改进的利用门限的分水岭图像分割算法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年第12期福建电脑
改进的利用门限的分水岭图像分割算法
李洪军,王继成
(同济大学计算机系上海201804)
【摘要】:分水岭变换的一些优秀的性质使它在许多不同的图像分割应用中非常常用:它简单并且具有直观性,可以并行实现,并且总是产生完整的图像轮廓。然而,它仍然有许多缺点(过度分割,对噪声敏感,难于检查出细结构物体或者低信噪比的结构)。本文提出一种改进的使用门限的分水岭算法来在不同程度上克服分水岭的这些缺陷。我们把该算法应用在三类图片上,一种具有复杂结构,一种具有低对比度,一种有低的信噪比。本文展示了该算法的分割结果,展示了该算法在这几类图片上出色表现。
【关键词】:图像分割,过度分割,基于沉浸的分水岭算法,标记的分水岭算法
1.前言
1.1分水岭变换
分水岭变换是一种流行的图像分割方法,它来自数学形态学领域[1]。我们把灰度图象看作地形表面,让每一点的像素值代表这点的高度。然后考虑雨水降落到该地表,随着水位不断上升,水会从不同的局部最小点形成汇水盆,而分水岭就是阻挡这些汇水盆相互融合的堤坝。一般情况下,分水岭变换计算的是原始图片的梯度图,这样这些分水岭就正好位于梯度变化大的那些点上。
分水岭变换由于它以下的优点被用在图像处理的许多领域:直观,快速并且可以并行计算,总是产生完整的边界,这样就避免了边界连接的后处理。而且,不少研究人员把分水岭嵌入到多尺度框架中[2]。但是分水岭算法还是有一些致命的缺点,下面列出了最重要的几点[2]。
过度分割。由于大部分图像的梯度图都有许许多多的局部最小,所以分水岭变换的结果是无数的小区域边界,这样的结果毫无意义。通常的解决办法是是使用标记的图片来减少局部最小的数量,即使用带标记的分水岭变换[3]。
对噪声的敏感。局部的一些改变会引起分割结果的明显改变,强烈的噪声有时候使得分水岭变换无法找出真正的边界。其中的一个解决办法是使用各向异性的滤波器。
难以准确检测出低对比度的边界。由于对比度低所以使得信噪比高。所以由于前一个原因,对这种图片分水岭变换仍然无法很好的工作。一般的办法仍然是使用带标记的分水岭变换。而V.Grau提出使用基于MRF的分水岭变换对核磁共振脑灰白质的分割效果更好。
即使是这样,在医学图像分割中,比起近年来兴起的snakemodels和levelset方法,分水岭变换由于分水线总是位于梯度变换最剧烈的地方,并且总是产生完整的边界,从而在对比度低的图像分割中显示出了无可比拟的优势。这使得让分水岭变换能更好的工作是非常有意义的。
1.2本文所做的工作概览
我们提出一种改进的分水岭算法,它极大程度上改善了分水岭变换的表现。第2部分给出了算法。2.1部分给出了分水岭变换的定义,2.2部分给出标记分水岭变换的算法描述,2.3部分给出了我们改进的算法描述。第3部分给出我们的分割结果和其他分割方法的分割结果。3.1部分给出了低对比度的图像的分割结果。我们的分割结果明显优于直接的分水岭分割结果。并且与常用的带标记的分水岭算法分割结果做了比较。3.2部分给出了对于复杂结构的分割结果,我们的分割结果与带标记的分水岭变换的比较。3.3部分给出了对于低信噪比的图像分割结果,并且与经过去噪后的分割结果进行了比较,显示出该算法对噪声的稳定性。第4部分给出了结论和展望。
2.算法
2.1离散图像的分水岭变换的定义及算法描述2.1.1离散图像的分水岭变换的定义
对于分水岭变换,目前存在着几种定义,文献[4]对这些定义进行了归纳,整理。我们这里所采用的定义是基于沉浸的分水岭变换(watershedbyimmersion)。
令f:D'N是一幅灰度图象,它的最大和最小灰度值为h_max和h_min。定义一个从h_min到h_max的水位h不断递增的递归过程。在这个过程中每个与不同的局部最小相关的汇水盆地都不断扩展。定义X(h)记做在水位h时候汇水盆地的集合的并。在h+1层,一个连通分量T(h+1)或者是一个新的局部最小,或者是一个已经存在的X(h)中的一个盆地的扩展。对于后者,按邻接关系计算高度为h+1的每一个点与各汇水盆地的距离。如果一个点与两个个以上的盆地等距离,则它不属于任何盆地,否则它属于与它距离最近的盆地。这样从而产生新的X(h+1)。把在高度h出现的局部最小记作MIN(h)。把Y(h+1,X(h))记作高度为h+1同时属于X(h)的点的集合。
定义2.1(基于沉浸的分水岭变换)
分水岭变换[5]Wshed(f)就是X(h_max)的补集:
2.1.2分水岭算法直观描述
整个算法模拟水平面从最低的地理高度逐渐沉浸到最高的地理高度。这时水会逐渐从各个局部最小中涌出,形成不同的汇水盆地。随着水位不断升高,当两个不同的汇水盆地将融合时,我们使用堤坝把两个盆地分开。这个堤坝足够高,即使水位到最高也无法使相邻的盆地的水汇合。当水位涨到最高时,将完全沉浸地表,这时候那些堤坝就是产生的轮廓线。
2.2带标记的分水岭算法描述
引入标记是为了控制过度分割。一个标记是属于一副图像的连通分量。我们需要找到有与重要对象相联系得内部标记,同时也要找到与背景相联系得外部标记。取得内部标记和外部标记,就可以使用imposition技术[5]使梯度图像的局部最小只在这些标记的地方出现。这样所有的局部最小,即汇水盆地的个数就都是已知的。这时再使用分水岭变换,这样就可以避免过度分割。
2.3本文提出的改进的分水岭算法描述
过度分割是由于过多的局部最小而造成。带标记的分水岭算法是用预处理的办法来控制汇水盆地的数量。而本文中的算法则在算法进行的同时,通过融合一些小的,不值得考虑的汇水盆地,从而来控制盆地的数量。当两个盆地即将连通时,标准的分水岭算法就会在他们之间修堤坝来阻挡汇水盆地的相连通。而本文的算法则要进行判断。我们只认为储水量达到一定程度,并且高度达到一定高度的盆地才是我们所要的盆地。不符合这种要求的盆地我们把他们融合给与其相邻的最大的盆地。我们
77