基于R软件的AFLPdat数据矩阵自动生成程序使用说明
r语言长数据转化矩阵

r语言长数据转化矩阵R语言是一种流行的统计分析和数据可视化工具,它提供了各种功能强大的函数和包,能够帮助用户处理和分析各种类型的数据。
在实际应用中,我们经常会遇到长数据的情况,即每一行代表一个观察值,而每一列代表一个变量。
为了更好地理解和分析这些数据,我们需要将其转化为矩阵的形式。
那么,如何使用R语言将长数据转化为矩阵呢?接下来,我将通过以下几个步骤详细介绍。
第一步,导入数据。
首先,我们需要将数据导入到R语言的工作环境中。
可以使用read.table()或read.csv()等函数读取数据文件,也可以直接使用数据框或向量等数据结构。
第二步,整理数据。
在将长数据转化为矩阵之前,我们可能需要对数据进行一些处理和整理。
例如,去除缺失值、删除重复观察值、调整变量的顺序等。
这些操作可以使用R语言提供的各种函数和操作符来实现。
第三步,转化为矩阵。
一旦数据整理完毕,我们就可以开始将长数据转化为矩阵了。
可以使用as.matrix()函数将数据框或向量等数据结构转化为矩阵。
在转化过程中,R语言会自动将数据按照列的顺序填充到矩阵中。
第四步,设置标题。
为了更好地理解和分析数据,我们可以为矩阵设置标题。
可以使用colnames()和rownames()函数分别设置列和行的标题。
例如,可以使用colnames()函数设置列标题为变量的名称,使用rownames()函数设置行标题为观察值的标识符。
第五步,输出结果。
最后,我们可以使用print()函数将转化后的矩阵输出到控制台或保存为文件。
在输出结果时,可以设置参数来控制输出的格式和样式,以便更好地展示数据。
通过以上几个步骤,我们可以很方便地将长数据转化为矩阵,并为其设置标题。
这样一来,我们可以更清晰地理解和分析数据,为后续的统计分析和数据可视化工作奠定基础。
总结起来,使用R语言将长数据转化为矩阵并设置标题是一个简单而实用的数据处理技巧。
通过这种方式,我们可以更好地理解和分析数据,为后续的数据分析工作打下基础。
如何用NTsys构建0、1数据(AFLP)进化树

NTSYS-PC使用说明NTSYS是一个聚类分析的软件,可以用来分析AFLP,RAPD等电泳带型,也可用于微生物群落多样性的相似性分析。
下面简单介绍一下其用法:1.先建立一个0,1构成的矩阵:在excel中,按如下规则输入数据,A1=1表示有带记为1,B1=535表示AFLP样本数, C1=19表示有19个带型,D1=0表示无带记为0。
第二行表示的是样本名称。
从第三行开始的A列表示带型名称。
见下图:2.选择另存为,在其中的保存类型中选择“文本文件(制表符分隔)”然后点保存,确认。
3.打开NTSYS软件点“Similarity”下拉选择”“Qualitative date”在“input file”中选择刚才保存的.txt文件,在“output file”中输入保存文件名。
“Byrows”一项不选×,“coefficient”中选择J,点compute进行运算。
4.点软件左边第二项选择“SAHN”在“input file”中选择上一步运算出来的文件在“output tree file”中输入保存文件名。
点compute进行运算。
5.选择左边第二项中的“Cophenetic Values”在“input tree file”中选择刚才计算的tree文件,输入output的文件名,点compute进行计算。
6.作Mat检测:点击左面第三项,选择“Matrix comparison plot”在“input file(1)”中选择“Qualitative date”计算出的结果,在“input file(2)”中选择“Cophenetic Valuess”计算出的结果。
点击compute进行计算,r值在0.7以上为可信。
Matrix软件操作说明

Matrix软件操作说明一. 软件系统设置1.通讯设置通讯设置目的是为了选不同的端口,对端口通讯速率,及矩阵系统网络号进行设置,只有在与矩阵系统速率相同的情况下才能进行通信.窗口界面:具体操作如下.1.单击工具栏的"通讯方式"按钮,进入通讯方式设置窗口2.选择当前软件的通讯方式,"使用本地串口"用485线与电脑相连,远程透明串口,用IP模块通信3.选择相应的"串口","波特率".4.选择"使用远程透明串口",使用网络设备进行通信.选择对应的网络设备.5.单击"确定" 保存设置附:虚拟键盘涉及到网络号操作,在此进行设置.2.矩阵类型窗口界面具体操作1.单击"软件系统设置"->"矩阵类型",进入矩阵类型界面2.选择"矩阵类型"(此类型关系到当前所读取矩阵数据的正确性,请务必选择对应的矩阵型号).3.单击"确定" 保存设置3.修改密码窗口界面具体操作1.单击"软件系统设置"->"修改密码",进入修改密码界面2.输入"旧密码",并确认输入新密码3.单击"确定" 保存设置4.登陆/登出为防止他人任意更改系统设置,系统提供此功能,在拥有管理员权限的情况下方可操作系统.其界面如下:二. 矩阵系统设置1.时间设置设置矩阵系统时间.窗口界面具体操作:1.单击"矩阵系统设置"->"时间设置",2.进入"时间设置"界面3.可单击"同步系统时间"按钮,与计算机系统同步时间4.也可手工设置矩阵时间.5.单击"确定",保存设置2.云台协议设置云台协议窗口界面具体操作:1.单击"矩阵系统设置"->"云台协议",2.进入"云台协议"设置界面3.选择"云台协议",和对应的通信速率.4.单击"确定",保存设置3.网络编号设置矩阵系统网络号窗口界面具体操作:1.单击"矩阵系统设置"->"网络编号",2.进入"网络编号"界面3.选择"网络编号4.单击"确定",保存设置4. 键盘数量设置矩阵系统键盘数量窗口界面具体操作:1.单击"矩阵系统设置"->"键盘数量",2.进入"键盘数量"界面3.选择"键盘数量"4.单击"确定",保存设置三. 标题与显示1. 摄像机标题设置窗口界面具体操作1.单击"标题与显示"->"摄像机标题" 或工具栏上的"摄像机标题"按钮,进入摄像机标题设置界面;2.单击"读矩阵"按钮,系统从矩阵主机读取数据并显示;3.单击"写矩阵"按钮,系统将当前页数据写入矩阵主机;4.单击"读数据库",系统从数据库中读取数据,同时也可将数据库中设置的数据,写入矩阵,也可将数据写回矩阵主机;5.单击"写数据库",将当前页数据写回数据库,以备日后查看,维护.2. 监示器标题窗口界面具体操作1.单击"标题与显示"->"监示器标题" 或工具栏上的"监示器标题"按钮,进入"监示器标题"设置界面;2.单击"读矩阵"按钮,系统从矩阵主机读取数据并显示;3.单击"写矩阵"按钮,系统将当前页数据写入矩阵主机;4.单击"读数据库",系统从数据库中读取数据,同时也可将数据库中设置的数据,写入矩阵,也可将数据写回矩阵主机;5.单击"写数据库",将当前页数据写回数据库,以备日后查看,维护.3. 屏幕位置设置监示器标题/时间显示位置窗口界面具体操作:1.单击"标题与显示"->屏幕位置" ;2.进入"屏幕位置"界面;3.拖动"屏幕位置"按钮到适当位置;4.单击"确定"保存设置;5.重启矩阵系统,使设置生效.4. 标题位置设置监示器标题/时间显示位置窗口界面具体操作:1.单击"标题与显示"->标题位置"2.进入"标题位置"界面.3.拖动"标题位置"按钮到适当位置4.单击"确定"保存设置5.重启矩阵系统,使设置生效5. 时间位置设置监示器标题/时间显示位置窗口界面具体操作:1.单击"标题与显示"->时间位置" ;2.进入"时间位置"界面;3.拖动"时间位置"按钮到适当位置;4.单击"确定"保存设置;5.重启矩阵系统,使设置生效.四. 切换1. 程序切换窗口界面具体操作1.单击"切换"->"程序切换" 或工具栏上的"程序切换"按钮,进入程序切换设置界面,2.单击"读矩阵"按钮,系统从矩阵主机读取数据并显示,3.单击"写矩阵"按钮,系统将当前页数据写入矩阵主机.4.单击"读数据库",系统从数据库中读取数据,同时也可将数据库中设置的数据,写入矩阵,也可将数据写回矩阵主机.5.单击"写数据库",将当前页数据写回数据库,以备日后查看,维护.6.单击"上一页","下一页",可查看不同的切换设置2. 同步切换窗口界面具体操作1.单击"切换"->"同步切换" 或工具栏上的"同步切换"按钮,进入同步切换设置界面,2.单击"读矩阵"按钮,系统从矩阵主机读取数据并显示,3.单击"写矩阵"按钮,系统将当前页数据写入矩阵主机.4.单击"读数据库",系统从数据库中读取数据,同时也可将数据库中设置的数据,写入矩阵,也可将数据写回矩阵主机.5.单击"写数据库",将当前页数据写回数据库,以备日后查看,维护.6.单击"上一页","下一页",可查看不同的切换设置3. 群组切换窗口界面具体操作1.单击"切换"->"群组切换" 或工具栏上的"群组切换"按钮,进入群组切换设置界面,2.单击"读矩阵"按钮,系统从矩阵主机读取数据并显示,3.单击"写矩阵"按钮,系统将当前页数据写入矩阵主机.4.单击"读数据库",系统从数据库中读取数据,同时也可将数据库中设置的数据,写入矩阵,也可将数据写回矩阵主机.5.单击"写数据库",将当前页数据写回数据库,以备日后查看,维护.6.单击"上一页","下一页",可查看不同的切换设置五. 权限1. 键盘/监示器窗口界面具体操作1.单击"权限"->"键盘/监示器" ,进入"键盘/监示器"设置界面;2.单击"读矩阵"按钮,系统从矩阵主机读取数据并显示;3.单击"写矩阵"按钮,系统将当前页数据写入矩阵主机;4.单击"读数据库",系统从数据库中读取数据,同时也可将数据库中设置的数据,写入矩阵,也可将数据写回矩阵主机;5.单击"写数据库",将当前页数据写回数据库,以备日后查看,维护.2. 键盘/摄像机窗口界面具体操作1.单击"权限"->"键盘/摄像机" 进入"键盘/摄像机"设置界面;2.单击"读矩阵"按钮,系统从矩阵主机读取数据并显示;3.单击"写矩阵"按钮,系统将当前页数据写入矩阵主机;4.单击"读数据库",系统从数据库中读取数据,同时也可将数据库中设置的数据,写入矩阵,也可将数据写回矩阵主机;5.单击"写数据库",将当前页数据写回数据库,以备日后查看,维护.3. 监示器/摄像机窗口界面具体操作1.单击"权限"->"监示器/摄像机" ,进入"监示器/摄像机"设置界面;2.单击"读矩阵"按钮,系统从矩阵主机读取数据并显示;3.单击"写矩阵"按钮,系统将当前页数据写入矩阵主机;4.单击"读数据库",系统从数据库中读取数据,同时也可将数据库中设置的数据,写入矩阵,也可将数据写回矩阵主机;5.单击"写数据库",将当前页数据写回数据库,以备日后查看,维护.4. 键盘/报警窗口界面具体操作1.单击"权限"->"键盘/报警" ,进入"键盘/摄像机"设置界面;2.单击"读矩阵"按钮,系统从矩阵主机读取数据并显示;3.单击"写矩阵"按钮,系统将当前页数据写入矩阵主机;4.单击"读数据库",系统从数据库中读取数据,同时也可将数据库中设置的数据,写入矩阵,也可将数据写回矩阵主机;5.单击"写数据库",将当前页数据写回数据库,以备日后查看,维护.5. 网络/键盘窗口界面具体操作1.单击"权限"->"网络/键盘" ,进入"网络/键盘"设置界面;2.单击"读矩阵"按钮,系统从矩阵主机读取数据并显示;3.单击"写矩阵"按钮,系统将当前页数据写入矩阵主机;4.单击"读数据库",系统从数据库中读取数据,同时也可将数据库中设置的数据,写入矩阵,也可将数据写回矩阵主机;5.单击"写数据库",将当前页数据写回数据库,以备日后查看,维护.六. 报警1报警联动窗口界面具体操作1.单击"报警"->"报警联动" ,进入"报警联动"设置界面;2.单击"读矩阵"按钮,系统从矩阵主机读取数据并显示;3.单击"写矩阵"按钮,系统将当前页数据写入矩阵主机;4.单击"读数据库",系统从数据库中读取数据,同时也可将数据库中设置的数据,写入矩阵,也可将数据写回矩阵主机;5.单击"写数据库",将当前页数据写回数据库,以备日后查看,维护.2. 自动设防窗口界面具体操作1.单击"报警"->"自动设防" ,进入"自动设防"设置界面;2.单击"读矩阵"按钮,系统从矩阵主机读取数据并显示;3.单击"写矩阵"按钮,系统将当前页数据写入矩阵主机;4.单击"读数据库",系统从数据库中读取数据,同时也可将数据库中设置的数据,写入矩阵,也可将数据写回矩阵主机;5.单击"写数据库",将当前页数据写回数据库,以备日后查看,维护.3. 历史报警窗口界面具体操作1.单击"报警"->"历史报警" ,进入"历史报警"界面;2.系统自动读取矩阵系统历史报警记录;3.可单击"刷新"按钮重新读取矩阵系统数据.4. 报警端口设置窗口界面具体操作:1.单击"报警"->"报警端口设置" ;2.进入"报警端口设置"界面 ;3.选择"报警端口" ;4.单击"确定",保存设置.5. 设防/撤防状态窗口界面具体操作1.单击"报警"->"设防/撤防状态" ,进入"设防/撤防状态"界面;2.系统自动读取矩阵系统历史报警记录;3.可单击"刷新"按钮重新读取矩阵系统数据;七. 键盘设置1. 虚拟键盘虚拟键盘是为了方便用户在计算机系统操纵矩阵设计的.功能与矩阵键盘类似.可通过虚拟键盘对矩阵进行,摄像机切换等操作. 窗口界面八. 常见问题下位机无响应:可能存在以下几种情况:1.连接线路太长或线路质量存在问题.数据无法接收.2.系统波特率与矩阵主机波特率不一至.系统波特率可通过"通讯方式"进行设置;3.矩阵主机系统软件被破坏,可与厂商联系,进行系统升级.可读矩阵数据,但无法写入矩阵:1.线路或转接器存在问题.请更换好一点的通信设备.虚拟键盘无法操作:1.网络号或波特率与矩阵系统不相符;解决方法参看“通讯设置”2.线路质量问题。
DAVE代码自动生成软件操作指南(8

Infineon DAVE代码自动生成软件操作指南(8 bit MCU 部分)注意。
声明:由于本公司人力有限,发生错误在所难免,一切以Infineon公司提供的相关IC datasheet等资料为准,欢迎目录前言 (1)1 Project Settings:工程设置 (2)2 T0/T1:定时器0/1 (5)3 UART:串行通信接口 (11)4 Interrupt Unit:中断管理单元 (17)5 UART1:串行通信接口1 (23)6 T2:定时器T2 (29)7 T21:定时器T21 (34)8 ADC:模数转换单元 (40)9 CCU6:捕获比较单元6 (55)10 Multi CAN (74)11 SSC:高速串行接口 (90)12 Watch Dog Timer:看门狗定时器 (97)13 Power Saving Mode:省电模式 (100)14 Port:设置I/O口属性 (104)前言Infineon DAVE是Infineon MCU一个非常好的Infineon MCU软件设计助手,它可以在设计者对Infineon MCU的寄存器了解不是很深入的情况下,编写出准确的软件驱动代码。
比如说CCU6的驱动等。
DAVE软件的安装。
请参考相关屏幕录象MCU驱动的安装请参考相关的屏幕录象打开后的主界面如图0-1:图0-1工具条如图0-2图0-2从左向右分别主要为。
1.相关资料关联控件2.新建项目3.打开项目4.保存5.生成代码1 Project Settings:工程设置概述:XC800 MCU的总体设置。
该窗口主要是用来设置MCU的总体参数。
打开菜单的方法:File -> Project Settings1.1 General:总体设置界面如图1-1图1-1Controller Details:控制器详细Device:在该菜单中选择器件。
选择好后会在右边显示出该MCU的一些主要参数,主要是最高频率,Flash的大小等Main Source File:主源文件File name:主源文件名。
r语言循环函数生成矩阵

r语言循环函数生成矩阵
在R语言中,我们可以使用循环函数来生成矩阵。
循环函数可以重复执行一段代码,直到满足特定条件为止。
这种方法非常适合生成大型矩阵或者需要特定模式的矩阵。
下面是一个使用循环函数生成矩阵的例子:
```
#生成一个4x4的矩阵
m <- matrix(0, nrow = 4, ncol = 4)
#使用循环函数填充矩阵
for (i in 1:4) {
for (j in 1:4) {
m[i,j] <- i*j
}
}
#打印矩阵
print(m)
```
在这个例子中,我们首先创建了一个4x4的矩阵。
然后我们使用两个循环函数来填充矩阵。
第一个循环函数在矩阵的行中循环,第二个循环函数在列中循环。
在循环中,我们将行和列的乘积赋值给矩阵的对应位置。
最后,我们打印出矩阵,看到了我们生成的结果。
使用循环函数可以让我们在生成矩阵时更加灵活和高效。
我们可
以根据自己的需要来定义循环条件和操作,从而生成不同的矩阵。
R第二章R语言的矩阵操作.ppt

data()查询base包中的数据集。 data(数据名)调用数据包。
文件的写 write.table(x,file=“路径”)
保存csv格式数据 write.csv(x,file=“路径”) 用法基本与write.table一样
控制流
分支函数 if/else if(条件格式)命令else命令
as.vector()将矩阵转为向量。
dimnames()提取行列名,赋值 rownames()提取行名,赋值 colnames()提取apply()函数 apply(X,MARGIN,FUN) MARGIN中1表示行,2表示列 FUN表示算法
列表
一种特殊的对象集合,它的元素可以为 各种不同的类型。
数据框
数据框属于特殊的列表形式,列表成员 向量、因子、数值型矩阵、列表等(每个 元素必须有相同的行列数)。
as.data.frame()转换成数据框 is.data.frame()判别是否为数据框
数据框的调用
Lapply函数(返回列表) Sapply函数(返回数据框)
简单的程序设计
函数定义 funname<-function(arg_1,arg_2…){命
令} 无参函数funname<-function(){命令}
课堂作业
自行熟悉本堂课讲的各种命令。
2.5文件的读写
文件的读 read.table()读取纯文本 read.table(file,header=FALSE,sep=“\t”,r
s)
csv格式数据(使用excel保存出) read.csv(file,header=FALSE,sep=“\t
”,s) 用法基本与read.table一样
R语言
r语言原始数据生成矩阵 -回复

r语言原始数据生成矩阵-回复R语言是一种强大的数据分析和统计建模语言,它提供了丰富的函数和工具,使得我们能够高效地处理和分析各种类型的数据。
在R语言中,矩阵是一种非常常用的数据结构,它由多个相同类型的元素组成的二维表格。
本文将一步一步地回答在R语言中如何生成矩阵。
步骤一:创建原始数据在生成矩阵之前,我们需要先创建原始数据。
在R语言中,可以使用向量、列表或数据框来创建数据。
在本例中,我们以中括号内的内容作为原始数据的例子。
data <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)步骤二:定义矩阵的维度在生成矩阵之前,我们需要先定义矩阵的维度,即行和列的数量。
在R语言中,可以使用`dim()`函数来定义矩阵的维度。
dim(data) <- c(5, 2)在上述代码中,我们将原始数据`data`的维度定义为5行2列。
这将创建一个5行2列的矩阵。
步骤三:生成矩阵在定义矩阵的维度后,我们可以使用`matrix()`函数来生成矩阵。
matrix_data <- matrix(data, nrow = 5, ncol = 2)在上述代码中,`matrix()`函数将原始数据`data`转换为一个5行2列的矩阵,并将结果赋值给`matrix_data`变量。
步骤四:查看生成的矩阵为了确保生成的矩阵符合预期,我们可以使用`print()`函数或直接输入变量名来查看生成的矩阵。
print(matrix_data)或者直接输入变量名:matrix_data运行以上代码,将会输出生成的矩阵:[,1] [,2][1,] 1 6[2,] 2 7[3,] 3 8[4,] 4 9[5,] 5 10从输出结果可知,生成的矩阵为一个5行2列的矩阵,元素为从1到10的数值。
总结:本文通过一步一步的回答,详细介绍了在R语言中如何生成矩阵。
首先,我们创建了原始数据,然后定义了矩阵的维度,最后使用`matrix()`函数生成了矩阵。
R语言秘籍之矩阵操作

R语言秘籍之矩阵操作矩阵是R语言中常用的数据结构之一,它可以存储多个相同类型的元素,并以二维数组的形式进行组织。
在R语言中,我们可以使用各种函数和操作符对矩阵进行操作和分析。
本文将介绍一些常用的矩阵操作技巧。
1.创建矩阵在R语言中,可以使用matrix(函数创建矩阵。
matrix(函数的语法如下:matrix(data, nrow, ncol, byrow)其中,data是要填充到矩阵中的数据,nrow是矩阵的行数,ncol是矩阵的列数,byrow是一个逻辑值,用于指示数据是按行填充还是按列填充。
默认情况下,数据是按列填充的。
例如,下面的代码创建了一个3行2列的矩阵:```matrix(c(1, 2, 3, 4, 5, 6), nrow=3, ncol=2)```2.访问和修改矩阵元素我们可以使用[行号,列号]的方式访问矩阵中的元素。
例如,对于上面创建的矩阵,可以使用以下代码访问和修改元素:```#访问第1行第2列的元素matrix[1, 2]#修改第2行第1列的元素为8matrix[2, 1] <- 8```3.矩阵运算矩阵之间可以进行各种运算,例如加法、减法、乘法等。
-矩阵加法:```matrix1 + matrix2```-矩阵减法:```matrix1 - matrix2```-矩阵乘法:```matrix1 %*% matrix2```-矩阵转置:t(matrix)```-矩阵求逆:```solve(matrix)```4.基本统计操作-求和:```sum(matrix)```-求平均值:```mean(matrix)```-求最大值:```max(matrix)-求最小值:```min(matrix)```-求行、列的和:```rowSums(matrix)colSums(matrix)```5.矩阵的行、列操作-提取行和列:```#提取第2行和第3行matrix[2:3, ]#提取第1列和第3列matrix[, c(1, 3)]```-删除行和列:#删除第2行matrix <- matrix[-2, ]#删除第1列matrix <- matrix[, -1]```6.矩阵的合并可以使用rbind(函数将矩阵按行合并,使用cbind(函数将矩阵按列合并。
r语言原始数据生成矩阵 -回复

r语言原始数据生成矩阵-回复如何使用R语言生成矩阵。
在开始之前,让我们先来了解一下什么是矩阵。
矩阵是一个按照特定规则排列的二维数组。
它由行和列组成,并且每个元素都可以通过其行和列的索引进行访问。
在R语言中,可以使用函数和原始数据来生成矩阵。
首先,让我们看一下如何使用原始数据生成矩阵。
原始数据是一个包含数字或字符的向量或列表。
我们可以使用R语言中的"matrix"函数来生成矩阵。
Rdata <- c(1, 2, 3, 4) # 原始数据matrix_data <- matrix(data, nrow = 2, ncol = 2) # 生成矩阵在这个例子中,我们创建了一个名为"data"的向量,其中包含数字1、2、3和4。
然后,我们使用"matrix"函数将这个向量转换为一个2行2列的矩阵。
通过指定"nrow"和"ncol"参数,我们可以定义矩阵的行数和列数。
接下来,让我们看一下如何使用函数来生成矩阵。
R语言中有一些内置函数可以用来生成特定类型的矩阵,例如全零矩阵、全一矩阵、单位矩阵等。
Rzero_matrix <- matrix(0, nrow = 3, ncol = 3) # 生成全零矩阵ones_matrix <- matrix(1, nrow = 3, ncol = 3) # 生成全一矩阵identity_matrix <- diag(3) # 生成单位矩阵在这个例子中,我们使用"matrix"函数生成了一个全零矩阵和一个全一矩阵,它们的行数和列数都是3。
我们还使用了"diag"函数来生成一个3阶的单位矩阵。
该函数通过一个向量参数定义了矩阵的对角线元素。
对角线元素为1,其他元素为0。
此外,我们还可以使用随机数函数来生成包含随机数据的矩阵。
r语言中函数转化为矩阵

r语言中函数转化为矩阵R语言中函数转化为矩阵在R语言中,函数是一种非常重要的数据类型,它可以接受输入参数并返回输出结果。
但是,在某些情况下,我们需要将函数转化为矩阵,以便更好地进行数据分析和可视化。
本文将介绍如何将R语言中的函数转化为矩阵。
我们需要定义一个函数,以便进行后续的转化操作。
例如,我们可以定义一个简单的函数,用于计算两个数的和:```{r}my_sum <- function(x, y) {return(x + y)}```接下来,我们需要将该函数转化为矩阵。
在R语言中,矩阵是一种二维数组,它可以存储相同类型的数据。
因此,我们需要将函数的输入参数和输出结果转化为矩阵的行和列。
我们可以使用expand.grid()函数生成一个包含所有可能输入参数组合的数据框:```{r}input <- expand.grid(x = 1:5, y = 1:5)```然后,我们可以使用apply()函数将每个输入参数组合传递给函数,并将输出结果存储在矩阵中:```{r}output <- apply(input, 1, function(row) {my_sum(row[1], row[2])})```我们可以将输入参数和输出结果合并为一个矩阵:```{r}result <- cbind(input, output)```现在,我们已经成功将函数转化为矩阵,并可以对其进行进一步的数据分析和可视化。
例如,我们可以使用ggplot2包绘制输入参数和输出结果的散点图:```{r}library(ggplot2)ggplot(result, aes(x = x, y = y, color = output)) +geom_point() +scale_color_gradient(low = "blue", high = "red")```将R语言中的函数转化为矩阵可以帮助我们更好地进行数据分析和可视化。
dfa时间序列 r语言

dfa时间序列 r语言DFA(Detrended Fluctuation Analysis)是一种用于分析时间序列的方法,它可以用来研究时间序列的长期相关性。
在R语言中,可以使用一些包来进行DFA分析,比如pracma和fractal包。
下面我将从不同角度来介绍在R语言中如何进行DFA时间序列分析。
首先,要进行DFA分析,你需要安装R语言的pracma和fractal包。
你可以使用以下命令来安装这两个包:R.install.packages("pracma")。
install.packages("fractal")。
安装完成后,你需要加载这两个包:R.library(pracma)。
library(fractal)。
接下来,假设你有一个时间序列数据集data,你可以使用以下步骤来进行DFA分析:R.# 假设data是你的时间序列数据。
# 首先,对数据进行DFA分析。
dfa_result <dfa(data)。
# 输出结果。
print(dfa_result)。
这样就可以得到DFA分析的结果。
除了使用pracma和fractal 包之外,还有一些其他的R包也提供了DFA分析的功能,你可以根据自己的喜好选择合适的包进行分析。
另外,你还可以从理论角度来解释DFA时间序列分析的原理,比如介绍DFA是如何计算时间序列的长期相关性的,以及它在时间序列分析中的应用等方面。
总的来说,在R语言中进行DFA时间序列分析,你需要安装相应的包,加载包,对数据进行分析并输出结果,同时也可以从理论角度进行解释。
希望这些信息能够帮助到你。
R语言一键生成相关矩阵

R语言一键生成相关矩阵
在临床医学研究中,我们经常会面对定量资料的相关性,有时我们可能比较明确哪两个变量之间,呈现什么样的关系。
但是有时这种相关性需要我们自己去探索。
这个时候一键生成相关矩阵就至关重要了。
示例数据为重症实质性脏器恶性肿瘤患者,拟生成入科时血小板计数/HCT/SOFA评
分/APACHE2评分相关矩阵。
pairs(~`Platelets on admission`+`Hct on admission`+`SOFA on admission`+`APACHE II on admission`, data=cancer3,main = 'relationship matrix',pch = 21, bg = c('red', 'green3') [unclass(cancer3$Gender)])
生成这样一幅图后,你就可以一目了然的看出变量之间的相互关系,然后根据临床实际情况,进行进一步的分析。
混合矩阵控制软件操作方法

混合矩阵控制软件操作方法
混合矩阵控制软件可以用于调节和控制音频信号在不同输入和输出通道之间的混合和路由。
以下是一般的操作方法:
1. 打开软件:在计算机上打开混合矩阵控制软件。
2. 连接设备:将计算机与混合矩阵硬件设备连接,可以通过USB、以太网或其他连接方式。
3. 配置输入和输出通道:选择要使用的输入和输出通道。
输入通道通常连接到音频源,如麦克风或音频接口,输出通道连接到音频设备,如扬声器或音频处理器。
4. 路由信号:选择要混合和路由的输入源,并将其发送到特定的输出通道。
可以通过拖动和调整不同信号的音量滑块来完成。
5. 设置效果和处理:在需要的输出通道上应用效果和处理。
这可以包括均衡器、压缩器、调音和其他音频处理器。
6. 保存和加载配置:可以将当前的设置保存为配置文件,以备将来使用。
也可以加载之前保存的配置文件以快速恢复先前的设置。
7. 测试和优化:测试所有通道和设置,确保音频信号可以正确地从输入到输出传送,并进行必要的调整和优化。
请注意,具体的操作方法可能会根据混合矩阵控制软件的品牌和型号而有所不同。
建议参阅软件的用户手册或文档以获得更详细的操作说明。
ar.matrix软件包的说明-自动生成自回归数据说明书

Package‘ar.matrix’October12,2022Type PackageTitle Simulate Auto Regressive Data from Precision MatriciesVersion0.1.0Author Neal Marquez[aut,cre,cph]Maintainer Neal Marquez<***************>DescriptionUsing sparse precision matricies and Choleski factorization simulates data that is auto-regressive. Depends R(>=3.3.0)Imports MASS,Matrix,sparseMVN,spSuggests ggplot2,leafletLicense GPL(>=2)BugReports https:///nmmarquez/ar.matrix/issuesEncoding UTF-8LazyData trueRoxygenNote6.1.1NeedsCompilation noRepository CRANDate/Publication2018-12-0217:30:06UTCR topics documented:Q.AR1 (2)Q.iid (3)Q.lCAR (4)Q.mBYM (5)Q.pCAR (6)sim.AR (7)US.df (8)US.graph (9)Index1012Q.AR1 Q.AR1Precision matrix for an AR1processDescriptionFunctions for creating precision matricies and observations of an AR1processUsageQ.AR1(M,sigma,rho,sparse=FALSE,vcov=FALSE)r.AR1(n,M,sigma,rho)ArgumentsM int>0,number of elements in the AR1process.sigmafloat>0,pairwise observation standard deviation.rhofloat>=0&<1,how correlated pairwise observations are.The function will still run with values outside of the range[0,1)however the stability of the simu-lation results are not gaurunteed.sparse bool Should the matrix be of class’dsCMatrix’vcov bool If the vcov matrix should be returned instead of the precision matrix.n int>0,number of observations to simulate from the GMRF.ValueQ.AR1returns either a precision or variance-covariance function with a AR1structure.r.AR1retrurns a matrix with n rows which are the n observations of a Gaussian Markov random field AR1process.Examplesrequire("ggplot2")#simulate AR1GMRFobs<-r.AR1(100,M=30,sigma=1,rho=.98)#resulting matrix is n x Mdim(obs)#subtract off the first time point to more easily observe correlationobs_adj<-obs-obs[,1]#move objects to a data framear1_df<-data.frame(obs=c(t(obs_adj)),realization=rep(1:100,each=30),time=rep(1:30,100))#plot each realizationggplot(data=ar1_df,aes(time,obs,group=realization,color=realization))+ geom_line()Q.iid3 Q.iid Precision matrix for a IID processDescriptionFunctions for creating precision matricies and observations of a independent identically distributed GMRF process.UsageQ.iid(M,sigma,sparse=FALSE,vcov=FALSE)r.iid(n,M,sigma)ArgumentsM int>0,number of elements in the process.sigmafloat>0,standard deviatsparse bool Should the matrix be of class’dsCMatrix’vcov bool If the vcov matrix should be returned instead of the precision matrix.n int>0,number of observations to simulate from the GMRF.ValueQ.iid returns either a precision or variance-covariance function with iid structure.r.iid retrurns a matrix with n rows which are the n observations of a Gaussian Markov randomfield iid process.Examplesrequire("leaflet")require("sp")#simulate iid data and attach to spatial polygons data frameUS.df@data$data<-c(r.iid(1,M=nrow(US.graph),sigma=1))#color palette of datapal<-colorNumeric(palette="YlGnBu",domain=US.df@data$data)#see mapmap1<-leaflet()%>%addProviderTiles("CartoDB.Positron")%>%addPolygons(data=US.df,fillColor=~pal(data),color="#b2aeae",fillOpacity=0.7,weight=0.3,smoothFactor=0.2)%>%addLegend("bottomright",pal=pal,values=US.df$data,title="",opacity=1) map14Q.lCAR Q.lCAR Precision matrix for a pCAR processDescriptionFunctions for creating precision matricies and observations of a Leroux CAR(lCAR)process as defined in MacNab2011.The matrix defines the precision of estimates when observations share connections which are conditionally auto-regressive(CAR).UsageQ.lCAR(graph,sigma,rho,sparse=FALSE,vcov=FALSE)r.lCAR(n,graph,sigma,rho)Argumentsgraph matrix,square matrix indicating where two observations are connected(and therefore conditionally auto-regressive).sigmafloat>0,process standard derviation see MacNab2011.rhofloat>=0&<1,how correlated neighbors are.The function will still run with values outside of the range[0,1)however the stability of the simulation resultsare not gaurunteed.see MacNab2011.sparse bool Should the matrix be of class’dsCMatrix’vcov bool If the vcov matrix should be returned instead of the precision matrix.n int>0,number of observations to simulate from the GMRF.ValueQ.lCAR returns either a precision or variance-covariance function with a lCAR structure.r.lCAR retrurns a matrix with n rows which are the n observations of a Gaussian Markov random field lCAR process.ReferencesY.C.MacNab On Gaussian Markov randomfields and Bayesian disease mapping.Statistical Meth-ods in Medical Research.2011.Examplesrequire("leaflet")require("sp")#simulate lCAR data and attach to spatial polygons data frameUS.df@data$data<-c(r.lCAR(1,graph=US.graph,sigma=1,rho=.99))Q.mBYM5 #color palette of datapal<-colorNumeric(palette="YlGnBu",domain=US.df@data$data)#see mapmap1<-leaflet()%>%addProviderTiles("CartoDB.Positron")%>%addPolygons(data=US.df,fillColor=~pal(data),color="#b2aeae",fillOpacity=0.7,weight=0.3,smoothFactor=0.2)%>%addLegend("bottomright",pal=pal,values=US.df$data,title="",opacity=1) map1Q.mBYM Modified Precision matrix for a BYM processDescriptionEXPIREMENTAL.Functions for creating precision matricies and observations of a modified BYM process as defined in MacNab2011.The matrix defines the precision of estimates when obser-vations share connections which are conditionally auto-regressive(CAR).Because the precision matrix is not symetric the process is not a true GMRF.UsageQ.mBYM(graph,sigma,rho,vcov=FALSE)r.mBYM(n,graph,sigma,rho)Argumentsgraph matrix,square matrix indicating where two observations are connected(and therefore conditionally auto-regressive).sigmafloat>0,process standard derviation see MacNab2011.rhofloat>=0&<1,how correlated neighbors are.The function will still run with values outside of the range[0,1)however the stability of the simulation resultsare not gaurunteed.see MacNab2011.vcov bool If the vcov matrix should be returned instead of the precision matrix.n int>0,number of observations to simulate from the GMRF.ValueQ.mBYM returns either a precision or variance-covariance function with a modified BYM structure.r.mBYM retrurns a matrix with n rows which are the n observations of a pseudo Gaussian Markov randomfield of a modified BYM process.6Q.pCARReferencesY.C.MacNab On Gaussian Markov randomfields and Bayesian disease mapping.Statistical Meth-ods in Medical Research.2011.Examples##Not run:require("leaflet")require("sp")#simulate mBYM data and attach to spatial polygons data frameUS.df@data$data<-c(r.mBYM(1,graph=US.graph,sigma=1,rho=.99))#color palette of datapal<-colorNumeric(palette="YlGnBu",domain=US.df@data$data)#see mapmap1<-leaflet()%>%addProviderTiles("CartoDB.Positron")%>%addPolygons(data=US.df,fillColor=~pal(data),color="#b2aeae",fillOpacity=0.7,weight=0.3,smoothFactor=0.2)%>%addLegend("bottomright",pal=pal,values=US.df$data,title="",opacity=1) map1##End(Not run)Q.pCAR Precision matrix for a pCAR processDescriptionFunctions for creating precision matricies and observations of a proper CAR(pCAR)process as defined in MacNab2011.The matrix defines the precision of estimates when observations share connections which are conditionally auto-regressive(CAR).UsageQ.pCAR(graph,sigma,rho,sparse=FALSE,vcov=FALSE)r.pCAR(n,graph,sigma,rho)Argumentsgraph matrix,square matrix indicating where two observations are connected(and therefore conditionally auto-regressive).sigmafloat>0,process standard derviation see MacNab2011.sim.AR7 rhofloat>=0&<1,how correlated neighbors are.The function will still run with values outside of the range[0,1)however the stability of the simulation resultsare not gaurunteed.see MacNab2011.sparse bool Should the matrix be of class’dsCMatrix’vcov bool If the vcov matrix should be returned instead of the precision matrix.n int>0,number of observations to simulate from the GMRF.ValueQ.pCAR returns either a precision or variance-covariance function with a pCAR structure.r.pCAR retrurns a matrix with n rows which are the n observations of a Gaussian Markov random field pCAR process.ReferencesY.C.MacNab On Gaussian Markov randomfields and Bayesian disease mapping.Statistical Meth-ods in Medical Research.2011.Examplesrequire("leaflet")require("sp")#simulate pCAR data and attach to spatial polygons data frameUS.df@data$data<-c(r.pCAR(1,graph=US.graph,sigma=1,rho=.99))#color palette of datapal<-colorNumeric(palette="YlGnBu",domain=US.df@data$data)#see mapmap1<-leaflet()%>%addProviderTiles("CartoDB.Positron")%>%addPolygons(data=US.df,fillColor=~pal(data),color="#b2aeae",fillOpacity=0.7,weight=0.3,smoothFactor=0.2)%>%addLegend("bottomright",pal=pal,values=US.df$data,title="",opacity=1) map1sim.AR Simulate correlated data from a precision matrix.DescriptionTakes in a square precision matrix,which ideally should be sparse and using Choleski factorization simulates data from a mean0process where the inverse of the precision matrix represents the variance-covariance of the points in the process.The resulting simulants represent samples of a Gaussian Markov randomfield(GMRF).8US.df Usagesim.AR(n,Q)Argumentsn int>0,number of observations to simulate from the GMRF.Q matrix,a square precision matrix.ValueMatrix object,matrix where each row is a single obsrevation from a GMRF with covariance struc-ture Q^-1.Examplesrequire("ggplot2")#simulate2D ar1process#pairwise correlationrho<-.95#pairwise variancesigma<-.5#2dimensions of simulationsyears<-20ages<-10#kronnecker product to get joint covarianceQ2D<-kronecker(Q.AR1(M=years,sigma,rho),Q.AR1(M=ages,sigma,rho))#simulate the data and place it in a data frameQ2D.df<-data.frame(obs=c(sim.AR(1,Q2D)),age=rep(1:ages,years),year=rep(1:years,each=ages))#graph resultsggplot(data=Q2D.df,aes(year,obs,group=age,color=age))+geom_line()US.df Spatial Polygons Data Frame of Counties for Several StatesDescriptionSpatial Polygons data frame with475counties from the US states Louisiana,Texas,Mississippi,& Arkansas.FIPS codes for the state and county are provided in the data frame.US.graph9 US.graph Matrix of Shared Boundaries Between US.df CountiesDescriptionA475x475matrix where the index corresponds to a row in the US.df Spatial Polygons data frame and the index of the matrix at row i column j is1when US.df[i,]and US.df[j,]share a border and0 when they do not.Index∗dataUS.df,8US.graph,9Q.AR1,2Q.iid,3Q.lCAR,4Q.mBYM,5Q.pCAR,6r.AR1(Q.AR1),2r.iid(Q.iid),3r.lCAR(Q.lCAR),4r.mBYM(Q.mBYM),5r.pCAR(Q.pCAR),6sim.AR,7US.df,8US.graph,910。
R语言矩阵操作说明书

2nd Introduction to the Matrix packageMartin Maechler and Douglas BatesR Core Development Team******************.ethz.ch,*******************September2006(typeset on July3,2023)AbstractLinear algebra is at the core of many areas of statistical computing and from its inception the S lan-guage has supported numerical linear algebra via a matrix data type and several functions and operators,such as%*%,qr,chol,and solve.However,these data types and functions do not provide direct accessto all of the facilities for efficient manipulation of dense matrices,as provided by the Lapack subroutines,and they do not provide for manipulation of sparse matrices.The Matrix package provides a set of S4classes for dense and sparse matrices that extend the basic matrix data type.Methods for a wide variety of functions and operators applied to objects from theseclasses provide efficient access to BLAS(Basic Linear Algebra Subroutines),Lapack(dense matrix),CHOLMOD including AMD and COLAMD and Csparse(sparse matrix)routines.One notable char-acteristic of the package is that whenever a matrix is factored,the factorization is stored as part of theoriginal matrix so that further operations on the matrix can reuse this factorization.1IntroductionThe most automatic way to use the Matrix package is via the Matrix()function which is very similar to the standard R function matrix(),>library(Matrix)>M<-Matrix(10+1:28,4,7)>M4x7Matrix of class"dgeMatrix"[,1][,2][,3][,4][,5][,6][,7][1,]11151923273135[2,]12162024283236[3,]13172125293337[4,]14182226303438>tM<-t(M)Such a matrix can be appended to(using cbind()or rbind())or indexed,>(M2<-cbind(-1,M))4x8Matrix of class"dgeMatrix"[,1][,2][,3][,4][,5][,6][,7][,8][1,]-111151923273135[2,]-112162024283236[3,]-113172125293337[4,]-1141822263034381>M[2,1][1]12>M[4,][1]14182226303438where the last two statements show customary matrix indexing,returning a simple numeric vector each1. We assign0to some columns and rows to“sparsify”it,and some NA s(typically“missing values”in data analysis)in order to demonstrate how they are dealt with;note how we can“subassign”as usual,for classical R matrices(i.e.,single entries or whole slices at once),>M2[,c(2,4:6)]<-0>M2[2,]<-0>M2<-rbind(0,M2,0)>M2[1:2,2]<-M2[3,4:5]<-NAand then coerce it to a sparse matrix,>sM<-as(M2,"sparseMatrix")>10*sM6x8sparse Matrix of class"dgCMatrix"[1,].NA......[2,]-10NA150 (310350)[3,]...NA NA...[4,]-10.170 (330370)[5,]-10.180 (340380)[6,]........>identical(sM*2,sM+sM)[1]TRUE>is(sM/10+M2%/%2,"sparseMatrix")[1]TRUEwhere the last three calls show that multiplication by a scalar keeps sparcity,as does other arithmetic, but addition to a“dense”object does not,as you might have expected after some thought about“sensible”behavior:>sM+106x8Matrix of class"dgeMatrix"[,1][,2][,3][,4][,5][,6][,7][,8][1,]10NA101010101010[2,]9NA251010104145[3,]101010NA NA101010[4,]910271010104347[5,]910281010104448[6,]10101010101010101because there’s an additional default argument to indexing,drop=TRUE.If you add“,drop=FALSE”you will get submatrices instead of simple vectors.2Operations on our classed matrices include(componentwise)arithmetic(+,−,∗,/,etc)as partly seen above,comparison(>,≤,etc),e.g.,>Mg2<-(sM>2)>Mg26x8sparse Matrix of class"lgCMatrix"[1,].N......[2,]:N|...||[3,]...N N...[4,]:.|...||[5,]:.|...||[6,]........returning a logical sparse matrix.When interested in the internal str ucture,str()comes handy,and we have been using it ourselves more regulary than print()ing(or show()ing as it happens)our matrices; alternatively,summary()gives output similar to Matlab’s printing of sparse matrices.>str(Mg2)Formal class'lgCMatrix'[package"Matrix"]with6slots..@i:int[1:16]1340113422.....@p:int[1:9]0358910101316..@Dim:int[1:2]68..@Dimnames:List of2....$:NULL....$:NULL..@x:logi[1:16]FALSE FALSE FALSE NA NA TRUE.....@factors:list()>summary(Mg2)6x8sparse Matrix of class"lgCMatrix",with16entriesi j x121FALSE241FALSE351FALSE412NA522NA623TRUE743TRUE853TRUE934NA1035NA1127TRUE1247TRUE1357TRUE1428TRUE1548TRUE1658TRUEAs you see from both of these,Mg2contains“extra zero”(here FALSE)entries;such sparse matrices may be created for different reasons,and you can use drop0()to remove(“drop”)these extra zeros.This should never matter for functionality,and does not even show differently for logical sparse matrices,but the internal structure is more compact:3>Mg2<-drop0(Mg2)>str(Mg2@x)#length 13,was 16logi [1:13]NA NA TRUE TRUE TRUE NA ...For large sparse matrices,visualization (of the sparsity pattern)is important,and we provide image()methods for that,e.g.,>data(CAex,package ="Matrix")>print(image(CAex,main ="image(CAex)"))#print(.)needed for Sweaveimage(CAex)Dimensions: 72 x 72Column R o w204060204060−0.4−0.20.00.20.40.60.81.0Further,i.e.,in addition to the above implicitly mentioned "Ops"operators (+,*,...,<=,>,...,&which all work with our matrices,notably in conjunction with scalars and traditional matrices),the "Math"-operations (such as exp(),sin()or gamma())and "Math2"(round()etc)and the "Summary"group of functions,min(),range(),sum(),all work on our matrices as they should.Note that all these are implemented via so called group methods ,see e.g.,?Arith in R .The intention is that sparse matrices remain sparse whenever sensible,given the matrix classes and operators involved,but not content specifically. E.g.,<sparse>+<dense>gives <dense>even for the rare cases where it would be advantageous to get a <sparse>result.These classed matrices can be “indexed”(more technically “subset”)as traditional S language (and hence R )matrices,as partly seen above.This also includes the idiom M [M op num ]which returns simple vectors,>sM[sM >2][1]NA NA 151718NA NA 313334353738>sml <-sM[sM <=2]>sml [1]0-10-1-10NA NA 000000000NA[24]NA 0000000and “subassign”ment similarly works in the same generality as for traditional S language matrices.41.1Matrix package for numerical linear algebraLinear algebra is at the core of many statistical computing techniques and,from its inception,the S language has supported numerical linear algebra via a matrix data type and several functions and operators,such as %*%,qr,chol,and solve.Initially the numerical linear algebra functions in R called underlying Fortran routines from the Linpack(Dongarra et al.,1979)and Eispack(Smith et al.,1976)libraries but over the years most of these functions have been switched to use routines from the Lapack(Anderson et al.,1999) library which is the state-of-the-art implementation of numerical dense linear algebra.Furthermore,R can be configured to use accelerated BLAS(Basic Linear Algebra Subroutines),such as those from the Atlas(Whaley et al.,2001)project or other ones,see the R manual“Installation and Administration”.Lapack provides routines for operating on several special forms of matrices,such as triangular matrices and symmetric matrices.Furthermore,matrix decompositions like the QR decompositions produce multiple output components that should be regarded as parts of a single object.There is some support in R for operations on special forms of matrices(e.g.the backsolve,forwardsolve and chol2inv functions)and for special structures(e.g.a QR structure is implicitly defined as a list by the qr,qr.qy,qr.qty,and related functions)but it is not as fully developed as it could be.Also there is no direct support for sparse matrices in R although Koenker and Ng(2003)have developed the SparseM package for sparse matrices based on SparseKit.The Matrix package provides S4classes and methods for dense and sparse matrices.The methods for dense matrices use Lapack and BLAS.The sparse matrix methods use CHOLMOD(Davis,2005a), CSparse(Davis,2005b)and other parts(AMD,COLAMD)of Tim Davis’“SuiteSparse”collection of sparse matrix libraries,many of which also use BLAS.Todo:triu(),tril(),diag(),...and as(.,.),but of course only when they’ve seen a few different ones.Todo:matrix operators include%*%,crossprod(),tcrossprod(),solve()Todo:expm()is the matrix exponential......Todo:symmpart()and skewpart()compute the symmetric part,(x+t(x))/2and the skew-symmetric part,(x-t(x))/2of a matrix x.Todo:factorizations include Cholesky()(or chol()),lu(),qr()(not yet for dense)Todo:Although generally the result of an operation on dense matrices is a dgeMatrix,certain operations return matrices of special types.Todo: E.g.show the distinction between t(mm)%*%mm and crossprod(mm).2Matrix ClassesThe Matrix package provides classes for real(stored as double precision),logical and so-called“pattern”(binary)dense and sparse matrices.There are provisions to also provide integer and complex(stored as double precision complex)matrices.Note that in R,logical means entries TRUE,FALSE,or NA.To store just the non-zero pattern for typical sparse matrix algorithms,the pattern matrices are binary,i.e.,conceptually just TRUE or FALSE.In Matrix, the pattern matrices all have class names starting with"n"(patter n).2.1Classes for dense matricesFor the sake of brevity,we restrict ourselves to the real(d ouble)classes,but they are paralleled by l ogical and patter n matrices for all but the positive definite ones.dgeMatrix Real matrices in general storage modedsyMatrix Symmetric real matrices in non-packed storagedspMatrix Symmetric real matrices in packed storage(one triangle only)5dtrMatrix Triangular real matrices in non-packed storagedtpMatrix Triangular real matrices in packed storage(triangle only)dpoMatrix Positive semi-definite symmetric real matrices in non-packed storagedppMatrix ditto in packed storageMethods for these classes include coercion between these classes,when appropriate,and coercion to the matrix class;methods for matrix multiplication(%*%);cross products(crossprod),matrix norm(norm); reciprocal condition number(rcond);LU factorization(lu)or,for the poMatrix class,the Cholesky decom-position(chol);and solutions of linear systems of equations(solve).Whenever a factorization or a decomposition is calculated it is preserved as a(list)element in the factors slot of the original object.In this way a sequence of operations,such as determining the condition number of a matrix then solving a linear system based on the matrix,do not require multiple factorizations of the same matrix nor do they require the user to store the intermediate results.2.2Classes for sparse matricesUsed for large matrices in which most of the elements are known to be zero(or FALSE for logical and binary (“pattern”)matrices).Sparse matrices are automatically built from Matrix()whenever the majority of entries is zero(or FALSE respectively).Alternatively,sparseMatrix()builds sparse matrices from their non-zero entries and is typically recommended to construct large sparse matrices,rather than direct calls of new().Todo: E.g.model matrices created from factors with a large number of levelsTodo:or from spline basis functions(e.g.COBS,package cobs),etc.Todo:Other uses include representations of graphs.indeed;good you mentioned it!particularly since we still have the interface to the graph package.I think I’d like to draw one graph in that article—maybe the undirected graph corresponding to a crossprod()result of dimension ca.502Todo:Specialized algorithms can give substantial savings in amount of storage used and execution time of operations.Todo:Our implementation is based on the CHOLMOD and CSparse libraries by Tim Davis.2.3Representations of sparse matrices2.3.1Triplet representation(TsparseMatrix)Conceptually,the simplest representation of a sparse matrix is as a triplet of an integer vector i giving the row numbers,an integer vector j giving the column numbers,and a numeric vector x giving the non-zero values in the matrix.2In Matrix,the TsparseMatrix class is the virtual class of all sparse matrices in triplet representation.Its main use is for easy input or transfer to other classes.As for the dense matrices,the class of the x slot may vary,and the subclasses may be triangular, symmetric or unspecified(“general”),such that the TsparseMatrix class has several3‘actual”subclasses,the most typical(numeric,general)is dgTMatrix:>getClass("TsparseMatrix")#(i,j,Dim,Dimnames)slots are common to allVirtual Class"TsparseMatrix"[package"Matrix"]Slots:2For efficiency reasons,we use“zero-based”indexing in the Matrix package,i.e.,the row indices i are in0:(nrow(.)-1)and the column indices j accordingly.3the3×3actual subclasses of TsparseMatrix are the three structural kinds,namely t riangular,s ymmetric and g eneral, times three entry classes,d ouble,l ogical,and patter n.6Name:i j Dim DimnamesClass:integer integer integer listExtends:Class"sparseMatrix",directlyClass"Matrix",by class"sparseMatrix",distance2Class"mMatrix",by class"Matrix",distance3Class"replValueSp",by class"Matrix",distance3Known Subclasses:"ngTMatrix","ntTMatrix","nsTMatrix","lgTMatrix","ltTMatrix", "lsTMatrix","dgTMatrix","dtTMatrix","dsTMatrix">getClass("dgTMatrix")Class"dgTMatrix"[package"Matrix"]Slots:Name:i j Dim Dimnames x factorsClass:integer integer integer list numeric listExtends:Class"TsparseMatrix",directlyClass"dsparseMatrix",directlyClass"generalMatrix",directlyClass"dMatrix",by class"dsparseMatrix",distance2Class"sparseMatrix",by class"dsparseMatrix",distance2Class"compMatrix",by class"generalMatrix",distance2Class"Matrix",by class"TsparseMatrix",distance3Class"xMatrix",by class"dMatrix",distance3Class"mMatrix",by class"Matrix",distance4Class"replValueSp",by class"Matrix",distance4Note that the order of the entries in the(i,j,x)vectors does not matter;consequently,such matrices are not unique in their representation.42.3.2Compressed representations:CsparseMatrix and RsparseMatrixFor most sparse operations we use the compressed column-oriented representation(virtual class CsparseMatrix) (also known as“csc”,“compressed sparse column”).Here,instead of storing all column indices j,only the start index of every column is stored.Analogously,there is also a compressed sparse row(csr)representation,which e.g.is used in in the SparseM package,and we provide the RsparseMatrix for compatibility and completeness purposes,in ad-dition to basic coercion((as(.,<cl>)between the classes.These compressed representations remove the redundant row(column)indices and provide faster access to a given location in the matrix because you only need to check one row(column).There are certain advantages5to csc in systems like R,Octave and Matlab where dense matrices are stored in column-major order,therefore it is used in sparse matrix libraries such as CHOLMOD or CSparse 4Furthermore,there can be repeated(i,j)entries with the customary convention that the corresponding x entries are addedto form the matrix element m ij.5routines can make use of high-level(“level-3”)BLAS in certain sparse matrix computations7of which we make use.For this reason,the CsparseMatrix class and subclasses are the principal classes for sparse matrices in the Matrix package.The Matrix package provides the following classes for sparse matrices ...FIXME many more —maybe ex plain naming scheme?...dgTMatrix general,numeric,sparse matrices in (a possibly redundant)triplet form.This can be a conve-nient form in which to construct sparse matrices.dgCMatrix general,numeric,sparse matrices in the (sorted)compressed sparse column format.dsCMatrix symmetric,real,sparse matrices in the (sorted)compressed sparse column format.Only theupper or the lower triangle is stored.Although there is provision for both forms,the lower triangle form works best with TAUCS.dtCMatrix triangular,real,sparse matrices in the (sorted)compressed sparse column format.Todo:Can also read and write the Matrix Market and read the Harwell-Boeing representations.Todo:Can convert from a dense matrix to a sparse matrix (or use the Matrix function)but going through an intermediate dense matrix may cause problems with the amount of memory required.Todo:similar range of operations as for the dense matrix classes.3More detailed examples of “Matrix”operationsHave seen drop0()above,showe a nice double example (where you see “.”and “0”).Show the use of dim<-for resizing a (sparse)matrix.Maybe mention nearPD().Todo:Solve a sparse least squares problem and demonstrate memory /speed gain Todo:mention lme4and lmer(),maybe use one example to show the matrix sizes.4Notes about S4classes and methods implementationMaybe we could give some glimpses of implementations at least on the R level ones?Todo:The class hierarchy:a non-trivial tree where only the leaves are “actual”classes.Todo:The main advantage of the multi-level hierarchy is that methods can often be defined on a higher (virtual class)level which ensures consistency [and saves from “cut &paste”and forgetting things]Todo:Using Group Methods5Session Info>toLatex(sessionInfo())•R version 4.3.1Patched (2023-06-29r84627),x86_64-pc-linux-gnu•Locale:LC_CTYPE=de_CH.UTF-8,LC_NUMERIC=C ,LC_TIME=en_US.UTF-8,LC_COLLATE=C ,LC_MONETARY=en_US.UTF-8,LC_MESSAGES=de_CH.UTF-8,LC_PAPER=de_CH.UTF-8,LC_NAME=C ,LC_ADDRESS=C ,LC_TELEPHONE=C ,LC_MEASUREMENT=de_CH.UTF-8,LC_IDENTIFICATION=C •Time zone:Europe/Zurich •TZcode source:system (glibc)•Running under:Fedora Linux 36(Thirty Six)•Matrix products:default8•BLAS:/u/maechler/R/D/r-patched/F36-64-inst/lib/libRblas.so•LAPACK:/usr/lib64/liblapack.so.3.10.1•Base packages:base,datasets,grDevices,graphics,methods,stats,utils•Other packages:Matrix1.6-0•Loaded via a namespace(and not attached):compiler4.3.1,grid4.3.1,lattice0.21-8,tools4.3.1 ReferencesE.Anderson,Z.Bai,C.Bischof,S.Blackford,J.Demmel,J.Dongarra,J.Du Croz,A.Greenbaum,S.Ham-marling,A.McKenney,and PACK Users’Guide.SIAM,Philadelphia,PA,3rd edition, 1999.Tim Davis.CHOLMOD:sparse supernodal Cholesky factorization and update/downdate. http://www.cise.ufl.edu/research/sparse/cholmod,2005a.Tim Davis.CSparse:a concise sparse matrix package.http://www.cise.ufl.edu/research/sparse/CSparse, 2005b.Jack Dongarra,Cleve Moler,Bunch,and G.W.Stewart.Linpack Users’Guide.SIAM,1979.Roger Koenker and Pin Ng.SparseM:A sparse matrix package for R.J.of Statistical Software,8(6),2003.B.T.Smith,J.M.Boyle,J.J.Dongarra,B.S.Garbow,Y.Ikebe,V.C.Klema,and C.B.Moler.Matrix Eigensystem Routines.EISPACK Guide,volume6of Lecture Notes in Computer Science.Springer-Verlag, New York,1976.R.Clint Whaley,Antoine Petitet,and Jack J.Dongarra.Automated empirical optimization of software and the ATLAS project.Parallel Computing,27(1–2):3–35,2001.Also available as University of Tennessee LAPACK Working Note#147,UT-CS-00-448,2000(/lapack/lawns/lawn147.ps).9。
r语言循环函数生成矩阵

r语言循环函数生成矩阵一、循环函数生成矩阵的基本原理在R语言中,我们可以使用循环函数来快速生成矩阵。
循环函数的基本原理是通过设定循环的次数和循环体中的运算逻辑,来自动生成矩阵的各个元素。
在生成矩阵的过程中,我们可以根据需要设定矩阵的行数和列数,以及矩阵元素的取值规则。
二、使用循环函数生成矩阵的具体步骤1. 首先,我们需要使用循环函数来设定生成矩阵的行数和列数。
在R语言中,常用的循环函数有for循环和while循环。
我们可以根据具体的需求选择适合的循环函数。
2. 其次,我们需要在循环体中设定矩阵元素的取值规则。
在R语言中,我们可以使用if语句、逻辑运算符和数学运算符等来设定元素的取值规则。
例如,我们可以使用if语句来设定矩阵元素的奇偶性,或者使用数学运算符来设定元素的大小关系。
3. 最后,我们需要将生成的矩阵存储起来,以便后续的数据分析和可视化。
在R语言中,我们可以使用赋值语句将生成的矩阵存储到一个变量中,方便后续的调用和处理。
三、循环函数生成矩阵的实际应用循环函数生成矩阵的方法在实际应用中非常广泛。
例如,在数据分析中,我们经常需要生成一些特定规律的矩阵,以便进行后续的分析和建模。
另外,在机器学习和深度学习领域,循环函数生成矩阵也是非常常见的操作,用于生成训练样本和标签。
四、循环函数生成矩阵的注意事项在使用循环函数生成矩阵时,我们需要注意一些细节问题,以避免出现错误或者不符合实际需求的情况。
首先,我们需要仔细设定循环的次数,以确保生成矩阵的行数和列数符合要求。
其次,我们需要仔细设定矩阵元素的取值规则,以确保生成的矩阵能够满足实际需求。
最后,我们需要对生成的矩阵进行验证和检查,以确保生成的矩阵的正确性和可用性。
五、总结循环函数生成矩阵是R语言中常用的操作之一,通过设定循环的次数和循环体中的运算逻辑,我们可以快速生成符合要求的矩阵。
在使用循环函数生成矩阵时,我们需要注意设定循环的次数和循环体中的运算逻辑,以确保生成的矩阵符合实际需求。
R语言秘籍之矩阵操作

R语言秘籍之矩阵操作在R语言中,矩阵是一种二维的数据结构,它由行和列组成。
矩阵操作在数据分析和统计中非常常见,下面我们将学习一些常用的矩阵操作技巧。
1.创建矩阵:在R中创建矩阵有多种方法,可以使用matrix(函数或者使用cbind(函数和rbind(函数来创建。
例如,我们可以使用matrix(函数创建一个3行2列的矩阵:```Rmatrix(1:6, nrow = 3, ncol = 2)```这将生成以下矩阵:```[,1][,2][1,]14[2,]25[3,]36```2.访问矩阵元素:可以使用方括号和行列索引来访问矩阵的元素。
例如,我们可以使用以下代码访问矩阵的第一个元素:```Rmatrix[1, 1]```可以通过以下方式访问整行或整列:```Rmatrix[1, ]matrix[, 1]```3.矩阵运算:可以对矩阵进行各种运算,如加法、减法、乘法等。
例如,我们可以使用以下代码将两个相同维度的矩阵相加:```Rmatrix1 + matrix2```可以使用以下代码将矩阵与一个常数相乘:```Rmatrix * 2```4.矩阵转置:使用t(函数可以将矩阵转置。
例如,我们可以使用以下代码将一个3行2列的矩阵转置为2行3列的矩阵:```Rmatrix_transposed <- t(matrix)```5.矩阵求逆:可以使用solve(函数来求矩阵的逆矩阵,但是只有方阵才能求逆。
例如,我们可以使用以下代码求一个2行2列的矩阵的逆矩阵:```Rinverse_matrix <- solve(matrix)```6.矩阵乘法:使用%*%运算符可以进行矩阵乘法。
例如,我们可以使用以下代码计算两个相同维度的矩阵的乘积:```Rmatrix_product <- matrix1 %*% matrix2```7.矩阵拼接:可以使用cbind(函数将两个矩阵按列拼接,或者使用rbind(函数将两个矩阵按行拼接。
如何用NTsys构建0、1数据(AFLP)进化树

NTSYS-PC使用说明NTSYS是一个聚类分析的软件,可以用来分析AFLP,RAPD等电泳带型,也可用于微生物群落多样性的相似性分析。
下面简单介绍一下其用法:1.先建立一个0,1构成的矩阵:在excel中,按如下规则输入数据,A1=1表示有带记为1,B1=535表示AFLP样本数, C1=19表示有19个带型,D1=0表示无带记为0。
第二行表示的是样本名称。
从第三行开始的A列表示带型名称。
见下图:2.选择另存为,在其中的保存类型中选择“文本文件(制表符分隔)”然后点保存,确认。
3.打开NTSYS软件点“Similarity”下拉选择”“Qualitative date”在“input file”中选择刚才保存的.txt文件,在“output file”中输入保存文件名。
“Byrows”一项不选×,“coefficient”中选择J,点compute进行运算。
4.点软件左边第二项选择“SAHN”在“input file”中选择上一步运算出来的文件在“output tree file”中输入保存文件名。
点compute进行运算。
5.选择左边第二项中的“Cophenetic Values”在“input tree file”中选择刚才计算的tree文件,输入output的文件名,点compute进行计算。
6.作Mat检测:点击左面第三项,选择“Matrix comparison plot”在“input file(1)”中选择“Qualitative date”计算出的结果,在“input file(2)”中选择“Cophenetic Valuess”计算出的结果。
点击compute进行计算,r值在0.7以上为可信。
Radl算法到Apla程序的生成系统

Radl算法到Apla程序的生成系统谢武平;薛锦云【期刊名称】《计算机研究与发展》【年(卷),期】2014(51)4【摘要】算法设计是一项创造性工作,传统的设计与描述方法难以保证算法的正确性.在PAR方法中通过定义具有数学引用透明性的算法描述语言Radl,可实现对问题规约进行形式化推导得到用递推关系描述的算法.Radl算法的核心就是递推关系组,从而易于进行形式化推导和证明.通过深入剖析Radl算法特性,揭示Radl算法与抽象顺序程序Apla(abstract programming language)间本质关系,定义基于Radl语法产生式的Apla程序生成规则,实现了Apla程序自动生成系统,并对其可靠性进行系统研究,着重形式化验证了实现系统的核心算法.使用PAR方法开发的算法是正确的,采用形式化证明的生成系统具有可靠性保证,从而保证了算法从设计到实现的高可靠性,并通过实现自动化开发工具提高了程序的开发效率.【总页数】9页(P856-864)【作者】谢武平;薛锦云【作者单位】软件工程国家重点实验室(武汉大学) 武汉430072;江西省高性能计算技术重点实验室(江西师范大学) 南昌 330022;武汉大学计算机学院武汉430072;软件工程国家重点实验室(武汉大学) 武汉430072;江西省高性能计算技术重点实验室(江西师范大学) 南昌 330022;武汉大学计算机学院武汉430072【正文语种】中文【中图分类】TP301【相关文献】1.带迭代算子的APLA-JAVA程序转换实验系统的研究探讨 [J], 申加华;2.Apla→Java程序生成系统中泛型机制实现方法研究 [J], 徐华珍;薛锦云;朱小征3.Apla与程序设计语言泛型特性比较研究 [J], 左正康; 刘志豪; 黄箐; 游珍; 王昌晶; 石海鹤; 胡启敏; 陶小明4.一种基于Concurrent Apla语言的共享内存并发分布式算法2层验证方法 [J], 王昌晶;余小军;沈德明;罗海梅;左正康5.一种基于Apla-Java可重用部件库的并行(并发)程序开发方法 [J], 揭安全;薛锦云因版权原因,仅展示原文概要,查看原文内容请购买。
r语言矩阵

r语言矩阵
R语言是一种开源程序设计语言,它可以帮助数据科学家、统计学家、统计分析师、研究人员和可视化专家分析和绘制超复杂的基于统计模型的数据。
R语言矩阵是R语言中的一个重要概念。
它可以精确地表示数据的结构,并且可以很容易地实现复杂的计算过程。
R语言矩阵是一个多维数组,一般有行列方向。
每一行和每一列都是一个单独的单元格,每一个单元格里的内容都是一个数字或者一个字符串。
它的内容可以是一个数学表达式,也可以是一个函数代码。
通过R语言矩阵,可以快速处理海量数据集,把数据分割成多个子集,进行更精细化的统计分析和可视化处理。
R语言矩阵不仅实现了计算机编程的融合,还拓宽了数据的分析极限。
它的可视化技术可以把复杂的多维数据变成容易理解的形式,可以清楚有效地表达出趋势。
R语言矩阵还可以用来解决实时数据分析问题,从而帮助用户更有效地利用数据制定出最优的决策和解决方案。
可以说,R语言矩阵是统计和分析领域中一把不可或缺的"万能钥匙"。
它可以贯彻自然而然地表达数据,为更深入地了解数据提供便利。
使用R语言矩阵,数据分析师可以更容易地收集、整理、解释和预测大数据,可以为企业提供有效的决策支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Documentation for AFLPdatA collection of R functions for handling AFLP dataDorothée Ehrich16.05.2007AFLPdat is a collection of R functions which facilitates the handling of dominant genotypic data. It converts data from a standard tab separated table to the input formats of the following programs: Arlequin, Structure, Treecon, PAUP and Hickory. It also reads the output of the scoring program Genographer and produces a tab-separated spreadsheet from it. In addition, it calculates proportion of polymorphic markers in each population, and estimates gene diversity as the average proportion of differences between pairs of individuals with confidence intervals based on bootstrapping across markers. It also produces summary tables of marker frequencies and the presence or absence of markers in each population.New features in this version are a function which identified clones as individuals sampled in the same population, which differ by a certain small number of bands corresponding to the error rate, and a function which calculates the geographic distance between two points defined by their coordinates. Another new function calculates a frequency down-weighed marker index. Additional formats have also been added, such as AFLPsurv, BAPS and Popgene.AFLPdat can be downloaded from http://www.nhm.uio.no/ncb/.If you did not use R before, you first need to install it. It can be downloaded from/ .R is a free software environment for statistical computing and graphics, which is very useful for many things. Numerous additional packages can be downloaded for different specialized analyses, notably also in population genetics. It is definitely worth discovering…In order to use AFLPdat, start R. Choose “Source R code …” in the File Menu and open the file AFLPdat.R. Next, use “Change dir…” in the File Menu to choose the folder where your data files are. Then you are ready to use the different functions.If you are not using Genographer, the data should be entered in a spreadsheet (e.g. excel) where the first line contains the names of the markers, and the first column contains the names of the individuals. The datamatrix is then entered with one row per individual and one column per marker. The first row of the first column should contain something, e.g. x. This file can be saved as tab separated text file in excel. For functions, where information about populations is needed, a second column with the name of the population in which each individual was sampled should be added. This column should also contain something in the first row, e.g. x. A sample file called datamatrix.txt can be downloaded together with the script.AFLPdat can be cited as:Ehrich, D. 2006. AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol. Ecol. Notes, 6, 603-604.Example of input file without information about populations:x M1 M2 M3 M4 M5 M6 M7GRL_AK-1109-1 1 1 1 0 1 0 0GRL_AK-1109-10 1 0 1 0 0 0 0GRL_AK-1109-11 1 0 1 0 0 0 0GRL_AK-1109-2 1 0 1 0 1 0 1GRL_AK-1109-3 1 1 1 0 0 1 0GRL_AK-1109-4 1 0 1 0 1 0 1GRL_AK-1109-5 1 0 1 0 0 0 0GRL_AK-1109-6 1 1 1 0 0 1 1GRL_AK-1109-7 1 0 1 0 1 0 0GRL_AK-1109-8 1 0 1 0 0 0 0GRL_AK-1109-9 1 0 1 0 0 0 0GRL_AK-1110-10 1 0 1 0 0 1 0GRL_AK-1110-11 1 0 1 0 0 0 1GRL_AK-1110-2 1 0 1 0 1 0 0GRL_AK-1110-5 1 0 1 0 0 0 1GRL_AK-1110-6 1 0 1 0 0 0 0GRL_AK-1110-7 1 0 1 0 1 1 1GRL_AK-1110-9 1 0 1 0 0 0 1GRL_AK-1118-1 1 0 1 0 0 0 1GRL_AK-1118-10 1 0 1 0 0 0 1GRL_AK-1118-11 1 0 1 0 0 0 1GRL_AK-1118-2 1 0 1 0 0 0 0GRL_AK-1118-3 1 0 1 0 0 0 1GRL_AK-1118-4 1 0 1 0 0 0 1GRL_AK-1118-5 1 0 1 0 1 1 0Example of input file with information about populations the individuals belong to:x pop M1 M2 M3 M4 M5 M6 M7GRL_AK-1109-1 AK1109 1 1 1 0 1 0 0 GRL_AK-1109-10 AK1109 1 0 1 0 0 0 0 GRL_AK-1109-11 AK1109 1 0 1 0 0 0 0 GRL_AK-1109-2 AK1109 1 0 1 0 1 0 1 GRL_AK-1109-3 AK1109 1 1 1 0 0 1 0 GRL_AK-1109-4 AK1109 1 0 1 0 1 0 1 GRL_AK-1109-5 AK1109 1 0 1 0 0 0 0 GRL_AK-1109-6 AK1109 1 1 1 0 0 1 1 GRL_AK-1109-7 AK1109 1 0 1 0 1 0 0 GRL_AK-1109-8 AK1109 1 0 1 0 0 0 0 GRL_AK-1109-9 AK1109 1 0 1 0 0 0 0 GRL_AK-1110-10 AK1110 1 0 1 0 0 1 0 GRL_AK-1110-11 AK1110 1 0 1 0 0 0 1 GRL_AK-1110-2 AK1110 1 0 1 0 1 0 0 GRL_AK-1110-5 AK1110 1 0 1 0 0 0 1 GRL_AK-1110-6 AK1110 1 0 1 0 0 0 0 GRL_AK-1110-7 AK1110 1 0 1 0 1 1 1 GRL_AK-1110-9 AK1110 1 0 1 0 0 0 1 GRL_AK-1118-1 AK1118 1 0 1 0 0 0 1 GRL_AK-1118-10 AK1118 1 0 1 0 0 0 1 GRL_AK-1118-11 AK1118 1 0 1 0 0 0 1 GRL_AK-1118-2 AK1118 1 0 1 0 0 0 0 GRL_AK-1118-3 AK1118 1 0 1 0 0 0 1 GRL_AK-1118-4 AK1118 1 0 1 0 0 0 1 GRL_AK-1118-5 AK1118 1 0 1 0 1 1 0FunctionsGenografThis function reads a text file as you get from scoring AFLPs with the program Genographer (/genographer ) and produces a matrix with markers in columns and individuals in rows. Copy the contents of the Analysis window (in the Bin Display view) to a text file. Marker names are created with some text followed by the length of the band, e.g. Green_126.4.The function needs the name of the text file with the results from Genographer, the name of a text file with the names of the individuals in a column in the same order as in the Genographer file (there should be no spaces and no , or ; in the names; . and - and _ are fine, the file can easily be prepared in Excel), and the code you want to use for the primer combination. If you scored A and B, these can be replaced by 0 and 1 in the initial text file, or later in the matrix.Ex: Genograf (“combination1.txt”, “inds.txt”, “Green”)The output file is called datamatrix.txt and can be opened in excel.AddThis function assembles two matrices with data from the same individuals, but different markers, for example matrices for two different primer combinations. The matrices have to contain marker names in the first row and individual names in the first column, and should be tab separated text files. The first cell has to contain something, e.g. an x. The name of the two matrix files is the only input needed.Ex: Add (“data1.txt”, “data2.txt”)The output file is called newmatrix.txtFreq.histThis function plots a histogram of the frequencies of each marker in the total dataset. It reads a matrix with markers in columns and individuals in rows. Marker names are expected in the first row and individual names in the first column. The first cell has to contain something, e.g. an x. If you have the matrix in excel, save it as text file. The name of the matrix file is the only input needed. There should be no missing values.Ex: Freq.hist (“datamatrix.txt”)The output is a plot which can be saved in different formats (metafile, jpg, pdf…)Band.histThis function plots a histogram of the number of bands per individual in the total dataset. It reads a matrix with markers in columns and individuals in rows. Marker names are expected in the first row and individual names in the first column. The first cell has to contain something, e.g. an x. If you have the matrix in excel, save it as text file. The name of the matrix file is the only input needed. There should be no missing values.Ex: Band.hist (“datamatrix.txt”)The output is a plot which can be saved in different formats (metafile, jpg, pdf…) TreeconThis function reads a matrix with markers in columns and individuals in rows and produces an input file for the Program Treecon(http://bioinformatics.psb.ugent.be/psb/Userman/treeconw.html ). Marker names are expected in the first row and individual names in the first column. The first cell has to contain something, e.g. an x. If you have the matrix in excel, save it as text file. The name of the matrix file is the only input needed. There should be no missing values.Ex: Treecon (“datamatrix.txt”)The output file is called treecon-input.txtTreecon.invThis function does exactly the same as the previous one, but it creates an inverted file with markers instead of individuals. It can be used to plot a tree where you see how similar (and possibly linked) your markers are.Ex: Treecon.inv (“datamatrix.txt”)The output file is called treecon-inv.txtStructureThis function reads a matrix with markers in columns and individuals in rows and produces an input file for the software Structure(/structure.html ). According to the recommendations in the Structure manual, AFLPs are coded as one row with data and one row with missing values for each individual. Marker names are expected in the first row and individual names in the first column. The first cell has to contain something, e.g. an x. If you havethe matrix in excel, save it as text file. The name of the matrix file is the only input needed. There should be no missing values.Ex: Structure (“datamatrix.txt”)The output file is called structure-input.txtStructure.EThis function reads a matrix with markers in columns and individuals in rows and produces an input file for the software Structure(/structure.html). The difference to the previous function is that it codes the data 0/0 for absent bands and 1/-9 for present bands according to Evano et al. 2005. Marker names are expected in the first row and individual names in the first column. The first cell has to contain something, e.g. an x. If you have the matrix in excel, save it as text file. The name of the matrix file is the only input needed. There should be no missing values.Ex: Structure.E (“datamatrix.txt”)The output file is called structure-inputE.txtStructure.DThis function reads a matrix with markers in columns and individuals in rows and produces an input file for the software Structure ver. 2.2, which treats dominant data explicitly (/structure.html). In order to use the recessive alleles option in Structure 2.2, an extra row has to be added at the top of the input file to indicate, which allele is recessive at each locus (Falush et al. 2007). This function makes an input file for Structure assuming that presence is coded as 1 and absence as 0, and that 0 is recessive to 1 at all loci.The function expects marker names in the first row and individual names in the first column. The first cell has to contain something, e.g. an x. If you have the matrix in excel, save it as text file. The name of the matrix file is the only input needed. There should be no missing values.Ex: Structure.D (“datamatrix.txt”)The output file is called structure-inputD.txtBapsThis function reads a matrix with markers in columns and individuals in rows and produces an input file for the software BAPS(http://www.abo.fi/fak/mnf/mate/jc/software/baps.html). Marker names are expected in the first row and individual names in the first column. The first cell has to contain something, e.g. an x. If you have the matrix in excel, save it as text file. The name of the matrix file is the only input needed. There should be no missing values.Ex: Baps (“datamatrix.txt”)The output file is called baps-input.txtStructuramaThis function reads a matrix with markers in columns and individuals in rows and produces an input file for the software Structurama (/). Marker names are expected in the first row and individual names in the first column. The first cell has to contain something, e.g. an x. If you have the matrix in excel, save it as text file. The name of the matrix file is the only input needed. There should be no missing values.Ex: Structurama (“datamatrix.txt”)The output file is called structurama-input.txt.Add.popThis function adds the names of the population of origin for each individual as a second column in the data matrix. The matrix has to contain marker names in the first row and individual names in the first column, and should be saved as a tab separated text file. The first cell has to contain something, e.g. an x. The names of the populations of origin have to be in a column in a separate text file, in the same order as the individuals (there should be no spaces and no , or ; in the names; . and - and _ are fine, the file can easily be prepared in Excel). As input the function needs the name of the data matrix and the name of the file with the population names.Ex: Add.pop (“datamatrix.txt”, “popnames.txt”)The output file is called popmatrix.txtArlequinThis function reads a matrix from a text file and creates an input file for the software Arlequin (http://cmpg.unibe.ch/software/arlequin3/). Individual names are expected in the first column and population names in the second. Marker names (or anything else) are expected in the first row. The first two cells of the first row have to contain something (e.g. x), otherwise the matrix is not read correctly. Population names should not contain blanks, commas or semicolons. The name of the matrix file is the only input needed. There should be no missing values.Ex: Arlequin (“popmatrix.txt”)The output file is called arlequin-input.arp. In the Structure part at the end of the file there is one group containing all your populations. This part should be modified according to the analyses you plan to perform.PopgeneThis function reads a matrix from a text file and creates an input file for the software Popgene (http://www.ualberta.ca/~fyeh/index.htm). Individual names are expected in the first column and population names in the second. Marker names (or anything else) are expected in the first row. The first two cells of the first row have to contain something (e.g. x), otherwise the matrix is not read correctly. Population names should not contain blanks, commas or semicolons. The name of the matrix file is the only input needed. There should be no missing values.Ex: Popgene (“popmatrix.txt”)The output is called popgene-input.txt.AFLPsurvThis function reads a matrix from a text file and creates an input file for the software AFLP-SURV (http://www.ulb.ac.be/sciences/lagev/aflp-surv.html). Individual names are expected in the first column and population names in the second. Marker names (or anything else) are expected in the first row. The first two cells of the first row have to contain something (e.g. x), otherwise the matrix is not read correctly. Population names should not contain blanks, commas or semicolons. The name of the matrix file is the only input needed. There should be no missing values.Ex: AFLPsurv (“popmatrix.txt”)The output is called AFLPsurv-input.txt.DiversityThis function calculates Nei’s gene diversity for each population using the formulaD = n/(n-1) * [1 – (freq(1)2 + freq(0)2)]for each marker and then taking the average (Nei 1987). It counts also the proportion of polymorphic markers within each population.Individual names are expected in the first column of the matrix and population names in the second. Marker names (or anything else) are expected in the first row. The first two cells of the first row have to contain something (e.g. x), otherwise the matrix is not read correctly. Population names should not contain blanks, commas or semicolons. The name of the matrix file is the only input needed. There should be no missing values and all population samples should contain more than one individual.Ex: Diversity (“popmatrix.txt”)The output file is called diversities.txt and contains a table which can be opened in e.g. Excel.Diversity.bootThis function calculates Nei’s gene diversity for each population and estimates a confidence interval for the diversities from bootstrapping over markers.Individual names are expected in the first column of the matrix and population names in the second. Marker names (or anything else) are expected in the first row. The first two cells of the first row have to contain something (e.g. x), otherwise the matrix is not read correctly. Population names should not contain blanks, commas or semicolons. There should be no missing values and all population samples should contain more than one individual. As input, the function needs the name of the matrix and the number of bootstrap replicates.Ex: Diversity.boot (“popmatrix.txt”, 1000)The output file is called div-boot.txt and contains a table which can be opened in e.g. Excel.DWThis function calculates the frequency down-weighed marker value (DW) according to Schönswetter and Tribsch (2005). DW is not calculated for populations containing only one individual.Individual names are expected in the first column of the matrix and population names in the second. Marker names (or anything else) are expected in the first row. The first two cells of the first row have to contain something (e.g. x), otherwise the matrix is not read correctly. Population names should not contain blanks, commas or semicolons. The name of the matrix file is the only input needed. There should be no missing values and all population samples should contain more than one individual.Ex: DW (“popmatrix.txt”)The output file is called DW.txt. It contains one column where DW is calculated as ratio of means and one column where DW is calculated as ratio of sums. To use means makes the measure less sensitive to large differences in sample size between localities. ClonesIf the species you work with can reproduce clonally, it is possible that your data set contain several ramets of the same clone. This function counts how many different genotypes are in each population and estimates genotype diversity according to Nei’s (1987) formula for haplotype diversityDg = n/(n-1) * [1 – sum (genotype frequencies2)]It also estimates the effective number of genotypes according to Parker (1979) as Effective nb = 1 / sum (genotype frequencies2)and Nei’s gene diversity among genotypes (excluding the additional clones). It also produces a data matrix containing only one copy of each genotype.In a perfect world, all ramets belonging to a cetain genotype would be identical, but because AFLP are often not 100% replicable, they may differ by a few bands. The function Clones allows to enter an error rate (which can be estimated from replicates) as the maximum number of differences among identical individuals. This can be determined as Error rate * total number of markers. The function produces also a histogram of the number of pair-wise differences among individuals within populations. As input the function needs the name of the matrix file, which should be a matrix having population names as second column, and the allowed number of differences.Ex: Clones (“popmatrix.txt”, 2)The output files are called clonal_diversity.txt, which contains a table with the different diversity estimates, and genotype-mat.txt which contains a data matrix where each genotype figures only once (without clones). The plot can be saved as pdf file. Clones.listThis function makes a list of pairs of individuals differing by up to a certain number of bands. If 0 is entered for the allowed number of errors, the function will return a list of pairs of identical individuals. As input it needs the name of the matrix file, which should be a matrix having population names as second column, and the allowed number of differences.Ex: Clones.list (“popmatrix.txt”, 2)The output file is called div-boot.txt and contains a table which can be opened in e.g. Excel.FrequenciesThis function creates a table with the frequency of each marker in each population. Individual names are expected in the first column of the matrix and population names in the second. Marker names (or anything else) are expected in the first row. The first two cells of the first row have to contain something (e.g. x), otherwise the matrix is not read correctly. Population names should not contain blanks, commas or semicolons. The name of the matrix file is the only input needed. There should be no missing values and all population samples should contain more than one individual.Ex: Frequencies (“popmatrix.txt”)The output file is called freq.txtPresenceThis function creates a matrix with populations as rows and markers as columns. 1 shows that a band is present in the population. Individual names are expected in the first column of the matrix and population names in the second. Marker names (or anything else) are expected in the first row. The first two cells of the first row have to contain something (e.g. x), otherwise the matrix is not read correctly. Population names should not contain blanks, commas or semicolons. The name of the matrix file is the only input needed. There should be no missing values and all population samples should contain more than one individual.Ex: Presence (“popmatrix.txt”)The output file is called presence.txtHickoryThis function reads a matrix from a text file and creates an input file for the software Hickory (/hickory/hickory.html). Individual names are expected in the first column and population names in the second. Marker names (or anything else) are expected in the first row. The first two cells of the first row have to contain something (e.g. x), otherwise the matrix is not read correctly. Population names should not contain blanks, commas or semicolons. The name of the matrix file is the only input needed. There should be no missing values.Ex: Hickory (“popmatrix.txt”)The output file is called Hickory-input.nexNexusThis function reads a matrix with markers in columns and individuals in rows and produces a Nexus file which can be used e.g. for analyses in PAUP(/). Marker names are expected in the first row and individual names in the first column. Don’t use - in your individual names, PAUP does not allow this. The first cell has to contain something, e.g. an x. If you have the matrix in excel, save it as text file. The name of the matrix file is the only input needed. There should be no missing values. The resulting file works in PAUP for windows, I did not try the Mac version.Ex: Nexus (“datamatrix.txt”)The output file is called nexus.nexGeodistThis function calculates the geographic distances separating two point defined by their geographic coordinates. As input file the function needs a tab separated text file with three columns. The first column contains the names of the locations, the second and the third the latitudes and longitudes respectively. Latitudes and longitudes should be in degrees with decimals, not in degrees with minutes and seconds. The output is a square matrix with the pair-wise distances among all localities in km. It is convenient to open it in excel.Ex: Geodist(“coordfile.txt”)The output file is called geo-distances.txtArlequin.MThis function produces an input file for Arlequin(http://cmpg.unibe.ch/software/arlequin3/) which allows to perform a Mantel test for a significant relation between geographic distance (or it’s natural logarithm) and genetic differentiation (F ST or F ST /(1- F ST).As input the function needs a file with individuals in rows and markers in columns. Individual names are expected in the first column of the matrix and population names in the second. Marker names (or anything else) are expected in the first row. The first two cells of the first row have to contain something (e.g. x), otherwise the matrix is not read correctly. Population names should not contain blanks, commas or semicolons. In addition to this file with the genetic data, the function needs a file with the geographic coordinates of each population. This should be a tab separated text file with three columns. The first column contains the names of the locations, the second and the third the latitudes and longitudes respectively. Latitudes and longitudes should be in degrees with decimals, not in degrees with minutes and seconds. The names of the populations should be absolutely identical with those used in the genetic matrix! A third parameter indicates whether the natural logarithm of the geographical distances should be used (ln=TRUE) or not (ln=FALSE). ln=FALSE is the default and is used if this parameter is not entered.Ex: Arlequin.M (“popmatrix.txt”, “coordfile.txt”, ln=FALSE)The output file is called arlequin-mantel.arp. Both the Structure part and the Mantel part contain all populations present in the datamatrix. Modify this part according to the analyses you want to perform.PlotIBDThis function plots the pair-wise geographical distances against pair-wise estimates of genetic differentiation, which are used for example in a Mantel test. In the input file, both matrices should be written one above the other, with no extra lines or columns. If you used Arlequin to calculate a Mantel test, both matrices will appear in the output file. Paste them as they are into a text file (e.g. in notepad), and delete all extra signs and extra rows before you save the file. The output of the function is a plot where the first matrix will appear on the X axis and the second on the Y axis.Ex: PlotIBD (“2matrix.txt”)The output is a plot, which can be saved in different formats.Good luck!Dorothee Ehrichdorothee@bio.uio.no(feel free to complain,make suggestionsand ask questions)References:Evano, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620.Falush D, Stephens M, Pritchard J (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes, in press.Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, NY.Parker, E. D. Jr. 1979. Ecological implications of clonal diversity in parthenogenetic morphospecies. Am. Zool. 19: 753 – 762.Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon, 54, 725-732.。