勾股定理综合测试卷及答案(图片版)

合集下载

第十七章 勾股定理 达标测试卷 (含答案)

第十七章  勾股定理 达标测试卷 (含答案)

第十七章勾股定理达标测试卷时间:90分钟分值:120分得分:__________一、选择题(本大题10小题,每小题3分,共30分)1.如图1,在△ABC中,∠B=90°,AC=2,则AB2+BC2的值是()图1A.2 B.3 C.22D.42.如图2,从电线杆上离地面5 m的C处向地面拉一条长为7 m的钢缆,则地面钢缆固定点A 到电线杆底部点B的距离是()图2A.24 B.12 C.74D.263.如图3,在数轴上取一点A,使OA=5,过点A作直线l⊥OA,在直线l上取点B,使AB=2,以点O为圆心,OB长为半径作弧,交数轴于点C,则点C表示的数是()图3A.21B.29C.7 D.294.下列各组数中,能作为直角三角形的三边长的是()图4A .1,2,3B .4,5,6C .3 ,2 ,5D .6,8,125.如图4,长为8 cm 的橡皮筋放置在水平面上,固定两端点A 和B ,然后把AB 的中点C 垂直向上拉升3 cm 至点D ,则橡皮筋被拉长了( )A .2 cmB .3 cmC .4 cmD .5 cm6.已知△ABC 的三边长分别为a ,b ,c ,且a +b =4,ab =1,c =14 ,则△ABC 的形状为( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .不能确定7.下列命题的逆命题是真命题的是( ) A .若a =b ,则|a |=|b | B .全等三角形的周长相等 C .若a =0,则ab =0D .有两边相等的三角形是等腰三角形8.如图5,在△ABC 中,AB =AC =5,CD =1,BD ⊥AC ,则BC 的长度为( )图5A .3B .4C .10D .179.如图6,正方形ABCD 的边长为2,其面积记为S 1,以CD 为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S 2,…,按照此规律继续下去,则S 9的值为( )图6A .⎝⎛⎭⎫12 6B .⎝⎛⎭⎫12 7C .⎝⎛⎭⎫12 8D .⎝⎛⎭⎫12 910.如图7,在△ABC 中,∠ABC =90°,∠A =30°,BC =1,M ,N 分别是AB ,AC 上的任意一点,则MN +NB 的最小值为( )图7A .32B .2C .32 +34D .32二、填空题(本大题5小题,每小题3分,共15分) 11.请写出一组勾股数:__________.12.(2022朝阳)如图8,在Rt △ABC 中,∠ACB =90°,AB =13,BC =12,分别以点B 和点C 为圆心,大于12 BC 的长为半径作弧,两弧相交于E ,F 两点,作直线EF 交AB 于点D ,连接CD ,则△ACD 的周长是__________.图813.(2022黑龙江)如图9,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,则CD =__________.图914.如图10,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则木板的长为__________米.图1015.如图11,AB为订书机的托板,压柄BC绕着点B旋转,连接杆DE的一端点D固定,点E 从A处向B处滑动,在滑动的过程中,DE的长度保持不变,在图11①中,BD=6 cm,BE=15 cm,∠B=60°,现将压柄BC从图11①的位置旋转到与底座AB垂直,如图11②所示,则此过程中点E滑动的距离为__________cm.图11三、解答题(本大题7小题,共75分)16.(8分)在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C所对的边.(1)若a=b=5,求c的值;(2)若a=5,∠A=30°,求b,c的值.17.(8分)图12是半圆形隧道的截面示意图,已知半圆的直径为5米,有一辆装满货物的卡车,高2.6米,宽1.4米,要从此隧道经过,则该卡车是否能通过隧道?请说明理由.图1218.(9分)如图13,在4×3的正方形网格中,每个小正方形的边长都为1,点A,B,C,D都在格点上.(1)线段AB的长为__________;(2)在图中作出线段EF,使得点E,F都在格点上,且EF的长为13,判断AB,CD,EF三条线段能否构成直角三角形,并说明理由.图1319.(11分)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图14①,②(图②为图①的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),求门槛AB的长.图1420.(11分)如图15,已知等腰三角形ABC的底边BC=15 cm,AH⊥BC于点H,D是腰AB上一点,且CD=12 cm,BD=9 cm,求AH的长.图1521.(13分)如图16,某小区有两个喷泉A,B,两个喷泉的距离为250 m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC上,供水点M到AB的距离MN的长为120 m,BM的长为150 m.(1)求供水点M到喷泉A,B需要铺设的管道总长;(2)求喷泉B到小路AC的最短距离.图1622.(15分)如图17,在△ABC中,∠ACB=90°,AB=10 cm,BC=6 cm,若点P从点A出发,以4 cm/s的速度沿折线A-C-B-A运动,设运动时间为t s(t>0).(1)填空:AC的长为__________cm;(2)若点P在AC上,且满足△BCP的周长为14 cm,求此时t的值;(3)若点P在∠BAC的平分线上,求此时t的值.第十七章 达标测试卷1.A 2.D 3.B 4.C 5.A 6.C 7.D 8.C 9.A 10.A 11.5,12,13(答案不唯一) 12.18 13.314.2.5 15.(15-315 )16.解:(1)在Rt △ABC 中,∠C =90°,a =b =5,∴c =a 2+b 2 =52+52 =52 .(2)在Rt △ABC 中,∠C =90°,a =5,∠A =30°,∴c =2a =10.∴b =c 2-a 2 =102-52 =53 . 17.解:不能.理由如下:如答图1,OD 为卡车宽度的一半,过点D 作CD ⊥AB 交半圆弧于点C ,连接OC .答图1由题意,得OD =0.7米,AB =5米,OC =12 AB =2.5米.在Rt △OCD 中,CD =OC 2-OD 2 =2.4米. ∵2.4<2.6,∴这辆卡车不能通过隧道. 18.解:(1)5 .(2)作线段EF 如答图2所示.(答案不唯一)答图2AB ,CD ,EF 三条线段能构成直角三角形.理由如下:∵CD 2=22+22=8,AB 2=12+22=5,EF 2=(13 )2=13,∴CD 2+AB 2=EF 2. ∴AB ,CD ,EF 三条线段能构成直角三角形.19.解:如答图3,记AB 的中点为O ,过点D 作DE ⊥AB 于点E .答图3由题意,得OA =OB =AD =BC ,DE =10寸,OE =12 CD =1寸.设OA =OB =AD =BC =r 寸,则AB =2r 寸,AE =(r -1)寸. 在Rt △ADE 中,AE 2+DE 2=AD 2,即(r -1)2+102=r 2.解得r =50.5.∴2r =101.∴AB =101寸,即门槛AB 的长为101寸.20.解:∵BC =15,BD =9,CD =12,∴BC 2=BD 2+CD 2.∴△BCD 为直角三角形. ∴∠BDC =∠ADC =90°. 设AD =x ,则AC =AB =x +9.在Rt △ACD 中,AD 2+CD 2=AC 2,即x 2+122=(x +9)2.解得x =72 .∴AB =72 +9=252 .∵AB =AC ,AH ⊥BC ,∴BH =12 BC =152 .由勾股定理,得AH =AB 2-BH 2=⎝⎛⎭⎫2522-⎝⎛⎭⎫1522=10 (cm).∴AH 的长为10 cm.21.解:(1)在Rt △BMN 中,MN =120 m ,BM =150 m , ∴BN =BM 2-MN 2 =1502-1202 =90 (m). ∵AB =250 m ,∴AN =AB -BN =250-90=160 (m).在Rt △AMN 中,AM =AN 2+MN 2 =1602+1202 =200 (m). ∴AM +BM =200+150=350 (m).答:供水点M 到喷泉A ,B 需要铺设的管道总长为350 m. (2)∵AM =200 m ,BM =150 m ,AB =250 m ,∴AM 2+BM 2=AB 2. ∴△ABM 是直角三角形,且∠AMB =90°,即BM ⊥AM . 由垂线段最短可知,BM 即为所求的最短距离. 答:喷泉B 到小路AC 的最短距离为150 m. 22.解:(1)8.(2)如答图4.由题意,得AP =4t .答图4∴CP =AC -AP =8-4t .∵△BCP 的周长为14,∴BP =14-6-(8-4t )=4t . 在Rt △BCP 中,由勾股定理,得62+(8-4t )2=(4t )2. 解得t =2516 ,即t 的值为2516.(3)①当点P 在BC 边上时,如答图5,过点P 作PE ⊥AB 于点E .答图5∵点P 恰好在∠BAC 的平分线上,且∠C =90°,∴CP =EP .在Rt △ACP 和Rt △AEP 中,⎩⎪⎨⎪⎧AP =AP ,CP =EP , ∴△ACP ≌△AEP (HL). ∴AE =AC =8.∴BE =AB -AE =2.设CP =x ,则BP =6-x ,PE =x .在Rt △BEP 中,BE 2+PE 2=BP 2,即22+x 2=(6-x )2.解得x =83. ∴CP =83 .∴AC +CP =8+83 =323 .∴t =323 ÷4=83. ②当点P 沿折线A -C -B -A 运动到点A 时,点P 也在∠BAC 的平分线上,此时t =(8+6+10)÷4=6.综上,若点P 恰好在∠BAC 的平分线上,则此时t 的值为83 或6.。

第18章《勾股定理》单元检测试卷(含答案)

第18章《勾股定理》单元检测试卷(含答案)

第18章勾股定理单元测试一、选择题1.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A. 1、2、3B. 2、3、4C. 3、4、5D. 4、5、62.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A. 斜边长为25B. 三角形周长为25C. 斜边长为5D. 三角形面积为203.如图,已知O为圆锥的顶点,MN为圆锥底面的直径,一只蜗牛从M点出发,绕圆锥侧面爬行到N点时,所爬过的最短路线的痕迹(虚线)在侧面展开图中的位置是()A. B.C. D.4.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A. 9mB. 7mC. 5mD. 3m5.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD= ,则BC的长为()A. ﹣1B. +1C. ﹣1D. +16.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A. 0B. 1C.D.7.适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2 ;④∠A=38°,∠B=52°.A. 1个B. 2个C. 3个D. 4个8.如图字母B所代表的正方形的面积是()A. 12B. 13C. 144D. 1949.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A. 24cm2B. 36cm2C. 48cm2D. 60cm210.如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20B.25C.30D.3211.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程是(◆)A. 40 cmB. cmC. 20 cmD. cm二、填空题12.如图,有一圆柱体,它的高为8cm,底面周长为12cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是________ cm.13.请写出两组勾股数:________、________.14.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是________.15. 北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.其中正确结论序号是________16.已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距________ km.17.一根旗杆在离底部4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为________18.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为________ .19.学校有一块长方形的花圃如右图所示,有少数的同学为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步(假设1米=2步),却踩伤了花草,所谓“花草无辜,踩之何忍”!20.如图,长为12cm的弹性皮筋直放置在x轴上,固定两端A和B,然后把中点C向上拉升8cm至D点,则弹性皮筋被拉长了________.21. 在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为________三、解答题22.如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积.23.如图,四边形ABCD中,∠B=90°,AB=6,BC=8,CD=24,AD=26,求四边形ABCD的面积.24.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.25.我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2,也可表示为c3+4(ab),即(a+b)2=c2+4(ab)由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图(Ⅱ)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2.参考答案一、选择题C CD D D C C C A B C二、填空题12.1013.3、4、5;6、8、1014.15.①④16.5km17.12米18.42或3219.420.8cm21.49三、解答题22.解:如图,连接AC.在△ACD中,∵AD=4米,CD=3米,∠ADC=90°,∴AC=5米,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积= ×5×12﹣×3×4=24(平方米).23.解:连结AC,在△ABC中,∵∠B=90°,AB=6,BC=8,∴AC= =10,S△ABC= AB•BC= ×6×8=24,在△ACD中,∵CD=24,AD=26,AC=10,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD= AC•CD= ×10×24=120.∴四边形ABCD的面积=S△ABC+S△ACD=24+120=144.24.解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则有CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解之得:x=9,∴AD=12,∴S△ABC= BC•AD= ×14×12=8425.(1)解:S阴影=4×ab,S阴影=c2﹣(a﹣b)2,∴4×ab=c2﹣(a﹣b)2,即2ab=c2﹣a2+2ab﹣b2,则a2+b2=c2;(2)解:如图所示,大正方形的面积为x2+4y2+4xy,也可以为(x+2y)2,则(x+2y)2=x2+4xy+4y2.。

二次根式和勾股定理综合题(含答案)

二次根式和勾股定理综合题(含答案)

八年级数学试卷 第 1 页 共 4 页二次根式和勾股定理测试卷(时间90分钟)(满分100分)一、选择题:(每题3分,共30分)(每题只有一个正确答案,请将正确答案序号填入下表)1.若m -3为二次根式,则m 的取值为 ( )A .m ≤3B .m <3C .m ≥3D .m >3 2.下列二次根式中属于最简二次根式的是( ) A . 48 B . 14 C .baD .44+a 3.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .304.若最简二次根式a a 241-+与的被开方数相同,则a 的值为 ( )A .43-=aB .34=a C .a=1 D .a= —15 . 化简)22(28+-得 ( )A .—2B .22-C .2D . 224- 6. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.7. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或258. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )9. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )八年级数学试卷 第 2 页 共 4 页CABDCB A D EF(A )4 cm (B )8 cm (C )10 cm (D )12 cm10.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 二、填空题:(每题4分,共32分)(请将每题正确答案填在下列对应横线上) 11.___________ 12.___________ 13.____________ 14._____________ 15.___________ 16.___________ 17.____________ 18._____________ 11. 如图所示,以Rt ABC 的三边向外作正方形,其面积分别为123,,S S S ,且1234,8,S S S ===则 ;12如图,90,4,3,12C ABD AC BC BD ︒∠=∠====,则AD= ;13、若三角形的三边满足::5:12:13a b c =,则这个三角形中最大的角为 ;14、一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,上午10:00,两小相距 海里。

勾股定理测试题(含答案)初中数学

勾股定理测试题(含答案)初中数学

第14章《勾股定理》一、选择题1. 三角形三边长分别为6,8,10,那么它最短边上的高为……………()A. 4B. 5C. 6D. 82. 三角形各边(从小到大)长度的平方比如下,其中不是直角三角形的是………()A. 1:1:2B. 1:3:4C. 9:25:36D. 25:144:1693. 设一个直角三角形的两条直角边长为a、b,斜边上的高为h,斜边长为c,则以c+h,a+b,h为边的三角形的形状是…………………………………()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定4. △ABC中,∠A:∠B:∠C=1:2:3,则BC:AC:AB为……………………()A. 1:2:3B. 1:2:3C. 1:3:2D. 3:1:25. △ABC中,AB=15,AC=13。

高AD=12。

则△ABC的周长是……………()A. 42B. 32C. 42或32D. 37或33二、填空题1. 若有两条线段,长度分别为8 cm,17cm,第三条线段长满足__________条件时,这三条线段才能组成一个直角三角形。

2. 木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线长为68cm,这个桌面__________(填“合格”或“不合格”)。

3. 如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为________ cm。

(π取3)4. 如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于________ 。

三、计算题1. 如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A 到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?2. 已知直角三角形的三边长分别为3,4,x,求x2。

初中数学-《勾股定理》测试(有答案)

初中数学-《勾股定理》测试(有答案)

初中数学-《勾股定理》测试一、选择题1.下面三组数中是勾股数的一组是()A.6,7,8 B.21,28,35 C.1.5,2,2.5 D.5,8,132.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm3.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.504.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14 B.14或4 C.8 D.4或85.等腰三角形底边上的高为8,周长为32,则三角形的面积为()A.56 B.48 C.40 D.326.直角三角形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长为()A.120 B.121 C.132 D.1237.如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A.450a元B.225a元C.150a元D.300a元8.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()A.10cm B.12cm C.19cm D.20cm14.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.二、填空题9.在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=.10.在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab=.11.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需米.12.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.13.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是,不同之处:.三、解答题15.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2,图3中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)16.如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD的面积.17.如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为cm.18.如果△ABC的三边长分别为a、b、c,并且满足a2+b2+c2+338=10a+24b+26c,试判断△ABC 的形状.《勾股定理》参考答案与试题解析一、选择题1.下面三组数中是勾股数的一组是()A.6,7,8 B.21,28,35 C.1.5,2,2.5 D.5,8,13【考点】勾股数.【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,据此求解即可.【解答】解:A、62+72≠82,不能构成勾股数,故错误;B、212+282=352,能构成勾股数,故正确;C、1.5和2.5不是整数,所以不能构成勾股数,故错误;D、52+82≠132,不能构成勾股数,故错误.故选B.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm【考点】勾股定理.【分析】设另一条直角边是a,斜边是c.根据另一条直角边与斜边长的和是49cm,以及勾股定理就可以列出方程组,即可求解.【解答】解:设另一条直角边是a,斜边是c.根据题意,得,联立解方程组,得.故选D.【点评】注意根据已知条件结合勾股定理列方程求解.解方程组的方法可以把①方程代入②方程得到c﹣a=1,再联立解方程组.3.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.50【考点】勾股定理.【分析】先画图,再根据勾股定理易求BC2+AC2的值,再加上AB2即可.【解答】解:如右图所示,在Rt△ABC中,BC2+AC2=AB2,∵AB=5,∴BC2+AC2=25,∴AB2+AC2+BC2=25+25=50.故选D.【点评】本题考查了勾股定理,解题的关键是找准直角边和斜边.4.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14 B.14或4 C.8 D.4或8【考点】勾股定理.【专题】分类讨论.【分析】根据勾股定理先求出BD、CD的长,再求BC就很容易了.【解答】解:此图中有两个直角三角形,利用勾股定理可得:CD2=152﹣122=81,∴CD=9,同理得BD2=132﹣122=25∴BD=5∴BC=14,此图还有另一种画法.即当是此种情况时,BC=9﹣5=4故选B.【点评】此题主要考查了直角三角形中勾股定理的应用.即直角三角形两直角边的平方和等于斜边的平方.5.等腰三角形底边上的高为8,周长为32,则三角形的面积为()A.56 B.48 C.40 D.32【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,进而利用勾股定理得出DC的长,进而求出BC的长,即可得出答案.【解答】解:过点A做AD⊥BC于点D,∵等腰三角形底边上的高为8,周长为32,∴AD=8,设DC=BD=x,则AB=(32﹣2x)=16﹣x,∴AC2=AD2+DC2,即(16﹣x)2=82+x2,解得:x=6,故BC=12,则△ABC的面积为:×AD×BC=×8×12=48.故选:B.【点评】此题主要考查了勾股定理以及等腰三角形的性质,得出DC的长是解题关键.6.直角三角形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长为()A.120 B.121 C.132 D.123【考点】勾股定理.【专题】计算题.【分析】设另一条直角边为x,斜边为y,由勾股定理得出y2﹣x2=112,推出(y+x)(y﹣x)=121,根据121=11×11=121×1,推出x+y=121,y﹣x=1,求出x、y的值,即可求出答案.【解答】解:设另一条直角边为x,斜边为y,∵由勾股定理得:y2﹣x2=112,∴(y+x)(y﹣x)=121=11×11=121×1,∵x、y为整数,y>x,∴x+y>y﹣x,即只能x+y=121,y﹣x=1,解得:x=60,y=61,∴三角形的周长是11+60+61=132,故选C.【点评】本题考查了勾股定理的应用,关键是得出x+y=121和y﹣x=1,题目比较好,但有一定的难度.7.如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A.450a元B.225a元C.150a元D.300a元【考点】解直角三角形的应用.【专题】压轴题.【分析】求出三角形地的面积即可求解.如图所示,作BD⊥CA于D点.在Rt△ABD中,利用正弦函数定义求BD,即△ABC的高.运用三角形面积公式计算面积求解.【解答】解:如图所示,作BD⊥CA于D点.∵∠BAC=150°,∴∠DAB=30°,∵AB=20米,∴BD=20sin30°=10米,=×30×10=150(米2).∴S△ABC已知这种草皮每平方米a元,所以一共需要150a元.故选C.【点评】本题考查了通过作辅助线构建直角三角形,从而解斜三角形的能力.8.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()A.10cm B.12cm C.19cm D.20cm【考点】平面展开﹣最短路径问题.【分析】根据两点之间,线段最短.首先把A和B展开到一个平面内,即展开圆柱的半个侧面,得到一个矩形,然后根据勾股定理,求得蚂蚁爬行的最短路程即展开矩形的对角线的长度.【解答】解:展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半即2π=6,矩形的宽是圆柱的高即8.根据勾股定理得:蚂蚁爬行的最短路程即展开矩形的对角线长即10.故选A.【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.本题注意只需展开圆柱的半个侧面.14.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=4.【考点】勾股定理;全等三角形的判定与性质.【专题】规律型.【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.【点评】运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.二、填空题9.在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=5.【考点】勾股定理.【分析】根据勾股定理直接解答即可.【解答】解:因为在Rt△ABC中,AB2=AC2+BC2,即AB==5.【点评】本题考查了勾股定理解及直角三角形的能力.10.在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab=48.【考点】勾股定理.【分析】首先根据勾股定理以及a:b=3:4,知斜边占5份.又c=10,所以一份是2,则a=6,b=8.所以ab=48.【解答】解:设a=3x,b=4x,则c==5x,又c=10,所以x=2,即a=6,b=8,所以ab=48.故答案为:48.【点评】熟练运用勾股定理,此类题首先计算一份的值,再进一步进行计算.11.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需2+2米.【考点】勾股定理的应用.【专题】压轴题.【分析】地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,因此根据勾股定理求出直角三角形两直角边即可.【解答】解:已知直角三角形的高是2米,根据三角函数得到:水平的直角边是=2,则地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,则地毯的长是(2+2)米.【点评】正确计算地毯的长度是解决本题的关键.12.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=7.【考点】勾股定理.【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=,OC=,OD=∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.13.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是A,不同之处:A不是直角三角形,B,C,D是直角三角形.【考点】勾股定理.【专题】网格型.【分析】可以设正方形小格的边长是1.根据勾股定理计算各个三角形的三边,看三边的平方是否满足两条较短边的平方和等于最长边的平方.【解答】解:(1)在A图中三角形的三个边的长为、、,由勾股定理的逆定理可知5+10≠17,故A不是直角三角形;(2)在B图中三角形的三个边的长为2,4,,由勾股定理的逆定理可知22+42=()2,所以B是直角三角形;(3)根据(2)的计算方法,同理可求得C,D也是直角三角形.【点评】综合运用了勾股定理及其逆定理.三、解答题15.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2,图3中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)【考点】作图—应用与设计作图.【专题】网格型;开放型.【分析】(1)画一个边长3,4,5的三角形即可;(2)利用勾股定理,找长为无理数的线段,画三角形即可.【解答】解:【点评】本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.16.如图,在△ABD 中,∠A 是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD 的面积.【考点】勾股定理的逆定理.【专题】几何图形问题.【分析】连接BD ,根据勾股定理的逆定理,判断出△ABD 和△DBC 是直角三角形,然后根据三角形面积公式求出两个三角形的面积,将其相加即可得到四边形ABCD 的面积.【解答】解:连接BD ,在△ABD 中,∠A 是直角,AB=3,AD=4,∴BD===5,△BCD 中,BC=12,DC=13,DB=5,52+122=132,即BC 2+BD 2=DC 2,∴△BCD 是直角三角形,∴S 四边形ABCD =S △ABD +S △BDC=AD•AB +BD•BC=×4×3+×5×12=6+30=36.【点评】此题要将求四边形面积的问题转化为求两个直角三角形面积和的问题,既考查了对勾股定理逆定理的掌握情况,又体现了转化思想在解题时的应用.17.如图所示,折叠长方形的一边AD ,使点D 落在边BC 的点F 处,已知AB=8cm ,BC=10cm ,则EC的长为3cm.【考点】勾股定理;翻折变换(折叠问题).【分析】能够根据轴对称的性质得到相关的线段之间的关系.再根据勾股定理进行计算.【解答】解:∵D,F关于AE对称,所以△AED和△AEF全等,∴AF=AD=BC=10,DE=EF,设EC=x,则DE=8﹣x.∴EF=8﹣x,在Rt△ABF中,BF==6,∴FC=BC﹣BF=4.在Rt△CEF中,由勾股定理得:CE2+FC2=EF2,即:x2+42=(8﹣x)2,解得x=3.∴EC的长为3cm.【点评】特别注意轴对称的性质以及熟练运用勾股定理.18.如果△ABC的三边长分别为a、b、c,并且满足a2+b2+c2+338=10a+24b+26c,试判断△ABC 的形状.【考点】勾股定理的逆定理;非负数的性质:偶次方;完全平方公式.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.把a2+b2+c2+338=10a+24b+26c 化简后判断则可.【解答】解:a2+b2+c2+338=10a+24b+26ca2﹣10a+25+b2﹣24b+144+c2﹣26c+169=0即(a﹣5)2+(b﹣12)2+(c﹣13)2=0∴a﹣5=0,b﹣12=0,c﹣13=0∴a=5,b=12,c=13∵52+122=169=132∴a2+b2=c2∴△ABC是直角三角形.【点评】本题考查了式子的变形和因式分解,然后再根据勾股定理的逆定理判断三角形的形状.。

中考数学 勾股定理综合练习(含答案)

中考数学 勾股定理综合练习(含答案)

2020中考数学 勾股定理综合练习(含答案)一、单选题(共有10道小题)1.和数轴上的点一一对应的 是()。

A. 整数B. 有理数C. 无理数D. 实数2.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切与E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A.133B.92D.3.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等 ②数据5,2,7,1,2,4的中位数是3,众数是2 ③等腰梯形既是中心对称图形,又是轴对称图形④Rt ABC △中,90C =o ∠,两直角边a 、b 分别是方程2770x x -+=的两个根,则AB正确命题有( )A .0个B .1个C .2个D .3个4.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 都是格点,则线段AB 的长度为( ) A. 5 B.6 C.7 D.255.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;以此类推,则平行四边形AO 4C 5B 的面积为( )A .54cm 2B .58cm 2C .516cm 2 D .532cm 26.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,若AB=6,BC =9,则).FA CD E MN2A .4B.C .4.5D .57.如图,两个连接在一起的菱形的边长都是1 cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是( )A .点FB .点EC .点AD .点C8.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A .0B .1C .2D .39.下列图形都是由边长为1厘米的小正方形连接组成的.按照图形的变化规律,第2009个图形的周长是( )厘米. A 、4018 B 、4020 C 、8036 D 、602710.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE 。

完整版勾股定理练习题及答案

完整版勾股定理练习题及答案

⑶ 若 c — a = 4, b = 16,求 a 、c ;(4) 若Z A= 30°, c = 24,求 c 边上的高 h c ;《勾股定理》练习题及答案测试1勾股定理(一)学习要求掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三 条边长.课堂学习检测一、填空题1.如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么________ = c 2;这一定理在我国被称为 _______2.^ ABC 中, Z C = 90°, a 、b 、c 分别是/ A 、/ B / C 的对边.(1) 若 a = 5, b = 12,则 c= _______ ; (2) 若 c = 41, a = 40,贝U b = _____ ;(3) 若Z A = 30 °, a = 1,贝V c = ____ , b= ______ ; (4) 若Z A = 45°, a = 1,贝U b = ______ , c = _______ . 3•如图是由边长为1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从所走的路程为 ________ . 4.等腰直角三角形的斜边为10,则腰长为 ________ ,斜边上的高为 ______ .5.在直角三角形中,一条直角边为 11cm,另两边是两个连续自然数,则此直角三角形的周长为二、选择题6. Rt △ ABC 中,斜边 BC = 2,则 AB + AC + BC 的值为().(A)8 (B)4 (C)6 (D)无法计算 7. 如图,△ ABC 中, AB= AC = 10, BD 是 AC 边上的高线,DC = 2,则 BD 等于() (A)4 (B)6 (C)8 (D) 2.10 &如图,Rt △ ABC 中,Z C = 90°,若 AB= 15cm,则正方形 为().(A)150cm 2 (B)200cm 2 (C)225cm 2(D)无法计算 三、解答题9.在 Rt △ ABC 中, Z C = 90°,/ A 、Z B Z C 的对边分别为 a 、b 、c . ADEC 和正方形BCFG 勺面积和 (1)若 a : b = 3 : 4, c = 75cm,求 a 、b ; (2)若 a : c = 15 : 17, b = 24,求厶 ABC 勺面积;⑸ 若a 、b 、c 为连续整数,求 a + b + c .综合、运用、诊断一、 选择题 10.若直角三角形的三边长分别为 2, 4, x ,贝U x 的值可能有().(A)1 个 (B)2 个 (C)3(D)4 个二、 填空题11 •如图,直线I 经过正方形 ABC 啲顶点B,点A 、C 到直线I 的距离分别是1、2,则正方形的边长是12. 在直线上依次摆着 7个正方形(如图),已知倾斜放置的 3个正方形的面积分别为 1, 2, 3,水平放置三、解答题13. 如图,Rt △ ABC 中, Z C = 90°,/ A = 30°, BD 是/ ABC 的平分线,AD= 20,求 BC 的长.拓展、探究、思考14. 如图,△ ABC 中,/ C = 90°.(1)以直角三角形的三边为边向形外作等边三角形,探究S+ S 2与S 的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形,探究S + S 与S 3的关系;的4个正方形的面积是 S ,(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S+ S2与S B的关系.学习要求测试2勾股定理(二)掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.课堂学习检测一、填空题1 •若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为__________ .2.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距__________ km. 3•如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______ m路,却踩伤了花草. !4.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,梢飞到另一棵树的树梢,至少要飞________ m.二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前咼().(A)5m(B)7m(C)8m6.如图,从台阶的下端点B到上端点A的直线距离为()(A) 12.2(B) 10、3 (C) 6. 5IL L-(D) 8.. 5三、解答题7.在一棵树的10米高B处有两只猴子,处;另一只爬到树顶一只猴子爬下树走到离树D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米20米处的池塘的&在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?、填空题9.如图,一电线杆 AB 的高为10米,当太阳光线与地面的夹角为 60°时,其影长 AC 为 ______ 米.10. 如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的 A 点,沿圆柱表面爬到与A 相对的上底面B 点,则蚂蚁爬的最短路线长约为 ___________ (取3) 二、解答题:11•长为4 m 的梯子搭在墙上与地面成45°角,作业时调整为 60°角(如图所示),则梯子的顶端沿墙面升高了 ______ m.地毯每平方米30元,那么这块地毯需花多拓展、探究、思考13. 如图,两个村庄 A 、B 在河CD 的同侧,A B 两村到河的距离分别为 AC= 1千米,BD=3千米,CD= 3千米•现要在河边 CD 上建造一水厂,向 A B 两村送自来水•铺设 水管的工程费用为每千米 20000元,请你在CD 上选择水厂位置 O,使铺设水管的费 用最省,并求出铺设水管的总费用 W测试3勾股定理(三)学习要求熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.课堂学习检测一、填空题1. 在△ ABC 中,若/ A +Z B = 90°, AC= 5, BC= 3,贝U A B= _____ , AB 边上的高 CE= _____ .2. __________________________________________________________ 在△ ABC 中,若 AB= AC= 20, BC= 24,贝U BC 边上的高 AD= ___________________________________ , AC 边上的高 BE= ______综合、运用、诊断12•如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米 ?若楼梯宽2米,少元910 11 12JT90°, AB= 10,则A0= _____________________________________ , AB边上的高CD= _____ .的面积为___________________________________________________ .5. ___________________________________________________________________ 在△ ABC中,若/ ACB= 120 °, AC= BC, AB 边上的高CD= 3,贝U AC= __________________________ , AB= _____ , BC 边上的高AE= _____ .二、选择题6•已知直角三角形的周长为 2 J6,斜边为2,则该三角形的面积是().1 3 1(A) —(B) —(C) —(D)14 4 27.若等腰三角形两边长分别为4和6,则底边上的高等于().(A) .7 (B) 7 或41 (C) 4 2 (D) 4 2 或..7三、解答题&如图,在Rt△ ABC中,/ C= 90°, D E分别为BC和AC的中点, AD= 5, BE= 2 10 求AB 的长.9.在数轴上画出表示10及.13的点.综合、运用、诊断10.如图,△ ABC中,/ A= 90 ° , AC= 20, AB= 10,延长AB 到D,使C叶DB= AO AB求BD的长..11•如图,将矩形ABC船EF折叠,使点D与点B重合,已知AB= 3, AD= 9,求BE的长.13.已知:如图,△ ABC中,/ C= 90°, D为AB的中点,E F分别在AC BC上,且DEL DF.求证:A E+BF2= E F.拓展、探究、思考14. 如图,已知△ ABC 中,/ ABC= 90°, AB= BC三角形的顶点在相互平行的三条直线l i, I2, I3上,且li, I2之间的距离为2, l2, I3之间的距离为3,求AC的长是多少?15. 如图,如果以正方形ABCD勺对角线AC为边作第二个正方形ACEF再以对角线AE为边作第三个正方形AEGH如此下去,……已知正方形ABCD勺面积S i为1,按上述方法所作的正方形的面积依次为S, S3,…,$(n为正整数),那么第8个正方形的面积S B =___________ ,第n个正方形的面积 $= __________ .测试4 勾股定理的逆定理学习要求掌握勾股定理的逆定理及其应用•理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.课堂学习检测一、填空题1•如果三角形的三边长a、b、c满足a2+ b2= c2,那么这个三角形是 ___________ 三角形,我们把这个定理叫做勾股定理的_______ .2 •在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做_______________ ;如果把其中一个命题叫做原命题,那么另一个命题叫做它的3.分别以下列四组数为一个三角形的边长:(1)6、8、10, (2)5、12、13, (3)8、15、17, (4)4、5、6,其中能构成直角三角形的有______________ .(填序号)4.在△ ABC中, a、b、c分别是/ A、/ B/ C的对边,12.如图,在△ ABC 中, D 为BC 边上的一点,已知 AB= 13, AD= 12, AO 15, BD= 5,求CD 勺长.13.已知:如图,四边形ABCD 中, A 吐 BC, AB= 1, BC = 2, CD= 2, AD= 3,求四边形ABC 啲面积.1 _14•已知:如图,在正方形ABCDKF 为DC 的中点,E 为CB 的四等分点且 CE =丄CB ,4求证:AF 丄FE① 若 a 2 + b 2>c 2,则/ c 为 _____________ ② 若a 2 + b 2= c 2,则/ c 为 ____________ ③ 若 a 2 + b 2v c 2,则/ c 为 ____________5•若△ ABC 中, (b — a )( b + a ) = c 2,则/ B = _____________ ; 6. 如图,正方形网格中,每个小正方形的边长为1,则网格上的△ ABC 是 _______ 三角形.7.若一个三角形的三边长分别为 1、a 、8(其中a 为正整数),则以a — 2、a 、a + 2为边的三角形的面积为 _______ .角形为 _______ 、选择题 9.下列线段不能组成直角三角形的是 ()(A) a = 6, b = 8, c = 10 (B) a 1,b. 2,c..3(C) a 5,b 1, c 34410.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是()(A)1 : 1 : 2 (B)1 :3 : 4 (C)9 :25 : 26 (D)25 :144 : 16911.已知三角形的三边长为n、n + 1、nm 其中甫= 2n + 1),则此三角形().(A) 一定是等边三角形 (B) 一定是等腰三角形(C) 一定是直角三角形(D)形状无法确定综合、运用、诊断、解答题&△ ABC 的两边a , b 分别为5, 12,另一边c 为奇数,且a +b +c 是3的倍数,则 c 应为,此三(D) a2,b 3, c .. 6a15•在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16. 已知△ ABC中, a2+ b2+ c2= 10a+ 24b+ 26c—338,试判定厶ABC的形状,并说明你的理由.17•已知a、b、c是厶ABC的三边,且a2c2—b2c2= a4—b4,试判断三角形的形状.18.观察下列各式:32+ 42= 5\ 82+ 62= 102, 152+ 82= 172, 242+ 102= 262,…,你有没有发现其中的规律请用含n 的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案第十八章勾股定理测试1勾股定理(一)1. a2+ b2,勾股定理. 2 . (1)13 ; (2)9 ; (3)2 , ,3 ;(4)1 , , 2 . 3. 2,5 . 4 . 5 .. 2 , 5. 5 . 132cm 6 . A. 7 . B. 8 . C.9. (1) a= 45cm b = 60cm;(2)540 ;(3) a= 30, c = 34;(4)6 ,3 ; (5)12 .10..B. 11 . ,5. 12 . 4. 13.10.3.14.(1) S + S2 = S3; (2) S + 82= S3;(3) S + 82= S3.测试2勾股定理(二)1. 13 或,119. 2 . 5 . 3 . 2 . 4 . 10 .5. C. 6 . A.7 . 15米. 8 . 3米. 29. 叮103.25. 11 . 2.3 2 . 2. 12 . 7 米,420 元13 . 10万元.提示:作A点关于CD的对称点A,连结A B,与CD交点为O.测试3勾股定理(三)1. V34, -5 J34; 2 . 16, 19.2 . 3 . 5彳2 , 5 . 4 . —3 a2.3445 . 6,6 .3 , 33 6 . C.7 . D6 2尿.提示:设BD= DC= m CE= EA= k,贝U k2+ 4nU 40, 4k2+ nU 25. AB=〕4m24k22用.9. ,10 J2 32,.13 ・22 32,图略.10. BD= 5.提示:设BD= x,贝U CD= 30-x.在Rt△ ACD中根据勾股定理列出(30 —x) 2= (x+ 10) 2+ 202,解得x= 5.11. BE= 5.提示:设BE= x,贝U DE= BE= x, AE= AD—DE= 9—x.在Rt△ ABE中,AB+ A E=B W,「. 32+2 2(9 —x) = x .解得x = 5.12. EC= 3cm.提示:设EC= x,则DE= EF= 8 —x, AF= AD= 10, BF= J AF 2AB2 6 ,CF= 4.在Rt△CEF中(8 —x) 2= x2+ 42,解得x= 3.13 .提示:延长FD到M使DM= DF,连结AM EM14.提示:过A, C分别作I 3的垂线,垂足分别为M N则易得△ AMB2A BNC贝U AB , 34, AC 2.17.n —115. 128, 2 .测试4勾股定理的逆定理1.直角,逆定理. 2 .互逆命题,逆命题. 3 . (1)(2)(3).4•①锐角;②直角;③钝角. 5 . 90°. 6 •直角.7. 24 .提示:7v a v 9,「. a= & 8 . 13,直角三角形.提示:7< c< 17.9. D. 10 . C . 11 . C.12 . CD= 9 . 13 . 1 .5.14 .提示:连结AE设正方形的边长为4a,计算得出AF, EF, AE的长,由A^+ EF"= A E得结论.15. 南偏东30°.2 2 216. 直角三角形.提示:原式变为(a—5) + (b—12) + (c—13) = 0.17. 等腰三角形或直角三角形.提示:原式可变形为(a2—b2)( a2+ b2—c2) = 0.18. 35 + 12 = 37 , [( n+ 1) —1] + [2( n+ 1)] = [( n+ 1) + 1] . (n》1 且n 为整数)。

勾股定理测试题(含答案)

勾股定理测试题(含答案)

18.2 勾股定理的逆定理达标练习一.基本·巩固1.知足下列前提的三角形中,不是直角三角形的是()A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶52.如图18-2-4所示,有一个外形为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是________ cm(成果不取近似值).图18-2-4图18-2-5 图18-2-63.如图18-2-5,以Rt△ABC的三边为边向外作正方形,其面积分离为S1.S2.S3,且S1=4,S2=8,则AB的长为_________.1 4.如图18-2-6,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=4 AD,试断定△EFC的外形.5.一个零件的外形如图18-2-7,按划定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件相符请求吗?图18-2-76.已知△ABC的三边分离为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形.二.分解·运用7.已知a.b.c是Rt△ABC的三边长,△A1B1C1的三边长分离是2a.2b.2c,那么△A1B1C1是直角三角形吗?为什么?8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A.B的坐标分离为A(3,1),B(2,4),△OAB 是直角三角形吗?借助于网格,证实你的结论.图18-2-910.浏览下列解题进程:已知a.b.c为△ABC的三边,且知足a2c2-b2c2=a4-b4,试断定△ABC的外形.解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形.问:①上述解题进程是从哪一步开端消失错误的?请写出该步的代号_______;②错误的原因是______________;③本题的准确结论是__________.11.已知:在△ABC中,∠A.∠B.∠C的对边分离是a.b.c,知足a2+b2+c2+338=10a+24b+26c.试断定△ABC的外形.12.已知:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.求:四边形ABCD的面积.图18-2-10参考答案一.基本·巩固1.思绪剖析:断定一个三角形是否是直角三角形有以下办法:①有一个角是直角或两锐角互余;②双方的平方和等于第三边的平方;③一边的中线等于这条边的一半.由A 得有一个角是直角;B.C 知足勾股定理的逆定理,所以应选D.2.解:过D 点作DE ∥AB 交BC 于E,则△DEC 是直角三角形.四边形ABED 是矩形,∴AB=DE.∵∠D=120°,∴∠CDE=30°. 又∵在直角三角形中,30°所对的直角边等于斜边的一半,∴CE=5 cm.依据勾股定理的逆定理得,DE=3551022=- cm.∴AB=3551022=- cm.3.思绪剖析:因为△ABC 是Rt △,所以BC 2+AC 2=AB 2,即S 1+S 2=S 3,所以S 3=12,因为S 3=AB 2,所以AB=32123==S .4.思绪剖析:分离盘算EF.CE.CF 的长度,再运用勾股定理的逆定理断定即可.解:∵E 为AB 中点,∴BE=2.∴CE 2=BE 2+BC 2=22+42=20.同理可求得,EF 2=AE 2+AF 2=22+12=5,CF 2=DF 2+CD 2=32+42=25.∵CE 2+EF 2=CF 2,∴△EFC 是以∠CEF 为直角的直角三角形.5.思绪剖析:要磨练这个零件是否相符请求,只要断定△ADB 和△DBC 是否为直角三角形即可,如许勾股定理的逆定理就可派上用处了.解:在△ABD 中,AB 2+AD 2=32+42=9+16=25=BD 2,所以△ABD 为直角三角形,∠A =90°. 在△BDC 中,BD 2+DC 2=52+122=25+144=169=132=BC 2.所以△BDC 是直角三角形,∠CDB =90°.是以这个零件相符请求.6.思绪剖析:依据题意,只要断定三边之间的关系相符勾股定理的逆定理即可.证实:∵k 2+1>k 2-1,k 2+1-2k=(k -1)2>0,即k 2+1>2k,∴k 2+1是最长边.∵(k 2-1)2+(2k )2=k 4-2k 2+1+4k 2=k 4+2k 2+1=(k 2+1)2,∴△ABC 是直角三角形.二.分解·运用7.思绪剖析:假如将直角三角形的三条边长同时扩展一个雷同的倍数,得到的三角形照样直角三角形(例2已证).8.思绪剖析:依据题意,只要断定三边相符勾股定理的逆定理即可.证实:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2.∴△ABC是直角三角形.9.思绪剖析:借助于网格,运用勾股定理分离盘算OA.AB.OB的长度,再运用勾股定理的逆定理断定△OAB是否是直角三角形即可.解:∵ OA2=OA12+A1A2=32+12=10,OB2=OB12+B1B2=22+42=20,AB2=AC2+BC2=12+32=10,∴OA2+AB2=OB2.∴△OAB是以OB为斜边的等腰直角三角形.10.思绪剖析:做这种类型的标题,起首要卖力审题,特殊是标题中隐含的前提,本题错在疏忽了a有可能等于b这一前提,从而得出的结论不周全.答案:①(B) ②没有斟酌a=b这种可能,当a=b时△ABC是等腰三角形;③△ABC是等腰三角形或直角三角形.11.思绪剖析:(1)移项,配成三个完整平方;(2)三个非负数的和为0,则都为0;(3)已知a.b.c,运用勾股定理的逆定理断定三角形的外形为直角三角形.解:由已知可得a2-10a+25+b2-24b+144+c2-26c+169=0,配方并化简得,(a-5)2+(b-12)2+(c-13)2=0.∵(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.∴a-5=0,b-12=0,c-13=0.解得a=5,b=12,c=13.又∵a2+b2=169=c2,∴△ABC是直角三角形.12.思绪剖析:(1)作DE∥AB,贯穿连接BD,则可以证实△ABD≌△EDB(ASA);(2)DE=AB=4,BE=AD=3,EC=EB=3;(3)在△DEC中,3.4.5为勾股数,△DEC为直角三角形,DE⊥BC;(4)运用梯形面积公式,或运用三角形的面积可解.解:作DE∥AB,贯穿连接BD,则可以证实△ABD≌△EDB(ASA),∴DE=AB=4,BE=AD=3.∵BC=6,∴EC=EB=3.∵DE2+CE2=32+42=25=CD2,∴△DEC为直角三角形.又∵EC=EB=3,∴△DBC为等腰三角形,DB=DC=5.在△BDA 中AD 2+AB 2=32+42=25=BD 2, ∴△BDA 是直角三角形. 它们的面积分离为S △BDA =21×3×4=6;S △DBC =21×6×4=12. ∴S 四边形ABCD =S △BDA +S △DBC =6+12=18.。

勾股定理单元测试卷(附答案)

勾股定理单元测试卷(附答案)

勾股定理单元测试卷(附答案)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ).(A)30 (B)28 (C)56 (D)不能确定2. 直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长(A)4 cm (B)8 cm (C)10 cm (D)12 cm3. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是()(A)25 (B)14 (C)7 (D)7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )(A)13 (B)8 (C)25 (D)645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A)钝角三角形(B)锐角三角形(C)直角三角形(D)等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )(A) 25 (B) 12.5 (C) 9 (D) 8.58. 三角形的三边长为,则这个三角形是( )(A)等边三角形(B)钝角三角形(C)直角三角形(D)锐角三角形.9.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮元计算,那么共需要资金().(A)50元(B)600元(C)1200元(D)1500元10.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为().(A)12 (B)7 (C)5 (D)13(第10题)(第11题)(第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要__________米.12. 在直角三角形中,斜边=2,则=______.13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC中,∠C=90°,BC=3,AC=4.以斜边AB为直径作半圆,则这个半圆的面积是____________.(第15题)(第16题)(第17题)15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC中,∠C=90°,AB垂直平分线交BC于D若BC=8,AD=5,则AC等于______________.17. 如图,四边形是正方形,垂直于,且=3,=4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2.三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。

人教版 勾股定理综合检测题检测试题及答案(共2套)

人教版 勾股定理综合检测题检测试题及答案(共2套)

数学:第18章勾股定理综合检测题检测试题(1)(总分:120分,时间:90分钟)一、认真选一选,你一定很棒!(每题3分,共30分)1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2B.3C.4D.52,已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( )A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶13,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( ) A.52B.3C.3+2D.332+ 4,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B.800米C.1000米D.不能确定6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( )A.L 1 C.L 3 D.L 47,(2006年山西吕梁课改)如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是A.5,4,3B.13,12,5C.10,8,6D.26,24,109,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( )A.1B.2C.3D.210,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( ) A.182 B.183 C.184 D.185 二、仔细填一填,你一定很准!(每题3分,共24分)11,根据下图中的数据,确定A =_______,B =_______,x =_______.12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 13,直角三角形的三边长为连续偶数,则这三个数分别为__________.14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米. 15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________. 16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm.17,[2008年河北省]如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .18,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里. 三、细心做一做,你一定会成功!(共66分)19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一AB CABC图25mBCAD图1BCAED 图3图5图420,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?21,如图7,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?22,(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm,宽为2cm的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)23,清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=m;第二步:m=k;第三步:分别用3、4、5乘以k,得三边长”.(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.24,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.图6AB小河东北牧童小屋图7图8 图9北A图10数学:第18章勾股定理综合检测题检测试题(1)参考答案:一、1,B ;2,B ;3,D ;4,A ;5,C .点拨:画出图形,东南方向与西南方向成直角;6,B .点拨:在Rt △ACD 中,AC =2AD ,设AD =x ,由AD 2+CD 2=AC 2,即x 2+52=(2x )2,x =253≈2.8868,所以2x =5.7736;7,A ;8,D .点拨:设斜边为13x ,则一直角边长为5x ,另一直角边为22(13)(5)x x -=12x ,所以 13x +5x +12x =60,x =2,即三角形分别为10、24、26;9,D .点拨:AE =22DE AD +=221CD AC++=2211BC AB+++=211++=2;10,A .二、11,15、144、40;12,1360;13,6、8、10;14,24;15,16;16,17;17,:76 ;18,30.三、19,设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,有(3m )2+(4m )2=(5m )2,所以以3m 、4m 、5m 为边长的三角形是直角三角形.20,15m.21,如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt △A ′DB 中,由勾股定理求得A ′B =17km.22,(1)设直角三角形的两条边分别为a 、b (a >b ),则依题意有22513a b a b +=⎧⎨+=⎩由此得ab=6,(a -b )2=(a+b)2-4ab =1,所以a -b =1,故小正方形的面积为1.(2)如图:23,(1)当S =150时,k =m=1502566S ===5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k ,•而三角形为直角三角形且3k 、4k 为直角边.其面积S =12(3k )·(4k )=6k 2,所以k 2=6S,k =6S (取正值),即将面积除以6,然后开方,即可得到倍数.24,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).ABDPNM数学:第18章勾股定理综合检测题检测试题(2)一﹑选择题(每小题3分, 共30分)1. 一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为 ( )A . 4B . 8C . 10D . 122.小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( ) A. 小丰认为指的是屏幕的长度 B. 小丰的妈妈认为指的是屏幕的宽度 C. 小丰的爸爸认为指的是屏幕的周长 D. 售货员认为指的是屏幕对角线的长度3.如图1,中字母A 所代表的正方形的面积为( ) A. 4 B. 8 C. 16 D. 644. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形5. 一直角三角形的一条直角边长是7cm , 另一条直角边与斜边长的和是49cm , 则斜边的长( ) A. 18cm B. 20 cm C. 24 cm D. 25cm6. 适合下列条件的△ABC 中, 直角三角形的个数为( ) ①;51,41,31===c b a ②,6=a ∠A=450;③∠A=320, ∠B=580;④;25,24,7===c b a⑤.4,2,2===c b aA. 2个B. 3个C. 4个D. 5个 7. 在⊿ABC 中,若1,2,122+==-=n c n b n a ,则⊿ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形8. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( ) A. 15° B. 30° C. 45° D. 60° 9.已知,如图2,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) 2222北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里B .30海里C .35海里D .40海里二﹑填空题 (每小题3分, 共24分)11. (2008年湖州市)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .12.如图5, 等腰△ABC 的底边BC 为16, 底边上的高AD 为6, 则腰长AB 的长为____________. 13.如图6,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B200m ,结果他在水中实际游了520m ,求该河流的宽度为_________ m.14. 小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走了12米到了B 点,则________=AB 米.15. 一个三角形三边满足(a+b)2-c 2=2ab, 则这个三角形是 三角形.16. 木工做一个长方形桌面, 量得桌面的长为60cm, 宽为32cm, 对角线为68cm, 这个桌面(填”合格”或”不合格”).17. 直角三角形一直角边为cm 12,斜边长为cm 13,则它的面积为 .18. 如图7,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着A289225(图1)(图4) ( 图5) AB C200m520mDCBA(图6)D CB AOA BEFD北南 A东(图3)D ˊABCD A ˊB ˊC ˊ三、 解答题 (共66分)19. (8分) 如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)20. (8分)如图, 在△ABC 中, AD ⊥BC 于D, AB=3, BD=2, DC=1, 求AC 2的值. AB D C21. (10分) “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?22. (10分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?23.(10分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”: “平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”24.(10分)如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1) A 城是否受到这次台风的影响?为什么?(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?四、创新探索题(10分)一只蚂蚁如果沿长方体的表面从A 点爬到B ’点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm 、宽为1cm 、高为4cm.八年级勾股定理单元检测题参考答案(2)一1.C 2.D 3.D 4.C 5.D 6.A 7.D 8.C 9.A 10.D 二11、勾股定理,222ab c +=;12、10;13、480; 14、15;15、直角;16、合格;17、观测点BCA东北 FE AB30;18、25. 三19、13米 20、AC 2=6 21、20 v米/秒=72千米/时>70千米/时,超速。

勾股定理练习(含答案)

勾股定理练习(含答案)

勾股定理练习一、单选题(共12题;共24分)1.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A和B,然后把中点C向上拉升3cm 至D点,则橡皮筋被拉长了()A. 2cmB. 3cmC. 4cmD. 5cm2.如图,在Rt△ABC中,∠C=90°,如果AB=5,BC=3,那么AC等于()A. B. 3 C. 4 D. 53.在下列的线段中,能组成直角三角形的是( )A. 1,2,3B. 2,3,4C. 3,4,5D. 4,5,64.如果梯子的底端离建筑物5 米,13 米长的梯子可以达到该建筑物的高度是()A. 12 米B. 13 米C. 14 米D. 15 米5.一直角三角形两边分别为3和5,则第三边为()A. 4B.C. 4或D. 26.在△ABC中,∠C=90°,若AC=3,BC=4,则AB=()A. B. 5 C. D. 77.如图,一个梯子AB长2.5 米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A. 0.9米B. 1.3米C. 1.5米D. 2米8.若直角三角形的三边长分别为2、4、x,则x的可能值有()A. 1个B. 2个C. 3个D. 4个9.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A. 25海里B. 30海里C. 40海里D. 50海里10.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A. 20cmB. 50cmC. 40cmD. 45cm11.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A. 8mB. 10mC. 14mD. 24m12.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2米,则树高为()A. 米B. 米C. (米D. 3 米二、填空题(共8题;共8分)13.在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为________cm2.14.若直角三角形两直角边长分别为6和8,则它的斜边长为________.15.直角三角形两直角边长分别为,,则斜边长为________.16.如图,作一个长方形,以数轴的原点为中心,长方形对角线为半径,交数轴于点A,则点A表示的数是________.17.如图,小华将升旗的绳子拉到竖直旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,此时绳子末端距离地面2m,则绳子的总长度为________ m.18.已知一个直角三角形的两条直角边的差为2,两条直角边的平方和为8,则这个直角三角形的面积是________19.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于________ cm2.20.学校有一块长方形的花圃如右图所示,有少数的同学为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步(假设1米=2步),却踩伤了花草,所谓“花草无辜,踩之何忍”!三、作图题(共1题;共5分)21.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫格点,以格点为顶点,①在图1中画出边长分别为:3,2 ,的三角形(不写画法);②在图2中画出边长分别为,4,,4的平行四边形(不写画法).四、计算题(共1题;共5分)22.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.23.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?24.如图,梯形ABCD是由三个直角三角形拼成的,各直角边的长度如图所示。

人教版八年级下册 第17章《勾股定理》综合考试测试卷(附答案)

人教版八年级下册 第17章《勾股定理》综合考试测试卷(附答案)

2020年春季八年级下册第17章《勾股定理》综合测试卷时间100分钟,满分120分班级____________姓名____________学号____________成绩____________一.选择题(共12小题,满分36分)1.下列各组数是勾股数的是()A.1,2,3B.0.3,0.4,0.5C.6,8,10D.5,11,122.由下列条件不能判定△ABC为直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A﹣∠B=∠CC.a=1,b=2,c=D.(b+c)(b﹣c)=a23.如图,一个梯形分成一个正方形(阴影部分)和一个三角形(空白部分),已知三角形的两条边分别是12cm和13cm,那么阴影部分的面积是()cm2.A.16B.25C.36D.494.如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.25.如图,在Rt△ABC中,∠C=90°,D为AC上一点.若DA=DB=15,△ABD的面积为90,则CD的长是()A.6B.9C.12D.6.如图,已知由16个边长为1的小正方形拼成的图案中,有五条线段P A、PB、PC、PD、PE,其中长度是有理数的有()A.1条B.2条C.3条D.4条7.如图,等腰△ABC中,AB=AC=10cm,BC=12cm,D为BC上一点,连接AD,E为AD上一点,连接BE,若∠ABE=∠BAE═∠BAC,则DE的长为()A.cm B.cm C.cm D.1cm8.如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA ⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()km.A.4B.5C.6D.9.如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是()A.121B.144C.169D.19610.如图,在Rt△ABC中,∠ABC=90°,BC=12,AB=5.分别以A,C为圆心,以大于线段AC长度的一半为半径作弧,两弧相交于点E,F,过点E,F作直线EF,交AC于点D,连结BD,则△ABD的周长为()A.13B.17C.18D.2511.某工厂的厂门形状如图(厂门上方为半圆形拱门),现有四辆装满货物的卡车,外形宽都是2.0米,高分别为2.8米,3.1米,3.4米,3.7米,则能通过该工厂厂门的车辆数是()(参考数据:≈1.41,≈1.73,≈2.24)A.1B.2C.3D.412.正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积为S2,…按此规律继续下去,则S5的值为()A.B.C.D.二.填空题(共8小题,满分24分)13.直角三角形的直角边长分别为8,15,斜边长为x,则x2=.14.如果点A的坐标为(﹣4,0),点B的坐标为(0,3),则AB=.15.已知一个等腰三角形的一边长为4,一边长为6,则这个三角形底边上的高的长为.16.《九章算术》勾股卷有一题目:今有垣高一丈.依木于垣,上于垣齐.引木却行四尺,其木至地,问木长几何?意即:一道墙髙一丈,一根木棒靠于墙上,木棒上端与墙头齐平,若木棒下端向后退,则木棒上端会随着往下滑,当木棒下端向后退了四尺时,木棒上端恰好落到地上,则木棒长尺(1丈=10尺).17.如图,分别以直角△ABC的三边为直径作半圆,若两直角边分别为6,8,则阴影部分的面积是.18.已知三角形三边长分别为、、(a>0,b>0),请借助构造图形并利用勾股定理进行探究,得出此三角形面积为(用含a、b的代数式表示).19.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4cm,动点P从点B出发沿射线BC方向以2cm/s的速度运动.设运动的时间为t秒,则当t=秒时,△ABP 为直角三角形.20.如图,在平面直角坐标系中,OA1=2,∠A1Ox=30°,以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以A1A2为直角边作Rt△A1A2A3,并使∠A2A1A3=60°,再以A2A3为直角边作Rt△A2A3A4,并使∠A3A2A4=60°,…,按此规律进行下去,则A2020的坐标是.三.解答题(共8小题,满分60分)21.某中学八(1)班小明在综合实践课上剪了一个四边形ABCD,如图,连接AC,经测量AB=12,BC=9,CD=8,AD=17,∠B=90°.求证:△ACD是直角三角形.22.如图所示,在△ABC中,AB=AC=5,BC=8,CD是AB边上的高.求线段AD的长.23.如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.24.某条道路限速70km/h,如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s,小汽车到达B处,此时测得小汽车与车速测检测仪间的題离为50m,这辆小汽车超速了吗?25.利用如图4×4方格,每个小正方形的边长都为1.(1)请求出图1中阴影正方形的面积与边长;(2)请在图2中画出一个与图1中阴影部分面积不相等的正方形,要求它的边长为无理数,并求出它的边长;(3)把分别表示图1与图2中的正方形的边长的实数在数轴上表示出来.26.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD =4m吗?为什么?27.如图,△ABC中,∠ABC=90°,AC=25cm,BC=15cm.(1)设点P在AB上,若∠P AC=∠PCA.求AP的长;(2)设点M在AC上.若△MBC为等腰三角形,求AM的长.28.(1)我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2.称为勾股定理.证明:∵大正方形面积表示为S=c2,又可表示为S=∴=c2∴.即直角三角形两直角边的平方和等于斜边的平方.(2)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程,(3)如图3所示,∠ABC=∠ACE=90°,请你添加适当的辅助线证明结论a2+b2=c2.参考答案一.选择题(共12小题)1.【解答】解:A、∵12+22≠32,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵62+82=102,∴这组数是勾股数;D、∵52+112≠122,∴这组数不是勾股数.故选:C.2.【解答】解:A、由题意:∠C=×180°=75°,△ABC是锐角三角形,本选项符合题意.B、∵∠A﹣∠B=∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,本选项不符合题意.C、∵a=1,b=2,c=,∴a2+b2=c2,∴∠C=90°,∴△ABC是直角三角形,本选项不符合题意.D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,∴b2=a2+c2,∴△ABC是直角三角形,本选项不符合题意.故选:A.3.【解答】解:如图所示:Rt△CDE中,DE=12,CE=13,∴CD==5,∴阴影部分的面积=5×5=25cm2;故选:B.4.【解答】解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.5.【解答】解:∵∠C=90,DA=15,∴S△DAB=DA•BC=90,∴BC=12在Rt△BCD中,CD2+BC2=BD2,即CD2+122=152,解得:CD=9(负值舍去).故选:B.6.【解答】解:观察图形可知P A=4,由勾股定理得:PB==,PC==5,PD==2,PE==,故其中长度是有理数的有2条.故选:B.7.【解答】解:∵AB=AC,∠BAE═∠BAC,∴AD⊥BC,∴∠BDE=90°,BD=BC=6,∵AB=10,∴AD==8,∵∠ABE=∠BAE,∴AE=BE,设DE=x,则AE=BE=8﹣x,在Rt△BDE中,BE2=DE2+BD2,∴(8﹣x)2=x2+62,解得:x=,即DE=cm,故选:C.8.【解答】解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.故选:A.9.【解答】解:∵直角三角形较短的直角边长是5,小正方形的边长是7,∴直角三角形的较长直角边=5+7=12,∴直角三角形斜边长=13,∴大正方形的边长是13,∴大正方形的面积是13×13=169.故选:C.10.【解答】解:∵∠ABC=90°,BC=12,AB=5,∴AC==13,根据题意可得EF是AC的垂直平分线,∴D是AC的中点,∴AD=AC=6.5,BD=AC=6.5,∴△ABD的周长为6.5+6.5+5=18.故选:C.11.【解答】解:∵车宽2米,∴卡车能否通过,只要比较距厂门中线1米处的高度与车高.在Rt△OCD中,由勾股定理可得:CD===≈1.73(米),CH=CD+DH=1.73+1.6=3.33,∴两辆卡车都能通过此门,故选:B.12.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为1,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=12=1,S2=S1=,S3=S2=,S4=S3=,…,∴S n=()n﹣1.当n=5时,S5=()5﹣1=()4,故选:A.二.填空题(共8小题)13.【解答】解:∵直角三角形的直角边长分别为8,15,∴由勾股定理得,x2=82+152=64+225=289,故答案为:289.14.【解答】解:由两点间的距离公式可得AB==5.故答案为:5.15.【解答】解:①若等腰三角形的腰长为4,底边为6,如图1,在△ABC中,AB=AC=4,AD⊥BC,则AD为BC边上的中线,即D为BC中点,∴BD=DC=3,在直角△ABD中AD==.②若等腰三角形的腰长为6,底边为4,如图2,AB=AC=6,AD⊥BC,BC=4,同理可得AD==4.∴AD的长为或4.故答案为:或4.16.【解答】解:如图,设木杆AB长为x尺,则木杆底端B离墙的距离即BC的长有(x﹣1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x﹣4)2=x2,解得,x=14.5故答案为:14.5.17.【解答】解:S阴=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=+==24故答案为:24.18.【解答】解:如图所示,AB==,AC==,BC==,∴S△ABC=S矩形DEFC﹣S△ABE﹣S△ADC﹣S△BFC=20ab﹣﹣=.故答案为:.19.【解答】解:∵∠C=90°,AB=4cm,∠B=30°,∴AC=2cm,BC=6cm.①当∠APB为直角时,点P与点C重合,BP=BC=6 cm,∴t=6÷2=3s.②当∠BAP为直角时,BP=2tcm,CP=(2t﹣6)cm,AC=2cm,在Rt△ACP中,AP2=(2)2+(2t﹣6)2,在Rt△BAP中,AB2+AP2=BP2,∴(4)2+[(2)2+(2t﹣6)2]=(2t)2,解得t=4s.综上,当t=3s或4s时,△ABP为直角三角形.故答案为:3或4.20.【解答】解:∵∠A1Ox=30°,∠A1OA2=60°,∴∠A2Ox=90°,∴A2在y轴上,Rt△A1A2O中,OA1=2,∴OA2=2OA1=4,A1A2=2,∴A2的纵坐标为:4=+1,∴A2(0,4),Rt△A1A2A3中,∠A2A1A3=60°,∴∠A1A3A2=30°,∴A1A3=2A1A2=4,∵∠BA1O=∠A1Ox=30°,∴A1B∥x轴,∴A1B⊥A2O,∵∠A1A2B=30°,∴A1B=A1A2=,A1B=3,∴A3B=4﹣=3,OB=4﹣3=1,∴A3的横坐标为:﹣3=﹣,∴A3(﹣3,1),Rt△A2BA3中,A2A3=2A2B=6,Rt△A2A3A4中,A2A4=2A2A3=12,∴OA4=12﹣4=8,∴A4的纵坐标为:﹣[﹣1],A4(0,﹣8),由此发现:点A1,A2,A3,A4,…,A n,每四次一循环,2020÷4=505,∴点A2020在y轴的负半轴上,纵坐标是:﹣[﹣1]=1﹣31010.则A2020的坐标是(0,1﹣31010);故答案为:(0,1﹣31010).三.解答题(共8小题)21.【解答】证明:∵∠B=90°,AB=12,BC=9,∴AC2=AB2+BC2=144+81=225,∴AC=15,又∵AC2+CD2=225+64=289,AD2=289,∴AC2+CD2=AD2,∴△ACD是直角三角形.22.【解答】解:设AD=x∵CD⊥AB,∴∠D=90°,∴CD2=BC2﹣BD2=AC2﹣AD2,∴82﹣(5+x)2=52﹣x2,∴x=,∴AD=.23.【解答】解:连接AC.由勾股定理可知:AC===5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=×5×12﹣×3×4=24(米2).24.【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:BC===40(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.25.【解答】解(1)面积为4×4﹣4××1×3=10,边长为;(2)如图所示,正方形的边长为均可.(答案不唯一,合理即可.)(3)表示或或的点如图所示.(答案不唯一,画出表示的点亦可)26.【解答】解:(1)∵AO⊥DO,∴AO=,=,=12m,∴梯子顶端距地面12m高;(2)滑动不等于4m,∵AC=4m,∴OC=AO﹣AC=8m,∴OD=,=,∴BD=OD﹣OB=,∴滑动不等于4m.27.【解答】解:(1)∵∠ABC=90°,AC=25cm,BC=15cm,∴AB==20cm,∵∠P AC=∠PCA,∴AP=PC,设AP=BP=x,∴PB=20﹣x,∴(20﹣x)2+152=x2,解得:x=,∴AP=;(2)当CM=BC=15时,△MBC为等腰三角形,∴AM=AC﹣CM=10;当BM=BC=15,时,△MBC为等腰三角形,过B作BH⊥AC于H,∴BH===12,∴CH==9,∴AM=AC﹣2CH=7;当BM=CM时,△MBC为等腰三角形,连接BM,设AM=x,则BM=CM=25﹣x,∴(25﹣x)2=122+(25﹣x﹣9)2,解得:x=,∴AM=,综上所述,若△MBC为等腰三角形,AM的长为10,7,.28.【解答】(1)证明:∵大正方形面积表示为S=c2,又可表示为S=4×ab+(b﹣a)2,∴4×ab+(b﹣a)2=c2.∴2ab+b2﹣2ab+a2=c2,∴a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方.故答案为:4×ab+(b﹣a)2,4×ab+(b﹣a)2,a2+b2=c2;(2)证明:由图得,大正方形面积=×ab×4+c2=(a+b)×(a+b),整理得,2ab+c2=a2+b2+2ab,即a2+b2=c2;(3)解:如图3,过A作AF⊥AB,过E作EF⊥AF于F,交BC的延长线于D,则四边形ABDF是矩形,∵△ACE是等腰直角三角形,∴AC=CE=c,∠ACE=90°=∠ACB+∠ECD,∵∠ACB+∠BAC=90°,∴∠BAC=∠ECD,∵∠B=∠D=90°,∴△ABC≌△CDE(AAS),∴CD=AB=b,DE=BC=a,S矩形ABDF=b(a+b)=2×ab+c2+(b﹣a)(a+b),∴a2+b2=c2.。

勾股定理练习题(含答案)

勾股定理练习题(含答案)

勾股定理练习题一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6、△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 337.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 . 12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13. 一个直角三角形的三边长的平方和为200,则斜边长为 14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___. 16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 . 18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 . 19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 . 二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?ACBAEB4.如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?观测点答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5. 二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解. 答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h . 答案:这辆小汽车超速了.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档