锚杆支护剖面图
A- -B段剖面图

---------------------------------------------------------------------- 验算项目: A- -B段剖面图---------------------------------------------------------------------- [ 验算简图 ]---------------------------------------------------------------------- [ 验算条件 ]---------------------------------------------------------------------- [ 基本参数 ]所依据的规程或方法:《建筑基坑支护技术规程》JGJ 120-2012基坑深度: 10.000(m)基坑内地下水深度: 12.300(m)基坑外地下水深度: 12.300(m)支护结构重要性系数: 1.000土钉荷载分项系数: 1.250土钉抗拔安全系数: 1.600整体滑动稳定安全系数: 1.300土钉墙底面支锚轴向拉力经验系数ηb: 0.830[ 坡线参数 ]坡线段数 1序号水平投影(m) 竖向投影(m) 倾角(°)1 3.000 10.000 73.3[ 土层参数 ]土层层数 4层号土类名称层厚重度浮重度粘聚力内摩擦角与锚固体摩阻力与土钉摩阻力水土(m) (kN/m^3) (kN/m^3) (kPa) (度) (kPa) (kPa)1 素填土 1.930 15.0 --- 8.7 24.5 30.0 25.0 ---2 粉土 3.180 18.0 --- 14.5 27.2 50.0 70.0 ---3 砾砂 3.630 21.0 --- 0.0 33.0 220.0 190.0 ---4 粉土 6.600 19.0 0.0 14.5 27.2 80.0 70.0 分算[ 超载参数 ]超载数 1序号超载类型超载值(kN/m) 作用深度(m) 作用宽度(m) 距坑边线距离(m) 形式长度(m)1 满布均布 20.000[ 土钉参数 ]土钉道数 6序号水平间距(m) 垂直间距(m) 入射角度(度) 钻孔直径(mm) 长度(m) 配筋1 1.500 1.800 15.0 100 12.000 1E202 1.500 1.500 15.0 100 9.000 1E203 1.500 1.500 15.0 100 9.000 1E204 1.500 1.500 15.0 100 9.000 1E205 1.500 1.500 15.0 100 6.000 1E206 1.500 1.500 15.0 100 3.000 1E20钢筋类型对应关系:d-HPB300,D-HRB335,E-HRB400,F-RRB400,G-HRB500,P-HRBF335,Q-HRBF400,R-HRBF500[ 花管参数 ]基坑内侧花管排数 0基坑外侧花管排数 0[ 锚杆参数 ]锚杆道数 0[ 坑内土不加固 ]*******************************************************************[ 验算结果 ]*******************************************************************[ 抗拔承载力验算结果 ]工况开挖深度破裂角支锚号支锚长度受拉荷载标准值抗拔承载力标准值抗拉承载力标准值安全系数(m) (度) (m) Nkj(kN) Rkj(kN) Rkj(kN) 抗拔抗拉1 2.300 49.1 02 3.800 49.6 1土钉 12.000 24.0 243.4 125.7 10.141 5.2353 5.300 49.9 1土钉 12.000 10.0 228.6 125.7 22.951 12.6172土钉 9.000 46.2 253.4 125.7 5.483 2.7194 6.800 50.6 1土钉 12.000 9.8 215.2 125.7 22.011 12.8522土钉 9.000 16.7 239.5 125.7 14.358 7.5343土钉 9.000 65.7 472.6 125.7 7.193 1.9135 8.300 51.1 1土钉 12.000 9.7 202.1 125.7 20.921 13.0112土钉 9.000 16.5 226.0 125.7 13.717 7.6273土钉 9.000 35.0 446.8 125.7 12.761 3.5894土钉 9.000 63.1 485.6 125.7 7.696 1.9926 9.800 51.1 1土钉 12.000 9.7 187.8 125.7 19.450 13.0132土钉 9.000 16.5 211.8 125.7 12.855 7.6283土钉 9.000 35.0 408.2 125.711.659 3.5904土钉 9.000 56.1 446.9 125.7 7.969 2.2415土钉 6.000 53.4 217.2 125.7 4.067 2.3547 10.000 51.0 1土钉 12.000 9.7 185.9 125.7 19.239 13.0082土钉 9.000 16.5 209.8 125.7 12.731 7.6253土钉 9.000 35.0 402.9 125.7 11.504 3.5884土钉 9.000 56.1 441.6 125.7 7.872 2.2405土钉 6.000 63.7 212.0 125.7 3.327 1.9726土钉 3.000 63.6 159.3 125.7 2.505 1.975[ 整体稳定验算结果 ]工况号安全系数圆心坐标x(m) 圆心坐标y(m) 半径(m)1 1.426 -0.051 12.633 5.1902 1.874 -4.489 14.296 10.2893 1.851 -6.168 14.579 12.4514 1.744 -7.383 12.684 12.6325 33.736 -9.526 6.528 11.1376 10001.000 -6.785 5.225 8.1877 1.775 -14.494 13.497 19.805[ 喷射混凝土面层计算 ][ 计算参数 ]厚度: 80(mm)混凝土强度等级: C20配筋计算as: 15(mm)水平配筋: d6@250竖向配筋: d6@250配筋计算as: 15荷载分项系数: 1.200[ 计算结果 ]编号深度范围荷载值(kPa) 轴向 M(kN.m) As(mm^2) 实配As(mm^2) 1 0.00 1.80 3.7 x 0.431 160.0(构造) 113.1y 0.283 160.0(构造) 113.12 1.80 3.30 6.5 x 0.540 160.0(构造) 113.1y 0.540 160.0(构造) 113.13 3.30 4.80 17.7 x 1.466 160.0(构造) 113.1y 1.466 160.0(构造) 113.14 4.80 6.30 38.5 x 3.186 189.3 113.1y 3.186 189.3 113.15 6.30 7.80 52.0 x 4.304 259.8 113.1y 4.304 259.8 113.16 7.80 9.30 61.7 x 5.105 312.0 113.1y 5.105 312.0 113.17 9.3010.00 68.1 x 0.000 160.0(构造) 113.1y 4.168 251.1 113.1。
GB 50086—2001锚杆喷射混凝土支护技术规范-.

中华人民共和国国家标准锚杆喷射混凝土支护技术规范GB50086—2001条文说明目次1总则 (3)3围岩分级 (4)4锚喷支护设计 (8)4.1一般规定 (8)4.2锚杆支护设计 (12)4.3喷射混凝土支护设计 (15)5现场监控量测 (26)5.1一般规定 (26)5.2现场监控量测的内容与方法 (26)5.3现场监控量测的数据处理与反馈 (27)6光面爆破 (29)7锚杆施工 (31)7.1一般规定 (31)7.2全长粘结型锚杆施工 (32)7.3端头锚固型锚杆施工 (32)7.4摩擦型锚杆施工 (33)7.5预应力锚杆施工 (34)7.6预应力锚杆的试验和监测 (35)8喷射混凝土施工 (36)8.1原材料 (36)8.2施工机具 (36)8.3混合料的配合比与拌制 (37)8.4喷射前的准备工作 (38)8.5喷射作业 (39)8.6钢纤维喷射混凝土施工 (41)8.7钢筋网喷射混凝土施工 (42)8.8钢架喷射混凝土施工 (42)8.9水泥裹砂喷射混凝土施工 (43)8.10喷射混凝土强度质量的控制 (44)9安全技术与防尘 (47)9.1安全技术 (47)9.2防尘 (48)10质量检查与工程验收 (49)10.1质量检查 (49)10.2工程验收 (51)1总则1.0.1、1.0.2锚杆喷射混凝土支护(简称锚喷支护)已在国内地下工程中获得广泛应用,并收到了明显的技术经济效果。
但是,由于国内没有一本完整的、统一的技术规范,锚喷支护工程设计保守,不适当地增加工程投资及设计、施工不当,工程质量低劣,危及安全使用的现象不乏其例,甚至出现隧洞工程片帮、冒顶,造成国家财产严重损失的事例也时有发生。
制订本规范,是为了使锚喷支护的设计、施工和验收有一个全国统一的标准,符合技术先进、经济合理、安全适用、确保质量的要求,更好地推动地下工程建设的发展。
本规范主要适用于矿山巷道、竖井、斜井、铁路隧道、公路隧道、城市地铁、水工隧洞及各类地下工程的锚杆喷射混凝土初期支护和后期支护。
02岩土锚杆(索)的类型、工作特性及适用条件-12-20

围岩处于三维压缩状态
1-杆体和托板作用在岩石上的力; -杆体和托板作用在岩石上的力; 2-岩石;3-托板;4-挡环 -岩石; -托板; -
岩石移动使锚杆 进一步锁紧岩石
锚杆锚固力随时间而增长的曲线 1-黑色页岩;2-锰矿体; -黑色页岩; -锰矿体; 3-绿泥岩 - 缝管锚杆的锚固力与拔出量的关系 1-砂岩;2-锰矿体;3-绿泥岩 -砂岩; -锰矿体; -
10、纤维增强塑料锚杆 、
纤维增强塑料是一种以合成树脂为粘结 复合纤维为增强材料制成的复合材料。 剂、复合纤维为增强材料制成的复合材料。 其相对密度为1.8~ 其相对密度为 ~2.1 抗拉强度高达 600~700 Mpa ~ 纤维增强锚杆的优点: 纤维增强锚杆的优点: 防腐蚀,耐久性好; 防腐蚀,耐久性好; 绝缘,防静电; 绝缘,防静电; 抗拉和粘结强度高; 抗拉和粘结强度高; 重量轻,同等规格的杆体约为钢材的 ; 重量轻,同等规格的杆体约为钢材的1/4; 易于切割
(1)叶尼塞河 )叶尼塞河sayane-shushensh Hps消力池底 消力池底 板的预应力锚固
消力池表面粘结锚固的最终的结构型式质量检验: 消力池表面粘结锚固的最终的结构型式质量检验: 锚杆拉力值为1021kN,一年后测定的拉力损失为 % 锚杆拉力值为 ,一年后测定的拉力损失为20% 使用几年后, 使用几年后,洪水未对消力池表面产生任何影响
天津百货大楼软土基坑工程 (-13.5 m)最大 最大 位移量仅 5 cm(1994)
6、扩体型锚杆 、
锚杆荷载传递方式的比较 (a)摩擦型 (b)摩擦-支承复合型 摩擦- 摩擦型 摩擦
(1)底端扩体型锚杆 )
爆炸成型的底 端扩体锚杆
用旋转叶片形成的扩体锚杆 固定地层 砂 固定长度: ~ 固定长度:6~10m 极限承载力 900~1400 kN ~ 比Φ=12cm的圆柱体锚固体承载 的圆柱体锚固体承载 力提高2~ 倍 力提高 ~3倍。
扩大头锚杆计算实例06.04(1)

试验荷载Q 92 276 92 276 460 276 92 276 460 644 460 276 92 276 460 644 736 644 460 276 92 276 460 736 828 736 460 276 92 276 460 828 920 828 460 276 92
920 828 736 644 552 460 368 276 184 92 0
(3)锚杆杆体验算
• 钢锚杆杆体的截面面积应按下式确定: As≥Kt· T/fy (a) 或As≥Kt· T/fpt (b) • Kt—— 锚杆杆体的抗拉安全系数,临时性锚杆取 Kt=1.1 , 永久性锚杆取Kt=1.6; • T ——锚杆的抗拔力设计值(kN),应按相关的结构设计 规范计算; • fy、fpt——钢筋、钢绞线的抗拉强度设计值(kPa)。
• 本例中锚杆内部配臵6Φ15.2无粘结钢绞线,钢绞线强度 验算: • Φ15.2钢绞线抗拔力设计值为175.14kN/根 • 第一道可回收预应力拉锚(水平间距2.4m)内臵6根钢绞 线,需要抗拔力设计值为 • N=437.06×1.1×1.25/cos25°=663kN<1050.84kN,满足 抗拔要求。
• 国家规程对位移控制锚杆的要求为: • (1)扩大头应埋臵在深远的稳定地层之中; • (2)扩大头应设臵于较密实的砂土、粉土或强度较高压 缩性较低的粘性土中; • (3)锚头至扩大头应全长设臵为自由段。 • 同时规范规定扩大头最小埋深不小于7m。因此在选择扩大 头埋臵土层时,本工程选择⑤粉质粘土层,根据剖面计算 结果及施工经验,第一道锚杆暂定24m,第二道锚杆暂定 27.0m,钢绞线选择6Φ15.2无粘结钢绞线。
Ⅰ Ⅱ Ⅲ
• 扩大头锚杆的抗拔力值与土质、扩大头埋深、扩大头尺寸 和施工工艺有关,应通过现场原位基本试验确定;无试验 资料时,可按当地类似条件的施工经验类比确定,或按下 式计算,但实际施工时必须经过现场基本试验验证确定。 • T=Tuk/K(K---锚杆锚固体的抗拔安全系数 )
锚杆支护施工方案

一、工程概况:1、工程概述工程名称:事故雨水提升设施建设单位:设计单位:监理单位:施工单位:2、建造及基础结构特征(1)本工程相对标高±0.000m 相当于绝对标高45.300m。
(2)根据地质勘察报告雨水提升设施工程基础各层土质情况为:上部 2.2m 为素填土层、下部为 3.7m 黏土层,基底下部 400mm 有一层铄砂层为透水层,该工程平面位置在熔铸车间东南侧。
基础采用阀板基础,筏板板底相对标高由西向东挨次为-7.7 米, -5.5 米,-3.6 米,基坑开挖深度最深相对标高为-7.8 米, (场地自然地坪标高为 46.3 米)平面尺寸为18.2 米×13.2 米,基础与附近建造物平面关系见附图 1。
二、施工目标1、质量目标:在基坑支护施工中,我们将严格执行国家、省颁布的有关施工规范及技术标准,工程质量符合图纸设计要求,国家现形规范标准,检验批,分项分部工程质量合格率 100%,确保该工程达到优良工程标准。
2、安全目标:1、杜绝重伤,泯灭轻伤。
2、杜绝重大机电事故和非人身事故。
三、施工方案选择根据现场平面布置图中可以看出, 事故雨水提升设施工程场地十分狭小, 该 工程南部紧靠厂区铁艺栏杆围墙及厂外道路排水沟、西部紧贴燃气站、北部和东 部挨近现场已硬化好的道路,基础土方开挖达不到放坡要求,且地下水位较浅, 基础施工期间正值雨季,为了保证基础施工安全,该工程基础南面、北面及西面 支护方案采取锚杆支护,降水采取管井降水。
四、施工准备及部署 1、人员准备:2、施工设备主要施工机械进场计划表进场时间 施工全过程 施工全过程 施工全过程 施工全过程 施工全过程 施工全过程 施工全过程机 械 载重汽车 装载机 翻斗车 洛阳铲 泥浆泵 动力配电柜交流电焊机 开工前 开工前 开工前 开工前 开工前 开工前 开工后序号 1 2 3 4 5 6 7数量 1 1 4 6 12 2型号规格 25T ZL50 1TGGDBX3-500-2备 注序号 工 种 人数 施工部位 1 钻孔人员 9 钻孔 2 注浆人员 5 锚杆注浆 3 钢筋网绑扎 9 绑扎钢筋 4 喷浆人员 7 喷射混凝土 5特殊工种3电工、司机等8 灰浆搅拌机 1 开工前施工全过程9 钢筋切断机CQJ40-1 1 开工前钢筋加工施工10 钢筋调直机GJ6-14 1 开工前钢筋加工施工11 空压机VHP700 1 开工前施工全过程12 钢筋弯钩机WJ40-1 1 开工前钢筋加工施工13 经纬仪TDJ2 1 开工前施工全过程14 水准仪S3 1 开工前施工全过程五、疏干井降水:工程概况及降水方案选择工程地质情况:根据地质勘察资料,土层分布由上至下主要有杂填土、粉土、黏土、粉质黏土、砾砂等组成。
门架双桩——锚杆技术在基坑支护中的应用

门架双桩一锚杆技术在基坑支护中的应用
贺国元1张泽潇1史芳2
l煤炭工业首安设计研究院。
西安.7100542.陕商农业工租勘搴设计睫.西安.710068
1前言奠要奉文通过具体I檀实际运用实例.简明扼要介绍了门架双桩一锚杆支护结构的计算简图假定、荷载计算、内力计算、杆件设计的方告.以及变形监测、内力监测结果:阐明了双桩一锚杆支护结构的优越性和应用范围。
关.t词双槭一钳托墓坑支护变形监测
西安中梅大厦位于西安市雁塔路北段,基坑开挖深度为8.7m,基坑西边紧贴有两栋旧建筑,其中3号楼为四层砖混;4号楼为七层单身宿舍,该楼是下部砖混、上部外套框架的混合结构体系,三层砖混系50年代所建,上部四层框架系90年代初采用外套框架,柱下独立基础,无基础连系梁,地基处理采用高压旋喷桩,每柱基础下布有三根旋喷桩,见图1、图2。
场地地貌单元属渭河1级阶地,非自重I级湿陷性场地,各土层如表1所列。
门架双桩——锚杆技术在基坑支护中的应用
作者:贺国元, 张泽渊, 史芳
作者单位:贺国元,张泽渊(煤炭工业西安设计研究院(西安)), 史芳(陕西农业工程勘察设计院(西安))本文链接:/Conference_4402252.aspx。
格构梁锚杆挡土墙边坡支护CAD施工图

(02)岩土锚杆(索)的类型、工作特性及适用条件-12-20

(2)多段扩体型锚杆
扩体型锚杆承载力计算
z 砂性土
z 黏性土
7.全长摩擦型锚杆
(1)缝管锚杆
缝管锚杆结构构造: 1-开缝钢管;2-挡环;3-托板
缝管锚杆外形
缝管锚杆的工作特性
z 使围岩处于三维压缩状态(三向预应力) z 立即提供支护抗力; z 锚固力随时间而增加; z 围岩位移后锚杆仍能保持较高的承载力。
传统的机械固定型锚杆结构
楔缝式锚杆
涨壳式锚杆
南非贝尔公司 涨壳锚杆
法国生产的 涨壳锚杆
机械固定型锚杆特性
z 及时提供支护抗力或预加预应力; z 会在岩层中产生大的应力,对岩层强度要求较 高; z 通常无防腐措施,使用寿命有限; z 加工工艺复杂,成本高于粘结型锚杆; z 对钻机直径、深度控制要求较严。
机械固定与胶结料固定相结合的锚杆
涨壳式中空灌浆锚杆
美国威廉姆斯(williams)生产的涨壳式锚杆结构
威廉姆斯岩石锚杆注浆浆液流动图
杭州图强公司生产的涨壳式中空锚杆结构
涨壳式中空锚杆作用于岩石时能形成压应力区
不同类型低预应力锚杆的性能比较
不同类型低预应力锚杆工作时形成的剪力锥
5、可重复高压灌浆型锚杆
无锚头预应力锚杆的构造 (a)在临时锚墩上对杆体张拉 (b)拆除临时锚头及锚墩后的 锚杆剖面图
荷载从锚杆传递到结构物的方法
(a)常规方法传递;(b)通过凹槽内的锚头传递; (c)通过上(第二)粘结段传递
(1)叶尼塞河sayane-shushensh Hps消力池底 板的预应力锚固
消力池表面粘结锚固的最终的结构型式质量检验: z 锚杆拉力值为1021kN,一年后测定的拉力损失为20% z 使用几年后,洪水未对消力池表面产生任何影响
土层锚杆PPT课件

.
土层锚杆
土钉墙的设计方法及稳定性分析
关于土钉墙的设计方法按其基本原理可分为极限平衡方法 和有限元方法。目前在工程上多采用极限平衡分析法,如法国 圆弧形破裂面方法、德国双线性破裂面方法、运动学方法、王 步云方法、Bridle方法等。
关于土钉设计方法,目前还没有一个公认统一的计算方法。 这里主要介绍一些较为成熟的方法,如王步云方法、 Bridle 方法和圆弧滑动分析法等。
圆弧滑动法是一种分析边坡滑动的经典方法,适用于多层 土、任意超载及有地下水的情况,滑弧经搜索确定,无任何限 定条件。
土钉主要以受拉为主,因此在进行分析时,只考虑土钉提 供的拉力作用。
护到基坑底标高。 注:基础施工前应设置坡顶和坡脚排水设施。
3)注浆:按配比制浆,注浆采用底部注浆法,注浆管应插
入距孔底250~500mm处,随浆液的注入缓慢匀速拔出, 为保证注浆饱满,孔口宜设止浆塞或止浆袋。
.
土层锚杆
4)铺设钢筋网片:网片筋应顺直,按设计间距绑扎牢固。
在每步工作面上的网片筋应预留与下一步工作面网筋搭接 长度。钢筋网应与土钉连接牢固。埋设控制喷层混凝土厚 度的标志。
.
土层锚杆
B. 设计计算内容
1) 根据工程情况和以往的经验,初选支护各部件 的尺寸和参数。 2) 分析计算
a.支护的内部和外部的整体稳定性分析 b.土钉计算 c.混凝土面层设计及土钉与面层的连接计算 d.由测量和监控情况,进行反馈设计
.
土层锚杆
2) 支护结构各部件的参数和尺寸 a.土钉钢筋HPB300、HRB335等,直径1632mm b.土钉孔径70-120mm,注浆强度等级不低于M10 c.土钉长度与基坑深度之比为0.6-1.2 d.土钉的水平和竖向间距宜在1.2-2.0m范围内 e.混凝土面层厚度不宜小于80mm,不低于C20
浅基坑放坡喷锚加木桩或槽钢组合支护施工图

锚杆基本实验检测报告

检测时间:2015年07月04日-2015年07月04日
2.场地工程地质概况
根据岩土工程勘察报告,勘察揭露地层最大深度30m内,按地层沉积年代、成因类型,将本工程场地地勘范围内的土层划分为人工堆积层、新近沉积层、第四纪晚更新世冲洪积层三大类。其中基坑开挖支护影响范围内共涉及到5个大层,包括杂填土①层、粘质粉土②层、卵石⑤层、粉质粘土⑥层、卵石⑦层。
试验编号:T3#
锚孔直径:200mm
锚固段长度:15.0m
试验日期:2015-07-04
循环
加荷增量Asfptk(%)
荷载(kN)
本级位移
(mm)
累计位移
(mm)
本级历时
(min)
累计历时
(min)
第一循环
10
50
0.00
0.00
5
5
30
150
6.13
6.13
10
15
10
50
-3.79
2.34
5
20
--
150
--
--
50
第二循环
50
150
--
200
--
150
50
第三循环
50
150
200
250
200
150
50
第四循环
50
150
250
300
250
150
50
第五循环
50
150
300
350
300
150
50
第六循环
50
150
300
400
300
150
50
第三章 锚杆工程(很多施工图片)

(三)锚固长度的确定
1、《滑坡防治工程设计与施工技术规范》
(2)类比法
序 1 2 3 4 号 吨 位 内锚固段长度/m 7~8 6~7 5~6 4~5
3000kN 级以上 3000~2000kN 级 2000~1000kN 级 1000kN 级以下
锚固长度推荐值表
(三)锚固长度的确定
1、《滑坡防治工程设计与施工技术规范》 (3)拉拔试验 当滑体地质条件复杂,或防治工程重要时,可 结合理论计算和类比方法,并对锚索进行破坏性试 验,以确内锚固段的合理长度。
(三)锚固长度的确定
2、《建筑边坡工程技术规范(GB50330-2002)》
锚杆锚固体与地层的锚固段长度应满足:
N ak la 1Df rb
Nak—锚杆轴向拉力标准值(kN); D—锚固体直径(m); frb—地层与锚固体粘结强度特征值(kPa),应通过试验 确定,无试验资料是查表; ξ 1 —锚固体与地层的粘结工作系数,对永久性锚杆取 1.00,对临时性锚杆取1.33
第三章
土层锚杆
一、土层锚杆的构造
二、土层锚杆设计计算
三、土层锚杆的施工 四、土层锚杆的试验与观测
排水管 2
0 160 0 00 00
20°
160
160
锚杆布置剖面图
1500 1500
30
0
Φ 10@50
锚杆与格构梁纵向钢筋双面焊接
锚杆 N1φ 32 N5φ 12@2000
1 U W LH 2
A—地震加速度(重力加速度g)
(一)设计锚固力的确定
1、岩质滑坡锚固力计算
Kf (W (cos A sin ) V sin U T sin ) tan CL W (sin A cos ) V cos T cos
岩土锚杆(索)的类型、工作特性及适用条件

• 密封性 • 均匀性 • 重复性
锚杆结构图
注浆套管工作原理
密封装置
预埋二次劈裂灌浆管
重复高压灌浆型锚固技术的优越性
抗拔力提高 60~120% ; 蠕变量减小 1/2~2/3 ; 节约造价 1/3 左右。
一次常压灌浆体与二次 高压灌浆体的比较
上海太平洋饭店软土基坑锚固工程 (1986)
天津百货大楼软土基坑工程 (-13.5 m)最大 位移量仅 5 cm(1994)
砂性土
黏性土
7.全长摩擦型锚杆
(1)缝管锚杆
缝管锚杆结构构造: 1-开缝钢管;2-挡环;3-托板
缝管锚杆外形
缝管锚杆的工作特性
使围岩处于三维压缩状态(三向预应力) 立即提供支护抗力; 锚固力随时间而增加; 围岩位移后锚杆仍能保持较高的承载力。
围岩处于三维压缩状态
1-杆体和托板作用在岩石上的力; 2-岩石;3-托板;4-挡环
机械固定与胶结料固定相结合的锚杆
涨壳式中空灌浆锚杆
美国威廉姆斯(williams)生产的涨壳式锚杆结构
威廉姆斯岩石锚杆注浆浆液流动图
杭州图强公司生产的涨壳式中空锚杆结构
涨壳式中空锚杆作用于岩石时能形成压应力区
不同类型低预应力锚杆的性能比较
不同类型低预应力锚杆工作时形成的剪力锥
5、可重复高压灌浆型锚杆
无锚头预应力锚杆的构造
(a)在临时锚墩上对杆体张拉 (b)拆除临时锚头及锚墩后的
锚杆剖面图
荷载从锚杆传递到结构物的方法
(a)常规方法传递;(b)通过凹槽内的锚头传递; (c)通过上(第二)粘结段传递
(1)叶尼塞河sayane-shushensh Hps消力池底 板的预应力锚固
消力池表面粘结锚固的最终的结构型式质量检验: 锚杆拉力值为1021kN,一年后测定的拉力损失为20% 使用几年后,洪水未对消力池表面产生任何影响
锚杆格构梁在高边坡加固中的应用

锚杆格构梁在高边坡加固中的应用摘要:随着锚固技术的不断发展,锚杆格构梁在边坡加固中广泛应用,本文以深圳某高边坡的加固工程实例,详细论述了锚杆格构梁用于加固高边坡的设计方案和施工技术,通过施工完后边坡的监测资料,表明该支护方式用于加固高边坡是安全有效的,并很好的体现了该技术的施工灵活性和方便绿化的特点,为类似的工程提供借鉴。
关键词:锚杆;格构梁;高边坡;地灾治理0 引言随着我国经济的不断发展,在城市建设、公路、铁路及水利等工程建设中,需要对山体进行开挖,形成了大量的人工高边坡,如果边坡不进行及时加固和处理,会产生滑坡或崩塌地质灾害,危及人民生命财产安全。
锚杆格构梁技术是将拉力传至稳定岩土层中,以达到加固不稳定岩土体的目的。
[1]该方法被广泛应用于高边坡的加固中,有以下优点:1)能有效加固浅层岩土体和深层岩土体;2)施工灵活性大,有效适应地层变化;3)格构梁之间坡面采用植被防护,与周边环境相协调;4)方便信息化施工和动态施工。
[2][3]1工程概况边坡位于深圳市宝安区福永街道,边坡总体呈直线型,走向近南北,坡长约380m,边坡坡高30~60m,局部有1~3级坡,整体坡度30°~70°。
坡体主要由强~微风化花岗岩组成,为岩质边坡。
坡面未采取支护措施,局部设有跌水,坡顶坡脚均建排水沟,坡脚采用浆砌石挡土墙加固,挡墙高约 2.0m,墙顶宽约0.8m。
坡顶为望牛亭公园,坡脚为小区住宅楼。
边坡局部已发生多处崩塌地质灾害,主要位于边坡中上部,规模为微型~小型。
根据现场调查,该边坡坡顶及坡底的排水沟堵塞,岩体节理裂隙发育,局部有倾向坡外的节理组,裂隙相互切割形成潜在滑动楔形体,存在崩塌隐患。
2场地工程地质条件2.1地形地貌边坡原始地貌为丘陵剥蚀台地地貌,坡顶标高35.32~72.85m,坡脚标高19.80~27.26m,场地地势起伏大,自然坡面一般植被发育,多为杂草和灌木,覆盖率可达90%。
2.2地层岩性根据地质勘察报告,场地地层有第四系人工填土层(Q ml)、第四系残积层(Q el)和早白垩纪花岗岩(K1Zh),自上而下分述如下:(1)人工填土层(Q ml)人工填土:杂色,稍湿,松散~稍密,以碎石块和少量黏性土为主,偶见红色砖块,碎石含量约25%~30%。
深基坑支护中锚杆的预应力与摩阻力试验

第6卷第5期2007年10月 江南大学学报(自然科学版)Journal of Jiangnan U niversity(N atural Science Edition) Vol.6 No.5Oct. 2007 文章编号:1671-7147(2007)05-0588-05 收稿日期:2006-05-02; 修订日期:2006-08-20. 基金项目:国家自然科学基金项目(50678158). 作者简介:王景春(1968-),男,河北隆尧人,教授.主要从事岩土工程方面的教学与研究.Email :wjc36295@深基坑支护中锚杆的预应力与摩阻力试验王景春1, 徐日庆1, 侯卫红2(1.浙江大学软弱土与环境土工教育部重点实验室,浙江杭州310027;2.石家庄铁道学院土木分院,河北石家庄050043)摘 要:锚杆支护在国内深基坑开挖和支护中得到了广泛应用,但对其工作机理和计算方法的研究尚不够完善.以1个预应力锚杆支护的深基坑工程为实例,对工程锚杆进行了试验.通过试验,测试了锚固体在岩土中摩阻力的分布规律及其锚杆中的预应力变化,校验了锚杆的设计数据,为工程提供了设计依据.测试结果表明,锚固体与岩土体间的摩阻力沿锚杆长度不是均匀分布的,其分布规律与摩阻力水平有关,在孔口附近最大,从孔口沿锚杆长度逐渐衰减.锚杆的预应力随着时间变化,其变化与注浆量、锚杆的位置及其锁定荷载有关.锚杆杆体的受力变化对基坑开挖较为敏感,同时围护墙体的水平位移对其有一定的影响.关键词:锚杆;深基坑;试验;抗拔;摩阻力;预应力中图分类号:TU 45文献标识码:AExperimental R esearch on Prestress and FrictionForce of Anchors for Deep ExcavationWAN G Jing 2chun 1, XU Ri 2qing 1, HOU Wei 2hong 2(1.Key Laboratory of Soft Soils and Ceoenvironmental Engineering ,Ministry of Education ,Zhejiang University ,Hangzhou 310027,China ; 2.Department of Civil Engineering ,Shijiazhuang Railway Institute ,Shijiazhuang 050043,China )Abstract :The retaining of anchors is widely used in China ,but t he p rinciple and calculating met hod for soil anchor are not so perfect.In t his paper ,t he researches and test on soil anchors is carried out based on a deep excavation.The dist ribution of t he f riction force on t he interface between soil and mortar and t he variation of p ret ress in anchors are obtained t hrough test.The result shows t he distribution of t he f riction force is not uniform and t he stress attenuates along t he lengt h of anchor ,which is t he maximal in t he orifice of hole and related to t he level of f riction force.The p ret ress in anchor varies in time and is correlative to t he grouting amount ,location for it self and locking load.The p ullout resistance of anchor is sensitive to t he excavating for deep excavatio n ,and t he displacement of retaining wall is influenced in certain degree when applying p restress on t he anchor.K ey w ords :soil anchor ;deep excavation ;site test ;p ullout resistance ;f riction force ;prest ress 锚杆排桩支护结构(或桩锚式支护结构)或锚杆支护地下连续墙支护结构是深基坑支护的常用结构,它适用于基坑周围施工宽度狭小、且邻近无深基础建筑物的工程[1].使用锚杆,可以充分发挥岩土体自身的稳定能力,且可代替内支撑,直接扩大作业空间.随着锚固技术的发展,锚杆在深基坑工程中的应用日益广泛,对锚固理论的研究也日益深入,主要集中在锚固荷载传递机理和加固效应两大内容上[224].但总的来说,对它的工作机理和计算方法研究尚不完善,对它实际受力情况也尚不十分了解[526].在基坑开挖过程中,锚杆的加入改变了围护结构的受力状态,约束了基坑边坡位移的发展,锚杆的受力又反映了基坑的稳定状态和锚杆支护的工作性能.锚杆的现场试验可以提供一种手段,使设计人员能够检验所作的设计和假设,验证解析解和数值模型[7].文中以一个预应力锚杆支护的深基坑工程为实例,进行了锚杆的现场试验,测试结果有助于揭示锚杆支护的作用机理,较全面分析其工作性能,为设计与施工的改进提供指导和帮助.1 工程概况与支护结构方案 某商厦由主楼和裙楼构成,其中48层的主楼为商业中心,为筒中筒结构;裙楼为8层的购物中心,框架结构,地下2层(局部3层),占地面积约为18000m2,基坑开挖深度为9m.该建筑地处闹市区,四面临街,因而对基坑围护结构的要求较高.该工程的地质状况如图1所示.其土层分布自上而下依次为Ⅰ层素填土、Ⅱ层粉质粘土、Ⅲ层粉质粘土与粉土、Ⅳ层细砂、Ⅴ层粉质粘土.整体来看场地的土层较均匀,基础采用箱基+桩基.该场地的地下水较丰富,地下水位在地面以下2.0m,水随季节变化有所升降,年变幅为0.5~1.0m.图1 地质剖面与围护结构简图Fig.1 Sketch for geological section and retaining structu re 基坑平面为不规则抹角长方形(160m×90 m),采用地下连续墙+预应力锚杆围护结构(见图1).地下连续墙厚0.7m,高18m,墙入基底9.0m.预应力锚杆长23m,位于地面下2.3m,间距0.80 m.采用20°和15°相间隔的倾角,锚杆锚固段长18 m,采用3根25的20MnSi钢.锚固土层为粉质粘土,天然容重为19.8kN/m3,固结快剪强度指标为c=15.4kPa,φ=19.2°2 锚杆的试验结果与分析2.1 锚杆的抗拔试验通常认为锚杆的破坏形态有:1)注浆体与岩土体间剪切破坏;2)锚杆杆体抗拉强度破坏;3)锚杆杆体与注浆体界面破坏;4)锚杆埋入稳定地层能够使地层呈锥体拔出.一般情况下第4种破坏不会发生,锚杆杆体的强度也很容易计算和控制,而对软岩和土层情况,锚杆的承载力通常不由杆体与注浆体间握裹力控制,而由注浆体与岩土体间极限剪切强度确定.根据《土层锚杆设计与施工规范》(CCES222 90)[8],需对锚杆进行抗拔试验,以确定锚杆的施工质量,检验锚杆是否达到设计要求.根据场区的岩土情况,进行了2组6根锚杆的破坏性试验.试验锚杆分布在场区的不同位置.锚孔的直径130,使用425R普通硅酸盐水泥,水灰比为0.45,锚杆的自由段长5m且不注浆.典型锚杆的基本试验曲线(Q2S 曲线)见图2.图2 锚杆的Q2S曲线Fig.2 The representative Q2S curves of anchor 根据现场拉拔试验,6根锚杆的承载力分别为372、414、427、367、408和397kN,满足了锚杆在粉质粘土中工作荷载要求达到350kN的设计要求. 2.2 锚杆杆体的受力变化规律研究锚杆杆体受力分布规律的试验,是通过在杆体的不同位置粘贴电阻应变片进行的.试验在对985 第5期王景春等:深基坑支护中锚杆的预应力与摩阻力试验锚杆施加预应力并锁定后开始,共进行了3根锚杆的实测,应变片的贴片位置见图3.但在施工过程中其中2根被损坏,所以测试结果仅列了1根锚杆的测试数据,试验结果见图4.单位:m图3 电阻应变片布置图Fig.3 The layout of strain gauges 随试验时间和开挖深度的增加,锚杆钢筋传力的位置和大小由图4可以一目了然.通过曲线显示,在基坑开挖深度不变的时间段里(即基坑不挖土),杆体不同位置处钢筋的受力变化比较均匀或者说没有突变(第7点破坏,没有反应);当基坑开挖时(基坑挖至3m 时安装锚杆,图4中第45d 进行土体开挖,挖至6m ,第89d 再次开挖直到基底,110d 底板浇注完成),随着开挖深度增加,由图4可以明显地表现为曲线的陡升,这一现象说明杆体的受力变化对基坑的开挖比较敏感,其敏感性的大小与程度视一次的开挖深度而定.当然,另一个表现敏感性的因素,是一次开挖基坑的宽度,随着基坑开挖宽度的增大,杆体各部位的受力也在增加,但是增加的幅度不大.图4 锚杆的应变随时间的变化曲线Fig.4 The curve betw een strain of anchor and time2.3 摩阻力的计算与变化规律锚杆在外荷载作用下,任一截面上的内力等于钢筋内力与注浆体内力之和,而两截面内力之差即为该区间注浆体与岩土间的剪切力,剪切力除以该区间注浆体表面积即为该区间的平均剪应力.锚杆任一截面的内力为N i =E g A g εgi +E c A c εci =(E g A g +E c A c )εi (1)区间平均剪应力τ=(N i -N i-1)/πD Δl(2)将式(1)代入式(2)得τ=(E g A g +E c A c )(εi -εi-1)/πDΔl (3)式中,E g ,E c 分别为钢筋和注浆体的弹性模量;A g ,A c 分别为钢筋和注浆体的截面积;εi 为任一截面i的应变值;Δl 为两测点之间的距离;D 为锚固体的直径,可用钻孔直径代替.根据式(3)计算出摩阻力随时间的变化规律,绘于图5中.从图5可以看出:1)在任一时间内(一级荷载作用下),锚固体与岩土体间的剪应力沿锚杆长度分布是不均匀的,在孔口附近最大,从孔口沿锚杆长度逐渐衰减.2)随着时间的延长,锚杆锚固体与土体之间的摩阻力是逐渐提高的.但是,锚杆的摩阻力在不同的位置其增长的峰值却不是同时出现的.在基坑开挖到底、底板打好后,此时的摩阻力基本趋于稳定.图5 摩阻力随时间的变化规律Fig.5 V ariation of friction versus time 摩阻力在同一天的时间内,沿杆体锚固段的摩阻力分布规律见图6.图6中曲线1为较低摩阻力时的前期分布,曲线2为摩阻力水平高时的后期分布.曲线1、2之间有1个转换过程,曲线的形状由凸形变为凹形,则在曲线1、2之间一定有1个直线分布,即摩阻力沿锚固长度逐渐递减的分布规律.但是,在锚固段末端的摩阻力水平并不趋于零,而是存在有一定数值大小的摩阻力.图6 沿锚固长度锚固体与土体之间的摩阻力分布Fig.6The distribution of friction force along anchoring length95 江南大学学报(自然科学版) 第6卷 2.4 锚杆的预应力随时间的变化规律锚杆的预应力采用GMS 型锚索测力计进行测试,以检查锚杆的预应力变化,确认锚杆的长期工作性能.共进行了5根锚杆的预应力监测,预应力的变化见表1.典型的监测曲线见图7.图7 锚杆预应力随时间的变化规律Fig.7 V ariation of prestress in anchors versus time表1 锚杆中的预应力变化T ab.1 V ariation of prestress in anchors锚杆锁定荷载/kN预应力损失/%基底垫层打好,预应力增长/%注浆量/kg 二次高压注浆量/kgy 12057.3(25d )39.01500450y 221010.5(25d )18.61150750y 3150 1.33(2d )18.2600300y 42017.0(24d )59.7900300y 52266.2(2d )60.6950600 从表1和图7可以看出:对锚杆施加的预应力越高,其在开挖前的预应力损失也越大;在土体开挖到基底后,预应力的增长幅度则不能确定.预应力在后期基坑开挖过程中的增长,主要和基坑的开挖方式、开挖速度有关.同时还和锚杆的位置有关,如Y 4和Y 5两根锚杆分别位于基坑两长边的墙体近中间位置,故基坑开挖到底后,其受力肯定较其余3根位于两短边墙体的锚杆不同.在相同的预应力水平下,后期的预应力增长幅度前者要比后者大许多.此外,锚杆的注浆量对锚杆的预应力也有影响.锚杆的注浆量越大,其预应力损失则稍偏高,但第二次高压注浆量越多,锚杆的预应力损失却稍偏低.究其原因,第一次注浆后,初步形成了锚杆的锚固体,对周围的土体进行一次挤压和向土中扩散浆液,加固了土体,使土体的固结度提高;二次高压注浆后,进一步向土体中扩散浆液,使土体、锚固体更加密实.由此不难看出,二次高压注浆量越大,地层的固结越高,反映到锚杆上则预应力损失较小.2.5 注浆对锚杆承载力的影响为研究注浆对锚杆承载力的影响,本工程对其中2根锚杆进行了二次常压注浆与二次高压注浆的对比试验,其中一次注浆的压力均为0.9M PA ,试验结果见表2.表2 注浆方式对承载力的锚杆影响T ab.2 E ffect of grouting mode on pull resistance of anchor注浆方式最大注浆压力/MPa注浆量/Kg 一次二次承载力/kN二次高压 3.78005004273.5900350408二次常压1.010*********.9120050282 比较二者的极限承载力,可以看出二次高压注浆的极限承载力平均可以提高1.4倍,二次常压注浆甚至达不到设计工作荷载,可见注浆方式对锚村的承载力的影响不可忽视.究其原因,常压(0.5~1.0M Pa )注浆主要是充填钻孔掏空或天然沉积溶空,这时基本上没有多大的阻力.二次高压(3.0~5.0M Pa )注浆,是在一次充填完成的基础上进行的,一次注浆形成的注浆体已有一定的强度.高压对原水泥浆进行了沿锚杆杆体不同位置的劈裂,这样浆液在土中沿部分土层的层理界面对土体进行挤压、扩散,形成层状、板块状和脉动状分布,构成土体的骨架.随着注浆的连续进行,注浆压力增大,土层的吃浆量、吃浆速度逐渐减小,层面裂隙不断填满,土层被压密,土颗粒被移动、重新排列、水气排出,这样起到加固土体的作用,从而提高锚杆的承载力.2.6 锚杆对墙顶水平位移的影响为反映工程信息,及时采取工程措施,在该基坑施工时进行了现场监测,图8为锚杆所在连续墙墙顶位移随时间的变化曲线.图8 连续墙墙顶水平位移随时间的变化Fig.8 Displacement on diaphragm top versus time195 第5期王景春等:深基坑支护中锚杆的预应力与摩阻力试验从图8中可以看出:1)施加锚杆前位移-时间的变化速率比施加锚杆后位移-时间的变化速率大.2)锚杆张拉完毕后(第41d),由于预应力的作用,可以将连续墙回拉2~4mm.3)在基坑开挖到设计深度,底板浇注完成后,连续墙的位移会较为稳定、近于不变,且连续墙的位移对基坑突然的开挖较为敏感.这与锚杆在同一时间内的受力变化相似.3 结 语 1)对于本工程来说,锚杆的设计是合理的,达到了设计的承载力.锚杆对地下连续墙的水平位移有一定的影响,锚杆杆体的受力变化对基坑的开挖比较敏感.2)锚固体与土体间摩阻力沿锚杆长度的分布是不均匀的,在孔口附近最大,沿锚杆长度从孔口向孔底衰减.根据本试验的情况说明,随着时间的延长,锚杆锚固体与土体之间的摩阻力是逐渐提高的,但是锚杆的摩阻力在不同位置时,其增长的峰值却不是同时出现的.所以摩阻力的分布规律与摩阻力水平有关.3)锚杆预应力随时间的变化有损失,对本工程来说,其损失程度在6%~10%之间.锚杆内的预应力变化与锚杆的位置、注浆量和锁定荷载有关,锚杆内的预应力对基坑的开挖非常敏感.参考文献:[1]刘建航,侯学渊.深基坑工程手册[M].北京:中国建筑工业出版社,1997.[2]张乐文,王稔.岩土锚固理论研究之现状[J].岩土力学,2002,23(5):6272631.ZHAN G Le2wen,WAN G Ren.Research on status quo of anchorage theory of rock and soil[J].Rock and Soil Mechanics,2002,23(5):6272631(in Chinese).[3]程良奎.岩土锚固的现状与展望[J].土木工程学报,2001,34(3):7212.CH EN G Liang2kui.Present status and development of ground anchorages[J].China Civil Engineering Journal,2001,34(3):7212(in Chinese).[4]贾金青.复杂地层深基坑支护的方法与实践[J].岩土锚固工程,2000(2):48252.J IA Jin2qing.Method and practice for retaining of deep excavation in complex ground[J].Engineering of Anchorage of Rock and Soil,2000(2):48252(in Chinese).[5]高永涛,吴顺川,孙金海.预应力锚杆锚固段应力分布规律及应用[J].北京科技大学学报,2002,24(4):3872390.GAO Y ong2tao,WU Shun2chuan;SHUN Jin2hai.Application of the pre2stress bolt stress distributing principle[J].Journal of University of Science and Technology Beijing,2002,24(4):3872390(in Chinese).[6]朱焕春,吴海滨,赵海斌.反复张拉条件下锚杆工作机理分析[J].岩土工程学报,1999,21(6):6622665.ZHU Huan2chun,WU Hai2bin,ZHAO Hai2bin.Experimental study on bolting mechanism under cyclic tensile load[J].Chinese Jounal of G eotechnical Engineering,1999,21(6):6622665(in Chinese).[7]李宁,韩煊,陈飞熊,等.预应力群锚加固机理的数值试验研究[J].岩土工程学报,1997,19(6):60266.L I Ning,HAN Xuan,CH EN Fei2xiong,et al.Numerical model test on strengthening mechanism of prestressed bolts [J].Chinese Jounal of G eotechnical Engineering,1997,19(6):60266(in Chinese).[8]中国工程建设标准化协会.土层锚杆设计与施工规范CECS(22290)[M].北京:中国计划出版社,1991.(责任编辑:彭守敏) 295 江南大学学报(自然科学版) 第6卷 。
不良地质条件下隧洞施工锁口的几种方法

口施工是隧洞施工的关键,尤其在不良地质条件下,如锁口施工工法选择不当,将可能产生冒顶而无法成功 进
洞。本文以贵州省蒙江双河口水电站工程几条隧洞进洞锁口方法为例,介绍了在不良地质条件下成功进洞的施 工
方法,以供工程技术人员参考。
关键词:不良地质条件;洞脸边坡支护; 隧洞;锁口
中图分类号:U452.2+ 7
(1)度汛洞:根据洞脸边坡开挖所揭露的地质情况, 岩层节理发育、十分破碎、且局部有大量渗水,成洞条件 很差。故进洞方法采取了临时钢支撑和小导管注浆进洞的 施工方法,其进洞锁口方案见图2。
(2)泄洪洞龙抬头进洞工程:泄洪洞龙抬头工程根据 开挖揭露出来的地质情况,岩层十分破碎、节理发育、裂 隙间含泥较重、且为顺向坡,为了使洞挖工程进洞安全, 采取了明拱进洞的施工方案,明拱采取临时钢支撑连接而 成,钢支撑之间采用Φ16和Φ25的钢筋进行连接,临时钢支 撑喷射30cm厚的C20混凝土,具体见图3。
2.2 进洞施工方法
根据导流洞进出口开挖揭露出来的地质情况来看,采
用直接进洞的施工方法,进行短进尺爆破,其施工流程
为:
洞脸边坡锁口支护
钻爆
进尺。
导流洞进出口的进洞施工措施基本一致,首先采用全
站仪对洞口部位进行准确测量放样,并用红油漆醒目标
示,然后按照审批的施工方案进行施工。在测量放样出来
-1-
吴海珊 不良地质条件下隧洞施工锁口的几种方法 直径Φ为2255,L=锁6口m锁锚口杆锚杆
土方及全风化层直接采用反铲挖掘机挖掘,翻渣至出渣平
台,开挖出的土渣除部分用于出渣平台和临时便道填筑
外,其余全部用PC-200型反铲挖掘机装渣、20t自卸车运渣
至弃渣场。覆盖层的土方边坡经挖掘机开挖后,预留了