信息论与编码2-1
计算机科学中的信息论与编码
计算机科学中的信息论与编码信息论与编码是计算机科学中的重要理论,它们对于信息的传输、存储和处理起着至关重要的作用。
信息论主要研究信息的度量和传输的可靠性,而编码则是将信息以有效的方式表示和传递的技术手段。
本文将介绍信息论和编码在计算机科学中的应用,并探讨其对现代计算机技术的影响。
一、信息论的基本概念信息论是由香农在1948年提出的一门学科。
它通过熵和信息量的概念,量化了信息的度量和传输的质量。
熵是信息理论中的关键概念,用来表示一个随机变量的不确定性和信息量的平均值。
计算机系统中的信息可用二进制表示,因此信息的度量单位是比特(bit)。
二、信息论的应用1. 数据压缩信息论的一个重要应用是数据压缩。
利用信息论的原理,可以设计出高效的压缩算法,将大量的数据压缩成较小的文件。
常见的数据压缩算法有哈夫曼编码、LZ编码等。
这些算法通过统计字符或者字符组合出现的频率,将频率高的字符用较短的编码表示,从而实现数据的有损或无损压缩。
2. 信道编码信道编码是信息论的另一个重要应用领域。
在数据传输过程中,由于信道噪声等原因,数据容易出现误码。
为了提高传输的可靠性,可以使用信道编码技术。
常见的信道编码方案有纠错码和调制码,它们可以通过增加冗余信息或者改变信号的特性,提高传输系统的容错能力。
三、编码的基本原理编码是将信息转换成特定的符号或者编码字,以便能够有效地表示和传输。
在计算机科学中,常见的编码方式有ASCII码、Unicode和UTF-8等。
ASCII码是一种最早的字符编码方式,它将每个字符映射为一个7位的二进制数。
Unicode是一种全球通用的字符编码标准,它使用16位或32位的二进制数表示字符。
UTF-8则是Unicode的一种变体,它采用可变长度的编码方式,可以表示任意字符。
四、编码的应用1. 信息存储编码在信息存储中起着关键作用。
计算机系统中的文件和数据都需要以某种方式进行编码才能存储和读取。
不同的数据类型使用不同的编码方式,例如图片可以使用JPEG、PNG等图像编码格式,音频可以使用MP3、AAC等音频编码格式。
《信息论与编码》课件1第2章
如果消息ai已发生,则该消息发生所含有的自信息定 义为
1
1
I (ai ) log P(ai ) log pi
(2.4)
第2章 离散无记忆信源与信息熵
可以很容易地证明, 自信息的定义满足上面提出的四个
(1) 此自信息的定义是根据消息发生的概率建立的一个 工程定义,而不是根据这个消息对人的实际意义而建立的 定义。这一纯粹技术性的定义仅仅抓住了“信息”一词在
(2) 自信息I(ai) 在消息ai发生之前,自信息I(ai)表示ai发生的不确定性; 在消息ai发生以后,自信息I(ai)表示ai所含有的(或提
第2章 离散无记忆信源与信息熵
(3) 在式(2.4)中关于对数的底未作明确规定。这是 因为对数的底仅仅影响到度量的单位,实际中可根据
如果取对数的底为2,则所得信息量的单位为比特 (bit, binary unit),此时logx用lbx
第2章 离散无记忆信源与信息熵
第2章 离散无记忆信源与信息熵
2.1 离散无记忆信源 2.2 自信息和熵 2.3 熵函数的性质 2.4 联合事件的熵及其关系 2.5 连续信源的信息测度 习题2
第2章 离散无记忆信源与信息熵
信息理论的研究对象是以各类信息的获取、表示、 传输和处理为目的的信息系统。图2-1给出了一个典型 的通信系统物理模型。在这样的通信系统中,一个贯 穿始终的、最基本的问题便是信息,即信源输出的是 信息,在系统中传输的是信息,接收者获得的也是信 息。可见,在信息理论的学习和研究中,首先需要对
信息论编码与基础课后题(第二章)
第二章习题解答2-1、试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3} 八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
2、 设某班学生在一次考试中获优(A )、良(B )、中(C )、及格(D )和不及格(E )的人数相等。
当教师通知某甲:“你没有不及格”,甲获得了多少比特信息?为确定自己的成绩,甲还需要多少信息? 解:根据题意,“没有不及格”或“pass”的概率为54511pass =-=P 因此当教师通知某甲“没有不及格”后,甲获得信息在已知“pass”后,成绩为“优”(A ),“良”(B ),“中”(C )和“及格”(D ) 的概率相同:41score )pass |()pass |()pass |()pass |(=====D P C P B P A P P 为确定自己的成绩,甲还需信息bits 241loglog score score =-=-=P I 3、中国国家标准局所规定的二级汉字共6763个。
设每字使用的频度相等,求一个汉字所含的信息量。
设每个汉字用一个1616⨯的二元点阵显示,试计算显示方阵所能表示的最大信息。
显示方阵的利用率是多少?解:由于每个汉字的使用频度相同,它们有相同的出现概率,即67631=P 因此每个汉字所含的信息量为bits 7.1267631loglog =-=-=P I 字每个显示方阵能显示256161622=⨯种不同的状态,等概分布时信息墒最大,所以一个显示方阵所能显示的最大信息量是bits 322.054loglog passpass =-=-=P Ibits 25621loglog 256=-=-=P I 阵显示方阵的利用率或显示效率为0497.02567.12===阵字I I η 4、两个信源1S 和2S 均有两种输出:1 ,0=X 和1 ,0=Y ,概率分别为2/110==X X P P ,4/10=Y P ,4/31=Y P 。
信息论与编码技术思考题与习题(1-2)
Chap1思考题与习题参考答案1.1 信息论与编码技术研究的主要内容是什么?信息论是一门应用概率论、随机过程、数理统计和近代代数的方法,来研究广义的信息传输、提取和处理系统中一般学科。
编码技术研究的主要内容是如何既可靠又有效地传输信息。
1.2 简述信息理论与编码技术的发展简史。
1948年香农在贝尔系统技术杂志上发表了两篇有关“通信的数学理论”的文章。
在这两篇论文中,他用概率论测度和数理统计的方法系统地讨论了通信的基本问题,得出了及格重要而带有普遍意义的结论,并由此奠定了现代信息论的基础。
从1948年开始,信息论的出现引起了一些有名的数学家如柯尔洛夫、A.Feinstein、J.Wolfowitz等人的兴趣,他们将香农已得到的数学结论做了进一步的严格论证和推广,使这一理论具有更为坚实的数学基础。
在研究香农信源编码定理的同时,另外一部分科学家从事寻找最佳编码(纠错码)的研究工作,并形成一门独立的分支——纠错码理论。
1959年香农发表了“保真度准则下的离散信源编码定理”,首先提出了率失真函数及率失真信源编码定理。
从此,发展成为信息率失真编码理论。
香农1961年的论文“双路通信信道”开拓了网络信息论的研究。
现在,信息理论不仅在通信、计算机以及自动控制等电子学领域中得到直接的应用,而且还广泛地渗透到生物学、医学、生理学、语言学、社会学、和经济学等领域。
1.3 简述信息与消息、信号的定义以及三者之间的关系。
信息就是事物运动的状态和方式,就是关于事物运动的千差万别的状态和方式的知识。
用文字、符号、数据、语言、音符、图像等能够被人们感觉器官所感知的形式,把客观物质运动和主观思维活动的状态表达出来成为消息。
把消息变换成适合信道传输的物理量,这种物理量称为信号。
它们之间的关系是:消息中包含信息,是信息的载体;信号携带消息,是消息的运载工具。
1.4 简述一个通信系统包括的各主要功能模块及其作用。
通信系统主要分成下列五个部分:(1)信息源。
信息论与编码2-信源及信源熵1
信息论与编码-信源及信源熵
又例如对离散化的平面图像来说,从 空间上来看是一系列离散的符号,而空间 每一点的符号(灰度)又都是随机的,由此 形成了不同的图像.所以我们可以把一般 信源输出的消息看作为时间或空间上离 散的一系列随机变量,即随机矢量.这样,信 源 描的述输,其出中可N可用为N维有随限机正矢整量数(或x1,可x2,数…的xN)无来 限值.
25
信息论与编码-信源及信源熵
2.2.2 离散信源熵
前面定义的自信息是指某一信源发出某一消 息所含有的信息量.所发出的消息不同,它们所含 有的信息量也就不同.所以自信息I(ai) 是一个 随机变量,不能用它来作为整个信源的信息测度.
我们定义自信息的数学期望为信源的平均信 息量,即
H ( X ) E [ I ( X ) ]p ( x i) I ( x i) p ( x i) lo p ( x i) g
7
信息论与编码-信源及信源熵
离散信源的数学模型就是离散型的概率空间:
X P
x1
p(x1)
x2
xn
p(x2) p(xn)
其中概率p(xi)(i=1,2,…,n)称为符号xi的先验概 率,应满足∑p(xi)=1
它表示信源可能取的消息(符号)只有n 个:x1,x2,…xn,而且每次必定取其中一个.
当xi和yj相互独立时,有p(xi,yj)=p(xi)p(yj) 于是有
I(xi,yj)= I(xi)+ I(yj)
24
信息论与编码-信源及信源熵
条件自信息量: 当xi和yj相互联系时,在事件yj 出现的条件下,xi 的
自信息量称为条件自信息量,定义为 I(xi|yj)=-logp(xi|yj)
信息论与编码第二章答案
2-1、一阶马尔可夫链信源有3个符号{}123,,u u u ,转移概率为:1112()u p u=,2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。
画出状态图并求出各符号稳态概率。
解:由题可得状态概率矩阵为:1/21/20[(|)]1/302/31/32/30j i p s s ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦状态转换图为:令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W =121W +132W +133W , 2W =121W +233W , 3W =232W 且:1W +2W +3W =1 ∴稳态分布概率为:1W =25,2W =925,3W = 6252-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P(0|00)=0.8,P(0|11)=0.2,P(1|00)=0.2,P(1|11)=0.8,P(0|01)=0.5,p(0|10)=0.5,p(1|01)=0.5,p(1|10)=0.5画出状态图,并计算各符号稳态概率。
解:状态转移概率矩阵为:令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2-1-17)可得方程组。
1111221331441132112222332442133113223333443244114224334444240.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+⎧⎪=+++=+⎪⎨=+++=+⎪⎪=+++=+⎩ 且12341w w w w +++=;0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦解方程组得:12345141717514w w w w ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩ 即:5(00)141(01)71(10)75(11)14p p p p ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2-3、同时掷两个正常的骰子,也就是各面呈现的概率都是16,求:(1)、“3和5同时出现”事件的自信息量;(2)、“两个1同时出现”事件的自信息量; (3)、两个点数的各种组合的熵或平均信息量; (4)、两个点数之和的熵; (5)、两个点数中至少有一个是1的自信息量。
信息论与编码(曹雪虹第三版)第一、二章
根据传输介质的不同,信道可分为有线信道和无线信道两大类。有线信道包括 双绞线、同轴电缆、光纤等;无线信道包括微波、卫星、移动通信等。
信道容量的定义与计算
信道容量的定义
信道容量是指在给定条件下,信道能 够传输的最大信息量,通常用比特率 (bit rate)来衡量。
信道容量的计算
信道容量的计算涉及到信道的带宽、 信噪比、调制方式等多个因素。在加 性高斯白噪声(AWGN)信道下,香农 公式给出了信道容量的理论上限。
信道编码分类
根据编码方式的不同,信道编码可分为线性分组码和卷积码 两大类。
线性分组码
线性分组码定义
线性分组码是一种将信息 序列划分为等长的组,然 后对每个组独立进行编码 的信道编码方式。
线性分组码特点
编码和解码过程相对简单 ,适用于各种信道条件, 且易于实现硬件化。
常见的线性分组码
汉明码、BCH码、RS码等 。
将信源消息通过某种数学变换转换到另一个域中,然后对变换 系数进行编码。
将连续的信源消息映射为离散的数字值,然后对数字值进行编 码。这种方法会导致量化噪声,是一种有损的编码方式。
信道编码的定义与分类
信道编码定义
信道编码是为了提高信息传输的可靠性、增加通信系统的抗 干扰能力而在发送端对原始信息进行的一种变换。
信息熵总是非负的,因 为自信息量总是非负的 。
当随机变量为确定值时 ,其信息熵为0。
对于独立随机变量,其 联合信息熵等于各自信 息熵之和。
当随机变量服从均匀分 布时,其信息熵达到最 大值。
03
信道与信道容量
信道的定义与分类
信道的定义
信道是信息传输的媒介,它提供了信号传输的通路,是通信系统中的重要组成 部分。
信息论与编码第2章习题解答
信息论与编码第2章习题解答2.1设有12枚同值硬币,其中⼀枚为假币。
只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。
现⽤⽐较天平左右两边轻重的⽅法来测量(因⽆砝码)。
为了在天平上称出哪⼀枚是假币,试问⾄少必须称多少次?解:分三组,每组4个,任意取两组称。
会有两种情况,平衡,或不平衡。
(1) 平衡:明确假币在其余的4个⾥⾯。
从这4个⾥⾯任意取3个,并从其余8个好的⾥⾯也取3个称。
⼜有两种情况:平衡或不平衡。
a )平衡:称⼀下那个剩下的就⾏了。
b )不平衡:我们⾄少知道那组假币是轻还是重。
从这三个有假币的组⾥任意选两个称⼀下,⼜有两种情况:平衡与不平衡,不过我们已经知道假币的轻重情况了,⾃然的,不平衡直接就知道谁是假币;平衡的话,剩下的呢个⾃然是假币,并且我们也知道他是轻还是重。
(2) 不平衡:假定已经确定该组⾥有假币时候:推论1:在知道该组是轻还是重的时候,只称⼀次,能找出假币的话,那么这组的个数不超过3。
我们知道,只要我们知道了该组(3个)有假币,并且知道轻重,只要称⼀次就可以找出来假币了。
从不平衡的两组中,⽐如轻的⼀组⾥分为3和1表⽰为“轻(3)”和“轻(1)”,同样重的⼀组也是分成3和1标⽰为“重(3)”和“重(1)”。
在从另外4个剩下的,也就是好的⼀组⾥取3个表⽰为“准(3)”。
交叉组合为:轻(3) + 重(1)?=======?轻(1) + 准(3)来称⼀下。
⼜会有3种情况:(1)左⾯轻:这说明假币⼀定在第⼀次称的时候的轻的⼀组,因为“重(1)”也出现在现在轻的⼀边,我们已经知道,假币是轻的。
那么假币在轻(3)⾥⾯,根据推论1,再称⼀次就可以了。
(2)右⾯轻:这⾥有两种可能:“重(1)”是假币,它是重的,或者“轻(1)”是假币,它是轻的。
这两种情况,任意取这两个中的⼀个和⼀个真币称⼀下即可。
(3)平衡:假币在“重(3)”⾥⾯,⽽且是重的。
根据推论也只要称⼀次即可。
2.2 同时扔⼀对骰⼦,当得知“两骰⼦⾯朝上点数之和为2”或“⾯朝上点数之和为8”或“骰⼦⾯朝上之和是3和4”时,试问这三种情况分别获得多少信息量?解:设“两骰⼦⾯朝上点数之和为2”为事件A ,则在可能出现的36种可能中,只能个骰⼦都为1,这⼀种结果。
信息论与编码第二版答案
信息论与编码第二版答案《信息论与编码(第二版)》是Claude Elwood Shannon所撰写的经典著作,该书于1948年首次出版,至今被广泛认可为信息论领域的权威指南。
本书通过数学模型和理论阐述了信息的量化、传输、存储以及编码等相关概念和原理。
深入浅出的阐述方式使得本书具备了普适性和可读性,成为信息论领域学习者和研究者的必备参考。
信息论是研究信息的传输、处理和应用的科学,其最初来源于通信工程领域。
而编码作为信息论的一个重要分支,旨在寻求一种有效的方式将信息转化为符号或信号,以便能够高效地传输和存储。
编码的主要目标是通过减少冗余或利用统计特征来压缩信息,并提高信号传输过程中的容错性。
在信息论中,最重要的概念之一是“信息熵”。
信息熵是信息的不确定性度量,也可以看作是信息的平均编码长度。
当一个事件出现的可能性均匀时,信息熵达到最大值,表示信息的不确定度最高;而当事件的概率趋于一个时,信息熵达到最小值,表示事件的确定性最高。
例如,抛一枚公正的硬币,其正反面出现的概率均为0.5,那么信息熵将达到最大值,即1比特。
如果硬币是正面朝上或者反面朝上,那么信息熵将达到最小值,即0比特。
除了信息熵,信息论中还有许多重要的概念,如条件熵、相对熵和互信息等。
其中,条件熵表示给定某些信息后的不确定性,相对熵则用于比较两个概率分布之间的差异,而互信息则度量了两个随机变量之间的相关性。
编码是信息论中的关键技术之一,其目的是将信息通过某种规则进行转换,使其适于传输或存储。
常见的编码方法有哈夫曼编码、香农-费诺编码和算术编码等。
其中,哈夫曼编码常用于无损压缩,通过根据字符频率设计不等长的编码,使得频率高的字符用较短的编码表示,而频率低的字符用较长的编码表示,从而达到压缩的效果。
算术编码则通过将整个信息序列映射为一个实数,从而实现更高的压缩比。
信息论与编码的研究对众多领域都具有重要意义。
在通信领域中,信息论的结果对于提高信道容量和降低误差率具有指导意义。
信息论与编码教学大纲(2024)
LDPC码在无线通信中的应用研究。探讨LDPC码在无线通信系统中的 编译码算法及性能优化方法。
选题三
极化码原理及性能分析。研究极化码的编译码原理,分析其在不同信 道条件下的性能表现,并与传统信道编码方案进行比较。
选题四
5G/6G通信中的信道编码技术。调研5G/6G通信系统中采用的信道编 码技术,分析其优缺点,并提出改进方案。
Polar码应用
探讨Polar码在5G通信、物联网等领域的应用,并分 析其性能表现。
22
06 实验环节与课程 设计
2024/1/25
23
实验环节介绍
实验一
信道容量与编码定理验证。 通过搭建简单的通信系统, 验证不同信道条件下的信道 容量及编码定理的有效性。
实验二
线性分组码编译码实验。利 用计算机软件实现线性分组 码的编译码过程,并分析其 纠错性能。
LDPC码基本原理
介绍LDPC码的编码结构、译码原理以及性 能分析。
LDPC码应用
探讨LDPC码在光纤通信、数据存储等领域 的应用,并分析其性能表现。
21
Polar码原理及应用
2024/1/25
Polar码基本原理
介绍Polar码的编码结构、信道极化原理以及性能分 析。
Polar码编译码算法
详细阐述Polar码的编码算法、译码算法以及关键技 术的实现。
2024/1/25
预测编码
利用信源符号间的相关 性进行预测,并对预测 误差进行编码,如差分 脉冲编码调制(DPCM )。
变换编码
将信源信号通过某种变 换转换为另一域的信号 ,再对变换系数进行编 码,如离散余弦变换( DCT)编码。
14
04 信道编码
2024/1/25
大学信息论与编码(第2版)-信息论与编码
20XX年复习资料大学复习资料专业:班级:科目老师:日期:第1章绪论1.1信息论的形成与发展⏹信息论的发展过程✓20X X X X24年,H N y q u i s t,信息率与带宽联系✓20X X X X28年,R V H a r t l e y,引入非统计信息量✓20X X X X36年,E H A r m s t r o n g,带宽与抗干扰能力✓20X X X X36年,H D u d l e y,发明声码机✓40年代初,N W i e n e r,“控制论”✓20X X X X48年,S h a n n o n,“信息论”“A m a t h e m a t i c a l t h e o r y o fc o m m u n i c a t i o n s”信息时代的里程碑✓50年代开始,I R E成立信息论组,出版信息论汇刊⏹信息论的形成与发展✓20X X X X59年,S h a n n o n,信源压缩编码理论,“C o d i n g t h e o r e m f o r a d i s c r e t e s o u r c e w i t h a f i d e l i t y c r i t e r i o n”✓20X X X X0X X1年,S h a n n o n,“双路通信信道”,多用户理论✓20X X X X0X X2年,C o v e r,广播信道⏹三大定理⏹无失真信源编码定理(第一极限定理)⏹信道编码定理(第二极限定理)⏹限失真信源编定理(第三极限定理)S h a n n o n信息论:在噪声环境下,可靠地、安全地、有效地传送信息理论----狭义信息论⏹信息✓定义广义定义:信息是物质的普遍属性,所谓物质系统的信息是指它所属的物理系统在同一切其他物质系统全面相互作用(或联系)过程中,以质、能和波动的形式所呈现的结构、状态和历史概率信息:信息表征信源的不定度,但它不等同于不定度,而是为了消除一定的不定度必须获得与此不定度相等的信息量⏹信息✓性质信息是无形的信息是可共享的信息是无限的信息是无所不在的信息是可度量的⏹信息✓信息与消息、信号比较消息是信息的数学载体、信号是信息的物理载体信号:具体的、物理的消息:具体的、非物理的 信息:非具体的、非物理的 信息的定义和性质⏹ 信息、消息、信号u 信号最具体,它是一物理量,可测量、可显示、可描述,同时它又是载荷信息的实体 信息的物理层表达u 消息是具体的、非物理的,可描述为语言文字、符号、数据、图片,能够被感觉到,同时它也是信息的载荷体。
信息论与编码-曹雪虹-课后习题参考答案
《信息论与编码》-曹雪虹-课后习题答案第二章错误!未定义书签。
2.1一个马尔可夫信源有3个符号{}1,23,uu u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
W 2、W 31231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 2.2(0|p (0|01)p =0.5,(0|10)p 解:(0|00)(00|00)0.8p p ==(0|01)(10|01)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 状态图为:设各状态00,01,10,11的稳态分布概率为W1,W2,W3,W4有411iiWP WW==⎧⎪⎨=⎪⎩∑得13113224324412340.80.50.20.50.50.20.50.81W W WW W WW W WW W WW W W W+=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩计算得到12345141717514WWWW⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.31/6,求:(1)“3和5(2)“两个1(3)1的自信息量。
11 12 13 14 15 1621 22 23 24 25 2631 32 33 34 35 3641 42 43 44 45 4651 52 53 54 55 5661 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯ (4)x p x p X H X P X i i i 1212181log 1812361log 3612 )(log )()(1211091936586173656915121418133612)( ⎝⎛⨯+⨯+⨯-=-=⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑2.575%是身高160厘米以上的占总数的厘米以上的某女孩是大学生”的设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生)P(X) 0.25 0.75设随机变量Y 代表女孩子身高Y y1(身高>160cm)y2(身高<160cm)P(Y) 0.5 0.5已知:在女大学生中有75%是身高160厘米以上的即:bitxyp75.0)/(11=求:身高160即:ypxypxpyxpyxI5.075.025.0log)()/()(log)/(log)/(11111111⨯-=-=-=2.6掷两颗骰子,1()(1,2)(2,1)18p x p p=+=log()log18 4.170p x bit=-==7的概率log()log6 2.585p x bit=-==341231/41/8x x===⎫⎪⎭(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202120130213001203210110321010021032011223210},求该序列的自信息量和平均每个符号携带的信息量解:122118()log log 1.415()3I x bit p x === 同理可以求得233()2,()2,()3I x bit I x bit I x bit === 因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和就有:123414()13()12()6()87.81I I x I x I x I x bit =+++= 平均每个符号携带的信息量为87.81 1.9545=bit/符号 2.8试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0,1,2,3}八进制脉冲可以表示8个不同的消息,例如:{0,1,2,3,4,5,6,7}二进制脉冲可以表示2个不同的消息,例如:{0,1}假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n XH / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
《信息论与编码》课后习题答案
《信息论与编码》课后习题答案第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
《信息论与编码》课程教学大纲
《信息论与编码》课程教学大纲一、课程基本信息课程代码:16052603课程名称:信息论与编码英文名称:Information Theory and Coding课程类别:专业课学时:48学分:3适用对象:信息与计算科学考核方式:考试先修课程:数学分析、高等代数、概率论二、课程简介《信息论与编码》是信息科学类专业本科生必修的专业理论课程。
通过本课程的学习,学生将了解和掌握信息度量和信道容量的基本概念、信源和信道特性、编码理论等,为以后深入学习信息与通信类课程、为将来从事信息处理方面的实际工作打下基础。
本课程的主要内容包括:信息的度量、信源和信源熵、信道及信道容量、无失真信源编码、有噪信道编码等。
Information Theory and Coding is a compulsory professional theory course for undergraduates in information science. Through this course, students will understand and master the basic concepts of information measurement and channel capacity, source and channel characteristics, coding theory, etc., lay the foundation for the future in-depth study of information and communication courses, for the future to engage in information processing in the actual work.The main contents of this course include: information measurement, source and source entropy, channel and channel capacity, distortion-free source coding, noisy channel coding, etc。
信息论与编码
信息论与编码第⼀章1、信息,信号,消息的区别信息:是事物运动状态或存在⽅式的不确定性的描述消息是信息的载体,信号是消息的运载⼯具。
2、1948年以“通信的数学理论”(A mathematical theory of communication )为题公开发表,标志着信息论的正式诞⽣。
信息论创始⼈:C.E.Shannon(⾹农)第⼆章1、⾃信息量:⼀个随机事件发⽣某⼀结果后所带来的信息量称为⾃信息量,简称⾃信息。
单位:⽐特(2为底)、奈特、笛特(哈特)2、⾃信息量的性质(1)是⾮负值(2) =1时, =0, =1说明该事件是必然事件。
(3) =0时, = , =0说明该事件是不可能事件。
(4)是的单调递减函数。
3、信源熵:各离散消息⾃信息量的数学期望,即信源的平均信息量。
)(log )(])(1[log )]([)( 212i ni i i i a p a p a p E a I E X H ∑=-===单位:⽐特/符号。
(底数不同,单位不同)信源的信息熵;⾹农熵;⽆条件熵;熵函数;熵。
4、信源熵与信息量的⽐较(书14页例2.2.2)()log () 2.1.3 i i I a p a =-()5、信源熵的意义(含义):(1)信源熵H(X)表⽰信源输出后,离散消息所提供的平均信息量。
(2)信源熵H(X)表⽰信源输出前,信源的平均不确定度。
(3)信源熵H(X)反映了变量X 的随机性。
6、条件熵:(书15页例2.2.3) 7、联合熵:8、信源熵,条件熵,联合熵三者之间的关系:H(XY)= H(X)+H(Y/X) H(XY)= H(Y)+H(X/Y)条件熵⼩于⽆条件熵,H(Y/X)≤H(Y)。
当且仅当y 和x 相互独⽴p(y/x)=p(y),H(Y/X)=H(Y)。
两个条件下的条件熵⼩于⼀个条件下的条件熵H(Z/X,Y)≤H(Z/Y)。
当且仅当p(z/x,y)=p(z/y)时取等号。
联合熵⼩于信源熵之和, H(YX)≤H(Y)+H(X)当两个集合相互独⽴时得联合熵的最⼤值 H(XY)max =H(X)+H(Y) 9、信息熵的基本性质:(1)⾮负性;(2)确定性;(3)对称性;(4)扩展性(5)可加性 ( H(XY) = H(X)+ H(Y) X 和Y 独⽴ H (XY )=H (X )+ H (Y/X )H (XY )=H (Y )+ H (X/Y ) )(6)(重点)极值性(最⼤离散熵定理):信源中包含n 个不同离散消息时,信源熵H(X)有当且仅当X 中各个消息出现的概率全相等时,上式取等号。
信息论与编码实验二
实验二 离散信道及其容量一、实验目的1、理解离散信道容量的内涵; 2、掌握求二元对称信道(BSC )互信息量和容量的设计方法; 3、 掌握二元扩展信道的设计方法并会求其平均互信息量。
二、实验原理若某信道输入的是N 维序列x ,其概率分布为q(x),输出是N 维序列y,则平均互信息量记为I(X;Y),该信道的信道容量C 定义为()max (X;Y)q x C I =。
三、实验内容1、给定BSC 信道,信源概率空间为信道矩阵 0.990.010.010.99P ⎡⎤=⎢⎥⎣⎦求该信道的I(X;Y)和容量,画出I(X;Y)和ω、C 和p 的关系曲线。
2 、编写一M 脚本文件t03.m ,实现如下功能:在任意输入一信道矩阵P 后,能够判断是否离散对称信道,若是,求出信道容量C 。
3、已知X=(0,1,2);Y=(0,1,2,3),信源概率空间和信道矩阵分别为XP 0 1 0.6 0.4= XPx 0 1 2 0.3 0.5 0.2=求: 平均互信息量;4、 对题(1)求其二次扩展信道的平均互信息I(X;Y)。
四、程序设计与算法描述1)设计思路1、信道容量()max (X;Y)q x C I 因此要求给定信道的信道容量,只要知道该信道的最大互信息量,即求信道容量就是求信道互信息量的过程。
程序代码:clear all,clc;w=0.6;w1=1-w;p=0.01;X=[0 1];P =[0.6 0.4];p1=1-p;save data1 p p1;I_XY=(w*p1+w1*p)*log2(1/(w*p1+w1*p))+(w*p+w1*p1)*log2(1/(w*p+w1*p1))-(p*log2(1/p)+p 1*log2(1/p1));C=1-(p*log2(1/p)+p1*log2(1/p1));fprintf('互信息量:%6.3f\n 信道容量:%6.3f',I_XY,C);p=eps:0.001:1-eps;p1=1-p;C=1-(p.*log2(1./p)+p1.*log2(1./p1));subplot(1,2,1),plot(p,C),xlabel('p'),ylabel('C');load data1;w=eps:0.001:1-eps;w1=1-w;I_XY=(w.*p1+w1.*p).*log2(1./(w.*p1+w1.*p))+(w.*p+w1.*p1).*log2(1./(w.*p+w1.*p1))-(p .*log2(1./p)+p1.*log2(1./p1));subplot(1,2,2),plot(w,I_XY)xlabel('w'),ylabel('I_XY');0.1 0.3 0 0.6 0.3 0.5 0.2 0 0.1 0.7 0.1 0.1P=实验结果:2、离散对称信道:当离散准对称信道划分的子集只有一个时,信道关于输入和输出对称。
信息论与编码zjh201209习题讲解(第二章)
1)如果有人告诉你X和Y的实验结果,你得到的平均信息量是多 少? 2)如果有人告诉你Y的实验结果,你得到的平均信息量是多少? 3)在已知Y实验结果的情况下,告诉你X的实验结果,你得到的 平均信息量是多少? 解:联合概率 p( xi, yj )为 X概率分布 Y概率分布是 Y x y1 x y2 x y3 1 Y ( X , Y )y1 p( xi,y2) log 2 y3 X H yj 1 2 3 X p( xi, yj ) ij P 8/24 8/24 8/24 P 8/24 8/24 8/24 7 24 1 1 x1 7/24 1/24 0 2 log 2 4 log 224 log 24 1 24 7 24 1/4 1/24 H (Y x2 3 1/2423 1.58 bit/符号 H ( X | Y ) H ( X , Y ) H (Y ) 2.34 1.58 ) log 3 =2.3bit/符号 15 =0.72bit/符号 x3 0 1/24 7/24 2013-8-15
13 2013-8-15
2-11 有一个可以旋转的圆盘,盘面上被均匀的分成38份,用1,…, 38的数字标示,其中有两份涂绿色,18份涂红色,18份涂黑色, 圆盘停转后,盘面上的指针指向某一数字和颜色。 (1)如果仅对颜色感兴趣,则计算平均不确定度 (2)如果仅对颜色和数字感兴趣,则计算平均不确定度 (3)如果颜色已知时,则计算条件熵 解:令X表示指针指向某一数字,则X={1,2,……….,38} Y表示指针指向某一种颜色,则Y={l绿色,红色,黑色} Y是X的函数,由题意可知
p(1|10) p(01|10) 0.5
0 0.8 0.2 0 于是可以列 0 0 0.5 0.5 出转移概率 p 0.5 0.5 0 0 矩阵: 0 0.2 0.8 0
信息论与编码(陈运)习题答案
· 1 ·2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0=== 所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。
假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生) P(X) 0.25 0.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm ) P(Y) 0.5 0.5已知:在女大学生中有75%是身高160厘米以上的 即:bit x y p 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x y p x p y x p y x I 415.15.075.025.0log )()/()(log )/(log )/(11111111=⨯-=-=-=2.3 一副充分洗乱了的牌(含52张牌),试问(1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?解:(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:!521)(=i x p bit x p x I i i 581.225!52log )(log )(==-=(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:· 2 ·bit C x p x I C x p i i i 208.134log)(log )(4)(135213135213=-=-==2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p此消息的信息量是:bit p I 811.87log =-=(2) 此消息中平均每符号携带的信息量是:bit n I 951.145/811.87/==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?解: 男士:symbolbit x p x p X H bitx p x I x p bit x p x I x p i i i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(2=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2=+-=-=∑2.6 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X ,求这个信源的熵,并解释为什么H(X) > log6不满足信源熵的极值性。
信息论与编码1、2、3章测试答案
第一、二、三章测试答案一、问答题1、信息论的理论最先由谁提出的,出处在什么地方?答:香农。
这一成果于1948年以“通信的数学理论”(A Mathematical Theory of Communication)为论文题目公开发表。
2、研究信息论的主要目的是什么?答:能够高效、可靠、安全并且随心所欲地交换和利用各种各样的信息。
3、信息论的定义(狭义、广义)答:狭义:在信息可以度量的基础上,研究有效和可靠的传递信息的科学。
广义:包含通信的全部统计问题的研究,香农信息论信号设计,噪声理论,信号检测与估值等。
(狭义信息论是在信息可以度量的基础上有效地和可靠地传递信息的科学,它涉及信息的度量、信息的特性、信息传输速率、信道容量、干扰对信息传输的影响等方面的知识广义信息论包括通信的全部统计问题的研究、香农信息论、信号设计、噪声理论、信号检测与估值等,还包括医学、生物学、心理学、遗传学、神经生理学、语言学甚至社会学和科学管理学中有关信息的问题。
)4、信息有哪些特征?答:(1)接收者在收到信息前对它的内容未知;(2)信息是能使认识主体对某一事物的未知性或不确定性减少的有用的知识;(3)信息可以产生、消灭、被携带、贮存及处理; (4)信息可以度量。
5、 写出信源的种类答:离散信源6、自信息与互信息有什么区别?答:一个随机发生某一结果所带来的信息量称自信息。
)(log )(i i x P x I -=,表示事件发生所含有的信息量。
后验概率与先验概率的比值的对数,是y 对x 的互信息,y 与x 之间有交互关系。
)()/(log)(;i j i j i x p y x p y x I =7、 熵是描述什么的?熵越小说明信息量越大是否正确? 答:(1)平均信息量或平均不确定度。
(2)错连续信源单符号的无记忆离散信源 符号序列的无记忆离散信源8、 满足哪两个条件是马尔可夫信源。
答:(1)某时刻信源符号的输出只与此时刻信源所处的状态有关,而与以前的状态及以前的输出符号无关;(2)信源某L 时刻所处的状态,由当前的输出符号和前一时刻(L-1)信源状态唯一确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除条件外,条件互信息的含义与互信 息的含义与性质都相同。
§2.3 离散集的平均自信息量(熵)
本节包括以下内容
信息熵 熵函数的数学特性 条件熵 联合熵
2. 3. 1 信息熵
离散信源X的熵定义为自信息的平均值,记 为H(X)
H(X) E [I(x)] p(x)log p(x)
p(x) x
§2.2 互信息量和条件互信息 量
本节包括以下内容
互信息量 互信息量的性质 条件互信息量
2.2.1 互信息
离散随机事件xi和yj 之间的互信息(x∈X ,y ∈Y) 定义为: p(x i | y j ) I(x i ; y j ) log p(x i ) 简记为
p( x | y) I ( x; y) log p( x)
关于对数底的选取:
以2为底:单位为比特(bit,为binary digit的缩写), 工程上常用; 以3为底:单位为Tit; 以e为底:单位为奈特(Nat,为Natural Unit的缩写), 理论推导时常用; 以10为底:单位为Dit或哈特。
–单位之间的换算关系为:
1奈特 = logee = log2e比特 = 1.443比特 1 Dit =log1010 =log210比特 = 1/log102比特 = 3.32比特
通过计算可得
I ( x; y) I ( x) I ( x | y)
注: 1)互信息的单位与自信息单位相同; 2)x与y的互信息等于x的自信息减去在y 条件 下x的自信息。 I(x;y)表示当 y发生后x不确定性的变 化。这种变化,反映了由y发生所得到的关 于x 的信息量。互信息是一种消除不确定 性的度量。 3)应注意I(x;y)与 I(x|y)的区别。
第2章 信息的统计度量
§2.1 自信息量和条件自信息量
本节包括以下内容:
自信息 联合自信息 条件自信息率为 p ( x i ) ,它的自信息:
I(xi ) - log p (xi )
pi 1 ,0 pi 1 1) i
2) I ( X )非负 对数的底数大于1
)=1-P(e);
一般地说,如果某事件x提供了关于另一事件y正 的信息量,说明x的出现有利于y的出现;如果某事 件x提供了关于另一事件y负的信息量,说明x的出现 不利于y的出现。
2.2.3 条件互信息量
设联合集XYZ,在给定z∈Z 条件下 x(∈X) 与y(∈Y ) 之间的互信息定义为:
p( x | yz ) I ( x; y | z ) log p( x | z )
故所求信息量为:
I(ai)=-log pi=log [n(n+1)/(2i)]
2.1.2 条件自信息量
事件xi在事件yj给定条件下的自信息定义为:
I(x i | y j ) -logP(x i | y j )
注意:1)条件概率P(x|y) 也要满足非负和归一化条件 2)条件自信息为非负值
条件下自信息与自信息类似,只不过是 概率空间有变化。条件自信息也是随机变 量。 条件自信息的含义: 1)在事件yj给定条件下,事件xi发生前 的不确定性; 2)在事件yj给定条件下,事件xi发生后 所得到的信息量。
特别地,当xk 为离散信源符号的取值, λk 为相应的概率,f(x) 为对数函数时, 有 E[log ( x)] log[ E ( x)]
E[ f ( x)] f [ E ( x)] 对于一般的上凸函数,有
根据数学分析可知,对于一元函数,如 果在某区间的二阶导数小于0,则在此区间 内为严格上凸函数。因此,对于一元函 数,可以利用Jenson不等式,也可利用二 阶导数小于0的性质,来判定函数的上凸性。
, 仅当x=1时等式成立。令y=1/x,可得 ,
信息散度
若P和Q为定义在同一概率空间的两个概 率测度,定义P相对于Q的散度为:
D( P // Q)
x
P( x) P( x) log Q( x)
在其他文献中,散度又称做相对熵、鉴 别信息、方向散度、交叉熵、Kullback_ Leibler数等。注意,在上式中,概率分布 的维数不限,可以是一维,也可以是多维。
k 0, k 1
k 1 n 1
, 令
k
k
k 1
n
1 n 1 , 则 ,
k 1
n 1
k
f ( xk )
k 1
n
f ( x k ) n 1 f ( x n 1 )
(
k 1 n k 1 n
n
k
/ ) f ( x k ) n 1 f ( x n 1 )
解 可能的画面数为: 10300000 ,所以每个画面出现的概 率为p=(10300000)-1, 每幅画面平均所包含的信息量为: H(X)= log2(1/ p )= log2 (10300000) = 106 比特/符号。
§2.3.2 熵函数的数学特性
本节包括以下内容
凸函数 信息散度 熵的基本性质
1) 2) 3) 4) 5) 6)
e -log0.125 =3 bit ; I(e)= I(e|f)= -log0.8 =0.322 bit ; I( e)= -log0.875 =0.193 bit ; I( /f)= -log0.2 =2.322 bit ; I(e;f)= 3 – 0.322 =2.678 bit ; I( ;f)= 0.193 – 2.322 = -2.129 bit 。
例2.3.1 一个信源X的符号集为{0,1},其中“0”符号出现 的概率为p,求信源的熵。
解 H(X)= -p log p - (1-p) log (1-p) = H (p)。
例2.3.2 一电视屏幕的格点数为500ⅹ600=3ⅹ105,每点有 10个灰度等级,若每幅画面等概率出现,求每幅画面 平均所包含的信息量。
2.2.2 互信息的性质
1)互易性:I (x;y) = I (y;x) 2)当事件x ,y 统计独立时,互信息为零,即 I (x;y) = 0; 3)互信息可正可负; 4)任何两事件之间的互信息不可能大于其中任一 事 件的自信息。
证明:由定义明显看出性质1)成立,而且
p(x|y) p(y | x) p(xy) I(x; y) log log log p(x) p(y) p(x) p(y)
• 当事件x,y 统计独立时,有p(x|y)= p(x),所以 性质2)成立; • 因为,当p(x|y) > p(x)时,I(x;y) > 0; 当 p(x|y) < p(x)时,I(x;y) < 0,所以性质3)成 立; • 考虑自信息和条件自信息的非负性,可得性质4)。 也可以说,一个事件提供的关于另一事件的信息 量不超过后者的自信息。
凸函数 记H(X) = H(p) = H(p ,p ,…,p ) = -∑p
1 2 n
所以 H(X)为n-1元函数。特别是,当n=2时,可记为 H(p) = H(p1,p2) = H(p1,1 - p1) = H(p1)。
凸函数的定义:
i
logpi,因∑pi=1,
多元函数f(x) = f(x1,x2,…,xn) 称为为定义域上的 上凸 (cap) 函数,若对于α(0≤α≤1) 及任意两矢 量x1,x2,有
f[αx1+(1-α)x2]≥αf(x1)+(1-α)f(x2) (2.4.1)成立。
当且仅当x1 = x2或α= 0 或1时等式成立,则称严格上凸函数。
多元函数f(x) = f(x1,x2,…,xn) 称为为定义域上的 下凸 (cup) 函数,若对于α(0≤α≤1) 及任意两矢量
一元上凸函数如图所示。图中可以看出,当α从0 到1变化时,函数自变量从 x2变到 x1 ;αf(x1)+(1α)f(x2)的值在点(x1,f(x1))和(x2 ,f(x2 )) 之间的线段上变化。上凸的含义就是:在点x1和x2 之 间的区域,函数f的图线在上述线段的上方。
另一个有用的不等式: 对于任意正实数x,下面不等式成立
1 1 ln x x 1 x 实际上, 设 f ( x ) ln x x 1 ,可求得函数
的稳定点为x=1,并可求得在该点的2阶导数小于 f (x) ln x x 1 0 0,
从而可得x=1为f(x)取极大值的点,即 1 1/ y ln y
k
f [
(
k 1
/ ) x k ] n 1 f ( x n 1 )
f [ (k / ) xk n 1 xn 1 ]
f[
k 1
n 1
k
xk ]
q)
当且仅当x1=x2=…=xq或λk=1(1 ≦k≦ 且λj=0(j ≠k)时,等式成立。
f[
k 1
k
xk ]
k 1
k
f (xk )
当且仅当x1=x2=…=xq或λk=1(1 ≦k≦ q)且λj=0(j ≠k)时,等式成立。 该式称做Jenson不等式。
证
利用数学归纳法。根据上凸函数的定义有 f[αx1+(1-α)x2]≥αf(x1)+(1-α)f(x2) 其中0<α<1 ,即q=2 时成立。 今假定 q=n 成立。现考虑 q=n+1 的情况 设
其中,p(xy)要满足非负和归一化条件。 实际上如果把联合事件xy看成一个单一事 件,那么联合自信息的含义与自信息的含 义相同。
例2.1.1 甲袋中有n个不同阻值的电阻,从中随机 取出一个,猜测所取得的是何种阻值的困难程度 是多少? 解 相当求事件的不确定性,因事件等概,故 p(ai)=1/n ,I(ai)=-log pi=log n。 续 甲袋中有n(n+1)/2个不同阻值的电阻,其 中1Ω的1个,2Ω的2个,……,nΩ的n个,从中 随机取出一个,求“取出阻值为i(0 ≤ i≤ n) 的电阻”所获得的信息量。 解“取出阻值为i的电阻”的概率为i/[n(n+1)/2],