(0,1)时,f(x)经过(0,),,此时两个函数至多有一个交点.当m<0时,两个函数都是减函数,m=﹣1时,两个函数的图象如图:m<﹣1时,两个函数有两个交点.综上,m<﹣1或m>1.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲].22.如图,四边形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC (Ⅰ)求证:A,B,C,P四点共圆;(Ⅱ)若∠CAD=,AB=1,求四边形ABCP的面积.【考点】圆內接多边形的性质与判定.【分析】(Ⅰ)由已知AC=AD,AH⊥CD可得△ACP≌△ADP,得∠ACP=∠ADP.再由AB=AD,得∠ADP=∠ABP,进一步得到∠ABP=∠ACP,可知A,B,C,P四点共圆;(Ⅱ)由AC=AD,,得△ACD是边长为1的等边三角形,结合AH⊥CD,得.再结合A,B,C,P四点共圆,,得,即△ABC也是边长为1的等边三角形,进一步得到P为△ACD的中心.可得S ABCP=S△ABC+S△ACP=.【解答】证明:(Ⅰ)∵AC=AD,AH⊥CD,∴∠CAD=∠DAP,从而△ACP≌△ADP,得∠ACP=∠ADP.又AB=AD,故∠ADP=∠ABP,从而∠ABP=∠ACP,可知A,B,C,P四点共圆;(Ⅱ)由AC=AD,,从而△ACD是边长为1的等边三角形,又AH⊥CD,故.由(Ⅰ)知A,B,C,P四点共圆,又,故,从而,故△ABC也是边长为1的等边三角形,由PC⊥BC,,得,知CP,AH为等边三角形的角平分线,从而P为△ACD的中心.故此时S ABCP=S△ABC+S△ACP=.[选修4-4:坐标系与参数方程].23.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以O为原极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ2=4ρsinθ﹣3(Ⅰ)求曲线C1与曲线C2在平面直角坐标系中的普通方程;(Ⅱ)求曲线C1上的点与曲线C2上的点的距离的最小值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)曲线C1的参数方程为(α为参数),由x==sinα+cosα,两边平方代入即可得出曲线C1的普通方程.曲线C2的极坐标方程为ρ2=4ρsinθ﹣3,把ρ2=x2+y2,y=ρsinθ代入可得曲线C2的普通方程.(II)x2+y2﹣4y+3=0配方为:x2+(y﹣2)2=1,圆心C2(0,2),设P(x0,y0)为曲线C1上的任意一点,则y0=,可得|PC|2=+=+,利用二次函数的单调性即可得出.【解答】解:(I)曲线C1的参数方程为(α为参数),由x===sinα+cosα,两边平方可得:x2=1+sin2α=y,∴曲线C1的普通方程为y=x2.曲线C2的极坐标方程为ρ2=4ρsinθ﹣3,把ρ2=x2+y2,y=ρsinθ代入可得:x2+y2=4y﹣3,∴曲线C2的普通方程为:x2+y2﹣4y+3=0.(II)x2+y2﹣4y+3=0配方为:x2+(y﹣2)2=1,圆心C2(0,2),设P(x0,y0)为曲线C1上的任意一点,则y0=,则|PC|2=+=+=﹣3+4=+,当=时,|PC|min=.∴曲线C1上的点与曲线C2上的点的距离的最小值为﹣1.[选修4-5:不等式选讲].24.已知函数f(x)=|x﹣a|+|x﹣2a|(Ⅰ)当a=1时,求不等式f(x)>2的解集;(Ⅱ)若对任意x∈R,不等式f(x)≥a2﹣3a﹣3恒成立,求a的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用绝对值的几何意义,写出分段函数,即可解f(x)>2的解集;(Ⅱ)先用绝对值三角不等式将问题等价为:f(x)min=|a||≥a2﹣3a﹣3,再分类讨论求解即可.【解答】解:(Ⅰ)当a=1时,f(x)=|x﹣1|+|x﹣2|.x≤1时,f(x)=﹣x+1﹣x+2=3﹣2x,由不等式f(x)>2可得x<;1<x<2时,f(x)=x﹣1﹣x+2=1由不等式f(x)>2可得x∈∅;x≥2时,f(x)=x﹣1+x﹣2=2x﹣3,由不等式f(x)>2可得x>;∴不等式f(x)>2的解集为(﹣∞,)∪(,+∞);(Ⅱ)因为不等式f(x)≥a2﹣3a﹣3对x∈R恒成立,所以,f(x)min≥a2﹣3a﹣3,根据绝对值三角不等式,|x﹣a|+|x﹣2a|≥|(x﹣a)﹣(x﹣2a)|=|a|,即f(x)min=|a|,所以,|a||≥a2﹣3a﹣3,分类讨论如下:①当a≥0时,a≥a2﹣3a﹣3,即a2﹣4a﹣3≤0,∴2﹣≤a≤2+,此时0≤a≤2+;②当a<0时,﹣a≥a2﹣3a﹣3,即a2﹣2a﹣3≤0,∴﹣1≤a≤3,此时﹣1≤a<0.综合以上讨论得,实数a的取值范围为:[﹣1,2+].2016年9月23日。