Network-Based Relating Pharmacological and Genomic Spaces for Drug Target Identification

合集下载

基于网络药理学探讨白藜芦醇抗衰老的作用机制

基于网络药理学探讨白藜芦醇抗衰老的作用机制

四川生理科学杂志 2021, 43(3) 345·基础论著·基于网络药理学探讨白藜芦醇抗衰老的作用机制#曾宇鑫* 汪梦 张晓 梁楠△(成都医学院基础医学实验教学中心,四川 成都 610500)摘要 目的:运用网络药理学方法探寻白藜芦醇抗衰老的关键靶点及分子作用机制。

方法:通过PharmMapper数据库查找白藜芦醇的作用靶点;采用GeneCards 数据库搜索衰老的相关蛋白。

将白藜芦醇作用靶点和疾病靶点取交集,即为白藜芦醇抗衰老潜在靶点。

采用STRING 数据库找出靶点的作用关系,以DA VID 数据库分析结果,Cytoscape3.8.0软件构建药物-疾病-靶点-通路网络。

结果:从PharmMapper 得到的91个白藜芦醇(Resveratrol ,Res )作用靶点,GeneCards 数据库得到的474个衰老相关靶点,两者取交集后共得到22个白藜芦醇抗衰老的作用靶点。

在蛋白相互作用网络中IGF1、ESR1、MAPK1和EGFR 处于核心位置。

在GO 富集分析和KEGG 通路分析中,EGFR 、MAPK1和IGFR 均存在于PI3K-Akt 通路、FoxO 通路和HIF-1通路中。

在药物-疾病-靶点-通路网络中,EGFR 和MAPK1处于核心位置。

结论:Res 通过EGFR 、MAPK1、IGFR 调节PI3K-Akt 和FoxO 通路抗衰老。

关键词:白藜芦醇;衰老;网络药理学;EGFR ;MAPK1;SIRT1Anti-aging mechanism of resveratrol through the assays of networkpharmacology approach #Zeng Yu-xin *, Wang Meng, Zhang Xiao, Liang Nan △(Center of Experimental Technology for Preclinical Medicine, Chengdu Medical College, Chengdu 610500, China )Abstract Objective: To explore the molecular anti-aging mechanism of resveratrol through network pharmacology approach. Methods: All targets were imported into the STRING database, DA VID database and Cytoscape3.8.0 to construct a “component-disease-target” interaction network. Results: A total of 91 targets and 474 aging-related targets obtained from PharmMapper and GeneCards database. Twenty-two targets for resveratrol anti-aging action were obtained. IGF1, ESR1, MAPK1 and EGFR are at the core of the protein interaction network. EGFR, MAPK1 and IGFR are all found in the PI3K-Akt pathway, FoxO pathway and HIF-1channel in GO enrichment analysis and KEGG path analysis. EGFR and MAPK1 are at the core of the “component-disease-target” network. Conclusion: Resveratrol regulates PI3K-Akt pathway and FoxO pathway to anti-aging through EGFR, MAPK1 and IFR. Key words: Resveratrol; Aging; Network pharmacology; EGFR; MAPK1; SIRT1衰老主要表现为机体功能的衰退、身体适应力减退。

基于网络药理学探讨丹参-葛根药对治疗心肌纤维化的作用机制

基于网络药理学探讨丹参-葛根药对治疗心肌纤维化的作用机制

基于网络药理学探讨丹参-葛根药对治疗心肌纤维化的作用机制张力立1,马瑞松1,张曦1,陈娇2,秦贞苗21.海南省人民医院&海南医学院附属海南医院心血管内科,海南海口570311;2.海南医学院药学院,海南海口571199【摘要】目的采用网络药理学探讨丹参-葛根药对治疗心肌纤维化的活性成分及作用机制。

方法从中药系统药理学分析平台获取丹参-葛根药对活性成分和作用靶点,通过GeneCards 数据库获取心肌纤维化的相关靶点,使用Venny 2.1软件获取两者共同靶点;运用STRING 数据库和Cytoscape 3.7.1软件构建共同靶点的蛋白-蛋白互作(PPI)网络并进行拓扑学分析;采用ClusterProfiler R 功能包对共同靶点进行基因本体(GO)功能和KEGG 通路富集分析;最后使用Cytoscape 3.7.1软件构建“活性成分-靶点-通路”网络并分析。

结果筛选得到丹参-葛根药对候选活性成分30个,活性成分和心肌纤维化共同靶点41个。

共同靶点PPI 网络的平均点度值为19.7,平均介数为19.1,度值和介数均超过平均值的靶点共有14个。

KEGG 显著富集到73条通路,其中与心肌纤维化相关的通路有6条。

“活性成分-靶点-通路”网络显示,丹参中的木犀草素、丹参酮IIA 和葛根中的葛根素、β-谷甾醇等活性成分通过共同调控脂质与动脉粥样硬化、糖尿病并发症中的AGE-RAGE 、血流剪切力与动脉粥样硬化、缺氧诱导因子-1(HIF -1)、肿瘤坏死因子(TNF)、白细胞介数-17(IL -17)等信号通路起到抗心肌纤维化的功效。

结论揭示了丹参-葛根药对多成分、多靶点、多通路治疗心肌纤维化的作用特点,为进一步研究丹参-葛根药对治疗心肌纤维化的作用机制提供理论依据和新的思路。

【关键词】网络药理学;丹参;葛根;心肌纤维化;作用机制【中图分类号】R542.2+3【文献标识码】A【文章编号】1003—6350(2024)06—0862—08Mechanisms of the herbal pair of Salvia miltiorrhiza and Pueraria lobata in treating myocardial fibrosis based on network pharmacology.ZHANG Li-li 1,MA Rui-song 1,ZHANG Xi 1,CHEN Jiao 2,QIN Zhen-miao 2.1.Department of Cardiovasology,Hainan General Hospital,Hainan Hospital Affiliated to Hainan Medical University,Haikou 570311,Hainan,CHINA;2.School of Pharmacy,Hainan Medical University,Haikou 571199,Hainan,CHINA【Abstract 】ObjectiveTo investigate the active ingredients and mechanism of Salvia miltiorrhiza and Puerarialobata in treating myocardial fibrosis by network pharmacology.MethodsThe pharmacologic analysis platform of tra-ditional Chinese medicine system was used to search the active ingredients and the action targets of herbal pair of Salvia miltiorrhiza and Pueraria lobata.The related target of myocardial fibrosis was obtained by GeneCards database.The com-mon targets of the above two were obtained by Venny 2.1software.The protein-protein interaction (PPI)network of common targets was constructed and topological analysis was carried out by using STRING database and Cytoscape 3.7.1software.Gene ontology (GO)function and KEGG pathway enrichment of common targets were analyzed using ClusterProfiler R function package.Finally,Cytoscape 3.7.1was used to construct and analyze the network diagram of “active ingredients-targets-pathways ”.ResultsThirty candidate active ingredients and 41common targets of active in-gredients and myocardial fibrosis were obtained.The average point degree value and median number of common target PPI network were 19.7and 19.1,and there were 14targets with both degree value and median number exceeding the av-erage.KEGG was significantly enriched to 73pathways,of which 6pathways were associated with myocardial fibrosis.The active ingredient-target-pathway network showed that luteolin and tanshinone IIA in salvia miltiorrhiza,puerarin and β-sitosterol in Pueraria lobata jointly regulated the signaling pathways of lipid and atherosclerosis,AGE-RAGE in diabetic complications,atherosclerosis,hypoxia inducible factor (HIF -1),tumor necrosis factor (TNF),interleukin (IL -17)to play an anti-myocardial fibrosis effect.ConclusionSalvia miltiorrhiza and Pueraria lobata treated myocardi-al fibrosis through multi-ingredient,multi-target,and multi-path ways,which provides theoretical basis and new thought for further research on the anti-myocardial fibrosis mechanism of Salvia miltiorrhiza and Pueraria lobata.【Key words 】Network pharmacology;Salvia miltiorrhiza Bge.;Pueraria lobata (Willd.)Ohwi;Myocardial fibro-sis;Mechanism ·论著·doi:10.3969/j.issn.1003-6350.2024.06.020基金项目:2021年海南省自然科学基金(编号:821RC679、821RC581)。

基于网络药理学与分子对接技术探究加味泽泻汤治疗梅尼埃病的作用机制

基于网络药理学与分子对接技术探究加味泽泻汤治疗梅尼埃病的作用机制

基于网络药理学与分子对接技术探究加味泽泻汤治疗梅尼埃病的作用机制赵赫,董云芳,何玉瑶,刘晓庆,侯晓莹,胡文文,钟利群摘要目的:探讨加味泽泻汤治疗梅尼埃病的潜在作用机制㊂方法:从TCMSP㊁TCMID㊁BATMAN-TCM平台中收集加味泽泻汤组方中药物的活性成分及靶点,经标准化处理后利用Cytoscape软件绘制加味泽泻汤活性成分-靶点网络图并分析其核心成分;从GeneCards㊁OMIM㊁DisGeNET及CTD疾病数据库中收集梅尼埃病相关的疾病靶点,从而得到药物-疾病共有靶点,筛选出加味泽泻汤治疗梅尼埃病的潜在作用靶点并绘制药物活性成分-疾病靶点网络图;筛选提取加味泽泻汤和梅尼埃病的交集网络制作药物-疾病互作网络,通过计算相关属性值得到核心靶点,利用Metascape数据库对核心靶点进行基因本体(GO)功能及京都基因与基因组百科全书(KEGG)通路富集分析,并可视化㊂最后使用分子对接技术对加味泽泻汤核心活性成分与核心靶点对接并进行可视化处理㊂结果:经过筛选共得到加味泽泻汤药物活性成分39个,相关靶点144个;梅尼埃病疾病相关靶点1556个,其中,有药物-疾病共同靶点44个,通过富集分析及筛选,得到排名靠前的GO功能条目及KEGG信号通路㊂分子对接得到4个关键化合物和3个核心靶点,具有较好的结合性,验证了网络药理学预测结果㊂结论:加味泽泻汤治疗梅尼埃病可能通过其关键成分β-谷甾醇㊁柚皮素㊁薯蓣皂苷元㊁川陈皮素㊁黄芩素㊁豆甾醇和卡维丁作用于前列腺素内过氧化物合酶2(PTGS2)㊁热休克蛋白90AA1(HSP90AA1)㊁肾上腺素能受体β2(ADRB2)3个核心靶点蛋白,通过调节炎症反应㊁氧化应激反应及环磷腺苷(cAMP)通路等发挥作用㊂关键词梅尼埃病;网络药理学;分子对接技术;加味泽泻汤d o i:10.12102/j.i s s n.1672-1349.2023.06.009Mechanism of Modified Zexie Decoction in the Treatment of Meniere's Disease Based on Network Pharmacology and Molecular Docking TechnologyZHAO He,DONG Yunfang,HE Yuyao,LIU Xiaoqing,HOU Xiaoying,HU Wenwen,ZHONG LiqunDongzhimen Hospital of Beijing University of Traditional Chinese Medicine,Beijing100700,China Corresponding Author ZHONG Liqun,E-mail:*******************Abstract Objective:To explore the potential mechanism of Modified Zexie Decoction in the treatment of Meniere's disease.Method: The active ingredients and targets of the drugs in the prescriptions of Modified Zexie Decoction from TCMSP,TCMID,and BA TMAN-TCM platforms were collected.Disease targets related to Meniere's disease were collected from GenecCards,OMIM,DisGeNET,and CTD disease databases.Thus,the common drug-disease targets were obtained,the potential targets of Modified Zexie Decoction in the treatment of Meniere's disease were screened,and the active ingredient-disease target network diagram was drawn.The intersection network of Modified Zexie Decoction and Meniere's disease was screened and extracted to construct the drug-disease interaction network.The core targets were obtained by calculating the relevant attribute values,and the gene ontology(GO)function and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway of the core targets were analyzed and visualized using the Metascape database.Finally,molecular docking technology was used to dock the core active ingredients of Modified Zexie Decoction with the core target and perform visualization processing.Result:After screening,a total of39active ingredients of Modified Zexie Decoction and144 related targets were obtained,1556related targets for Meniere's disease,including44common drug-disease targets.Through enrichment analysis and screening,the top-ranked GO functional items and KEGG signaling pathway were included.Molecular docking yielded4key compounds and3core targets,which showed better binding and verified the prediction results of network pharmacology. Conclusion:Modified Zexie Decoction in the treatment of Meniere's disease may act by its key components including Beta-sitosterol, naringenin,diosgenin,nobiletin,baicalein,stigmasterol,and cavidine.These components may act on the three cores of prostaglandin endoperoxide synthase2(PTGS2),Heat shock protein90AA1(HSP90AA1),and adrenergic receptor beta2(ADRB2).The target protein plays a role by regulating inflammation,oxidative stress,and adenosine cyclophosphate(cAMP)pathway.Keywords Meniere's disease;network pharmacology;molecular docking technology;Modified Zexie Decoction梅尼埃病是一种以发作性眩晕㊁波动性听力下降㊁耳鸣和(或)耳胀闷感为主要临床表现的内耳疾病[1]㊂基金项目北京中医药大学东直门医院2020年度科技创新专项(No. DZMKJCX-2020-017)作者单位北京中医药大学东直门医院(北京100700)通讯作者钟利群,E-mail:*******************引用信息赵赫,董云芳,何玉瑶,等.基于网络药理学与分子对接技术探究加味泽泻汤治疗梅尼埃病的作用机制[J].中西医结合心脑血管病杂志,2023,21(6):1019-1029.该病反复发作,迁延难愈,且发病率呈上升趋势,严重影响了正常工作和生活㊂目前认为内淋巴积水为梅尼埃病的病理学标志物,而内淋巴积水是否为梅尼埃病的病理机制尚存在争议[2]㊂该病病因目前尚不明确,研究表明,内淋巴积水的病因多样,且均有相关的临床和实验研究[3]㊂现阶段对梅尼埃病的治疗目标是延长发作间期,减少每次发作的持续时间,减轻发作时的症状严重程度,保存听力[4]㊂目前对于该病的治疗主要为对症药物治疗,如使用前庭抑制剂㊁糖皮质激素㊁改善循环及利尿等㊂但长期应用这些药物不仅会产生一定程度的耐药性,而且容易引起不良反应[5-7]㊂中医学认为梅尼埃病属于 眩晕病 范畴,根据其临床表现和特征,其病机主要归纳为痰饮内盛㊁髓海不足㊁肝阳上亢㊁瘀血阻窍等㊂加味泽泻汤中的主要药物组成是泽泻㊁白术㊁半夏㊁天麻㊁陈皮㊁茯苓㊁生姜,本团队在前期的研究中发现加味泽泻汤联合西药敏使朗治疗梅尼埃病可明显改善眩晕和耳鸣的症状,优于单用敏使朗[8]㊂但是加味泽泻汤治疗梅尼埃病的作用靶点及分子机制仍待阐明㊂网络药理学的出现为解决这一问题提供了契机,该学科整合了计算机技术和系统生物学两大学科,通过对药物-活性成分-靶点-基因-疾病进行可视化的展现,揭示了药物多种活性成分与疾病之间存在的可能作用机制㊂这与中药多成分㊁多靶点的作用机制殊途同归,十分符合中医学整体观念和辨证论治的基本原则[9]㊂本研究基于网络药理学方法及分子对接技术探讨加味泽泻汤在治疗梅尼埃病过程中的机制,在阐明部分可能的作用机制的同时进一步探讨梅尼埃病的发病机制,为该方的临床应用提供理论支撑㊂1资料与方法1.1加味泽泻汤中活性成分筛选及靶点预测分别以泽泻㊁白术㊁半夏㊁天麻㊁陈皮㊁茯苓㊁生姜为检索词在TCMSP[10]㊁TCMID[11]㊁BATMAN-TCM[12]数据库中进行检索,并对所得到的有效成分结果进行去重㊂然后以口服生物利用度(oral bioavailability,OB)ȡ30%㊁类药性(drug-likeness,DL)ȡ0.18作为筛选活性成分的条件[13]㊂使用TCMSP靶点预测模型对所筛选出的活性成分的作用靶点进行预测,并通过UniProt[14]数据库对所得到的靶点进行标准化处理,建立加味泽泻汤有效成分数据库及有效作用靶点数据库㊂1.2加味泽泻汤 药物-活性成分-靶点 网络图的构建将加味泽泻汤中的各中药㊁活性成分及作用靶点导入到Cytoscape3.8.2[15]软件中构建加味泽泻汤的药物-活性成分-靶点网络图,其中 节点 (node)表示药物成分或靶点, 边 (edge)表示药物-成分-靶点之间的相互作用㊂使用Cytoscape 3.8.2软件中的 Analyze Network 功能对节点的 度值 (Degree)进行计算,Degree值排名前5位的靶点被认为是加味泽泻汤治疗梅尼埃病的关键靶点㊂1.3梅尼埃病相关靶点的检索以 Meniere disease 为关键词,从GeneCards[16]㊁OMIM[17]㊁Disgenet[18]㊁CTD[19]数据库中获取梅尼埃病相关的疾病靶点㊂利用UniProt数据库对所得到的疾病靶点进行统一规范㊂利用Venny2.1在线绘图软件将加味泽泻汤中活性成分的相关靶点和梅尼埃病相关靶点取交集,得到药物活性成分-疾病共有靶点㊂1.4蛋白质互作(protein-protein interaction,PPI)网络构建及网络拓扑学分析利用Cytoscape3.8.2软件的BisoGenet插件构建PPI网络㊂将加味泽泻汤活性成分靶点与梅尼埃病疾病预测靶点分别导入BisoGenet内分别生成药物活性成分PPI网络和梅尼埃病疾病靶点PPI网络㊂利用CytoNCA插件对所得到的交集网络中的节点进行相关属性值计算,挖掘出核心节点㊂将加味泽泻汤有效活性成分及加味泽泻汤-梅尼埃病共有靶点构建网络并导入Cytoscape软件中,生成药物活性成分-疾病靶点网络图,并以Degree值(DC)为筛选依据筛选出核心药物活性成分及核心靶点㊂1.5通路富集分析Metascape数据库[20]能够帮助获取基因功能和对基因蛋白进行分析和注释,并可以对所获得的结果进行可视化处理,从而得到对基因和蛋白质的进一步认识㊂本研究利用该数据库进行基因本体(GO)及京都基因与基因组百科全书(KEGG)通路富集分析㊂1.6分子对接在PubChem数据库[21]中下载主要化合物的3D结构,利用Open Babel GUI2.4.0软件将3D结构SDF文件转换为MOL2文件㊂使用Autodock 软件[22]对所得到的MOL2文件进行处理和转化,生成化合物结构的PDB文件㊂在PDB数据库[23]中检索并下载3个核心蛋白的3D结构,使用Pymol软件去除蛋白质的水分子和原配体㊂使用Autodock和Pymol 软件对所获得的蛋白结构进行分子对接及可视化处理㊂2结果2.1加味泽泻汤中药物的活性成分及作用靶点通过检索获得加味泽泻汤中药物的所有活性成分共360个,其中,泽泻46个,白术55个,半夏116个,天麻46个,陈皮63个,茯苓34个,生姜265个㊂将上述活性成分按照1.1中筛选活性成分的条件进行筛选,共得到加味泽泻汤中药物活性成分39个,其中,半夏10个,白术4个,陈皮5个,茯苓6个,生姜4个,天麻5个,泽泻7个㊂A1为泽泻和陈皮共有活性成分,B1为半夏㊁天麻和生姜的共有活性成分,B2为半夏和生姜的共有活性成分㊂部分活性成分见表1㊂表1 加味泽泻汤有效成分部分筛选结果药物编号分子号 化合物OB (%)DL 陈皮A1MOL000359sitosterol 36.910.75泽泻A1MOL000359sitosterol 36.910.75半夏B1MOL000358beta -sitosterol 36.910.75天麻B1MOL000358beta -sitosterol 36.910.75生姜B1MOL000358beta -sitosterol 36.910.75半夏B2MOL000449Stigmasterol 43.830.76生姜B2MOL000449Stigmasterol 43.830.76半夏BX0MOL006967beta -D -Ribofuranoside,xanthine -944.720.21半夏BX1MOL00175524-Ethylcholest -4-en -3-one 36.080.76半夏BX2MOL002670Cavidine 35.640.81半夏BX3MOL002714baicalein 33.520.21半夏BX4MOL002776Baicalin40.120.75半夏BX5MOL005030gondoic acid 30.700.20半夏BX6MOL000519coniferin 31.110.32半夏BX7MOL00693610,13-eicosadienoic 39.990.20半夏BX8MOL006957(3S,6S)-3-(benzyl)-6-(4-hydroxybenzyl)piperazine -2,5-quinone 46.890.27半夏BX9MOL003578Cycloartenol 38.690.78白术BZ1MOL00002214-acetyl -12-senecioyl -2E,8Z,10E -atractylentriol 63.370.30白术BZ2MOL000033(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl -17-[(2R,5S)-5-propan -2-yloctan -2-yl ]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro -1H -cyclopenta [a ]phenanthren -3-ol 36.230.78白术BZ3MOL0000493β-acetoxyatractylone 54.070.22白术BZ4MOL0000728β-ethoxy atractylenolide Ⅲ35.950.21陈皮CP1MOL004328naringenin 59.290.21陈皮CP2MOL0051005,7-dihydroxy -2-(3-hydroxy -4-methoxyphenyl)chroman -4-one 47.740.27陈皮CP3MOL005815Citromitin 86.900.51陈皮CP4MOL005828nobiletin61.670.52茯苓FL1MOL000273(2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-3,16-dihydroxy -4,4,10,13,14-pentamethyl -2,3,5,6,12,15,16,17-octahydro -1H -cyclopenta [a ]phenanthren -17-yl ]-6-methylhept -5-enoic acid 30.930.81茯苓FL2MOL000275trametenolic acid 38.710.80茯苓FL3MOL000279Cerevisterol37.960.77茯苓FL4MOL000282ergosta -7,22E -dien -3beta -ol 43.510.72茯苓FL5MOL000283Ergosterol peroxide 40.360.81茯苓FL6MOL000296hederagenin36.910.75生姜SJ1MOL0061296-methylgingediacetate 248.730.32生姜SJ2MOL001771poriferast -5-en -3beta -ol 36.910.75天麻TM1MOL005384suchilactone 57.520.56天麻TM2MOL01145520-Hexadecanoylingenol 32.700.65天麻TM3MOL000546diosgenin80.880.81天麻TM4MOL002320γ-sitosterol 36.910.75泽泻ZX1MOL000831Alisol B monoacetate35.580.81泽泻ZX2MOL00084916β-methoxyalisol B monoacetate 32.430.77泽泻ZX3MOL000853alisol B36.760.82泽泻ZX4MOL000856alisol C monoacetate33.060.83泽泻ZX5MOL0024641-Monolinolein 37.180.30泽泻ZX6MOL000862[(1S,3R)-1-[(2R)-3,3-dimethyloxiran -2-yl ]-3-[(5R,8S,9S,10S,11S,14R)-11-hydroxy -4,4,8,10,14-pentamethyl -3-oxo -1,2,5,6,7,9,11,12,15,16-decahydrocyclopenta [a ]phenanthren -17-yl ]butyl ]acetate 35.580.812.2加味泽泻汤 活性成分-靶点 网络构建利用Cytoscape3.8.2对加味泽泻汤活性成分及其作用靶点的关系网络进行绘制,共获得183个节点(包含144个靶点和39个活性成分)与510条关系㊂见图1㊂图中六边形为药物活性成分,菱形为靶点,面积代表Degree值大小;BX代表半夏,BZ代表白术,CP代表陈皮,FL代表茯苓,SJ代表生姜,TM代表天麻,ZX代表泽泻;A1为泽泻㊁陈皮所共有,B1为半夏㊁天麻和生姜所共有,B2为半夏㊁生姜所共有㊂图1加味泽泻汤活性成分-靶点网络图2.3梅尼埃病相关靶点检索GeneCards㊁OMIM㊁DisGeNET㊁CTD疾病数据库,得到梅尼埃病靶点数分别为110个㊁543个㊁69个㊁7790个(经筛选后为923个),筛选并去除重复值后得到靶点1556个㊂药物靶点与疾病靶点交集为44个,见表2;并绘制韦恩图,见图2㊂表2疾病-药物共同作用靶点基因编码基因编码基因编码基因编码PTGS2P35354PRKCA P17252AHR P35869FASN P49327 HSP90AA1P07900TGFB1P01137CYCS P99999SOD1P00441 ADRB2P07550PON1P27169NFATC1O95644PPARA Q07869 DRD1P21728ADRA2A P08913ESR1P03372GSR P00390 KCNH2Q12809PLAU P00749CA2P00918NOS2P35228 BCL2P10415ADRB1P08588F2P00734MAPK8P45983 BAX Q07812TOP2A P11388NOS3P29474TIMP1P01033 CASP9P55211RELA Q04206ACHE P22303PLA2G4A P47712 JUN P05412FOS P01100AKT1P31749GRIA2P42262 CASP3P42574TP53P04637MAPK3P27361ABCC2Q92887 CASP8Q14790HIF1A Q16665MAPK1P28482NR3C1P04150图2药物靶点和疾病靶点分布韦恩图(蓝色为药物靶点,黄色为疾病靶点)2.4药物活性成分-疾病共有靶点网络的构建利用Cytoscape3.8.2对加味泽泻汤活性成分及药物-疾病共同靶点的关系网络进行绘制和分析,共获得68个节点与208条边㊂见图3㊂图3药物活性成分-疾病靶点网络图(六边形为药物活性成分,菱形为靶点,面积代表Degree值大小;BX代表半夏,BZ代表白术,CP代表陈皮,FL代表茯苓,SJ代表生姜,TM代表天麻,ZX代表泽泻;A1为泽泻㊁陈皮所共有,B1为半夏㊁天麻和生姜所共有,B2为半夏㊁生姜所共有)2.5加味泽泻汤治疗梅尼埃病的PPI网络构建与核心靶点筛选运用Cytoscape3.8.2软件分别构建加味泽泻汤活性成分PPI网络和梅尼埃病相关靶点PPI网络㊂结果显示:加味泽泻汤药物生物活性化合物靶点PPI网络共有5158个节点和127076条边(见图4A),梅尼埃病疾病靶点PPI网络共有11155个节点和222408条边(见图4B)㊂对加味泽泻汤药物活性成分PPI网络和梅尼埃病相关靶点PPI网络中的相同部分进行合并提取并构建新的加味泽泻汤成分-梅尼埃病相互作用PPI网络(见图4C)㊂然后筛选DC值大于2倍中位数(DC>58)的节点为筛选条件,构建加味泽泻汤生物活性成分-梅尼埃病相互作用显著PPI 网络(见图4D)㊂最后对显著交集PPI网络进行网络拓扑学属性值计算后,进行进一步筛选,最终获得核心PPI网络关键靶点162个(见图4E)㊂通过CytoNCA 插件计算节点属性值后分析得出,前列腺素内过氧化物合酶2(PTGS2)㊁热休克蛋白90AA1(HSP90AA1)㊁肾上腺素能受体β2(ADRB2)为核心靶点中排名前3位的靶点;关键有效成分中β-谷甾醇(beta-sitosterol)㊁柚皮素(naringenin)㊁薯蓣皂苷元(diosgenin)㊁川陈皮素(nobiletin)㊁黄芩素(baicalein)㊁豆甾醇(stigmasterol)和卡维丁(cavidine)等活性成分较为突出㊂详见表3㊂图4PPI网络的构建、网络拓扑学分析及核心靶点筛选(BC为介度;CC为紧密度;LAC为局部平均连通度;NC为网络连接度)表3加味泽泻汤关键成分编码化合物中文名称MOL000358beta-sitosterolβ-谷甾醇MOL004328naringenin柚皮素MOL000546diosgenin薯蓣皂苷元MOL005828baicalein川陈皮素MOL002714nobiletin黄芩素MOL000449stigmasterol豆甾醇MOL002670cavidine卡维丁MOL000519coniferin松柏苷MOL0000493β-acetoxyatractylone3B-乙酞氧基苍术酮MOL005815citromitin二氢川陈皮素2.6加味泽泻汤治疗梅尼埃病通路富集分析及可视化使用Metascape数据库对核心靶点进行GO注释和KEGG通路分析㊂核心靶点主要分布于细胞质㊁膜阀㊁质膜阀㊁膜微区㊁内质网腔㊁线粒体包膜及细胞器外膜等,这些靶基因通过蛋白质同二聚化活性㊁转录辅激活因子结合㊁蛋白激酶结合㊁转录共调控结合㊁激酶结合㊁DNA结合转录因子结合㊁RNA聚合酶Ⅱ特异性DNA结合转录因子结合㊁蛋白域特异性结合㊁泛素蛋白连接酶结合及转录因子结合等分子功能,参与细胞对化学应激㊁氧化应激㊁无机物㊁活性氧㊁脂多糖㊁细菌来源分子以及对金属离子的反应等生物进程,见图5㊂对KEGG富集通路中P值小于0.01的通路进行进一步分析,进一步筛选并绘制通路气泡图,见图6㊂2.7分子对接将药物化合物中突出的活性成分与关键靶点PTGS2㊁热休克蛋白90α家族A级成员1 (heat shock protein90alpha family class a member1, HSP90AA1)和ADRB2逐一使用Autodock软件进行分子对接,并使用Pymol进行可视化处理㊂结合能越低提示预测结合模式越好㊂具体化合物与核心靶点的结合能数值见表4㊂对接完成后,使用Pymol软件对结果进行可视化处理,见图7㊂综上所述,加味泽泻汤治疗梅尼埃病的关键活性成分为柚皮素㊁薯蓣皂苷元㊁豆甾醇和β-谷甾醇㊂同时也验证了PTGS2㊁HSP90AA1和ADRB2为其核心作用靶点㊂图5关键靶点GO富集分析图6关键靶点KEGG通路富集分析表4分子对接蛋白靶点结合能单位:kJ/mol 化合物编码PTGS2HSP90AA1ADRB2 beta-sitosterol MOL000358-11.38-21.59-17.66 nobiletin MOL005828-0.21-14.39-6.28 baicalein MOL002714-16.44-15.77-9.75 stigmasterol MOL000449-24.10-24.48-19.20 cavidine MOL002670-15.36-20.13-15.56 diosgenin MOL000546-29.15-24.60-23.51 naringetol MOL004328-17.20-31.17-10.59图7关键成分和靶点的结合模式图3讨论本研究通过网络药理学的研究方法,对加味泽泻汤治疗梅尼埃病的 中药-活性成分-靶点-疾病 网络进行了构建㊂加味泽泻汤的活性成分中,按照ȡ2倍Degree值中位数的条件进行筛选后发现,β-谷甾醇㊁柚皮素㊁薯蓣皂苷元㊁川陈皮素㊁黄芩素㊁豆甾醇和卡维丁等活性成分较为突出㊂β-谷甾醇是一种有机化合物,研究表明该物质具有抗炎及抗氧化自由基的作用[24]㊂一项针对大鼠的动物实验也表明,β-谷甾醇具有抗氧化作用及抑制炎症反应的作用[25]㊂柚皮素是广泛存在于芸香科植物中的一种二氢黄酮类化合物[26],该物质具有很强的抗炎和抗氧化作用㊂有研究发现,柚皮素可以降低白细胞介素-1β(IL-1β)㊁白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)基因的表达水平,改善细胞的炎症反应和细胞凋亡[27]㊂薯蓣皂苷元是重要的甾族皂苷元,是半合成甾族化合物的重要原料[28]㊂该物质可以通过抑制T淋巴细胞的激活,减少炎性因子的分泌㊂有研究表明,薯蓣皂苷元可由一种小的非编码RNA途径来调节机体氧化应激和细胞凋亡作用[29-30]㊂川陈皮素是一种多甲氧基黄酮化合物,目前研究证实该物质具有抑制炎症反应㊁抑制肿瘤细胞㊁保护神经及调节代谢等方面的功能[31-33]㊂黄芩素是一种存在于中药黄芩中的黄酮类成分,该物质具有抗氧化应激㊁抑制炎症反应㊁抗病毒以及神经保护作用[34-36]㊂豆甾醇是植物甾醇的典型代表,目前的研究发现豆甾醇具有抗氧化㊁抗肿瘤㊁抗炎等作用[37]㊂卡维丁是一种季铵碱类化合物,目前有研究表明该物质具有减少炎症反应[38]㊁抑制氧化应激[39]及抗病毒[40]等作用㊂总之,加味泽泻汤主要活性成分在治疗梅尼埃病时其发挥的功能主要集中在抑制炎症反应㊁抗病毒及抗氧化应激方面㊂梅尼埃病可能的病因之一为自身免疫因素导致由T淋巴细胞介导或自身免疫复合物循环沉积而产生的炎症反应[3]㊂且有大量临床研究发现,在梅尼埃病的急性期和缓解期均可发现典型的炎症反应特点[41]㊂在临床上对于梅尼埃病急性期病人,除使用前庭抑制剂及对症支持治疗外,口服及静脉给予糖皮质激素抗炎可显著改善病人的临床症状㊂但长期使用激素会出现诸多不良反应,且疗效下降㊂此外,病毒感染也是梅尼埃病发病的可能病因之一[3],因此,加味泽泻汤在治疗梅尼埃病时,不仅兼具抗炎和抗病毒作用,且在有效性和安全性方面也得到了验证[8],可能是除糖皮质激素外更加安全和有效的一种选择,具有良好的应用前景㊂根据加味泽泻汤活性成分对应靶点㊁梅尼埃病相关靶点PPI网络图绘制韦恩图,共得到加味泽泻汤治疗梅尼埃病相关靶点44个㊂利用网络拓扑学对各相关靶点属性值进行计算,按照大于Degree值2倍中位数进行筛选后共得到核心靶点排名前3位的是PTGS2㊁HSP90AA1㊁ADRB2,可能与梅尼埃病关系较为密切㊂环氧合酶是花生四烯酸代谢通路中关键限速酶,在炎症过程中表达上调[42]㊂环氧合酶-2可以催化花生四烯酸产生前列腺素等一系列炎性介质[43],并参与了各种炎性介质的产生和转化过程[44]㊂因此,抑制PTGS2可对炎症反应和氧化还原反应产生抑制作用[45]㊂HSP90AA1参与免疫应答反应,当体内存在生物致病因子时可以刺激机体细胞产生应激蛋白参与机体的防御功能㊂有研究表明,HSP90AA1在验证反应过程中发挥重要作用[46]㊂ADRB2即β2肾上腺素受体(β2-AR),可介导去甲肾上腺素诱导细胞分泌白细胞介素-10(IL-10),控制炎症[47],在人体的免疫细胞中存在有大量的ADRB2表达的β2-AR㊂针对人和鼠的研究发现,当刺激β2-AR时可以激活核苷酸结合寡聚化结构域蛋白2(NOD2)信号,从而增强了T细胞分化以及对炎症反应的调控[48]㊂结合上述分析,推测加味泽泻汤可能是通过抑制炎症反应途径发挥治疗梅尼埃病的作用㊂在对核心靶点进行GO注释分析中发现加味泽泻汤治疗梅尼埃病的作用靶点主要位于细胞膜上,主要与氧化应激反应等通路相关㊂KEGG富集分析结果表明,加味泽泻汤治疗梅尼埃病主要涉及的通路可能包括乙型肝炎㊁脂质和动脉粥样硬化㊁卡波西肉瘤相关疱疹病毒感染㊁人类免疫缺陷病毒1型(HIV-1)感染㊁弓形体病㊁结核㊁麻疹㊁Th17细胞分化㊁环磷腺苷(cAMP)信号通路㊁人巨细胞病毒感染㊁沙门氏菌感染㊁松弛素信号通路㊁致病性大肠杆菌感染等㊂其中, Th17细胞以分泌促炎因子白细胞介素-17(IL-17)为主,同时也分泌TNF-α㊁IL-6㊁白细胞介素-21(IL-21)㊁白细胞介素-22(IL-22)等[49]㊂IL-17等促炎因子可与相应受体结合,激活包括核因子-κB㊁丝裂原活化蛋白激酶(MAPK)和CAAT区/增强子结合蛋白(C/EBP)等在内的下游途径,导致抗菌肽㊁细胞因子和趋化因子的表达,参与炎症反应[50]㊂松弛素是由两条肽链组成的多肽类激素,现有研究认为该物质具有抗炎作用[51]㊂在一项针对炎症动物模型的研究中发现,松弛素可以通过释放一氧化氮从而导致肥大细胞释放组胺减少[52]㊂此外,松弛素亦能够减少炎性反应细胞进入受损器官[53-54]㊂梅尼埃病与炎症反应密切相关,因此,除上述两条与炎症的产生和发展密切相关的信号通路之外,如疱疹病毒感染㊁HIV-1感染㊁弓形体病㊁结核㊁麻疹㊁巨细胞病毒感染㊁沙门氏菌感染及大肠杆菌感染等外源性感染因素刺激人体,导致身体产生相应的炎症反应过程,这些炎症反应的产生和在体内的传播也可以成为导致梅尼埃病发生的诱因㊂脂质和动脉粥样硬化从根本上说也是一种慢性炎症反应,同样可能存在炎性因子的扩散㊂cAMP信号通路是最常见的信号通路之一,能够调节包括代谢㊁分泌㊁钙稳态㊁肌肉收缩㊁细胞活动及基因转录等多个生理过程㊂现代药理学研究亦表明,加味泽泻汤可以通过改善内耳中耳蜗血管纹细胞中相关蛋白的作用,使内淋巴液的分泌减少而吸收增加,从而起到改善膜迷路水肿的作用[8]㊂有研究认为,梅尼埃病内淋巴积水产生的原因和水通道蛋白表达功能失调存在关联性[55]㊂精氨酸加压素(A VP)-V2受体(V2R)-cAMP通路被发现是调控水通道蛋白2的主要通路,且在与多种内耳疾病的研究中发现该通路下游的多种作用因素均存在于内耳中[56]㊂目前建立标准梅尼埃病膜迷路积水豚鼠模型的方法也是基于上述通路[57]㊂因此,加味泽泻汤治疗梅尼埃病除涉及炎症通路之外,还可能与通过cAMP调控下游水通道蛋白的功能有关㊂泽泻汤出自医圣张仲景所著‘伤寒杂病论“一书,原文 心下有支饮,其人苦冒眩,泽泻汤主之 为治疗心下支饮所致之冒眩病证,现代多用于治疗由于风痰上扰或痰饮内盛所致的眩晕或脑供血不足等证㊂本研究中加味泽泻汤为泽泻汤原方加半夏白术天麻汤合方而成,半夏白术天麻汤亦为治疗风痰壅盛证的经典方剂,现代亦多用于治疗由于风痰上扰所致的高血压㊁高脂血症㊁眩晕及脑供血不足等㊂因此,将两个主治眩晕病的经典方剂相结合进行了临床研究,发现对梅尼埃病眩晕具有良好的临床疗效[8]㊂方中泽泻利水渗湿,白术燥湿健脾,气机升降相互协调从而使脾胃健运,水湿自去㊂茯苓合泽泻以增强利水渗湿之功,合白术则增强中焦脾胃运化之力;半夏㊁生姜降逆止呕,可以显著改善病人恶心呕吐的临床表现,合用陈皮增强化痰之力;天麻平息肝风㊁平抑肝阳,使风息则痰亦息,肝阳平则眩晕止㊂诸药合用,共奏息风化痰止眩之功㊂本研究基于网络药理学方法分析了加味泽泻汤可能通过多成分㊁多靶点和多通路机制治疗梅尼埃病,并利用分子对接的方法对这一结果进行了初步验证㊂加味泽泻汤治疗梅尼埃病的关键成分为β-谷甾醇㊁柚皮素㊁薯蓣皂苷元㊁川陈皮素㊁黄芩素㊁豆甾醇和卡维丁等,通过PTGS2㊁HSP90AA1和ADRB2等核心蛋白靶点发挥调控炎症反应㊁氧化应激反应及调控cAMP等方面的机制,减轻内淋巴积水,改善梅尼埃病症状㊂为了进一步提高研究结果的可靠性,后续将进一步进行实验研究以对本次研究结果进行验证㊂参考文献:[1]张伟宏,张艳枫,霍东增.梅尼埃病发作期的中医辨证论治[J].吉林中医药,2009,29(7):571-572.[2]FOSTER C A,BREEZE R E.Endolymphatic hydrops in Ménière'sdisease:cause,consequence,or epiphenomenon?[J].Otology& Neurotology,2013,34(7):1210-1214.[3]赵赫,杨艳平,蔡青,等.梅尼埃病内淋巴积水机理研究进展[J].中国耳鼻咽喉颅底外科杂志,2019,25(5):567-572.[4]中华耳鼻咽喉头颈外科杂志编辑委员会,中华医学会耳鼻咽喉头颈外科学分会.梅尼埃病诊断和治疗指南(2017)[J].中华耳鼻咽喉头颈外科杂志,2017,52(3):167-172.[5]杨湘君,朱立勤.甲磺酸倍他司汀致支气管痉挛[J].药物不良反应杂志,2016,18(6):462-464.[6]陈秋惠,杨宗辉,张颖,等.氟桂利嗪致药源性帕金森综合征24例[J].中国老年学杂志,2011,31(15):2983-2984.[7]艾霞,高强强.针刺并用丹红注射液治疗美尼尔氏病40例[J].长春中医药大学学报,2013,29(2):200-201.[8]赵赫,杨艳平,蔡青,等.加味泽泻汤联合敏使朗治疗痰湿型梅尼埃病[J].吉林中医药,2020,40(3):353-356.[9]刘志华,孙晓波.网络药理学:中医药现代化的新机遇[J].药学学报,2012,47(6):696-703.[10]RU J L,LI P,WANG J N,et al.TCMSP:a database of systemspharmacology for drug discovery from herbal medicines[J].Journal of Cheminformatics,2014,6:13.[11]JI Z L,ZHOU H,WANG J F,et al.Traditional Chinese medicineinformation database[J].Journal of Ethnopharmacology,2006,103(3):501.[12]LIU Z Y,GUO F F,WANG Y,et al.BATMAN-TCM:a bioinformaticsanalysis tool for molecular mechanism of traditional Chinesemedicine[J].Scientific Reports,2016,6:21146.[13]LI J S,ZHAO P,LI Y,et al.Systems pharmacology-baseddissection of mechanisms of Chinese medicinal formula BufeiYishen as an effective treatment for chronic obstructivepulmonary disease[J].Scientific Reports,2015,5:15290. [14]CONSORTIUM T U.UniProt:a worldwide hub of protein knowledge[J].Nucleic Acids Research,2019,47(D1):D506-D515. [15]OT ASEK D,MORRIS J H,BOUÇAS J,et al.Cytoscape automation:empowering workflow-based network analysis[J].Genome Biology, 2019,20(1):185.[16]SAFRAN M,DALAH I,ALEXANDER J,et al.GeneCards Version3:the human gene integrator[J].Database,2010,2010:baq020. [17]AMBERGER J S,BOCCHINI C A,SCHIETTECATTE F,et al.:Online Mendelian Inheritance in Man(OMIM ),anonline catalog of human genes and genetic disorders[J].NucleicAcids Research,2015,43(Database issue):D789-D798.[18]PIÑERO J,BRAVOÀ,QUERALT-ROSINACH N,et al.DisGeNET:a comprehensive platform integrating information on humandisease-associated genes and variants[J].Nucleic Acids Research, 2017,45(D1):D833-D839.[19]DAVIS A P,GRONDIN C J,JOHNSON R J,et al.The comparativetoxicogenomics database:update2019[J].Nucleic Acids Research, 2019,47(D1):D948-D954.[20]ZHOU Y Y,ZHOU B,PACHE L,et al.Metascape provides abiologist-oriented resource for the analysis of systems-leveldatasets[J].Nature Communications,2019,10(1):1523. [21]KIM S,CHEN J,CHENG T J,et al.PubChem2019update:improved access to chemical data[J].Nucleic Acids Research,2019,47(D1):D1102-D1109.[22]MORRIS G M,HUEY R,LINDSTROM W,et al.AutoDock4andAutoDockT ools4:automated docking with selective receptor flexibility [J].Journal of Computational Chemistry,2009,30(16):2785-2791.[23]BURLEY S K,BHIKADIYA C,BI C X,et al.RCSB Protein DataBank:powerful new tools for exploring3D structures of biologicalmacromolecules for basic and applied research and education infundamental biology,biomedicine,biotechnology,bioengineeringand energy sciences[J].Nucleic Acids Research,2021,49(D1):D437-D451.[24]姜平,魏凯,金晔华,等.基于数据挖掘及网络药理研究古方治疗强直性脊柱炎的用药规律及相关药理分析[J].天然产物研究与开发,2021,33(10):1769-1782.[25]RAMU R,SHIRAHATTI P S,NAYAKAVADI S,et al.The effect of aplant extract enriched in stigmasterol andβ-sitosterol onglycaemic status and glucose metabolism in alloxan-induceddiabetic rats[J].Food&Function,2016,7(9):3999-4011. [26]罗小玲,张丽,杨茂桦,等.柚皮素干预人牙周膜干细胞的成骨分化能力[J].中国组织工程研究,2022,26(7):1051-1056. [27]薛传优,徐璐,秦庆庆,等.柚皮素对脂多糖诱导的H9c2心肌细胞炎症和凋亡的作用机制研究[J].中国临床药理学杂志,2020,36(22):3635-3638.[28]王舒雨,睢超霞,王俊巍,等.薯蓣皂苷元的抗肿瘤药效学研究[J].河南预防医学杂志,2021,32(10):785-788.[29]张风霞,王新陆,高聆,等.薯蓣皂苷元的研究[J].吉林中医药,2013,33(1):75-77.[30]YANG Q N,WANG C Y,JIN Y,et al.Disocin preventspostmenopausal atherosclerosis in ovariectomized LDLR-/-micethrough a PGC-1α/ERαpathway leading to promotion ofautophagy and inhibition of oxidative stress,inflammation andapoptosis[J].Pharmacological Research,2019,148:104414. [31]WEI D,ZHANG G,ZHU Z,et al.Nobiletin inhibits cell viability via theSRC/AKT/STAT3/YY1AP1pathway in human renal carcinomacells[J].Frontiers in Pharmacology,2019,10:690. [32]LIN Z,WU D Y,HUANG L P,et al.Nobiletin inhibits IL-1β-inducedinflammation in chondrocytes via suppression of NF-κB signalingand attenuates osteoarthritis in mice[J].Frontiers in Pharmacology, 2019,10:570.。

基于网络药理学预测白藜芦醇治疗阿尔茨海默症的关键潜在靶点

基于网络药理学预测白藜芦醇治疗阿尔茨海默症的关键潜在靶点

基于网络药理学预测白藜芦醇治疗阿尔茨海默症的关键潜在靶点田晓燕 江思瑜 张睿 许顺江 李国风*【摘要】目的通过网络药理学预测白藜芦醇(resveratrol,RSV)治疗阿尔茨海默症(Alzheimer's disease,AD)的关键靶点。

方法 利用TCMSP数据库检索含RSV的中药,并对其性味、归经和功效进行归纳分析。

利用SwissTargetPrediction、SEA、HERB数据库预测RSV作用靶点;利用GeneCards、OMIM、TTD、DisGeNRT 数据库检索AD靶点;取RSV的作用靶点与AD靶点的交集为潜在治疗靶点。

利用DAVID数据库进行潜在治疗靶点的GO分析。

利用STRING数据库获取潜在治疗靶点的KEGG富集分析和蛋白质交互作用(protein-protein interaction, PPI),并用Cytoscape绘制PPI网络图。

AlzData数据库验证AD关键靶点变化。

SwissDock网站对RSV与关键蛋白进行分子对接。

结果含RSV中药的性味为苦味最多;归经中入肝经最多;功效中清热解毒功效最多。

RSV预测靶点388个,AD靶点1624个,交集靶点119个。

KEGG富集通路中的阿尔兹海默症通路共富集到27个蛋白。

AlzData数据库分析发现AD患者表达发生变化的蛋白。

分子对接结果发现,RSV与丝氨酸/苏氨酸激酶(serine/threonine kinase 1, AKT1)、白介素-6(interleukin-6, IL-6)、连环蛋白-1(β-catenin, CTNNB1)、肿瘤坏死因子(tumor necrosis factor, TNF)均有较好的结合能力。

结论网络药理分析结果显示RSV对AD的治疗是多靶点、多通路的,可为后续研究方向提供参考。

【关键词】 网络药理学;白藜芦醇;阿尔兹海默症;分子对接中图分类号 R285文献标识码 A 文章编号1671-0223(2023)24-1879-08Predicting the key potential targets of resveratrol in the treatment of Alzheimer's disease based on network pharmacology Tian Xiaoyan, Jiang Siyu, Zhang Rui, Xu Shunjiang, Li Guofeng. Chengde Medical University, Chengde 067000, China【Abstract】Objective Key targets of resveratrol (RSV) in the treatment of Alzheimer's disease (AD) are predicted by network pharmacology. Methods The traditional Chinese medicines which contain RSV were searched by the TCMSP database, and their property and flavor, meridian distribution and phamacologic action were summarized and analyzed. The targets of RSV were predicted by SwissTargetPrediction, SEA and HERB databases. The targets of AD were retrieved using GeneCards, OMIM, TTD and DisGeNRT databases. The intersection targets of RSV and AD were taken as the potential therapeutic targets.Analysis gene ontology (GO) annotations of potential therapeutic targets by biological information annotation database (DAVID). Did KEGG cluster analysis and protein interactions (PPIs) of potential therapeutic targets in STRING database, and mapped PPI networks in Cytoscape. Verified changes of AD key targets in AlzData database.Docking RSV and key proteins in SwissDock website. Results The most Tropism of taste of the traditional Chinese medicines that contain RSV: bitter, cold, in the liver. And the main phamacologic action is clearing away heat and toxic materials.There are 388 predicted targets of RSV,1624 targets of AD, 119 intersection targets. Alzheimer's pathway in KEGG enriched pathway was enriched to 27 proteins. The proteins which expression changed of AD patients was analysised in AlzData database. The results of molecular docking showed that RSV had good binding ability with AKT1, IL-6, CTNNB1 and TNF. Conclusion The results of network pharmacological analysis show that the treatment of AD by RSV is multi-target and multi-pathway, which can provide reference for subsequent research directions.【Key words】 Network pharmacology; Resveratrol; Alzheimer's disease; Molecular docking作者单位:067000 河北省承德市,承德医学院研究生学院 (田晓燕、李国风);河北医科大学第一医院中心实验室(江思瑜、张睿、许顺江);河北省疾病预防控制中心药物研究所(李国风)*通讯作者现代科学研究认为,阿尔兹海默症(Alzheimer disease,AD)是一种不可逆的退行性神经疾病,临床上多以记忆力障碍、执行能力障碍以及人格变化等为特征,是老年性痴呆的最主要因素。

基于网络药理学探讨二至丸治疗糖尿病脱发的作用机制

基于网络药理学探讨二至丸治疗糖尿病脱发的作用机制

·40·
中医药通报 2021 年 6 月 第 20 卷 第 3 期 TCMJ,Vol. 20,No. 3,Jun 2021
二至丸由滋补肝肾的女贞子、墨旱莲组成,后者 sapiens,最低互动分数为默认值(0.400),得到蛋白互
兼凉血止血之功,二者性平和、偏寒,等量(1∶1)配伍, 作网络 PPI 信息,将从 PPI 获得的信息 node1、node2、
脱发不仅影响美观更损害心理健康,研究发现脱 血,肝肾同源,精血互生,肝肾亏虚则发失所养;其二
发增加了患者焦虑和抑郁的概率[8]。因此,糖尿病合 为实,嗜食肥甘厚味使脾失运化,水液运行受阻而停
并脱发严重危害患者身体、心理健康,必须引起重视。 滞,郁而化热,湿热上蒸毛发使毛孔油腻堵塞可致脱
※基金项目 国家自然科学基金(No.81874416);湖南中医药 大学研究生创新课题资助项目(No.2019CX02);湖南中医药大 学中西医结合一流学科开放基金(No.2018ZXYJH01) ▲通讯作者 邓奕辉,女,教授,博士研究生导师。E-mail: 644138330@
的靶点输入,分别以 MHL、NZZ、Diabetic hair loss 代 蛋白 PPI 网络图,该图共有 48 个靶点,包含 48 个节点,
表,构建韦恩图,得到疾病与二至丸共同靶点。
394 条边,见图 2。由图及表可知,二至丸治疗糖尿病
1. 2. 4 构建共同靶点蛋白互作网络 将共同靶点导 脱发的重要靶标分别为:AKT 丝氨酸/苏氨酸激酶 1
置为“Homo sapiens”,剔除无靶点者,并通过 Uniprot 台取交集并绘制韦恩图,得到共同靶点 48 个,韦恩图
数据库使靶点名称规范化。
见图 1,具体共同靶点见表 2。

《Networkpharmaco...

《Networkpharmaco...

Chinese Journal of Natural Medicines 2015, 13(1): 0001−0002 doi: 10.3724/SP.J.1009.2015.00001Chinese Journal of Natural MedicinesNetwork pharmacology: A new approach to unveilingTraditional Chinese MedicineWU Xiao-Ming1, WU Chun-Fu21School of Pharmacy, China Pharmaceutical Uninersity, Nanjing 210009, China;2School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, ChinaAvailable online 20 Jan. 2015Traditional Chinese medicine (TCM) has thousands- years of history in using herbal formulae (Fang-Ji in Chi-nese) that consist of many medicinal herbs for holistic treatment of various disorders. Due to the complex nature rooted in both medicinal herbs and human body, the mechanisms of actions for most TCMs remain unclear, especially for those clinically effective herbal formulae. With the advent of the big data era in the biomedical and biopharmaceutical research and development, network phar-macology is coming as a systematic approach to shifting the current “one target, one drug” paradigm in drug discovery and development. The network pharmacology approach is capable of describing complex interactions among biological systems, drugs, and diseases from a network perspective, sharing a similar holistic thinking of TCM.Bringing together the ancient and evolving TCM and the newly developed network pharmacology gives birth to an exciting new interdisciplinary frontier, termed TCM network pharmacology (TCM-NP), which would promote TCM research and development in a systematic fashion. Among leading investigators in the field, Prof. Shao Li at Tsinghua University is regarded as a pioneer in this rapaid growing field. Based on ten-year explorations and re-searches in his laboratory, Li has recently published a com-prehensive review article in CJNM on the theory, method-ology, and application of TCM-NP [1], which has been re-corded in ESI as a "Highly Cited Paper". Additionally, Prof. Li was a leading scientist of the 86th Academic Salon on TCM Network Pharmacology, organized by China Associa-tion for Science and Technology and hosted by CJNM in October 2013. This successful meeting resulted in the first book in the research field of TCM-NP [2],in which Li serves as the leading editor, along with other eminent scientists as co-editors. As a leading Guest Editor, Li has also organized the special issue “Network Pharmacology in Traditional Chinese Medicine” in the journal Evidence-Based Comple-mentary and Alternative Medicine(ECAM)[3],an interna-tional scientific journal in the field.Recently, Li and colleagues have made new discovery in TCM-NP and published a cover article in Molecular Bio-Systems[4]. In this work, a systematic analysis has been created to understand how herbal medicine works and how anew indication of a given herbal formulae can be predicted. They have proposed a working hypothesis that many ingre-dients in an herbal formula can act on a “network target” and lead to the emergence of therapeutic effects. Based on the hypothesis, a network pharmacology analysis is per-formed to predict and calculate the target profiles, bioac-tive ingredients, responsive biological processes and po-tentially treatable diseases of a given herbal formula. They have illustrated the effectiveness of the method using the TCM formula Liu-wei-di-huang as an example, validating their predictive results through experimental data and lit-eratures. The study suggests that different groups of active ingredients of Liu-wei-di-huang can act on the networked targets underlying metabolic and immune disorders, nicely interpreting the traditional efficacy of “tonifying Yin” of this formula and the principle of “same treatment for dif-ferent diseases” in TCM. Their results further predict that this formula has a potential new indication of preventing the progress from inflammation to cancer. By combining measurements of network pharmacology and systems bi-ology, they also have made significant progress in identi-fying biomolecular and tongue-coating microbe network biomarkers related to metabolism-immune imbalance in chronic gastritis patients with typical Cold Syndrome or Hot Syndrome, a pair of typical Yin-Yang imbalance con-ditions in TCM [5-6]. These new data made the headlines in The Wall Street Journal with the title of “New data on ancient remedies” on November 4, 2014.With the continually growing and rapidly developing in the TCM-NP field, this novel approach is leading a promisingWU Xiao-Ming, et al. / Chin J Nat Med, 2015, 13(1): 1−2way to unveil the mystery of TCM, offering valuable insights into modern drug discovery and development. References[1] Li S, Zhang B. Traditional Chinese medicine network pharmacol-ogy: theory, methodology and application [J]. Chin J Nat Med,2013,11 (2): 110-120.[2] Li S, Wu CF, Zhang ZJ, et al. Network Pharmacology: A New W ayto the Modernization of Traditional Chinese Medicine [M]. Beijing, China: China Science and Technology Press, 2014.[3] Li S, Fan T, Jia W, et al. Network pharmacology in traditionalChinese medicine [J]. Evid-based Compl Alt,2014, 138460. [4] Liang X, Li H, Li S. A novel network pharmacology approachto analyse traditional herbal formulae: the Liu- wei-di-huangPill as a case study [J]. Mol BioSyst, 2014, 10 (5): 1014-1022. [5] Li R, Ma T, Gu J, et al. Imbalanced network biomarkers fortraditional Chinese medicine Syndrome in gastritis patients [J].Sci Rep, 2013, 3: 1543.[6] Jiang B, Liang X, Chen Y, et al. Integrating next-generationsequencing and traditional tongue diagnosis to determine tongue coating microbiome [J]. Sci Rep,2012, 2: 936.Cite this article as: WU Xiao-Ming, WU Chun-Fu. Network pharmacology: A new approach to unveiling Traditional Chinese Medicine [J]. Chinese Journal of Natural Medicines, 2015, 13 (1): 1-2.。

基于网络药理学及生物信息学研究骨碎补-淫羊藿治疗骨质疏松的作用机制

基于网络药理学及生物信息学研究骨碎补-淫羊藿治疗骨质疏松的作用机制

727中国骨质疏松杂志 2021年5月第27卷第5期 Chin J Osteoporos, May 2021,Vol 27, No. 5Published online doi :10. 3969/j.issn.l006-7108. 2021. 05.021-药物研究-基于网络药理学及生物信息学研究骨碎补-淫羊藿 治疗骨质疏松的作用机制陈锋1章晓云^2**陈跃平1李华南2甘斌2陈丁鹏2宋世雷1廖建钊1基金项目:国家自然科学基金项目(81760796,81960803);广西高校青年教师基础能力提升项目(2019KY0352);广西中医药大学2019年校级科研课题(2019QN027);广西中医药大学一流学科课题(2019XK029) ;2016年全国名老中医传承工作室建设项目(桂卫中医发|2016| 11 号);广西中医药大学岐黄工程培育项目(2018004)* 通信作者:章晓云,Email :zhangxiaoyun520@ 1. 广西中医药大学附属瑞康医院,广西南宁5300112. 江西中医药大学,江西南昌330004中图分类号:R274.9;R285.6文献标识码:A 文章编号:1006-7108(2021) 05-0727-08摘要:目的基于网络药理学和生物信息学探讨“骨碎补-淫羊藿”治疗骨质疏松的分子机制,为骨质疏松治疗提供新的靶 点。

方法 通过TCMSP 数据库筛选“骨碎补-淫羊藿”的活性成分,联合UniProt 数据库预测其调控靶点,并根据GEO 数据库预测治疗骨质疏松的靶点。

借助R 语言获取治疗骨质疏松的有效靶点,并构建“药物-成分-靶点-通路”网络。

利用Cytoscape软件构建蛋白互作网络,并对关键活性成分与关键靶点之间进行分子对接验证,利用DAVID 数据库对交集基因进行GO 和 KEGG 分析。

结果得到活性成分39个,治疗靶点17个。

蛋白互作网络中的核心靶点主要有ESR1、PRKDC 、HSPA8、EP3OO 和HSP90AA1。

基于网络药理学探讨花椒治疗阿尔茨海默病的分子机制

基于网络药理学探讨花椒治疗阿尔茨海默病的分子机制

中药与临床尸and C/zm’cs Mfl纪ncr A/ed/ca 2020; 11 (6).31 ••药理毒理•基于网络药理学探讨花椒治疗阿尔茨海默病的分子机制段胡欣悦,张青,李若兰,刘佳,任婕,彭伟,吴纯洁[摘要]目的:通过网络药理学方法探讨花椒治疗阿尔茨海默病的分子作用机制。

方法:使用多种在线数据库预测花椒潜在的有效成分和靶点,使用Cytoscape 3.6.1软件构建活性成分-靶点网络,通过GeneCards数据库获取阿尔茨海默病的相关把点,取药物和疾病的共同把点,在String平台上构建蛋白质相互作用网络(PPI),然后使用Cytoscape 3.6.1软件可视 化,再通过Metascape数据库对靶点进行KEGG和GO富集分析。

结果:共筛选出18个花椒的有效活性成分,118个潜在的药物靶点和1095个疾病靶点,两种靶点进行映射有44个共同靶点;花椒-活性成分-靶点-AD网络分析表明,P-谷甾醇、槲皮素、羟基-a-山椒素、羟基个山椒素等化合物为潜在活性成分,AKT1、EGFR、SRC、ESR1、KDR、AR、PIK3R1、MMP2等是关键靶点,主要涉及PI3K-Akt信号通路、Rapl信号通路、癌症信号通路、内分泌治疗等。

结论:本研究从网络药理学方面初步探讨了花椒治疗阿尔茨海默病多成分、多靶点、多通路的作用机制,为花椒的临床应用提供一定的参 考,同时为阿尔茨海默病的治疗研究提供理论依据。

[关键词]阿尔茨海默病;花椒;网络药理学;分子机制[中图分类号]R285.5 [文献标识码]A [文章编号]1674-926X(2020)06-008-06Investigating the molecular mechanism of Huajiao in treating Alzheimer disease based on network pharmacology / DUAN Hu-xin-yue, ZHANG Qing, LI Ruo-Ian, LIU Jia, REN Jie, PENG Wei, WU Chun-jie//(School o f Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan)[Abstract) Objective: To investigate the molecular mechanism of Huajiao in the treatment of Alzheimer disease using network pharmacology. Method: A variety of public databases were used to obtain the potential active components and targets of Huajiao. Cytoscape 3.6.1 software was used to construct the active component-target network. GeneCards database was used to obtain the relevant targets of A lzheimer disease. After taking the cross targets of drugs and diseases, the protein-protein interaction (PPI) network was constructed in the STRING website, and the result was visualized by the Cytoscape 3.6.1 software. Then gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were analyzed by Metascape database. Result: A total of 18 active components, 118 potential drug targets and 1095 disease targets of Huajiao were screened, and 44 cross targets were obtained. The analysis of Huajiao - active component - target - disease network showed that p-sitosterol, quercetin, hydroxy-a-Sanshool, and hydroxy-y-Sanshool etc. were the main active components, and AKT1, EGFR, SRC, ESR1, KDR, AR, PIK3R1, and MMP2 etc. were key targets. Based on GO and KEGG analysis, cancer signaling pathway, Rapl signaling pathway, Endocrine resistance, and PI3k-Akt signaling pathway etc. were involved. Conclusion: This study preliminarily explores the mechanism of multi-component, multi-target, multi-channel of Huajiao in treating Alzheimer disease by network pharmacology to provide a certain reference for the clinical application of Huajiao, and provide theoretical basis for the treatment of A lzheimer disease.[Key words) Alzheimer disease; Huajiao; network pharmacology; molecular mechanism阿尔茨海默病(Alzheimer disease,AD)是一种影响大脑皮层神经元和海马区的慢性进行性神经退 行性疾病,主要表现为记忆丧失,智力减退和认知[作者单位]成都中医药大学药学院,四川成都610075[作者简介]段胡欣悦,在读硕士研究生,主要从事中药炮制 研究Tel:138****5746Emai 1:duanhxy @stu. c dutcm. e [通讯作者]吴纯洁,研究员,主要从事中药炮制制剂技术及 质量评价研究Tel:138****7243Email:*****************[收稿日期]2〇20-08-07功能障碍,更有甚者会出现人格改变等问题[U]。

基于网络药理学及分子对接技术探讨黄芪甲苷治疗骨质疏松的作用机制研究

基于网络药理学及分子对接技术探讨黄芪甲苷治疗骨质疏松的作用机制研究

Hans Journal of Medicinal Chemistry 药物化学, 2023, 11(3), 204-211 Published Online August 2023 in Hans. https:///journal/hjmce https:///10.12677/hjmce.2023.113025基于网络药理学及分子对接技术探讨黄芪甲苷治疗骨质疏松的作用机制研究范志梁1,刘贵珍1,陈雨佳2,顾春松3,李 倩4,姜 特1,李 文4,李来来4,陈云志4, 柴艺汇4*1贵州中医药大学药学院,贵州 贵阳 2安顺市中医院皮肤科,贵州 安顺 3贵州中医院大学第二临床医学院,贵州 贵阳 4贵州中医药大学基础医学院,贵州 贵阳收稿日期:2023年7月10日;录用日期:2023年7月24日;发布日期:2023年8月17日摘 要目的:采用网络药理学及分子对接方法探讨黄芪甲苷治疗骨质疏松的作用机制。

方法:通过文献研究及Swiss 数据库筛选得到黄芪甲苷活性成分并分析相关作用蛋白靶点,借助OMIM 、GeneCards 、DRUG BANK 、DisGeNet 等数据库分析骨质疏松基因靶点,并取交集;借助STRING 数据库及Cytoscape 软件构建PPI 网络关系并得到黄芪甲苷干预骨质疏松关键靶点;借助metascape 数据库进行生物富集分析;使用autodock 软件进行核心化合物–蛋白分子对接。

结果:得到黄芪甲苷涉及268个蛋白靶点,其中与骨质疏松相关核心靶点为ALB 、IGF1、SRC 、ESR1等;在分子对接实验中,Affinity 平均值为−6.49 kcal·mol −1,最小值为−13.46 kcal·mol −1证明黄芪甲苷与核心蛋白有较大结合能;KEGG 富集分析结果显示关键通路为AGE-RAGE signaling pathway 、FoxO signaling pathway 、PI3K-Akt signaling pathway 等。

基于网络药理学探讨柴胡-白术药对治疗阿尔茨海默病的作用机制

基于网络药理学探讨柴胡-白术药对治疗阿尔茨海默病的作用机制

基于网络药理学探讨柴胡-白术药对治疗阿尔茨海默病的作用机制金士杰1,赵凰宏1,关东升1,马振2,宋甜甜1,王晓静1摘要目的:基于网络药理学方法探讨柴胡-白术药对治疗阿尔茨海默病的作用机制㊂方法:通过TCMSP平台筛选出柴胡㊁白术的活性成分及靶点,挖掘GeneCards等数据库与阿尔茨海默病的相关靶点,并利用Cytoscape3.7.1软件构建药物-有效成分-靶点网络图,利用CytoNCN进行网络拓扑分析,找到柴胡-白术药对治疗阿尔茨海默病的关键靶点,进行蛋白-蛋白互作(PPI)网络及活性成分-阿尔茨海默病作用靶点网络的构建㊂采用基因本体(GO)功能富集分析和京都基因与基因组百科全书(KEGG)通路富集分析柴胡-白术药对治疗阿尔茨海默病的潜在作用机制㊂结果:共获得16种主要活性成分㊁167个化合物靶点㊁8730个与阿尔茨海默病发病相关的靶基因㊂利用网络拓扑分析最终筛选出40个关键靶点,GO富集分析得到313条信号条目,KEGG富集分析得到104条信号通路㊂结论:初步验证和预测柴胡-白术药对治疗阿尔茨海默病多成分㊁多靶点㊁多途径的作用特点,为进一步探讨其作用机制提供思路与参考㊂关键词阿尔茨海默病;柴胡-白术;网络药理学;靶点;作用机制d o i:10.12102/j.i s s n.1672-1349.2023.20.007The Mechanism of Bupleurum-Atractylodes in the Treatment of Alzheimer's Disease Based on Network PharmacologyJIN Shijie,ZHAO Huanghong,GUAN Dongsheng,MA Zhen,SONG Tiantian,WANG XiaojingHenan University of Chinese Medicine,Zhengzhou450046,Henan,ChinaCorresponding Author GUAN Dongsheng,E-mail:**************Abstract Objective:To explore the mechanism of Bupleurum-Atractylodes in the treatment of Alzheimer's disease based on network pharmacology.Methods:The active components and targets of Bupleurum and Atractylodes were screened out by TCMSP platform,the related targets of GeneCards database and Alzheimer's disease were mined,and drug-active ingredient-target network diagram were constructed using the Cytoscape3.7.1software.The key targets of Bupleurum-Atractylodes in the treatment of Alzheimer's disease were found by the network topology analysis using CytoNCN.The construction of protein-protein interactions(PPI)network and active ingredient-Alzheimer's disease action target network were constructed.Gene Ontology(GO)functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment were used to analyze the potential mechanism of Bupleurum-Atractylodes in the treatment of Alzheimer's disease.Results:A total of16main active ingredients,167compound targets,and8730 target genes associated with the development of Alzheimer's disease were obtained.Forty key targets were finally screened using network topology analysis,and313signaling entries were obtained from GO function enrichment analysis and104signaling pathways from KEGG pathway enrichment analysis.Conclusion:The preliminary validation and prediction of the action characteristics of Bupleurum-Atractylodes in the treatment of Alzheimer's disease with multi-components,multi-targets,and multi-pathways were achieved,which provided ideas and references for further exploring its mechanism.Keywords Alzheimer's disease;Bupleurum-Atractylodes;network pharmacology;target;mechanism of action阿尔茨海默病又称老年性痴呆,临床以认知功能基金项目河南省中医药拔尖人才培养项目专项课题(No. 2019ZYBJ11);全国中医药创新骨干人才培训项目,编号: 2019 128;河南省卫健委,河南省中医药科学研究专项课题(No.2021JDZX2059);河南省中医院(河南中医药大学第二附属医院)博士科研基金项目(No. 2022BSJJ10)作者单位 1.河南中医药大学(郑州450046);2.河南中医药大学第一附属医院通讯作者关东升,E-mail:**************引用信息金士杰,赵凰宏,关东升,等.基于网络药理学探讨柴胡-白术药对治疗阿尔茨海默病的作用机制[J].中西医结合心脑血管病杂志, 2023,21(20):3717-3723.缺损㊁精神情感障碍等为主要表现,属于不可逆性神经系统退行性疾病㊂现代医学关于阿尔茨海默病的病理机制研究尚未统一定论,多数认为其可能涵盖Tau蛋白的异常表达㊁神经细胞的凋亡㊁基因的遗传关联等多方面㊂随着老龄化时代的到来,阿尔茨海默病发病率不断增长[1],预计2030年全球阿尔茨海默病病人将达到6570万例[2]㊂然而阿尔茨海默病无法治愈,严重影响病人生存和生活质量,因此,亟须寻求新思路和新方法满足临床需求㊂随着现代生物-心理-社会医学模式普及,有研究显示,长期感知负性情绪可加速认知衰老的进程,是导致阿尔茨海默病的重要病因[3]㊂柴胡㊁白术始载于‘神农本草经“,二者是临床用于疏肝健脾㊁调畅情志的经典配伍药对㊂有研究显示,柴胡㊁白术具有抗衰老㊁抗肿瘤㊁抗炎㊁调节内分泌的重要功能,是防治阿尔茨海默病的主要中药[4-5]㊂侯俊林等[6]运用以 柴胡-白术 药对为主的逍遥丸,对肝郁型轻度认知功能障碍进行药物干预,结果显示,用药后病人学习记忆成绩显著改善㊂网络药理学描述了中药与靶点㊁疾病等不同作用机制之间的复杂关系,可作为成分复杂㊁靶点众多中药及方剂的重要研究工具,与中医 整体观念 一致㊂现阶段运用网络药理学方法验证柴胡-白术治疗阿尔茨海默病的作用机制临床研究报道较少,限制了中药多成分㊁多靶点㊁多途径机制的研究新视角㊂本研究通过中药系统药理学数据库与分析平台(TCMSP)㊁GeneCards㊁STRING平台等,对柴胡-白术治疗阿尔茨海默病作用活性成分-靶点网络进行可视化分析,进而探讨该药对治疗阿尔茨海默病的作用机制,并采用DAVID平台进行基因本体(GO)功能富集分析和京都基因与基因组百科全书(KEGG)通路富集分析,以期为探讨柴胡-白术治疗阿尔茨海默病的作用机制提供新思路㊂1资料与方法1.1柴胡-白术药对活性成分收集和成分-靶点网络的构建利用TCMSP(/tcmsp.php)查找柴胡-白术的活性成分及与活性成分相关的潜在靶点㊂在UniProt数据库(https:///)中,将靶点物种限定为人,检索所有靶点蛋白的官方名称㊂将柴胡-白术药对活性成分和对应靶点导入Cytoscape3.7.1,构建药物成分-靶点网络图㊂1.2柴胡-白术药对活性成分治疗阿尔茨海默病的蛋白-蛋白互作(PPI)网络构建登录GeneCards(https:///)数据库,在检索框中输入 Alzheimer disease ,得到阿尔茨海默病的人类基因㊂将疾病靶基因和柴胡-白术药对有效成分对应靶基因运用R3.6.2程序进行对接,找到柴胡-白术药对治疗阿尔茨海默病机制中发挥作用的靶基因㊂之后将这些靶点输入STRING数据库(https:///cgi/input.pl),并运用CytoNCN 对网络中所有靶点进行拓扑分析,共筛选出40个关键靶标,最后通过Cytoscape3.7.1软件绘制柴胡-白术药对治疗阿尔茨海默病关键靶点的PPI网络图㊂1.3柴胡-白术药对活性成分与阿尔茨海默病作用靶点的网络构建将得到的40个关键靶标和柴胡-白术药对有效成分,通过Cytoscape3.7.1构建药物-分子-关键靶标网络㊂1.4柴胡-白术药对治疗阿尔茨海默病作用靶点的GO功能富集和KEGG通路富集分析使用DAVID(/)数据平台对得到的40个关键靶标进行GO功能富集分析和KEGG通路富集分析,以P<0.05作为筛选条件㊂2结果2.1柴胡-白术药对活性成分收集和成分-靶点网络的构建经过TCMSP收集得到柴胡的活性成分349种㊁白术的活性成分55种,根据口服生物利用度(OB)ȡ30%及类药性(DL)ȡ0.18,同时去掉重复成分,筛选出柴胡-白术药对的有效化合物成分共24种㊂通过UniProt数据库对24种活性成分进行对应靶点基因检索,其中将具有靶标的16种化合物(见表1)的294个基因进行去重处理,余167个靶基因,并将柴胡-白术16个活性成分及167个靶基因导入Cytoscape3.7.1软件中,构建药物-活性成分-靶点网络图(见图1)㊂柴胡活性成分-靶点网络包括185个节点㊁310条边,其中粉紫色为167个靶基因节点和黄色为16个活性化合物节点[柴胡(绿色)12个,白术(蓝色)4个]㊂根据化合物与靶基因关联的度值(Degree值),认为槲皮素㊁山柰素㊁豆甾醇㊁异鼠李素㊁3β-乙酸化苍术酮等可能是该药对发挥主要作用的活性成分㊂表1柴胡-白术药对含有的16种活性成分TCMSP编号化合物英文名称化合物中文名称OB(%)DL Degree值MOL001645linoleyl acetate乙酸芳樟酯42.100.205 MOL000449stigmasterol豆甾醇43.830.7627 MOL000354isorhamnetin异鼠李素49.600.3125 MOL000422kaempferol山柰素41.880.2451 MOL0045983,5,6,7-tetramethoxy-2-(3,4,5-trimethoxyphenyl)chromone色酮苷31.970.599 MOL004609areapillin茵陈黄酮48.960.4110 MOL013187cubebin过荜澄茄素57.130.644 MOL004624longikaurin A长贝壳杉素A47.720.534(续表)TCMSP 编号 化合物英文名称化合物中文名称OB (%)DL Degree 值MOL 004653(+)-anomalin (+)-川白芷内酯46.060.663MOL 004718α-spinasterol α-菠菜甾醇42.980.764MOL 000098quercetin 槲皮素46.430.28136 MOL 000490petunidin牵牛花色素30.050.318MOL 0000728β-ethoxy atractylenolide Ⅲ8β-乙氧基白术内酯Ⅲ35.950.215MOL 0000493β-acetoxyatractylone 3β-乙酸化苍术酮54.070.2213MOL 000033(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl -17-[(2R,5S)-5-propan -2-yloctan -2-yl ]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro -1H -cyclopenta [a ]phenanthren -3-ol 菲-3-ol 36.230.782MOL 00002214-acetyl -12-senecioyl -2E,8Z,10E -atractylentriol 白术三醇63.370.302图1 柴胡-白术药对活性成分-基因靶点网络图2.2 柴胡-白术药对活性成分治疗阿尔茨海默病PPI 网络及活性成分-阿尔茨海默病作用靶点的网络构建通过GeneCards 收集到与阿尔茨海默病相关的靶基因8730个,之后将疾病靶基因和柴胡-白术有效成分对应的167个靶基因运用R3.6.2程序进行对接,找到柴胡-白术治疗阿尔茨海默病机制中发挥作用的靶基因138个㊂将这些潜在靶标输入STRING 数据库,将物种限定为 Homo sapiens ,探寻靶基因相互间的作用关系,并进行可视化分析(见图2)㊂其次,将STRING 生成的文件输入Cytoscape 3.7.1,运用CytoNCN 对网络中所有靶点进行拓扑分析,满足每个靶点的Degree 值㊁接近中心度(betweenness )㊁介度中心度(closeness )等拓扑参数值大于中位数,筛选出40个基因作为关键靶点[7],绘制出柴胡-白术药对-阿尔茨海默病关键靶点的PPI 网络图(见图3),共40个节点㊁493条边㊂Degree 值代表该靶点在网络节点中需要承载的流量,即数值越大提示流量越大,居前10位分别为蛋白激酶B (AKT1)㊁丝裂原活化蛋白激酶1(MAPK1)㊁半胱氨酸蛋白酶3(CASP3)㊁白细胞介素-6(IL -6)㊁血管内皮生长因子A (VEGFA )㊁转录因子c -JUN N -末端激酶1/2(JNK )㊁癌基因(MYC )㊁表皮生长因子(EGF )㊁丝裂原活化蛋白激酶8(MAPK8)㊁核磷蛋白FOS (FOS )可能是该药对的主要调控对象㊂将上述40个关键靶点和柴胡-白术药对分子之间的相互关系通过Cytoscape 3.7.1进行可视化分析,构建 药物-分子-关键靶标 网络(见图4),9个活性成分与40个关键靶点之间的相互作用反映了柴胡-白术药对治疗阿尔茨海默病有效成分的多靶点作用机制,其中,槲皮素介数最高,可作用于33个核心靶基因,是柴胡-白术药对治疗阿尔茨海默病的主要成分㊂图2柴胡-白术药对-阿尔茨海默病的作用靶点交互网络图图3柴胡-白术药对-阿尔茨海默病的关键靶点交互网络图图4 药物-成分-关键靶点 交互网络图2.3柴胡-白术药对治疗阿尔茨海默病作用靶点的GO功能富集分析使用DAVID平台对40个关键靶标进行GO功能富集分析,按照P<0.05得到313条信号相关条目,其中19条细胞组分信号通路㊁241条生物过程信号通路及53条分子功能通路㊂选取20条密切的通路功能信息,详见表2㊂细胞组分方面,主要与细胞质有关,活性成分主要富集在转录因子结合㊁酶结合㊁蛋白质结合㊁相同蛋白结合㊁蛋白激酶活性等分子功能中;生物过程方面,主要通过RNA聚合酶Ⅱ启动子转录的正调控㊁凋亡过程的负调控㊁DNA模板转录正调控㊁对有机环状化合物的细胞反应㊁细胞增殖正调控㊁脂多糖介导的信号通路㊁肽基丝氨酸磷酸化㊁药物反应㊁血管内皮细胞迁移的阳性调节㊁基因表达的阳性调控㊁MAPK梯级㊁炎症反应等多个机制发挥治疗阿尔茨海默病的作用㊂表2柴胡-白术药对治疗阿尔茨海默病作用靶点的GO功能富集分析类别编号GO功能输入量P 生物过程GO:0045944positive regulation of transcription from RNA polymeraseⅡpromoter21<0.001 GO:0043066negative regulation of apoptotic process14<0.001GO:0045893positive regulation of transcription,DNA-templated14<0.001GO:0008284positive regulation of cell proliferation12<0.001GO:0042493response to drug10<0.001GO:0006954inflammatory response10<0.001GO:0010628positive regulation of gene expression9<0.001GO:0000165MAPK cascade9<0.001GO:0018105peptidyl-serine phosphorylation8<0.001GO:0071407cellular response to organic cyclic compound7<0.001GO:0031663lipopolysaccharide-mediated signaling pathway6<0.001GO:0035994response to muscle stretch5<0.001GO:0060749mammary gland alveolus development5<0.001GO:0043536positive regulation of blood vessel endothelial cell migration5<0.001分子功能GO:0005515protein binding37<0.001 GO:0042802identical protein binding13<0.001GO:0008134transcription factor binding12<0.001GO:0019899enzyme binding12<0.001GO:0004672protein kinase activity10<0.001细胞组分GO:0005829cytosol24<0.0012.4柴胡-白术药对治疗阿尔茨海默病作用靶点的KEGG通路富集分析将40个关键靶标导入DAVID平台进行KEGG通路富集分析㊂按照P<0.05筛选出104条信号通路,选取20条与阿尔茨海默病密切相关的重要通路㊂除了存在阿尔茨海默病通路外,还涉及癌症途径㊁乙型肝炎㊁NOD样受体信号通路㊁Toll样受体信号通路㊁缺氧诱导因子-1(HIF-1)信号通路㊁ErbB信号通路㊁丝裂原活化蛋白激酶(MAPK)信号通路㊁磷脂酰肌醇3-激酶(PI3K)-AKT信号通路㊁胶质瘤㊁神经营养素信号通路㊁叉头蛋白表达因子O(FOXO)信号通路㊁细胞凋亡㊁胰岛素抵抗㊁多巴胺能突触㊁胆碱能突触㊁钙信号通路㊁5-羟色胺能突触㊁长期抑郁等通路㊂详见表3㊂柴胡-白术药对可能主要通过上述通路对阿尔茨海默病发挥作用㊂表3柴胡-白术药对治疗阿尔茨海默病作用靶点的KEGG通路富集分析编号KEGG通路载入量P hsa05200pathways in cancer28<0.001 hsa05161hepatitis B20<0.001 hsa04668TNF signaling pathway16<0.001 hsa04621NOD-like receptor signaling pathway12<0.001 hsa04620Toll-like receptor signaling pathway14<0.001 hsa04066HIF-1signaling pathway13<0.001 hsa04012ErbB signaling pathway12<0.001 hsa04010MAPK signaling pathway16<0.001 hsa04151PI3K-AKT signaling pathway16<0.001 hsa05214glioma9<0.001 hsa04722neurotrophin signaling pathway10<0.001 hsa04068FOXO signaling pathway10<0.001 hsa04210apoptosis7<0.001 hsa04931insulin resistance8<0.001 hsa04728dopaminergic synapse7<0.001 hsa04725cholinergic synapse6<0.001 hsa05010Alzheimer's disease50.0145 hsa04020calcium signaling pathway50.0179 hsa04726serotonergic synapse40.0245 hsa04730long-term depression30.04513讨论中医学根据阿尔茨海默病的认知功能减退及人格㊁行为改变等典型症状,将其归属于 痴呆 的范畴,认为该病的发生㊁发展与情辨志关系密切,肝气郁结㊁脾胃亏虚是重要病机之一㊂‘辨证录㊃呆病门“有云:然而呆病之成,必有其因,大约其始也,起于肝气之郁;其终也,由于胃气之衰 ㊂‘滇南本草“记载: 柴胡,味苦,性微寒,阴中阳也㊂入肝㊁胆二经 ㊂‘药品化义“中言: 白术 性气与味俱厚,入脾胃三焦三经 ㊂柴胡-白术是临床经典的配伍药对,二者合用具有疏解肝气㊁健运脾胃之功效㊂有研究显示,以 柴胡-白术 为主配伍的方剂,具有减轻自由基氧化损害㊁调节中枢胆碱能神经元和单胺类神经元活性的重要作用,是临床防治阿尔茨海默病的主要方剂之一[8]㊂侯俊林等[6]运用逍遥丸对痴呆临床前期中老年病人进行药物干预,结果显示,用药后DNA的氧化损伤较用药前明显改善㊂柴胡-白术药对的 化合物-靶点 网络分析中,槲皮素对应的关键靶标最多,说明其是该药对防治阿尔茨海默病的主要成分㊂现代研究显示,槲皮素具有抗氧化㊁抗炎㊁保护神经元㊁平衡钙稳态和提高突触间传递的作用,可治疗神经系统退行性病变[9-10]㊂本研究通过对该药对关键靶点的筛选,发现其有效化合物成分主要通过AKT1㊁MAPK1㊁CASP3㊁IL-6㊁VEGFA㊁JUN㊁MYC㊁EGF㊁MAPK8㊁FOS等靶点改善认知功能㊂MAPK1和MAPK8是MAPK信号转导途径中的重要分子,可激活MAPK磷酸化和Bcl-2磷酸化途径,通过Tau的过度磷酸化和淀粉样蛋白-β(Aβ)肽在液泡中的积累,产生细胞内神经纤维缠结和神经元细胞死亡[11-12]㊂有研究显示,脑血流改变是阿尔茨海默病早期突出的持续性变化,VEGFA mRNA表达可影响神经元㊁星形胶质细胞和内皮细胞表达,EGF可防止Aβ诱导的体外对脑内皮细胞损害,若二者表达异常可能增加罹患阿尔茨海默病的风险[13]㊂AKT1㊁CASP3㊁IL-6㊁JUN等基因及MYC㊁FOS等参与氧化应激㊁炎症反应等生物过程,均在细胞凋亡㊁细胞增殖及细胞迁移等多种细胞过程中发挥着重要的调节作用[14-17]㊂GO功能富集分析结果显示,柴胡-白术药对的活性成分可能主要通过转录因子结合㊁蛋白激酶活性㊁细胞增殖正调控㊁肽基丝氨酸磷酸化㊁血管内皮细胞迁移的阳性调节㊁MAPK梯级㊁炎症反应等多机制发挥治疗阿尔茨海默病的作用㊂KEGG富集通路除了包括阿尔茨海默病通路㊁胆碱能突触㊁钙信号通路㊁5-羟色胺能突触等常见通路外,同时发现了多条重要通路,其中癌症的途径通路㊁MAPK信号通路值得关注㊂痴呆和癌症是人口老龄化的病理产物,极大影响了人们的生存质量,二者存在相互冲突的现象,即癌症以不受控制的细胞增殖为特征,进行性神经元死亡提示着神经退行性变㊂相关研究团队检索138个与阿尔茨海默病㊁癌症相关的基因,发现124个在细胞代谢过程中紧密相连,选择性自噬接头蛋白(SQTM1)㊁泛素竣基末端水解酶(UGHL1)㊁分子伴侣蛋白(STUB1)㊁表皮生长因子受体(EGFR)等9个基因在二者疾病中呈显著相关[18]㊂有研究对神经胶质瘤和阿尔茨海默病的miRNA表达数据库分析后发现,has-miR-106a㊁has-miR-20b㊁has-miR-424等13个miRNA中有12个出现反向表达模式[19]㊂因此,可能需要在阿尔茨海默病群体中研发特定癌症药物或在癌症病人中运用特定的治疗阿尔茨海默病药物㊂本研究结果显示,MYC㊁FOS㊁AKT1及游离DNA EGFR等与胶质瘤㊁乳腺癌等多个途径关系密切,均是柴胡-白术药对治疗阿尔茨海默病的关键靶标,且EGFR也是Cristina研究团队检索结果中阿尔茨海默病和癌症显著相关的基因之一,柴胡㊁白术也是癌症治疗常用药[20-21]㊂推测柴胡-白术药对治疗癌症和阿尔茨海默病具有 异病同治 的双向调节功效㊂因此,探讨癌症与阿尔茨海默病之间看似冲突疾病的干预机制,可能为今后新药研发㊁临床研究提供了方向㊂无论是关键靶标还是富集结果,MAPK信号通路均与阿尔茨海默病有密切联系㊂ERK1/2㊁c-JUN 和p38-MAPK是MAPK信号通路主要组成部分,激活信号通路在阿尔茨海默病发生发展中具有重要作用㊂其中的MAPK/ERK通路可在纤维状Aβ诱导下持续激活,引起Tau蛋白的异常磷酸化㊁神经突的变性及神经元细胞凋亡,进而影响学习记忆能力[22]㊂因此,认为柴胡-白术治疗阿尔茨海默病的调节是通过多途径实现的㊂综上所述,基于网络药理学技术探讨柴胡-白术药对治疗阿尔茨海默病的复杂机制,柴胡-白术药对多成分作用于相关靶点及通路,从而发挥治疗作用㊂本研究存在一定的局限性:中药复方中其他中药成分对该药对的活性成分差异产生影响㊁过滤掉的药物成分作用贡献及上述提及的该药对治疗癌症与阿尔茨海默病机制的关联性等尚未明确,本研究结果有待后续实验进一步验证㊂参考文献:[1]HUANG K L,MARCORA E,PIMENOVA A A,et al.A commonhaplotype lowers PU.1expression in myeloid cells and delaysonset of Alzheimer's disease[J].Nature Neuroscience,2017,20(8):1052-1061.[2]贾皓,庞晓丛,赵赢,等.远志治疗阿尔茨海默病的网络药理学作用机制[J].中国新药杂志,2018,27(4):398-404.[3]关徐涛,詹向红,王冰.情志失常-肝失疏泄致衰说[J].时珍国医国药,2015,26(9):2208-2209.[4]李佳瑛,景永帅,张丹参.白术在老年痴呆与认知障碍相关疾病的药理作用[J].中国药理学与毒理学杂志,2019,33(6):468-469. [5]李娟,姚遥,洪洲,等.黑柴胡提取物对老年痴呆小鼠模型认知功能和脑内神经炎症的作用研究[J].陕西中医,2018,39(12):1671-1673.[6]侯俊林,詹向红,孙前明,等.疏肝法对肝郁型MCI患者认知功能㊁尿8-OHdG及血浆SOD和LPO的影响[J].中国中医基础医学杂志,2017,23(8):1102-1104;1128.[7]任爽,倪力强,孟迪,等.基于网络药理学探讨黄柏-透骨草治疗类风湿关节炎的机制[J].中国新药与临床杂志,2019,38(12):757-766.[8]吴红彦,王虎平,王彩霞.黑逍遥散对老年性痴呆的防治作用及其机制研究[J].时珍国医国药,2011,22(4):912-913.[9]DENNY JOSEPH K M.Enhanced neuroprotective effect of fish oilin combination with quercetin against3-nitropropionic acidinduced oxidative stress in rat brain[J].Progress in Neuro-Psychopharmacology and Biological Psychiatry,2013,40:83-92.[10]XU S,ZHU K,BI C,et al.Flavonoids induce the expression ofsynaptic proteins,synaptotagmin,and postsynaptic densityprotein-95in cultured rat cortical neuron[J].Planta Medica,2013,79(18):1710-1714.[11]GUGLIELMOTTO M,MONTELEONE D,PIRAS A,et al.Aβ1-42monomers or oligomers have different effects on autophagy andapoptosis[J].Autophagy,2014,10(10):1827-1843.[12]涂冬萍,马小军,莫长明,等.FOS蛋白的研究进展及生物信息学分析[J].湖北农业科学,2015,54(7):1537-1542.[13]THOMAS R,ZUCHOWSKA P,MORRIS A W,et al.Epidermalgrowth factor prevents ApoE4and amyloid-beta-inducedcognitive and cerebrovascular deficits in female mice[J].ActaNeuropathologica Communications,2016,4(1):111. [14]李小钧,卢天兰,岳伟华,等.AKT1基因多态性与利培酮治疗精神分裂症8周疗效的关联研究[J].中国心理卫生杂志,2018,32(2):125-129.[15]LONG H P,ZHONG G,WANG C Z,et al.TREM2attenuates Aβ1-42-mediated neuroinflammation in BV-2cells by downregulating TLRsignaling[J].Neurochemical Research,2019,44(8):1830-1839. [16]KAUR D,SHARMA V,DESHMUKH R.Activation of microglia andastrocytes:a roadway to neuroinflammation and Alzheimer'sdisease[J].Inflammopharmacology,2019,27(4):663-677. [17]HOSSAIN M S,ABE Y,ALI F,et al.Reduction of ether-typeglycerophospholipids,plasmalogens,by NF-κB signal leading tomicroglial activation[J].The Journal of Neuroscience,2017,37(15):4074-4092.[18]BATTAGLIA C,VENTURIN M,SOJIC A,et al.Candidate genesand miRNAs linked to the inverse relationship between cancerand Alzheimer's disease:insights from data mining andenrichment analysis[J].Frontiers in Genetics,2019,10:846. [19]CANDIDO S,LUPO G,PENNISI M,et al.The analysis of miRNAexpression profiling datasets reveals inverse microRNA patternsin glioblastoma and Alzheimer's disease[J].Oncology Reports,2019,42(3):911-922.[20]陈云莺,陈乃杰,吴丹红,等.参苓白术散治疗晚期癌症恶病质的临床观察[J].福建中医药,2008,39(4):7-8.[21]方璐.柴胡疏肝散联合心理干预治疗原发性肝癌相关抑郁状态的临床观察[D].长沙:湖南中医药大学,2018.[22]刘亭,毕竟,王盼,等.MAPK/ERK信号通路参与褪黑素对阿尔茨海默病大鼠小脑的神经保护作用[J].中国药理学通报,2019,35(3):402-407.(收稿日期:2023-01-15)(本文编辑薛妮)。

基于网络药理及分子对接探讨茵陈五苓散治疗原发性胆汁性胆管炎的作用机制

基于网络药理及分子对接探讨茵陈五苓散治疗原发性胆汁性胆管炎的作用机制

-206-WORLD CHINESE MEDICINE Jayuary.2061,V o U16,No.2基于网络药理及分子对接探讨茵陈五苓散治疗原发性胆汁性胆管炎的作用机制戚璐1徐俊1许杰1楼汪洲洋1程良斌(1湖北中医药大学中医临床学院,武汉,430061;0湖北省中医院肝病科,武汉,436061)摘要目的:基于网络药理学及分子对接技术探讨茵陈五苓散治疗原发性胆汁性胆管炎(PBC)的潜在作用机制。

方法:运用系统药理学数据库和分析平台(TCMSP)检索茵陈五苓散的活性成分和作用靶点。

通过GeceCarh.OMIM数据库收集疾病靶点。

运用Cytoscanee.2.2软件构建化合物O巴点网络。

采用R语言进行基因本体(GO)功能富集分析和京都基因与基因组百科全书(KEGG)通路富集分析。

将药理网络中的核心活性化合物与法尼醇X受体(FXR)进行分子对接,同时比较推荐的化学药物与FXR的结合活性。

结果:化合物O巴点网络筛选出茵陈五苓散核心活性化合物为槲皮素、异鼠李素、4-谷甾醇、阿特匹林A、猪毛蒿、芫花黄素、茵陈黄酮、34-乙酞氧基苍术酮、二氢槲皮素、去甲氧基茵陈色原酮等。

得到GO条目609条(P<0.45),KEGG通路富集分析得到155条信号通路(P<0.05)。

分子对接结果显示核心活性化合物与FXR亲和力与推荐药物相近。

结论:茵陈五苓散对PBC的干预作用的潜在机制可能是槲皮素、异鼠李素、4-谷甾醇、阿特匹林A、猪毛蒿、芫花黄素、茵陈黄酮、34-乙酞氧基苍术酮、二氢槲皮素、去甲氧基茵陈色原酮等活性化合物通过与FXR 结合作用于AKT1、3UN、MAPK1、RELA、IL6、MAPK14、EGFR、ESRI、FOS、CCND1等靶点调节多条信号通路而发挥作用。

关键词网络药理学;分子对接;茵陈五苓散;原发性胆汁性胆管炎;原发性胆汁性肝硬化The Mechanism of Yinchen Wuling Powder on Primary Biliary Cholangitis Basedon Network Pharmacclooy and Molecclar DocCingQI Lt,XU Juu1, XU Jie1,LOU Wanazopyaya1,CHENG Lmnabid^9(1Clinical College of'Traditional Chinese Medicine,Hubei University of Chinese Medicine,Wuhan432061, China;6Depadmeni yf Hepdology‘Hubei Provincini Hospitni ef Traditionnl Chinese Medicinr,Wuhan43206、, Chinn)Abstrrct Objective:To explore the potecUai mechanism of intervectiou Cfeci of Yinchec Wu/nn Powder ox primary biliary 000/110X(-PBC)based ox networU pharmacolopy anC molechlar000X0Methode:The06111X01composition anC taryei of Yinchec Wu/ny Powder were retrieveC by tranidoxal Chioese mePicioe systems pharmacclopy(TCMSP).Disease taryets were col­lected by GeceCarU and OMIM databases.Cytoscape3.2.2software was used h construct the compounC-taryei oetworh of mePicioal materials.Gece oxtolopy(GO)fuoctioxb ecrichmeci analysis and Kyote EocyclopePiv of Geces and Geoomes(KEGG)pathway ec-richmeci analysis were carrieP oui by R lanyuape.The core active compopud io the pharmacclopicvi oetwora is molecolarly docheC with the faroesoid X receptoiyFXR),and the bindiny activim of recommecdeC chemical druus and FXR were compareP.Reselte: The compound-taryei oetworU screeceP oui the core active compopuCs of Yiochec Wu/nysao as quercetio,isorhamoetio,4oimsWr-ol,atropirio A, Artemisia serrata,Daphoe flavonoids,Oavoxoids,34-Oeta Phthalooxy atractyPue?dipyyropuercetio,demethoxx chro-mopeooxe,etc.2189GO ectrivs were o/taioeP(P<0.05),and KEGG pathway ecrichmeci analysis yielPeC155siqoai pathways (P<0.05).The molecvlar dochiny resyPs showeP that the affinim of the core active compound and FXR was similar te the recom-mecdeC druy.Conclusion:The potectial mechanism of Yiochec Wu/ny Powder's intervectiou ox PBC may be quercePo,i s orUamO oetio,pOimsterol,aWopyyo A,Artemisia halo/eodrox,Dayhov08000X1,7X0020080X3,30Othylphtha/de active compounds suc V as oxyatractoxv ,dihyyroquercetio,and demethoxyl chromopecoxv can aci ox AKT1,JUN ,MAPK1,RELA,IL6,MAPK14,EG-FR,ESR1,FOS,CCND1and other taryets by binding te FXR point abjusts multiple siqoai pathways te play a role.Key w ords Network Pharmacolopy;Molecvlar Doching;Yiochec Wu/ng Powder;Primary Biliary Cholangihs;Primary Biliary Cimhosis中图分类号:R285.6文献标识码:A doi:14.3969/j.iso.1673-7706.206/26.205基金项目:国家中医药管理局资助项目(JDZX2615177)作者简介:戚璐(1296.23—)女,博士研究生,主治医师,研究方向:中医药防治肝病的研究,Tel:(207)&739577,E-mOi:552294503@ 通信作者:程良斌(1266.24—),男,博士,主任医师,博士研究生导师,研究方向:中医药防治肝病的研究,Tei:(207)88739577,E-mail:189****1273@世界中医药266-年1月第6卷第2期•207•原发性胆汁性胆管炎又称原发性胆汁性肝硬化(P/marg Biliary CiNkosis,PBC),是一种由自身免疫性疾病引起的慢性非化脓性胆汁淤积性肝病。

基于网络药理学和高分辨质谱分析半夏厚朴汤潜在药效成分

基于网络药理学和高分辨质谱分析半夏厚朴汤潜在药效成分

山东科学SHANDONGSCIENCE第35卷第2期2022年4月出版Vol.35No.2Apr.2022收稿日期:2021 ̄07 ̄05基金项目:山东省重大科技创新工程(2020CXGC0105005 ̄04)ꎻ山东省重点研发计划(2018GSF119001ꎬ2018GSF119023)ꎻ山东省中医药发展计划(2020M028ꎬ2020M029ꎬ2019 ̄0289ꎬ2019 ̄0291)作者简介:生立嵩(1983 )ꎬ男ꎬ助理研究员ꎬ研究方向为中药制剂ꎬ中药筛选ꎮTel:0531 ̄82949813ꎬE ̄mail:lisanoid1@gmail.com∗通信作者ꎬ刘善新(1965 )ꎬ女ꎬ研究员ꎬ研究方向为中药制剂研究ꎮTel:0531 ̄82949813ꎬE ̄mail:liushanxin66@163.com基于网络药理学和高分辨质谱分析半夏厚朴汤潜在药效成分生立嵩1ꎬ苏酩1ꎬ谢亚欣1ꎬ2ꎬ张新军1ꎬ彭丽3ꎬ许祚芝3ꎬ刘善新1∗(1.山东省中医药研究院ꎬ山东济南250014ꎻ2.山东中医药大学药学院ꎬ山东济南250355ꎻ3.华润双鹤利民药业(济南)有限公司质量部ꎬ山东济南250200)摘要:以系统药理学方法寻找半夏厚朴汤可能的作用靶点ꎬ以分子对接方法对半夏厚朴汤中化合物进行虚拟筛选打分ꎮ采用高分辨质谱ꎬ研究不同提取方法下半夏厚朴汤的成分及含量ꎮ结果表明:基于药效成分的整合药理学共筛选出4个靶点ꎬ虚拟筛选评分中活性较高的物质以黄酮类化合物为主ꎻ高分辨质谱数据显示ꎬ提取物中主要有黄酮和三萜酸类化合物ꎮ半夏厚朴汤主要对炎症相关以及神志病有关靶点发挥作用ꎬ这与本方的临床应用吻合ꎮ质谱离子流峰面积与亲和能加和赋权结果提示ꎬ发挥药效的主要物质基础可能是黄酮和三萜酸的组合物ꎮ关键词:半夏厚朴汤ꎻ高分辨质谱ꎻ虚拟筛选ꎻ黄酮ꎻ三萜酸中图分类号:R285㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1002 ̄4026(2022)02 ̄0046 ̄08开放科学(资源服务)标志码(OSID):AnalysisofthepotentialactiveingredientsofBanxiaHoupuDecoctionbasedonnetworkpharmacologyandhigh ̄resolutionmassspectrometrySHENGLi ̄song1ꎬSUMing1ꎬXIEYa ̄xin1ꎬ2ꎬZHANGXin ̄jun1ꎬPENGLi3ꎬXUZuo ̄zhi3ꎬLIUShan ̄xin1∗(1.ShandongAcademyofChineseMedicineꎬJinan250014ꎬChinaꎻ2.PharmacySchoolꎬShandongUniversityofTraditionalChineseMedicineꎬJinan250355ꎬChinaꎻ3.DepartmentofQualityControlꎬHuarunShuanghePharmaceutical(Jinan)Co.ꎬLtd.ꎬJinan250200ꎬChina)AbstractʒAsystematicpharmacologyapproachwasusedtodetectthepotentialtargetsofBanxiaHoupuDecoctionꎬandamoleculardockingsoftwarewasusedtovirtuallyscreenandscorethecompoundsinthedecoction.High ̄resolutionmassspectrometrywasusedtostudythecompositionandingredientsofBanxiaHoupuDecoctionobtainedbydifferentextractionmethods.Atotaloffourtargetswerescreenedbasedontheintegratedpharmacologyofpharmacodynamiccomponents.Thesubstanceswithahighactivityasperthevirtualscreeningscoreweremainlyflavonoids.High ̄resolutionmassspectrometrydatashowedthattheextractsmainlycontainflavonoidsandtriterpenoids.ThemainactionofBanxiaHoupuDecoctiononinflammation ̄relatedandpsychoneural ̄relatedtargetsisconsistentwithitsclinicalapplication.Themainactiveingredientsresponsibleforthedrugᶄseffectmaybeacombinationofflavonoidsandtriterpenoids.KeywordsʒBanxiaHoupuDecoctionꎻhigh ̄resolutionmassspectrometryꎻvirtualscreeningꎻflavonoidsꎻtriterpenoids㊀㊀半夏厚朴汤始载于汉张仲景«金匮要略» 妇人咽中如有炙脔ꎬ半夏厚朴汤主之 ꎬ处方为半夏一升㊁厚朴三两㊁茯苓四两㊁生姜五两㊁苏叶二两ꎬ有行气散结㊁化痰降逆的功效ꎬ近代以来主要治疗梅核气[1]ꎮ现代该方应用广泛ꎬ临床研究用于治疗抑郁症[2]㊁反流性食管炎[3]㊁睡眠呼吸暂停综合征[4]㊁咳嗽[5]等ꎮ前期本课题组结合临床应用ꎬ筛选半夏厚朴汤抗PDE4(磷酸二酯酶4)活性成分ꎬ并以液相色谱-质谱联用分析提取其中成分[6]ꎬ但对应化合物数量较少ꎬ种类单一ꎬ这提示所选靶点及潜在药效成分存在一定问题ꎮ鉴于此ꎬ我们以计算机虚拟筛选与高分辨质谱检测相结合的方法ꎬ应用网络药理学搜集半夏厚朴汤药材的成分及其作用靶点ꎻ采用TCMIO(中药免疫肿瘤学数据库)等中药成分数据库和软件进行预测和分析ꎬ预测半夏厚朴汤主要作用靶点ꎻ为研究组方中小分子与蛋白的相互作用机制ꎬ对半夏厚朴汤中已报道化合物[7]进行分子对接拟合和亲和能打分ꎬ筛选亲和能值较低的化合物ꎮ以高分辨质谱法分析半夏厚朴汤提取物的成分及含量ꎬ筛选提取物中含量较高且在虚拟筛选中亲和能值较低的作为半夏厚朴汤的潜在药效成分组ꎮ1㊀仪器与材料1.1㊀实验仪器DNA503型千分之一电子天平(南京伯尼塔科学仪器有限公司)ꎻKDM型控温电热套(鄄城华鲁电热仪器有限公司)ꎻKQ ̄250DA型数控超声波清洗机(昆山市超声仪器有限公司)ꎻDHG ̄9146A型电热恒温鼓风干燥箱(上海精宏实验设备有限公司)ꎻQ ̄Exactive型超高效液相色谱-四级杆-静电场轨道阱质谱仪(美国赛默飞公司)ꎮ1.2㊀试药茯苓(批号201001)㊁厚朴(批号200502)㊁半夏(批号191201)㊁生姜(批号200702)㊁苏叶(批号200501)均购自山东建联盛嘉中药有限公司ꎬ由济南亿民药业有限公司冉蓉高级工程师鉴定ꎬ均为2020年版«中国药典»一部收载的正品ꎮ1.3㊀研究工具数据库:中药系统药理学数据库与分析平台(TCMSPꎬhttps://tcmsp ̄e.com/)㊁中药免疫肿瘤学数据库(TCMIOꎬhttp://tcmio.xielab.net/)㊁药物化学数据库(ChemBLꎬhttps://www.ebi.ac.uk/)㊁RCSBPDB(https://www.rcsb.org/)㊁STRING(https://www.string ̄db.org/)ꎻ数据及化合物处理软件:DiscoveryStudio2016单机版㊁AutoDockTools1.5.6㊁AutodockVina1.1.2㊁Cytoscape3.6.1ꎻ质谱分析软件:CompoundDiscoverer3.0㊁Xcalibur3.0.63ꎮ2㊀方法与结果2.1㊀成分数据库搜索和建立从TCMSP㊁TCMIO等数据库中搜集半夏厚朴汤五味药材的报道成分ꎬ下载所有成分mol2格式文件ꎬ采用Autodock自带的raccoon软件处理结构ꎬ生成pdbqt格式文件ꎬ作为对接成分分子数据库ꎮ共得到五味药材所报道化合物402个ꎬ主要包括黄酮类㊁三萜酸类㊁甾醇类㊁有机酸类等ꎮ2.2㊀网络药理学研究和靶点收集本研究采用两种方法[8 ̄9]搜集半夏厚朴汤的潜在靶点:(1)从药效成分入手ꎬ选择TCMSP数据库中半夏厚朴汤五味药材已报道化合物ꎬ选择其中成药性良好(OBȡ30%且DLȡ0.18)的化合物对应靶点ꎬ将这些靶点与Genecards网站中ꎬ与咳嗽(关键词cough)和神志疾病(关键词mentaldisease)相关靶点进行Venn交集ꎬ重叠靶标在STRING数据库中构建PPI(protein ̄proteininteraction)网络ꎬ经Cytoscape进行拓扑分析后ꎬ选择拓扑值较高的作为半夏厚朴汤候选靶点ꎻ(2)从所有报道成分入手ꎬ选择TCMSP数据库中每味药材所有报道化合物的靶点ꎬ将每个化合物所对应的靶点进行加和统计ꎬ选择相关度最高的作为半夏厚朴汤潜在靶点ꎮ在TCMSP数据库中ꎬ共收集到成药性良好分子44个ꎬ这44个分子对应的靶点共有121个ꎬ采用Venn图分析半夏厚朴汤可能作用的靶点数量ꎬ结果如图1所示ꎬ药效成分的预测靶标和咳病(cough)㊁神志疾病(mentaldisease)二者的共有靶标21个ꎮ运用STRING网络平台进行重叠靶标的PPI网络构建ꎬ同时使用Cytoscape的networkanalyse功能对PPI网络进行分析ꎬ结果见表1ꎬ度值(degree)排名前2的靶标分别是IL6和VEGFAꎮ基于总体成分预测的靶点加和后结果如表2所示ꎬ排名最靠前的是GABR和PTGS两个靶标ꎮ综合上述网络药理学研究ꎬ以这4个靶点作为半夏厚朴汤作用的潜在靶点ꎮ图1㊀Venn网络图Fig.1㊀Venndiagrams表1㊀基于药效成分的预测靶标VEGFA1410.86MAPK11310.36PPARG1310.85TNF1311.08EGFR1211.33表2㊀半夏厚朴汤成分相关靶蛋白及关联度gamma ̄aminobutyricacidreceptorsubunitalpha ̄1γ ̄氨基丁酸受体亚基α ̄1219muscarinicacetylcholinereceptorM1毒蕈碱乙酰胆碱受体M1126prostaglandinG/Hsynthase1前列腺素G/H合酶1184muscarinicacetylcholinereceptorM2毒蕈碱乙酰胆碱受体M2114muscarinicacetylcholinereceptorM3毒蕈碱乙酰胆碱受体M3104nuclearreceptorcoactivator2核受体共激活剂2154gamma ̄aminobutyric ̄acidreceptoralpha ̄2subunitγ ̄氨基丁酸受体亚基α ̄297cytochromeP450 ̄cam细胞色素P450 ̄C127alcoholdehydrogenase1C酒精脱氢酶1C1342.3㊀分子对接对2.2节中筛选的潜在靶点ꎬ参考Autodock软件[7]的说明进行分子处理和对接操作:从RCSB(proteindatabankdescription)网站中搜集相关靶点蛋白的结构ꎬ以蛋白自带的配体结构和位点作为结合域ꎬ以Autodock软件对蛋白质进行去水㊁加氢㊁加电荷操作ꎮ以Autodockvina4.1软件ꎬ利用蛋白质晶体中自带的抑制剂位置作为结合位置ꎬ设置结合位点和结合范围大小ꎬDocking算法采用localsearch以提高计算速度ꎮ利用2.1节搜集的药材报道化合物分子进行分子对接ꎬ将所有结果的亲和能值(affinityꎬkJ/mol)进行排序ꎬ选择亲和能值较低的前10%作为潜在有效化合物ꎮ分子对接主要参数如表3所示ꎬ每个靶点结合能最低的前10个化合物结果如表4所示ꎬ4个靶点中对接较好的化合物为黄酮类和黄酮苷类ꎬ其次为三萜酸类和有机酸酯类ꎮ其中有3个黄酮类化合物在3个靶点中对接表现较好ꎬ这可能是PAINS[10]类化合物ꎬ也可能是药物潜在有效分子ꎮ其中打分最优化合物与靶点对接的二维图如图2所示ꎮ表3㊀分子对接参数5T89(VEGFA)-57.85846.22799.3173230283LN1(PTGS)17.943-51.88654.4653636265FUC(IL6)-58.671-2.030-4.906263026表4㊀半夏厚朴汤与候选靶点分子对接结果MOL000286三萜酸类-8.7MOL006120三萜酸类-9.7MOL006216黄酮类-9.0MOL000009黄酮苷类-8.9MOL006220甾醇类-8.7MOL002714黄酮类-9.5MOL000007黄酮苷类-8.9MOL002737黄酮类-8.8MOL002773甾醇类-8.5MOL002737黄酮类-9.4MOL000009黄酮苷类-8.9MOL006224花青素苷类-8.8MOL013354甾醇类-8.4MOL000008黄酮类-9.3MOL002737黄酮类-8.8MOL000007黄酮苷类-8.7MOL000275三萜酸类-8.2MOL006191有机酸酯类-9.3MOL006224花青素苷类-8.8MOL006190有机酸酯类-8.7MOL000300三萜酸类-8.2MOL006215黄酮苷类-9.3MOL000006黄酮类-8.6MOL006207黄酮苷类-8.7MOL000511三萜酸类-8.2MOL000006黄酮类-9.2MOL006190有机酸酯类-8.6MOL000006黄酮类-8.6MOL000298有机酸类-8.1MOL001729有机酸类-9.2MOL006191有机酸酯类-8.6MOL006191有机酸酯类-8.6MOL003578甾醇类-8.1MOL006190有机酸酯类-9.2MOL006215黄酮苷类-8.5MOL006933黄酮苷类-8.5注:灰色线代表小分子结构图ꎻ粉色㊁紫色㊁深粉色虚线代表疏水作用力ꎻ深绿色虚线代表氢键作用力ꎻ浅绿色虚线代表范德华力ꎻ深红色代表unfavorabledonor ̄donor作用ꎮ图2㊀靶点蛋白与打分最优化合物结合二维模式图Fig.2㊀2Ddiagramofthetargetproteindockingwiththebest ̄scoredcompound2.4㊀饮片提取和样品制备按饮片粉碎程度和提取溶剂不同设计提取实验ꎬ分别按处方量称取药材饮片和饮片粗粉ꎮ料液比为1:10(g/mL)ꎬ回流提取2次ꎬ每次2hꎮ合并提取液ꎬ混合均匀后取适量ꎬ加甲醇稀释10倍ꎬ作为供试品溶液ꎮ具体实验设计如表5所示ꎮ表5㊀样品提取方法样品250%乙醇粗粉22样品3水粗粉22样品495%乙醇饮片22样品550%乙醇饮片22样品6水饮片222.5㊀高分辨质谱及CD分析色谱柱ThermoScientificHypersil(100mmˑ2.1mm)ꎻ流动相为0.5%甲酸溶液(A) ̄甲醇(B)ꎬ梯度洗脱(0~27minꎬ流动相A10%~90%)ꎬ条件如下所示:流速0.3mL/minꎻ质谱条件扫描范围80~1200m/zꎻ源内诱导碰撞解离电压(CID)0.0eVꎻ分辨率70000ꎻ流速0.3mL/minꎻ柱温30ħꎻ正/负离子检测ꎬ进样量5μLꎮ参考文献[11]方法使用CompoundDiscoverer软件分析质谱数据ꎬ采用chemspider㊁m/zcloud等质谱数据库匹配化合物ꎮ使用Xcalibur软件对检测数据进行处理ꎮ选择m/zcloudbestmatch打分ȡ70.0分的化合物ꎬ认为有较高的匹配度ꎮ将高分辨质谱数据经CompoundDiscover3.0软件分析后共收集高匹配度化合物176个ꎬ经比对ꎬ发现有19个化合物在半夏厚朴汤报道成分数据库中ꎬ这些成分在既往研究中已证实存在于半夏厚朴汤成分药材中ꎬ又能在提取物中被检测到ꎬ因此可认为是半夏厚朴汤的潜在有效成分组ꎬ具体结果见表6ꎬ其中有3个在分子对接中表现较好(分子对接打分前10%):野黄芩苷ꎬ芹菜素ꎬ熊果酸ꎮ含上述化合物的高分辨质谱图结果如图3所示ꎮ注:① 野黄芩苷ꎻ② 芹菜素ꎻ③ 熊果酸ꎮ图3㊀潜在有效成分高分辨质谱离子流图(50%乙醇提取ꎬ负离子模式)Fig.3㊀Iondiagramofhigh ̄resolutionmassspectrometry(50%ethanolextractionꎬnegativeionmode)以19个对应化合物的亲和能和离子峰面积赋权作为指标ꎬ一般认为ꎬ亲和能和结合能力呈对数关系ꎬ所以赋权公式按下式计算:S=lg(ðni=1Aiˑ10∣Af∣)ꎬ式中ꎬS为以潜在有效成分指标的分子对接亲合能赋权值ꎬi为化合物编号ꎬA为离子峰面积ꎬAf为亲和能ꎮ计算结果见表7ꎮ表6㊀半夏厚朴汤潜在有效成分组的亲和能Table6㊀AffinityofpotentialactiveingredientsofBanxiaHoupuDecoction单位:kJ/mol芹菜素∗6.39.38.38.3野黄芩苷∗-6.4-7.9-7.6-7.9熊果酸∗-8.2-8.6-7.6-7.6姜烯酚-5.4-7.7-6.0-6.5鸟嘌呤-5.1-6.9-6.1-6.1(-) ̄氧化石竹烯-6.5-8.1-5.9-5.9亚油酸-4.9-7.4-5.3-5.9DL ̄精氨酸-4.5-6.0-5.7-5.6香兰素-4.7-6.0-5.7-5.6腺嘌呤-4.8-5.8-5.6-5.6麻黄素-5.1-6.2-5.4-5.6棕榈酸-4.3-6.8-4.7-5.3邻苯二甲酸二丁酯-5.4-7.8-5.4-5.2胡芦巴碱-4.7-5.7-5.2-5.15 ̄羟甲基 ̄2 ̄糠醛-4.3-5.1-4.9-5.0棕榈油酸-4.4-7.0-5.1-4.9十六碳酰胺-4.7-6.8-5.0-4.9十五烷酸-4.4-6.6-5.3-4.8胆碱-3.0-3.6-3.8-3.8㊀㊀㊀㊀㊀㊀㊀㊀㊀注:∗表示虚拟筛选亲和能前10%化合物ꎮ表7㊀潜在有效成分的亲和能赋权值野黄芩苷14.9916.4916.1916.49芹菜素14.3817.3816.38∗16.38熊果酸16.68∗17.0816.0816.08邻苯二甲酸二丁酯15.2517.65∗15.2515.05腺嘌呤14.0615.0614.8614.86十六碳酰胺14.5216.6214.8214.72胆碱11.3511.9512.1512.15DL-精氨酸14.2915.7915.4915.39麻黄素13.1214.2213.4213.62胡芦巴碱12.7713.7713.2713.17亚油酸14.3916.8914.7915.39香兰素12.5013.8013.5013.40棕榈油酸12.8315.4313.5313.33鸟嘌呤11.9813.7812.9812.98续表7十五烷酸12.4614.6613.3612.86姜烯酚14.3816.6814.9815.485 ̄羟甲基 ̄2 ̄糠醛12.0812.8812.6812.78棕榈酸13.7716.2714.1714.77(-) ̄氧化石竹烯14.6116.2114.0114.01㊀㊀㊀㊀㊀㊀㊀㊀㊀注:∗表示该靶点下亲和能赋权值最高的化合物ꎮ3㊀讨论和结论本文采用整合药理学方法ꎬ结合半夏厚朴汤传统和现代临床应用分析其潜在靶点ꎬ这些靶点涉及神经系统㊁免疫系统ꎬ采用虚拟筛选和分子对接技术ꎬ筛选半夏厚朴汤潜在有效成分ꎬ在筛选中表现良好的化合物主要包括黄酮类㊁三萜酸类等ꎬ其中熊果酸[12 ̄13]㊁芹菜素[14]㊁野黄芩苷[15]等均有文献报道参与IL6㊁PTGS等靶点和信号通路的作用ꎮ采用高分辨质谱方法和化合物匹配软件ꎬ分析了不同提取方法下半夏厚朴汤的成分ꎬ其中有121个匹配打分超过70.0分ꎬ有19个与半夏厚朴汤药材报道成分吻合ꎬ有3个虚拟筛选打分靠前(前10%)ꎮ结合中药传统应用方式ꎬ认为这些化合物可能共同形成半夏厚朴汤潜在药效成分组ꎮ在本研究中ꎬ采用多种方法开展网络药理学靶点富集ꎮ最终搜集的4个靶点中ꎬ有3个为常见的炎症㊁免疫相关信号通路ꎬ而GABR则为中医神志病常见靶点ꎬ这与半夏厚朴汤用于抑郁症的临床应用契合较好ꎮ说明本研究中网络药理学分析方法可靠ꎬ结果可信ꎬ在一定程度上弥补了近年来肿瘤免疫学研究的不足ꎬ为后续的小分子虚拟筛选提供了较为可靠的靶点结论ꎮ中药成分复杂ꎬ药理作用广泛ꎬ在特定疾病的治疗中具备独特优势ꎮ中药成分发挥药理作用ꎬ往往需要达到特定的剂量ꎬ本文研究过程中ꎬ对所涉及潜在有效化合物定量研究未能开展ꎬ发挥药效的剂量因素ꎬ还要进一步查阅文献ꎮ本文以不同溶剂提取半夏厚朴汤ꎬ采用高分辨质谱分析ꎬ可比较其中特定成分的大小差异ꎬ为后续的提取工艺研究奠定基础ꎮ目前的中药系统药理学和网络药理学研究中ꎬ对中药的生物信息学研究较多ꎬ而对发挥药理作用的物质基础部分ꎬ即成分的研究重视程度还不够ꎬ在筛选得到潜在有效靶点和相关化合物后的分子对接㊁靶点的结合域选择㊁亲和能等主要指标相对比较笼统ꎬ也往往不对靶蛋白自带的抑制剂小分子进行对照研究以保证分子对接的可靠性ꎮ在本研究中ꎬ为克服对接分子数量少带来的数据偏差ꎬ引入虚拟筛选功能ꎬ对文献报道的全部四百多个化合物均进行对接运算ꎬ这样既能兼顾靶点的全面性ꎬ又能有效地衡量化合物针对特定靶点的有效性ꎮ相较而言ꎬ采用本研究方法更能筛选得到有较高活性的潜在有效化合物ꎮ本研究确定了半夏厚朴汤发挥药效的潜在活性成分(组)ꎬ但这些成分是否能有效代表半夏厚朴汤的绝大多数药理活性还不得而知ꎮ后续的药理实验和分子生物学分析有待开展ꎬ希望通过后续药效学验证ꎬ对本文中所发现的潜在活性成分组进行深入研究ꎬ验证成分组是否能真正代替半夏厚朴汤整体药效ꎬ以及这些成分的具体药理活性ꎮ参考文献:[1]杨娟ꎬ倪岚ꎬ张元兵.半夏厚朴汤的应用探究[J].江西中医药ꎬ2018ꎬ49(3):78 ̄80.[2]郝鹏飞ꎬ刘登峰ꎬ张超云ꎬ等.半夏厚朴汤治疗抑郁症的网络药理学研究[J].南阳理工学院学报ꎬ2020ꎬ12(6):104 ̄111.DOI:10.16827/j.cnki.41 ̄1404/z.2020.06.018.[3]李琳琳ꎬ朱方石.半夏厚朴汤治疗反流性食管炎的理论机制探讨[J].中国医药导报ꎬ2021ꎬ18(2):128 ̄131. [4]张苗海.半夏厚朴汤治疗睡眠呼吸暂停综合征[J].国外医学(中医中药分册)ꎬ2002(4):220 ̄221.[5]张立山ꎬ弓雪峰.半夏厚朴汤治疗小儿咳嗽探析[J].环球中医药ꎬ2017ꎬ10(7):723 ̄724.DOI:10.3969/j.issn.1674 ̄1749.2017.07.012.[6]刘作龙ꎬ咸瑞卿ꎬ付杰ꎬ等.分子对接技术结合LC ̄MS/MS筛选半夏厚朴汤抗PDE4有效成分[J].食品与药品ꎬ2020ꎬ22(3):187 ̄191.DOI:10.3969/j.issn.1672 ̄979X.2020.03.005.[7]MORRISGMꎬHUEYRꎬLINDSTROMWꎬetal.Autodock4andAutoDockTools4:automateddockingwithselectivereceptorflexiblity[J].JournalofComputationalChemistryꎬ2009ꎬ30(16):2785 ̄2791.DOI:10.1002/jcc.21256.[8]XUERCꎬFANGZꎬZHANGMXꎬetal.TCMID:TraditionalChinesemedicineintegrativedatabaseforherbmolecularmechanismanalysis[J].NucleicAcidsResearchꎬ2013ꎬ41:D1089 ̄D1095.DOI:10.1093/nar/gks1100.[9]王倩ꎬ范文涛.基于网络药理学的 百合-熟地黄 药对治疗抑郁症机制研究[J].中药新药与临床药理ꎬ2018ꎬ29(6):754 ̄758.DOI:10.19378/j.issn.1003 ̄9783.2018.06.014.[10]YANGZYꎬYANGZJꎬHEJHꎬetal.Benchmarkingthemechanismsoffrequenthitters:limitationofPAINSalerts[J].DrugDiscoveryTodayꎬ2021.26(6):1353 ̄1358.DOI:10.1016/j.drudis.2021.02.003.[11]张静娴ꎬ胡青ꎬ于泓ꎬ等.HILIC/ESI ̄OrbitrapHRMS法结合CompoundDiscoverer软件快速智能化鉴定瓜蒌皮注射液中的化学成分[J].药学学报ꎬ2018ꎬ53(10):1705 ̄1712.DOI:10.16438/j.0513 ̄4870.2018 ̄0302.[12]YUANYLꎬYUEJꎬGUOZHꎬetal.UrsolicacidsuppressesIL ̄6inducedC ̄reactiveproteinexpressioninHepG2andprotectsHUVECsfrominjuryinducedbyCRP.[J].EuropeanJournalofPharmac ̄euticalSciences2012(45):190 ̄194.DOI:10.1016/j.ejps.2011.11.002.[13]WANGCꎬGAOYꎬZHANGZꎬetal.Ursolicacidprotectschondrocytesꎬexhibitsanti ̄inflammatorypropertiesviaregulationoftheNF ̄κB/NLRP3inflammasomepathwayandamelioratesosteoarthritis[J].Biomedicine&Pharmacotherapyꎬ2020ꎬ130:110568.DOI:10.1016/j.biopha.2020.110568.[14]李雪梅ꎬ牛文泽ꎬ陈翔.芹菜素对大鼠脑缺血再灌注后VEGF表达的影响及意义[J].中国病理生理杂志ꎬ2010ꎬ26(12):2473 ̄2477.DOI:10.3969/j.issn.1000 ̄4718.2010.12.038.[15]HETMꎬLIUJXꎬDUANCCꎬetal.EffectivematerialbasisandmechanismanalysisofcompoundBanmaocapsuleagainsttumorsusingintegrativenetworkpharmacologyandmoleculardocking[J].Evidence ̄BasedComplementaryandAlternativeMedicineꎬ2021ꎬ2021:6653460.DOI:10.1155/2021/6653460.。

基于网络药理学探究紫檀芪对阿尔茨海默病的作用及分子机制

基于网络药理学探究紫檀芪对阿尔茨海默病的作用及分子机制

基金项目:辽宁省博士科研启动基金计划项目(No.2021 BS 283);沈阳医学院大学生科研项目(No.20239093);辽宁省自然科学基金资助计划项目(No.2020 MS 309)作者简介:张晓然,医学影像学本科在读;研究方向:主要从事神经药理学相关研究;E mail:202220546@qq.com通讯作者:朱琳,博士研究生,讲师;研究方向:主要从事神经药理学相关研究;E mail:zhulindedream@163.com基于网络药理学探究紫檀芪对阿尔茨海默病的作用及分子机制张晓然1 刘思远1 杨浩然1 郭轩桐1 范乐豪1 李金达1 金 戈2 卢方晋3 朱 琳11.沈阳医学院基础医学院,沈阳,110034,中国2.沈阳医学院中医药学院,沈阳,110034,中国3.沈阳医学院药学院,沈阳,110034,中国【摘要】 目的:基于网络药理学研究紫檀芪抗阿尔茨海默病(Alzheimer'sdisease,AD)的潜在靶点和信号通路。

方法:利用SwissTargetPrediction数据库筛选获得紫檀芪相关靶点;通过GeneCards数据库检索获得AD相关靶点;使用Venny2.1网站获取药物 疾病靶基因的交集;采用STRING数据库获取共同基因的蛋白质间相互作用关系,构建蛋白 蛋白相互作用(protein proteininteraction,PPI)网络;利用Cytoscape3.7.2软件进行紫檀芪 靶点网络的可视化及分析;使用DAVID数据库对共同基因进行基因本体(geneontology,GO)富集分析及京都基因与基因组百科全书(kyotoencyclopediaofgenesandgenomes,KEGG)信号通路富集分析;使用在线工具进行绘制GO及KEGG通路富集分析图。

结果:通过数据库筛选获得紫檀芪相关靶点100个,AD相关靶点14472个,其中有88个为紫檀芪作用于AD的潜在靶点。

基于网络药理学和分子对接探讨芩蒿滴鼻剂治疗过敏性鼻炎作用机制

基于网络药理学和分子对接探讨芩蒿滴鼻剂治疗过敏性鼻炎作用机制

chemokine-mediated signaling pathways and immune response. Keywords: Qinhao nasal drops; allergic rhinitis; network pharmacology; molecular docking
过敏性鼻炎(allergic rhinitis,AR)是一种常见 的非特异性炎症疾病,临床以阵发性喷嚏、清水样鼻 涕、鼻痒和鼻塞为主要症状。AR 引起的相关并发症 (如支气管哮喘、中耳炎等)可导致食欲减退、乏力、 情绪失调、记忆力减退和睡眠障碍等,严重影响患者 的生活质量,已成为全球性的健康问题[1]。
共检索到新疆一枝蒿、苍耳子、白芷、麻黄、黄 芩化合物 895 个,其中查阅文献[3-4]获得新疆一枝蒿 化合物 58 个,通过 TCMSP 获得化合物分别为苍耳子 108 个、白芷 223 个、麻黄 363 个和黄芩 143 个。基 于 OB≥30%、DL≥0.18,并去除缺少靶点预测信息 的化合物,共筛选出 83 个活性成分,其中新疆一枝 蒿 12 个、苍耳子 11 个、白芷 22 个、麻黄 23 个、黄 芩 31 个。芩蒿滴鼻剂主要活性成分信息见表 1。 2.2 药物-活性成分-靶点网络
应用 AutoDock vina 软件将 PPI 网络中度值前 5 位的靶点分别与度值前 5 位的活性成分进行分子对接 验证。分别从 PDB 蛋白质结构数据库和 ZINC 数据库 下载受体的晶体结构和配体的化学结构,MAPK1、 IL6、TNF、PTGS2 和 VEGFA 对应的 PDB ID 分别为 4FV7、1ALU、5MU8、5IKR 和 6FMC,采用 AutoDock Tools 对上述蛋白受体和配体进行预处理,再用其 Autogrid 模块得到对接活性位点,进行分子对接。结 合能<-5.0 kcal/mol 的成分与靶点结合性能较好。 2 结果 2.1 药物活性成分

基于网络药理学和分子对接技术预测复方绞股蓝胶囊治疗口腔扁平苔藓的分子机制

基于网络药理学和分子对接技术预测复方绞股蓝胶囊治疗口腔扁平苔藓的分子机制

基于网络药理学和分子对接技术预测复方绞股蓝胶囊治疗口腔扁平苔藓的分子机制李悦悦,章斌,陈慧瑾(上海交通大学医学院附属第九人民医院药剂科,上海200011)摘要:目的运用网络药理学及分子对接方法研究复方绞股蓝胶囊治疗口腔扁平苔藓的物质基础与潜在的分子机制㊂方法从TCMSP数据库中得出复方绞股蓝胶囊治疗口腔扁平苔藓的作用靶标,对共有基因构建PPI网络㊂构建 疾病⁃活性成分⁃靶点网络 图,并通过基于R语言的clusterprofiler进行GO和KEGG通路富集分析㊂将筛选出的复方绞股蓝胶囊活性成分与主要靶点进行分子对接㊂结果从复方绞股蓝胶囊中筛选出15个活性成分,包括绞股蓝皂苷类成分㊁灯盏乙素㊁槲皮素和鼠李素等,这些活性成分可与口腔扁平苔藓相关的54个潜在靶点发生相互作用,可能通过调节内分泌抵抗㊁丝裂原活化蛋白激酶信号通路㊁低氧诱导因子1信号通路㊁细胞因子⁃细胞因子受体相互作用等信号通路来发挥治疗作用㊂结论应用网络药理学和分子对接方法可揭示复方绞股蓝胶囊治疗口腔扁平苔藓的潜在作用机制,为进一步深入研究提供了理论参考㊂关键词:复方绞股蓝胶囊;口腔扁平苔藓;网络药理学;分子对接中图分类号:R96㊀文献标志码:A㊀文章编号:2096⁃3653(2020)04⁃0530⁃07DOI:10.16809/j.cnki.2096-3653.2020041903收稿日期:2020⁃04⁃19基金项目:上海交通大学医学院附属第九人民医院种子基金(JYZZ063)作者简介:李悦悦(1985 ),女,硕士,主管药师,主要从事中药药物分析,Email:liyue429@163.com通信作者:陈慧瑾(1971 ),女,副主任药师,主要从事中药药物分析,Email:Chenhuijin1108@aliyun.com㊂MechanismofcompoundJiaogulancapsuleonthetreatmentoforallichenplanusbasedonnetworkpharmacologyandmoleculardockingLIYueyue,ZHANGBin,CHENHuijin∗(DepartmentofPharmacy,ShanghaiNinthPeople sHospitalAffiliatedtoSchoolofMedicine,ShanghaiJiaotongUniversity,Shanghai200011,China)∗CorrespondingauthorEmail:Chenhuijin1108@aliyun.comAbstract ObjectiveToexplorethemolecularmechanismofcompoundJiaogulancapsuleonthetreatmentoforallichenplanus OLP byusingnetworkpharmacologycombinedwithmoleculardocking.MethodsThetraditionalChinesemedicinesystemspharmacologydatabaseandanalysisplatform TCMSP wasusedtopredicttheactivecompoundsandpotentialtargetsofcompoundJiaogulancapsule andtherelevanttargetsofOLPweresearchedfromGeneCardsandonlinemedelianinheritanceinman OMIM .Protein⁃proteininteractionnetworkwasestablishedbyusingtheSTRINGdatabaseandCytoscapesoftware andmoleculardockingwascarriedoutbyusingAutodockvina.Rlanguagewasusedtoperformgeneontology GO analysisandKyotoencyclopediaofgenesandgenomes KEGG pathwayanalysisonthetargets.ResultsFifteenactivecomponents includinggypenosides scutellarin quercetinandrhamnetin werescreenedfromcompoundJiaogulancapsule.Theseactivecomponentsinteractedwith54potentialtargetsrelatedtoOLP.CompoundJiaogulancapsuleregulatedendocrineresistance mitogenactivatedproteinkinasesignaling hypoxiainduciblefactor1signaling andcytokine⁃cytokinereceptorsignaling.ConclusionNetworkpharmacologyandmoleculardockingmethodcanrevealthepotentialmechanismofcompoundJiaogulancapsuleforthetreatmentofOLP providingtheoreticalreferenceforfurtherin⁃depthresearch.Keywords compoundJiaogulancapsule orallichenplanus networkpharmacology moleculardocking广东药科大学学报㊀JournalofGuangdongPharmaceuticalUniversity㊀㊀Aug.2020,36(4)㊀㊀㊀口腔扁平苔藓(orallichenplanus,OLP)是一种常见口腔黏膜慢性炎症性疾病,其患病率为0.1% 4%[1]㊂由于长期糜烂,病损有恶变倾向,癌变率为0.4% 12.5%[2]㊂目前治疗OLP的一线用药包括肾上腺皮质激素类药物㊁免疫抑制剂和氯喹等,这些药物虽能缓解OLP急性发作期症状,但病情容易反复,且有明显的毒副作用㊂复方绞股蓝胶囊是我院的特色制剂,其以绞股蓝为主药,另添加灯盏花素,具有提高机体免疫力㊁活血化瘀之功效㊂临床研究表明,其对OLP等斑纹类疾病的损害范围和上皮异常增生改善作用显著[3⁃6],但目前对复方绞股蓝胶囊治疗OLP㊁预防恶变的物质基础与作用机制尚不清楚㊂网络药理学是利用生物学数据库,采用系统生物学方法,通过构建 疾病⁃基因⁃靶点⁃药物 互作网络,观察药物对疾病的干预与影响㊂分子对接则是根据大分子受体的结构特征,及受体与配体小分子之间的相互作用来预测药物与受体的结合方式及其亲合力的一种理论模拟方法[7]㊂本文采用以上两种方法对复方绞股蓝胶囊治疗OLP的分子机制进行研究,预测复方绞股蓝胶囊的主要活性成分,为OLP等斑纹类疾病的治疗提供理论依据㊂1㊀材料与方法1.1㊀数据库与软件本研究使用的数据库与软件包括:中药系统药理学数据库与分析平台TCMSP(http://tcmspw.com/tcmsp.php)㊁有机小分子生物活性数据库Pubchem(https://pubchem.ncbi.nlm.nih.gov)㊁生物活性小分子靶向预测平台SwissTargetPrediction(http://www.swisstargetprediction.ch)㊁通用蛋白质数据库Uniprot(https://www.uniprot.org)㊁人类基因综合数据库Genecards(https://www.genecards.org)㊁在线人类孟德尔遗传数据库OMIM(https://omim.org)㊁网络拓扑属性分析软件Cytoscape3.6.1㊁蛋白互作平台STRINGversion11.0(https://string⁃db.org)㊁三维分子模型软件Pymol1.8㊁分子建模和模拟平台DiscoveryStudio3.5和分子对接软件AutoDockVina㊂1.2㊀建立复方绞股蓝胶囊候选化合物库利用TCMSP数据库,分别以 绞股蓝 和 scutellarin (灯盏乙素)为关键词检索,根据口服生物利用度(oralbioavailablity,OB)>30%和类药性(druglikeness,DL)>0.18的原则筛选候选化合物,并获得其作用的靶点信息[8]㊂对TCMSP数据库无靶点信息的候选化合物,通过PubChem数据库获得其CanonicalSMILES,将其导入SwissTargetPredicition数据库补充空缺的成分靶点㊂1.3㊀药物作用靶点筛选在Genecards和OMIM数据库中输入关键词 orallichenplanus ,得到OLP相关靶基因㊂将OLP相关靶基因与药物作用靶点基因映射筛选,找出两者的交集基因,为复方绞股蓝胶囊治疗OLP的靶点㊂采用Cytoscape3.6.1软件构建复方绞股蓝胶囊治疗OLP的 疾病⁃活性成分⁃靶点 网络图,其中 节点 分别代表活性成分和靶蛋白, 边 代表成分与靶点之间的作用关系㊂1.4㊀靶蛋白相互作用(protein⁃proteininteraction,PPI)网络的构建㊀㊀在STRINGversion11.0平台构建靶蛋白相互作用(protein⁃proteininteraction,PPI)网络㊂物种设为 Homosapiens (人类),最低相互作用阈值设为中等置信度 mediumconfidence 0.4,其余参数保持默认设置[9]㊂将得到的基因数据导入Cytoscape3.6.1,进行NetworkAnalysis分析㊂1.5㊀基因本体论(GO)生物过程和京都基因与基因组百科全书(KEGG)通路富集分析㊀㊀运用R语言将复方绞股蓝胶囊作用于OLP的靶点转化成entrezID;使用clusterProfiler包对其进行数据处理和可视化处理,得到GO和KEGG富集分析的柱状图㊁气泡图㊁通路图及含有P值的数据㊂柱状图和气泡图仅显示P值最小的前20个功能或通路;最后用Perl将转化的entrezID转变为原始的基因靶点㊂1.6㊀分子对接将复方绞股蓝胶囊的主要活性成分与预测的OLP主要靶点进行分子对接㊂使用ChemBio3D获得复方绞股蓝胶囊活性成分的3D结构,并使用AutoDock软件进行加氢㊁加电子等操作,观察可扭转的化学键个数㊂从RCSB数据库(https://www.rcsb.org/)下载靶蛋白的结构,使用Pymol软件去除溶剂分子与配体,使用AutoDock软件进行加氢㊁加电子等操作㊂完成后使用AutoDockVina进行半柔性分子对接,对对接结果进行分析处理㊂2㊀结果2.1㊀复方绞股蓝胶囊治疗OLP的主要活性成分筛选利用TCMSP数据库对绞股蓝进行挖掘,共收集到203个化学成分,根据OB>30%,DL>0.18的原135第4期㊀李悦悦,等.基于网络药理学和分子对接技术预测复方绞股蓝胶囊治疗口腔扁平苔藓的分子机制则,得到24个活性成分,再加上灯盏花素(scutellarin),共25个活性成分㊂2.2㊀复方绞股蓝胶囊活性成分作用于OLP的靶点预测与筛选㊀㊀通过Genecards数据库和OMIM数据库挖掘到OLP相关靶基因365个,将其与TCMSP㊁SwissTargetPredicition预测得到的204个药物作用靶基因映射,得到54个共同靶基因㊂将数据导入Cytoscape3.6.1软件,构建复方绞股蓝胶囊治疗OLP的 疾病⁃活性成分⁃靶点 网络图(图1)㊂共筛选出15个复方绞股蓝胶囊作用于OLP的活性成分,如表1所示,其中11个成分为皂苷类化合物,其作用靶点大致相同,如GypenosideLXXIV㊁GypenosideLXXIX和GypenosideXXXII均作用于HPSE㊁FGF2㊁VEGFA㊁BCL2L1和IL2等5个靶点㊂灯盏乙素㊁鼠李秦素和槲皮素均为黄酮类成分,其中槲皮素的作用靶点数最多,为49个㊂从作用靶点的角度分析,白细胞介素⁃2(IL⁃2,节点连接度=8)拥有最多相互作用的配体,其次是前列腺素内过氧化物合酶2(PTGS2,节点连接度=8)㊁血管内皮生长因子A(VEGFA,节点连接度=7)㊁乙酰肝素酶(HPSE,节点连接度=6),成纤维细胞生长因子2(FGF2,节点连接度=6)和促生存因子(BCL2L1,节点连接度=6)㊂这表明他们是复方绞股蓝胶囊治疗OLP作用的主要靶点㊂15个活性成分共作用于54个靶蛋白发挥OLP治疗作用,体现了复方绞股蓝多组分㊁多靶点的作用机制㊂表1㊀复方绞股蓝胶囊作用于OLP主要活性成分信息Table1㊀InformationonthemainactivecomponentsofcompoundJiaogulancapsuleinOLP编号化学成分OB/%DL相对分子质量MOL000098quercetin46.430.28302.25MOL0003383 ⁃methyleriodictyol51.610.27302.30MOL000351Rhamnazin47.140.34330.31MOL002931scutellarin2.640.79462.39MOL007475ginsenosidef236.430.25785.14MOL009888GypenosideXXXVI_qt37.850.78458.80MOL009928GypenosideLXXIV34.210.24801.14MOL009929GypenosideLXXIX37.750.25785.14MOL009938GypenosideXII36.430.25785.14MOL009943GypenosideXL30.890.21799.12MOL009969GypenosideXXXV_qt37.730.78444.77MOL009971GypenosideXXVII_qt30.210.74418.73MOL009973GypenosideXXVIII_qt32.080.74416.71MOL009976GypenosideXXXII34.240.25787.11MOL009986GypentonosideA_qt36.130.80472.782.3㊀PPI网络分析采用STRINGversion11.0网络平台对筛选出的复方绞股蓝胶囊治疗OLP靶点进行PPI分析,将PPI得分大于0.4的基因数据导入cytoscape3.6.1软件进行NetworkAnalysis分析,靶蛋白PPI网络图如图2所示㊂靶点的度值和介数中心数越大,说明靶点越处于PPI网络中心,越能发挥关键作用㊂靶点圆越大,表明度值越大;颜色越接近橙色,表明介数中心数越大㊂度值和介数中心数均较大的排名前10靶点名称㊁UniprotID号㊁度值和介数中心数见表2所示㊂2.4㊀GO功能富集分析将预测得到的54个作用靶点通过基于R语言的clusterProfiler进行GO富集分析㊂共获得62个功能,前20个功能的GO功能富集的柱状图,如图3a所示㊂横坐标表示靶点数,左边表示富集的功能,P值由颜色表示,值越小越偏向红色,反之偏向蓝色㊂富集靶点较多的功能包括细胞因子活性(cytokineactivity)㊁细胞因子受体结合(cytokinereceptorbinding)和受体配体活性(receptorligandactivity)等㊂235广东药科大学学报㊀第36卷㊀图1㊀复方绞股蓝胶囊治疗OLP疾病⁃活性成分⁃靶点网络图Figure1㊀Disease⁃activecomponent⁃targetnetworkofcompoundJiaogulancapsuleinthetreatmentofOLP2.5㊀KEGG通路富集分析通过KEGG分析复方绞股蓝胶囊治疗OLP预测靶点的通路分布,结果共有14条KEGG代谢通路参与其中,如图3b所示,主要涉及内分泌抵抗(endocrineresistance)㊁丝裂原活化蛋白激酶信号通路(MAPKsignalingpathway)㊁低氧诱导因子1信号通路(HIF⁃1signalingpathway)㊁细胞因子⁃细胞因子受体相互作用(cytokine⁃cytokinereceptorinteraction)和EGFR酪氨酸激酶抑制剂耐药(EGFRtyrosinekinaseinhibitorresistance)等㊂由此可见,复方绞股蓝胶囊通过调节多条代谢通路共同发挥治疗OLP的作用㊂图2㊀复方绞股蓝胶囊治疗OLP靶蛋白的PPI网络图Figure2㊀PPInetworkofcompoundJiaogulancapsuleinthetreatmentofOLP2.6㊀复方绞股蓝胶囊活性成分与靶蛋白分子对接结果㊀㊀将筛选出的复方绞股蓝胶囊中的15个活性成分与排名前4的靶点VEGFA㊁IL6㊁AKT1和EGF进行分子对接,选取打分最高(affinity数值最低)的构象作为对接构象,并利用pymol程序对其进行可视化分析[10]㊂每种活性成分产生10种对接结果,结合能越小说明受体与配体之间的亲和力越大,因而选取结合能较低且构象较好的结果作为分子对接结果㊂所有成分与靶点的结合能均小于-5kcal/mol,如表3所示㊂Scutellarin㊁GypenosideXII㊁ginsenosidef2和GypentonosideA_qt与4种靶蛋白对接的平均结合能值最低,其典型对接结果如图4所示㊂表2㊀复方绞股蓝胶囊治疗OLP靶蛋白PPI网络中的关键靶点及其拓扑参数Table2㊀KeytargetsandtopologicalparametersinPPInetworkoftargetproteinofcompoundJiaogulancapsuleinthetreatmentofOLP序号靶点靶基因UniprotID度值介数中心数1血管内皮生长因子AVEGFAP15692450.0642白细胞介素⁃6IL⁃6P05231430.0333蛋白激酶BαAKT1P31749430.0324表皮生长因子EGFP01133420.0315Jun原癌基因JUNP05412410.0246半胱氨酸天冬氨酸蛋白酶3CASP3P42574410.0207白细胞介素⁃8IL⁃8P10145410.0158基质金属蛋白酶9MMP9P14780410.0119前列腺素内过氧化物合酶2PTGS2P35354400.03510白细胞介素⁃1βIL⁃1βP01584390.019335第4期㊀李悦悦,等.基于网络药理学和分子对接技术预测复方绞股蓝胶囊治疗口腔扁平苔藓的分子机制a.GO富集分析;b.KEGG通路富集分析㊂图3㊀复方绞股蓝胶囊治疗OLP预测靶点Figure3㊀PotentialtargetsofcompoundJiaogulancapsuleinthetreatmentofOLPa.scutellarin与VEGFA;b.GypenosideXII与IL6;c.ginsenosidef2与AKT1;d.GypentonosideA_qt与EGF㊂图4㊀复方绞股蓝胶囊治疗OLP的4个重要靶点的对接分析Figure4㊀DockinganalysisoffourimportanttargetsofcompoundJiaogulancapsuleinthetreatmentofOLP435广东药科大学学报㊀第36卷㊀表3㊀复方绞股蓝胶囊治疗OLP的4个重要靶点的分子对接Table3㊀MoleculardockingoffourimportanttargetsofcompoundJiaogulancapsuleinthetreatmentofOLP化学成分结合能值VEGFAIL6AKT1EGFquercetin-7.4-7.5-7.4-6.43 ⁃methyleriodictyol-7.4-7.3-7.5-6.0Rhamnazin-7.1-7.2-7.2-5.9scutellarin-8.5-7.6-8.0-6.8ginsenosidef2-8.1-7.0-8.4-6.0GypenosideXXXVI_qt-6.9-7.2-7.1-5.9GypenosideLXXIV-7.6-6.6-8.2-6.3GypenosideLXXIX-7.6-6.7-8.0-6.1GypenosideXII-7.8-7.0-7.7-6.6GypenosideXL-7.3-6.9-8.0-6.5GypenosideXXXV_qt-7.4-6.5-6.7-6.3GypenosideXXVII_qt-7.2-7.3-7.1-5.7GypenosideXXVIII_qt-7.3-7.5-7.4-6.0GypenosideXXXII-7.3-6.7-7.4-6.8GypentonosideA_qt-7.9-7.5-7.5-6.33㊀讨论OLP的病因和发病机制目前仍不明确,目前大多数研究认为该病与免疫反应的异常有关㊂以往研究证实细胞因子㊁生长因子㊁细胞黏附分子㊁基质金属蛋白酶等均参与了病损局部的炎症和免疫反应,在介导这一异常的免疫反应中起着主要作用[11⁃14]㊂通过PPI网络分析,推测出复方绞股蓝胶囊治疗OLP的主要靶点,包括VEGFA㊁IL6㊁AKT1㊁EGF和MMP⁃9等㊂VEGFA是目前发现的最有效的血管生成促进因子之一,影响内皮细胞的血管通透性㊁增殖和活力;基质金属蛋白酶⁃9(MMP⁃9)是明胶酶的一种,能分解某些组织中的结构复合物,还能调节其他蛋白酶及细胞因子的活性,其可通过释放血管内皮生长因子(VEGF)参与血管生成,VEGF和MMP⁃9在单纯的OLP或者异常增生的OLP中都有相应的增高表达[15⁃16]㊂IL⁃6是一种具有广泛免疫调节活性的细胞因子,已有多项研究表明,其在OLP患者的血清和唾液中具有较健康人升高的表达,在OLP发病机制中可能起到较为关键的作用[17⁃18]㊂AKT是PI3K的下游靶标,活化后的AKT蛋白将其底物磷酸化,成为很好的细胞存活因子,进而能使细胞进入分裂周期,促进细胞生长并抑制其凋亡,这大大增加了细胞癌变的几率,AKT因此也被认为是一种原癌基因[19⁃20]㊂表皮生长因子(EGF)是一种强有力的角质形成细胞分裂剂,通过表皮生长因子受体(EGFR)介导对多种组织细胞具有促进增殖作用,EGF和EGFR蛋白表达在OLP向口腔鳞状细胞癌(OSCC)的转变中作为OSCC早期诊断的客观指标之一[21]㊂GO功能富集结果显示,复方绞股蓝治疗OLP的潜在作用机制多集中在调节细胞因子活性㊁细胞因子受体结合和受体配体活性等㊂KEGG通路富集分析排名前5位的信号通路分别为内分泌抵抗㊁丝裂原活化蛋白激酶信号通路㊁低氧诱导因子1信号通路㊁细胞因子⁃细胞因子受体相互作用和EGFR酪氨酸激酶抑制剂耐药㊂OLP多发于中老年女性,内分泌及代谢紊乱是OLP发生的独立危险因素[22]㊂另有研究表明,情绪及社会心理因素导致的神经内分泌紊乱与OLP的发生有关[23]㊂内分泌抵抗与多条致癌信号通路相关,包括表皮生长因子受体㊁成纤维细胞生长因子受体PI3K/AKT/mTOR㊁MAPK/ERK和CDK4/CDK6等[14]㊂MAPK信号通路是炎症性疾病的关键通路,可将细胞外的信号(如应激㊁生长因子等)传递至细胞内,影响肿瘤坏死因子α(TNF⁃α)㊁白细胞介素6(IL⁃6)㊁环氧酶2(COX2)等炎性因子的生成,并参与调控细胞的增殖㊁分化及凋亡[24]㊂缺氧微环境在免疫炎性疾病发生发展中的重要性备受关注,HIF⁃1是缺氧诱导的转录激活因子,是氧稳态和生理反应的调节因子[25]㊂Westendorf等[26]在HIF⁃1α基因缺乏的T淋巴细胞发现促进核心炎症因子NF⁃κB的过表达;Chang等[27]研究表明MMP⁃9是HIF⁃1α的下游因子之一,据此推测缺氧微环境HIF⁃1α/MMP⁃9信号通路参与OLP基底细胞液化变性㊂细胞因子和细胞因子受体相互作用网络被认为是炎症和肿瘤免疫学的关键方面[28],复方绞股蓝活性成分通过IL10㊁IL6㊁IL⁃1β㊁CCL2和IL⁃8等多种细胞因子调控细胞因子⁃受体相互作用,降低炎症反应㊂本研究运用网络药理学结合分子对接的方法,发现复方绞股蓝胶囊中的11个皂苷类成分㊁灯盏乙素㊁槲皮素及鼠李素可能是其治疗OLP的潜在核心化合物㊂绞股蓝多个成分可能通过上述多个靶点协同发挥抗OLP效果,具有良好的开发前景㊂535第4期㊀李悦悦,等.基于网络药理学和分子对接技术预测复方绞股蓝胶囊治疗口腔扁平苔藓的分子机制参考文献:[1]陈谦明.口腔黏膜病学[M].4版.北京:人民卫生出版社,2008:103.[2]满昭昭,王秀梅.口腔扁平苔藓癌变的研究进展[J].北京口腔医学,2013,21(5):298⁃300.[3]吴飞华,沈雪敏,陈敏燕.复方绞股蓝胶囊治疗口腔白斑和扁平苔藓的临床评价[C].中华口腔医学会口腔药学专业委员会第二次全国口腔药学学术会议论文集,2013:125.[4]宣静,王海燕,周曾同.复方绞股蓝联合辨证使用中成药治疗口腔扁平苔藓105例临床观察[J].江苏中医药,2017,49(8):33⁃35.[5]王震,武文妍,周曾同.基于预后分析的复方绞股蓝胶囊预防口腔白斑癌变的回顾性队列研究[J].上海中医药杂志,2019,53(9):51⁃55.[6]王梁,陈吉俊,马诞骅.绞股蓝漱口水治疗口腔扁平苔藓的研发及应用[J].现代实用医学,2019,31(11):1466⁃1468.[7]李学军,许海玉.网络药理学与中药研究[J].药学学报,2018,53(9):1385⁃1386.[8]刘芳,刘耀,詹世鹏,等.基于网络药理学探讨藏药诃子治疗类风湿性关节炎的作用机制[J].第三军医大学学报,2019,41(22):2238⁃2245.[9]唐策,文检,杨娟,等.藏药翼首草抗类风湿性关节炎活性成分靶点的网络药理学研究[J].中国药房,2017,28(19):2666⁃2670.[10]李婧,马小兵,沈杰,等.基于文献挖掘与分子对接技术的抗新型冠状病毒中药活性成分筛选[J].中草药,2020,51(4):845⁃850.[11]VILLARROELDORREGOM,CORRENTIM,DELGADOR,etal.Orallichenplanus:immunohistologyofmucosallesions[J].JOralPathol,2002,31(7):410⁃414.[12]deMOURACASTROJACQUESC,CARDOZOPEREIRAAL,CABRALMG,etal.OrallichenplanuspartI:epidemiology,clinics,etiology,immunopathogeny,anddiagnosis[J].Skinmed,2003,2(6):342⁃347.[13]BRUNOE,ALESSANDRINIM,RUSSOS,etal.Malignant㊀degenerationoforallichenplanus:ourclinicalexperienceandreviewoftheliterature[J].AnOtorrinolaringolIberoAm,2002,29(4):349⁃357.[14]HUMBERTOJSM,PAVANINJV,ROCHAM,etal.㊀Cytokines,cortisol,andnitricoxideassalivarybiomarkersinorallichenplanus:asystematicreview[J].BrazOralRes,2018,13(32):e82.[15]徐红,矢小萍,唐维平,等.口腔鳞癌组织中基质金属蛋白酶⁃9和血管内皮生长因子的表达及临床意义[J].癌症,2002,21(9):983⁃988.[16]ERTUGRULAS,DURSUNR,DUNDARN,etal.MMP⁃1,MMP⁃9,andTIMP⁃1levelsinorallichenplanuspatientswithgingivitisorperiodontitis[J].ArchOralBiol,2013,58(7):843⁃852.[17]孙倩倩,魏崴,王宇峰,等.口腔扁平苔藓患者唾液IL⁃6㊁IL⁃10表达与疾病活动积分的相关性研究[J].临床口腔医学杂志,2017,33(10):600⁃603.[18]ZHANGYuanyuan,LINMei,ZHANGSongtao,etal.NF⁃kappaB⁃dependentcytokinesinsalivaandserumfrompatientswithorallichenplanus:astudyinanethnicChinesepopulation[J].Cytokine,2008,41(2):144⁃149.[19]WANGLiang,WUWei,CHENJijun,etal.miR⁃122andmiR⁃199synergisticallypromoteautophagyinorallichenplanusbytargetingtheAkt/mTORpathway[J].IntJMolMed,2019,43(3):1373⁃1381.[20]卫婕,伍均,吴建勇.丹酚酸B通过线粒体凋亡途径抑制口腔白斑癌变的机制研究[J].上海中医药大学学报,2019,33(3):75⁃80.[21]周骢,伍宝琴,张齐梅,等.NF⁃kBp65㊁EGF与EGFR在口腔扁平苔藓和口腔鳞癌中的表达及临床意义[J].重庆医学,2017,46(2):187⁃190.[22]卓凌云,黄鹏,刘青兰,等.江苏省一般人群口腔扁平苔藓的临床特征及危险因素[J].南京医科大学学报(自然科学版),2020,40(1):90⁃95.[23]张梅华,缪羽,昭日格图.口腔扁平苔藓与精神因素的相关性研究[J].内蒙古医学杂志,2015,47(7):816⁃820,895.[24]胡晓晟,黄云惠,刘晓松,等.p38丝裂原活化蛋白激酶在口腔扁平苔癣及口腔鳞状细胞癌中的表达及意义[J].北京大学学报(医学版),2016,48(2):310⁃315.[25]栾飞,王谨涵,李茂星,等.缺氧诱导因子⁃1与炎症关系的研究进展[J].甘肃中医药大学学报,2016,33(2):92⁃97.[26]WESTENDORFAM,SKIBBEK,ADAMCZYKA,etal.㊀HypoxiaenhancesimmunosuppressionbyinhibitingCD4+effectorTcellfunctionandpromotingTregactivity[J].CellPhysiolBiochem,2017,41(4):1271⁃1284.[27]CHANGYuchan,CHANYung⁃Chieh,CHANGWeiming,etal.FeedbackregulationofALDOAactivatestheHIF⁃1α/MMP9axistopromotelungcancerprogression[J].CancerLett,2017,403:28⁃36.[28]WEIDLEUH,KLOSTERMANNS,EGGLED,etal.Inter⁃leukin6/interleukin6receptorinteractionanditsroleasatherapeutictargetfortreatmentofcachexiaandcancer[J].CancerGenomProteom,2010,7(6):287⁃302.(责任编辑:幸建华)635广东药科大学学报㊀第36卷㊀。

基于网络药理学和分子对接分析增液汤治疗II型糖尿病的作用机制

基于网络药理学和分子对接分析增液汤治疗II型糖尿病的作用机制

基于网络药理学和分子对接分析增液汤治疗II型糖尿病的作用机制发表时间:2020-11-04T14:48:15.920Z 来源:《医师在线》2020年23期作者:王婷1,王乐鹏1,蒋海旭,王鹤淞,赵璐,黄光瑞,袁凯* [导读] 通过网络药理学和分子对接分析增液汤治疗II型糖尿病的作用机制王婷1,王乐鹏1,蒋海旭,王鹤淞,赵璐,黄光瑞,袁凯*北京中医药大学(北京 100029)摘要目的:通过网络药理学和分子对接分析增液汤治疗II型糖尿病的作用机制。

方法:通过TCMSP数据库和BATMAN-TCM数据库确定增液汤成分。

TCMSP和BATMAN-TCM数据库预测筛选成分后,使用SwissTargetPrediction预测成分靶点。

对于II型糖尿病,使用DrugBank和GeneCards数据库判断靶点。

此后,将增液汤的靶点与II型糖尿病的靶点进行映射,取得交集靶点。

在STRING数据库中得到PPI 网络。

将STRING数据库得到的PPI网络导入 Cytoscape 软件,利用cytoHubb插件拓扑分析。

通过Degree、closeness、betweeness对核心靶点进行筛选,获得增液汤治疗II型糖尿病的核心靶点。

获得核心靶点后,使用GO和KEGG功能富集分析得到相关生物学过程与通路。

分子对接中,采用pymol和Discovery Studio 2016 Client软件对接结果进行可视化分析。

结果:增液汤中有39个化学成分,药物靶点共有631个。

II型糖尿病有235个靶点。

映射后得到二者共有交集靶点 30个。

筛选之后20个增液汤治疗II型糖尿病的核心靶点。

GO和KEGG分析发现增液汤通过调节炎症与代谢治疗II型糖尿病。

结论:增液汤通过调节炎症、代谢等相关靶点治疗II型糖尿病。

关键词:增液汤;II型糖尿病;炎症;代谢Based on network pharmacology and molecular docking to discover the mechanism of Zengye Decoction in the treatment of type II diabetes Yuan Kai, Wang Ting, Wang He-song, Zhao Lu, Huang Guang-rui Abstract Objective: To analyze the mechanism of Zengye Decoction in the treatment of type II diabetes through network pharmacology and molecular docking. Methods: Determine the components of Zengye Decoction through TCMSP database and BATMAN-TCM database. After identifying components, we used SwissTargetPrediction to predict component targets. As for type II diabetes, we used the DrugBank and GeneCards databases to determine the target. The target of Zengyetang and the target of type II diabetes were mapped to obtain the intersection target. We used STRING database to obtain PPI network. Then, we used the cytoHubb plug-in to analyze the topology. The core targets were screened by Degree, closeness, and betweeness,. After obtaining the core targets, we used GO and KEGG functional enrichment analysis to obtain the relevant biological processes and pathways. In molecular docking, the docking results of pymol and Discovery Studio 2016 Client software are used for visual analysis. Results: There have 39 chemical components in Zengye Decoction, and there are 631 drug targets in total. Type II diabetes has 235 targets. There are 30 intersecting targets after mapping. After screening, 20 core targets of Zengye Decoction were obtained. GO and KEGG analysis found that Zengye Decoction treats type II diabetes by regulating inflammation and metabolism. Conclusion: Zengye Decoction treats type II diabetes by regulating inflammation, metabolism and other related targets.Keywords: Zengye Decoction; Type II diabetes; inflammation; metabolismII型糖尿病是一种慢性疾病,会影响人体代谢糖(葡萄糖)的方式[1]。

基于网络药理学探讨石菖蒲治疗血管性痴呆的作用机制_吴林

基于网络药理学探讨石菖蒲治疗血管性痴呆的作用机制_吴林

DOI:10.13193/j.issn.1673-7717.2021.05.003基于网络药理学探讨石菖蒲治疗血管性痴呆的作用机制吴林1,陈静1,唐秀松1,王清碧2,陈炜3(1.广西中医药大学,广西南宁530001;2.广西中医药大学附属瑞康医院,广西南宁530011;3.广西中医药大学第一附属医院,广西南宁530023)摘要:目的基于网络药理学探讨石菖蒲治疗血管性痴呆(VD)的作用机制。

方法筛选石菖蒲的活性成分,构建石菖蒲活性成分—作用靶点网络和蛋白相互作用网络,对靶点涉及的生物功能和通路进行分析。

结果从石菖蒲中筛选出3个活性成分,作用于25个血管性痴呆靶点,石菖蒲治疗VD的核心基因主要有CASP3、MAPK8、RELA、AR等。

中药-疾病靶点涉及的GO功能共富集到77条生物过程,主要包括核受体活性、转录因子活性,直接配体调节的序列特异性DNA、类固醇激素受体、类固醇结合、RNA聚合酶II转录因子结合、RNA聚合酶II基础转录因子结合、谷胱甘肽结合等。

中药-疾病靶点涉及的KEGG通路主要包括流体剪切应力与动脉粥样硬化通路、AGE-RAGE信号通路、调控TNF信号通路、PI3K-Akt信号通路、IL-17信号通路、NF-κB信号通路、MAPK号通路等。

结论基于网络药理学探讨石菖蒲治疗血管性痴呆的作用机制,为临床治疗VD提供了一定的理论依据,也可为VD新型药物的开发提供方向。

关键词:石菖蒲;血管性痴呆;网络药理学;靶点;作用机制;信号通路;KEGG通路富集分析中图分类号:R277.749.13文献标志码:A文章编号:1673-7717(2021)05-0009-08Study on Mechanism of Shichangpu(AcoritataninowiiRhizoma)in Treatment ofVascular Dementia Based on Network PharmacologyWU Lin1,CHEN Jing1,TANG Xiusong1,WANG Qingbi2,CHEN Wei3(1.Guangxi University of Traditional Chinese Medicine,Nanning530001,Guangxi,China;2.Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine,Nanning530011,Guangxi,China;3.The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine,Nanning530023,Guangxi,China)Abstract:Objective To analyze the mechanism of Shichangpu(AcoritataninowiiRhizoma)for the treatment of vascular de-mentia(VD)based on the network pharmacology.Method The active ingredients of Shichangpu(AcoritataninowiiRhizoma)were screened out and the active ingredient-targets and protein interaction network were set up.The biological functions and path-ways involved in the target were analyzed.Results Three active ingredients were extracted from Shichangpu(AcoritataninowiiRhi-zoma)and acted on25vascular dementia targets.The core gene mainly for the treatment of VD was CASP3,MAPK8,RELA and AR.Traditional Chinese medicine-disease targets involved GO function had77biological process,mainly including nuclear receptor activity,the activity of transcription factors,ligand directly regulating DNA sequence specificity,steroid hormone recep-tor,steroid combination,RNA polymerase II transcription factor binding,RNA polymerase II transcription factor binding,gluta-thione combined,etc.Traditional Chinese medicine(TCM)-disease targets involved in KEGG pathways including fluid shear stress and the pathways of atherosclerosis,AGE-RAGE signal pathway,regulation of TNF,PI3K signal channel-Akt signaling pathways,IL-17signaling pathways,the NF-kappa B signaling pathway and MAPK pathway,etc.Conclusion Based on the network pharmacology,the analysis on action mechanism of Shichangpu(AcoritataninowiiRhizoma)in the treatment of vascular dementia provides certain theoretical basis as well as the direction for the development of new drugs of VD.Keywords:Shichangpu(AcoritataninowiiRhizoma);vascular dementia;network pharmacology;targets;mechanism of action;signaling pathways;KEGG pathway enrichment analysis基金项目:国家自然科学基金(81760847);广西科技计划项目重点研发计划(桂科AB16380324-02);广西中医基础研究重点实验室系统项目(17-259-49-01);广西中医药大学青年创新研究团队项目(2016QT004);广西中医药大学岐黄工程高层次人才团队培育项目(2018003);广西中医药大学青年基金(2017QN025)作者简介:吴林(1970-),男,广西桂林人,主任医师,博士研究生导师,博士,研究方向:中医药防治脑血管病、帕金森病。

网络药理学:认识药物及发现药物的新理念

网络药理学:认识药物及发现药物的新理念

网络药理学:认识药物及发现药物的新理念周文霞;程肖蕊;张永祥【期刊名称】《中国药理学与毒理学杂志》【年(卷),期】2012(26)1【摘要】Network pharmacology investigates the interaction between the drug and body by mapping drug -target ( polypharmacology) networks onto biological networks. Network pharmacology challenges the traditional concept "one disease, one target, one drug" , and represents the modern philosophy and pattern of biomedical research as a new branch of pharmacology. Based on systems biology and network biology, network pharmacology with holistic and systemic features is focused on network equilibrium (or robustness) and network disturbance. Understanding the status, fundamental dynamics and kinetics of individual biological molecules in the biological network is more important than the specific biological function. Understanding the biological and kinetic profile of the drug is more important than individual validation of targets or combinations of targets. Network-based drug discovery is to create new drugs-regulating networks. Network pharmacology has profound influence on the philosophy of clinical drug therapeutics and drug discovery.%网络药理学是指将药物作用网络与生物网络整合在一起,分析药物在此网络中与特定节点或模块的相互作用关系,从而理解药物和机体相互作用的科学.网络药理学突破传统的“一个药物一个靶标,一种疾病”理念,代表了现代生物医药研究的哲学理念与研究模式的转变.以系统生物学和网络生物学基本理论为基础的网络药理学具有整体性、系统性的特点,注重网络平衡(或鲁棒性)和网络扰动,强调理解某个单一生物分子(如基因、mRNA或蛋白等)在生物体系中的生物学地位和动力学过程要比理解其具体生物功能更为重要,揭示药物作用的生物学和动力学谱要比揭示其作用的单个靶标或几个“碎片化”靶标更重要,对认识药物和发现药物的理念产生了深远影响.【总页数】6页(P4-9)【作者】周文霞;程肖蕊;张永祥【作者单位】军事医学科学院毒物药物研究所,北京100850;军事医学科学院毒物药物研究所,北京100850;军事医学科学院毒物药物研究所,北京100850【正文语种】中文【中图分类】R96【相关文献】1.根据认识规律认识药物发现简史 [J], 殷华;段为钢;赵敏;马加庆;熊云霞;云宇2.网络药理学与药物发现研究进展 [J], 王娟;李学军3.基于网络药理学的抗肿瘤药物发现策略 [J], 肖智勇;周文霞;张永祥4.一种抗感染性疾病药物的启发式发现方法及其在治疗新型冠状病毒肺炎药物发现中的应用初探 [J], 高敏;徐睿峰;全源;梁峰吉;朱月星;熊江辉5.上海药物所召开全国“药物发现新理念高级研讨会” [J],因版权原因,仅展示原文概要,查看原文内容请购买。

基于网络药理学探讨熟地黄临床用于治疗贫血的潜在作用机制_周艳

基于网络药理学探讨熟地黄临床用于治疗贫血的潜在作用机制_周艳

DOI:10.13193/j.issn.1673-7717.2021.05.043基于网络药理学探讨熟地黄临床用于治疗贫血的潜在作用机制周艳1,2,3,4,孙菲菲1,3,4,张振凌1,3,4,郑旭亚1,3,4(1.河南中医药大学药学院,河南郑州450046;2.河南农业大学农学院,河南郑州450046;3.河南省中药特色炮制技术工程研究中心,河南郑州450046;4.呼吸疾病中医药防治省部共建协同创新中心,河南郑州450046)摘要:目的运用网络药理学探讨熟地黄临床用于治疗贫血的潜在作用机制,为进一步研究熟地黄补血作用机理和指导临床应用奠定基础。

方法基于研究报道的熟地黄化学成分和中药系统药理学数据库(TCMSP)挖掘其活性成分,并进行靶点预测,通过Uniprot数据库进行靶点标准化,通过GeneCards数据库检索与贫血相关的靶点,并与活性成分靶点映射明确熟地黄治疗贫血的潜在靶点,运用Cytoscape软件构建“药物-活性成分-靶点”网络关系图。

通过String数据库和R语言构建熟地黄治疗贫血的靶点蛋白互作网络图和条形图,筛选核心靶点。

最后将熟地黄治疗贫血的靶点进行GO功能富集分析和KEGG通路富集分析。

结果筛选得到活性成分21个,预测到熟地黄活性成分的作用靶点85个,查询到与贫血相关的靶点5160个,映射后得到熟地黄潜在靶点51个。

GO分析主要包括肽结合、酰胺结合、蛋白酶结合、类固醇激素受体活性、羧酸结合等方面。

KEGG代谢通路富集分析显示:熟地黄治疗贫血主要涉及细胞凋亡信号通路、肿瘤坏死因子信号通路、白介素-17信号通路、核转录因子-κB信号通路、鞘脂信号通路等信号通路。

结论网络药理学可以较准确的预测熟地黄治疗贫血的主要活性成分、功能活动和信号通路及其多成分、多靶点、多途径治疗贫血的作用。

关键词:网络药理学;熟地黄;贫血;靶点;信号通路中图分类号:R259.56文献标志码:A文章编号:1673-7717(2021)05-0179-08Potential Clinical Mechanism of Shudihuang(RehmanniaeRadix Praeparata)Based onNetwork Pharmacology in Treatment of AnemiaZHOU Yan1,2,3,4,SUN Feifei1,3,4,ZHANG Zhenling1,3,4,ZHENG Xuya1,3,4(1.College of Pharmacy,Henan University of Chinese Medicine,Zhengzhou450046,Henan,China;2.College of Agronomy,Henan Agricultural University,Zhengzhou461101,Henan,China;3.HenanResearch Center for Special Processing Technology of Chinese Medicine,Zhengzhou450046,Henan,China;4.Co-construction Collaborative Innovation Center for Chinese Medicine andRespiratory Diseases by Henan&Education Ministry of P.R.China,Zhengzhou450008,Henan,China)Abstract:Objective To explore the potential mechanism of Shudihuang(RehmanniaeRadix Praeparata)treating anemia by network pharmacology,so as to lay a foundation for further study on the mechanism of tonifying blood of Shudihuang(Rehmanniae Radix Praeparata)and guide its clinical application.Methods Based on the researched ingredients of Shudihuang(Rehmanniae Radix Praeparata)and the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),the active ingredients of Shudihuang(RehmanniaeRadix Praeparata)were excavated and the target was predicted.The target was standardized by Uniprot database,and the anemia was searched by GeneCards database.Relevant targets and the active ingredi-ent targets of Shudihuang(RehmanniaeRadix Praeparata)were mapped to clarify the potential targets for the treatment of anemi-a.Cytoscape software was used to build a"drug-active ingredient-target"network relationship diagram.Through the String database andRlanguage,we constructed a target protein interaction network diagram and bar chart of Shudihuang(Rehmanniae Radix Praeparata)to treat anemia,and selected the core targets.Finally,the target of Shudihuang(RehmanniaeRadix Praepara-ta)for anemia was analyzed by GO function enrichment analysis and KEGG pathway enrichment analysis.Results A total of21 active ingredients were obtained through screening,85targets of active ingredients of Shudihuang(RehmanniaeRadix Praepara-ta)were predicted,5160targets related to anemia were found,and51potential targets of Shudihuang(RehmanniaeRadix Pra-基金项目:国家重点研发计划中医药现代化研究重点专项(2017YFC1702800);国家重点研发计划(2018YFC1707204);国家中药标准化项目(ZYBZH-Y-HEN-17,ZYBZH-Y-HEN-18)作者简介:周艳(1979-),女,河南漯河人,博士研究生,研究方向:中药饮片质量及炮制作用机制。

基于网络药理学的浙贝母活性成分祛痰机制研究

基于网络药理学的浙贝母活性成分祛痰机制研究

基于网络药理学的浙贝母活性成分祛痰机制研究摘要:目的:利用网络药理学的研究方法,探索浙贝母抗炎作用机制。

方法:利用中药系统药理学数据库与分析平台搜索浙贝母活性成分及活性成分相关靶点,在 Uniprot 数据库进行靶点蛋白的基因校正后,构建“祛痰”靶点相互作用网络,将其与浙贝母活性成分-靶点网络融合,获得浙贝母活性成分的抗炎作用靶点。

结果: PTGS2 、HSP90AB1 、NCOA6在3个活性成分中均出现。

结论:因此推测PTGS2、HSP90AB1、NCOA6、PTGS1是浙贝母祛痰相关的基因。

关键词:浙贝母;祛痰;网络药理学现代医学研究表明,浙贝母中主要含有生物碱、多糖、总皂苷、黄酮类成分和挥发性成分等,具有祛痰止咳、抗炎抑菌和抗癌抗肿瘤等功效[1]。

中药网络药理学从系统的角度和分子水平研究中药及中药方剂的药效机理。

本研究利用中药网络药理学研究方法,探究浙贝母祛痰功能的作用靶点和相关基因,为浙贝母祛痰的机制研究和临床应用提供理论依据。

[2]1. 材料和方法1.1 浙贝母活性成分靶点的获取及活性成分-靶点网络的构建在中药系统药理学数据库与分析平台搜索浙贝母,查找浙贝母的活性成分,以口服利用度( OB)和类药性( DL)两个指标对活性成分进行筛选,筛选到的活性和其相关靶点整理。

[5]1.2 “祛痰”相关基因的获得及相互作用网络的构建在NCBI网站数据库,选择Gen选项,输入检索词“Expectorant”,得到与人类“祛痰”相关的基因,将这些基因数据整理后导入Cytoscape 3.7.2软件,进行参数设定,形成“祛痰”靶点相互作用网络。

[3-4]1.3 浙贝母活性成分-“祛痰”作用靶点基因网络的构建将1.1中所得浙贝母活性成分的预测靶点与1.2中“祛痰”的相关靶点取交集,获得浙贝母活性成分抗炎靶点,构建浙贝母活性成分-抗炎作用靶点网络,并对其进行分析。

2. 结果2.1 浙贝母活性成分-靶点网络的构建在 TCMSP 平台以浙贝母为关键词,搜索到浙贝母活性成分共计 17 种,选择OB≥30% 、DL≥0.18,筛选到活性成分7种,能找到靶点蛋白的活性成分共计5种( 有二种活性成分未有对应的靶点蛋白) ,5 种活性成分信息见表 1。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Network-Based Relating Pharmacological and Genomic Spaces for Drug Target IdentificationShiwen Zhao,Shao Li*MOE Key Laboratory of Bioinformatics and Bioinformatics Division,TNLIST/Department of Automation,Tsinghua University,Beijing,ChinaAbstractBackground:Identifying drug targets is a critical step in pharmacology.Drug phenotypic and chemical indexes are two important indicators in this field.However,in previous studies,the indexes were always isolated and the candidate proteins were often limited to a small subset of the human genome.Methodology/Principal Findings:Based on the correlations observed in pharmacological and genomic spaces,we developa computational framework,drugCIPHER,to infer drug-target interactions in a genome-wide scale.Three linear regressionmodels are proposed,which respectively relate drug therapeutic similarity,chemical similarity and their combination to the relevance of the targets on the basis of a protein-protein interaction network.Typically,the model integrating both drug therapeutic similarity and chemical similarity,drugCIPHER-MS,achieved an area under the Receiver Operating Characteristic (ROC)curve of0.988in the training set and0.935in the test set.Based on drugCIPHER-MS,a genome-wide map of drug biological fingerprints for726drugs is constructed,within which unexpected drug-drug relations emerged in501cases, implying possible novel applications or side effects.Conclusions/Significance:Our findings demonstrate that the integration of phenotypic and chemical indexes in pharmacological space and protein-protein interactions in genomic space can not only speed the genome-wide identification of drug targets but also find new applications for the existing drugs.Citation:Zhao S,Li S(2010)Network-Based Relating Pharmacological and Genomic Spaces for Drug Target Identification.PLoS ONE5(7):e11764.doi:10.1371/ journal.pone.0011764Editor:Jo¨rg Hoheisel,Deutsches Krebsforschungszentrum,GermanyReceived April15,2010;Accepted June30,2010;Published July26,2010Copyright:ß2010Zhao,Li.This is an open-access article distributed under the terms of the Creative Commons Attribution License,which permits unrestricted use,distribution,and reproduction in any medium,provided the original author and source are credited.Funding:This work is supported by the National Natural Science Foundation of China(Nos.60934004,30873464and60721003).The funders had no role in study design,data collection and analysis,decision to publish,or preparation of the manuscript.Competing Interests:The authors have declared that no competing interests exist.*E-mail:shaoli@IntroductionIdentification of drug targets is one of the major tasks in drug discovery[1].In recent years,drug phenotypic effects and chemical structures have been used to infer drug-target interac-tions.Phenotypic effect-based approaches are based on the various phenotypic responses,such as expression profiles and side effects, to external compounds[2–5].Such studies treat the biological system as a whole,and associate one drug to other drugs which have similar biological activity or genes with related phenotypic outcomes.The associated drug pairs are assumed to have the same the targets and the drug-gene pairs are predicted as novel drug-target interactions.On the assumption that structurally similar drugs tend to bind similar proteins,another kind of study using chemical structure-based approaches[6–8],especially integrating drug chemical similarity and protein sequence or structure information[9–11],has shown lots of encouraging results.These studies also demonstrate that drug chemical structure information is a good indicator for drug biological activity[12].Though great progress has been made in this field,some challenges still exist.In phenotypic effect-based approaches, similar drug responses may be due to the drugs affecting different targets in the same pathway or in the same biological process, rather than having common targets;also,expression patterns cannot distinguish target genes from downstream regulated genes. Chemical structure-based approaches often focus on a handful of proteins[7,8],such as those with known interacting drugs[6,11] or with known three dimensional(3D)structures[9,10].For the majority of proteins without such prior information,these approaches are insufficient.Moreover,the underlying assumption in chemical structure-based approaches is not universally true. Examples exist where structurally similar drugs can bind proteins without obvious sequence or structural similarity[13,14].Besides, a clear boundary still exists between these two kinds of approaches. Under these circumstances,there is an urgent need to integrate phenotypic and chemical indexes together and develop new methods to predict drug-target interactions on a large scale. With the development of systems biology and the emergence of chemogenomic approaches,it has been possible to integrate multi-dimensional information and heterogeneous data in drug studies [15–17].Recently,studies found that in pharmacological space,(a) therapeutic similarity(phenotypic index)is,in part,due to the functional relatedness of targets[18,19],and(b)drugs with similar chemical structure usually bind related proteins[13,20];in genomic space,(c)protein(or target)relevance can be character-ized by protein-protein interaction(PPI)network features such as modularity or distance[21].With this understanding,we believe that the similarities in pharmacological space,termed drugTherapeutic Similarity(TS)and drug Chemical Similarity(CS), are correlated with the relatedness of the targets on the basis of the PPI network in genomic space.Based on this assumption,we created a network-based computational framework,drugCI-PHER,to relate pharmacological and genomic spaces with multi-dimensional information and predict drug targets on a genome-wide scale(Figure1).DrugCIPHER takes as input drug TS,drug CS,known drug-target interactions and the PPI network.The TS is established based on the Anatomic Therapeutic Chemical(ATC)classification system[22,23].We originally proposed a probabilistic model to characterize the similarity between ATC codes by using a semantic method in machine learning[24],and then to infer the TS.The CS is defined as the2D structural similarity.Known drug-target interactions and PPI information are obtained from the DrugBank database[25]and the Human Protein Reference Database(HPRD)[26]respectively.In this work,we first associate a drug and a protein(not necessarily a known target)by defining the‘closeness’on the basis of the PPI network.Then,we formulize the previous assumption into three regression models which relate the predefined closeness to TS,CS and the multiple similarity(MS)information combining TS and CS,named drugCIPHER-TS,drugCIPHER-CS and drugCIPHER-MS respectively(Figure1).For a query drug,each protein in the PPI network is assigned three concordance scores based on the different regression models.We did not make a quantitative decision about which protein is the target,as the drug-protein binding affinity itself is a continuous value,not a binary one[14].Instead,the genome-wide concordance scores describe the importance of the protein to in the activity of the drug,and proteins with large concordance scores could be hypothesized as potential drug targets.As a result,we demonstrate that drugCIPHER-MS outperforms drugCIPHER-TS,drugCI-PHER-CS as well as the current Bipartite Local Model(BLM) method[11]in predicting drug-target interactions.Based on drugCIPHER-MS,a genome-wide map of biological fingerprints for726drugs is built,and unexpected drug relations,which imply potential novel drug applications and side effects,are generated. ResultsWe extracted726Food and Drug Administration(FDA)approved drugs that had at least one known ATC code and known chemical structure information from DrugBank[25]as our reference set.This set was composed of1176drug-ATC code interactions and2225 drug-target interactions.678drugs were found with known targets. The human PPI network was retrieved from HPRD[26],and included38,788interactions among9630proteins.We expanded this network to9981proteins by adding,as isolated nodes,351target proteins not recorded in the HPRD database.By investigating the relations between drug TS and drug CS,we demonstrated that TS and CS played complementary roles to each other in pharmacolog-ical space.The enrichment analysis for drug pairs with common targets with respect to TS and CS was also performed.The results show that drugs with a high TS and CS had a high probability to share targets(Text S1and Figure S1).Figure1.Principle of drugCIPHER.Drugs are solid nodes and presented by‘d’;proteins are hollow nodes and presented by‘p’.A).Drug Therapeutic Similarity(TS)(blue solid edges)and Drug Chemical Similarity(CS)(green solid edges)comprise the pharmacological space.The protein-protein interaction(PPI)(gray solid edges)network represents the information in the genomic space.Together with drug-target interactions(gray dashed edges),the closeness(brown dashed edges)is defined to associate a drug with any arbitrary protein.B).For drug d and protein p,two similarity vectors for d in pharmacological space(TS d and CS d)and one closeness vector for p(W p)are constructed.C.The concordance scores between drug d and protein p are computed based on three linear regression models,which assume linear correlations exist between TS d and W p, W p and CS d,W p and the combination of TS d and CS d.doi:10.1371/journal.pone.0011764.g001Comparison between pharmacological metrics and genomic metricsAs a step toward drugCIPHER,we investigated the relations between drug similarities in the pharmacological space and drug genomic relatedness (GR)in the genomic space,where GR is defined as the average closeness of drug targets in the PPI network (See Materials and Methods ).The similarity matrixes for TS,CS and GR are shown in Figure 2.Drugs are ordered by clustering of their GR for observation.In the GR matrix,we observe many small blocks enriched in the diagonal,indicating the targets of these drugs were strongly related in the PPI network.Some blocks can be matched in both the CS matrix and the TS matrix (block a and e ),suggesting a consistency between the two spaces.There are also some blocks with no similar patterns in other matrixes (block b,c and d ).These phenomena show that drugs with high genomic relatedness and chemical similarity may generate different therapeutic effects (block b and d ),and drugs with diverse structures could still have a similar therapeutic activity and related targets (block c ).To quantify the correlations between TS,CS and GR,we computedSpearman correlation coefficient between GR and the corresponding TS and CS.The correlation coefficients are 0.0957for GR and TS and 0.1465for GR and CS,indicating that each has a slight positive correlation.We randomly shuffled the drug labels 10,000times to evaluate the significance of such correlations.The results suggest that correlations between TS,CS and GR are about 2.2and 1.5fold of the maximum permuted coefficients,demonstrating that such modest correla-tions are still significant (P ,0.0001)(Text S1,Figure S2).Figure 2.Correlation in pharmacological space and genomic space.Drugs are ordered by clustering their genomic relatedness (GR).Corresponding TS and CS matrixes are aligned next to the GR matrix,and all of them are demonstrated by heat maps.Modest but significant correlations are observed between pharmacological similarities and genomic relatedness (P ,0.0001).doi:10.1371/journal.pone.0011764.g002Performance of drugCIPHERWe proposed a novel method,drugCIPHER,to relate pharmacological and genomic spaces,and demonstrated the good performance of this method in recovering known drug-target interactions in DrugBank by using leave-one-out cross-validation. For each known drug-target interaction,19negative controls from the9981proteins in the PPI network were added,forming a candidate set.To simulate the prediction of unknown targets,we equated this process to remove all targets except one(See Materials and Methods).The three models of drugCIPHER were employed to prioritize the proteins in the candidate set.We defined a success if the known target was ranked at the top,and the precision as the proportion of successes after running drugCIPHER on all known drug-target interactions.After100 repeats,on average,drugCIPHER-TS,drugCIPHER-CS and drugCIPHER-MS get precisions of0.783,0.903and0.908 respectively(Table1).The results show that the performance of drugCIPHER-MS is not only much better than drugCIPHER-TS but also better than drugCIPHER-CS with statistical significance (P=7.94e-015,Wilcoxon rank sum test)(Figure3A).Then,based on the known drug-target interactions in DrugBank,we applied drugCIPHER to the726FDA approved drugs in the reference set and the9981proteins in the PPI network to give a genome-wide inference of drug-target interactions. Known drug-target interactions were used as golden standards to evaluate the overall performance of drugCIPHER.We ranked the 9981proteins according to the concordance score for the678 known-target drugs.Proteins above a given rank threshold were treated as predicted targets(positives),and the rest were viewed as non-targets(negatives).Following thisprinciple,sensitivity and specificity could be defined.The results show the Area Under the ROC Curve(AUC)for drugCIPHER-MS reaches0.988 (Figure3B),and for drugCIPHER-TS and drugCIPHER-CS the values are0.964and0.981respectively(Table1).For example,when we set the rank threshold to100,1299out of2225 known drug-target interactions(58.4%)are successfully identified by drugCIPHER-TS,and1721(77.3%)are identified by drugCIPHER-CS;1166(52.4%)are identified by both of the models(Figure3C).Moreover,the1166interactions are all ranked above the given threshold by drugCIPHER-MS,which in total identifies1742(78.3%)known drug-target interactions above this threshold(Figure3C).We further introduced an independent data set to test the generalization ability of drugCIPHER.We extracted drug-protein binding information from the Psychoactive Drug Screening Program(PDSP)Ki database[27].Interactions with a Ki binding affinity lower than10m M were viewed as drug-target interactions [5].We eliminated the interactions which have already been recorded in DrugBank.513additional drug-target interactions were ing the previous rank lists,we computed the ROC curves for the additional interactions.An AUC of0.935for drugCIPHER-MS is observed(Figure3B),whereas drugCI-Table1.Performance comparison of drugCIPHER-TS,drugCIPHER-CS and drugCIPHER-MS.drugCIPHER TS CS MS Validation procedure(precision)0.7830.9030.908 Training set(AUC)0.9640.9810.988 Test set(AUC)0.8490.9170.935 doi:10.1371/journal.pone.0011764.t001Figure3.Performance of drugCIPHER.A).Comparison between drugCIPHER-CS and drugCIPHER-MS in leave-one-out cross-validation. The outliers are defined as the points larger than q3+1.5*(q32q1)or smaller than q121.5*(q32q1),in which q1and q3are the25th and75th percentiles,respectively.B).ROC curves of drugCIPHER-MS for the training set and the test set.The AUC is0.988for the training set,and 0.935for the test set.C).The constitution of known drug-target interactions ranked in the top100by drugCIPHER-TS,drugCIPHER-CS and drugCIPHER-MS.doi:10.1371/journal.pone.0011764.g003PHER-TS and drugCIPHER-CS have an AUC of0.849and 0.917respectively(Table1),indicating the drugCIPHER models do not overfit the data.To give an illustration of the best model,drugCIPHER-MS,we investigated Oxytocin,Nefazodone and their targets.Oxytocin is famous for its pleiotropic activities including induction of labor and influences on social behaviors[28].As shown in Table2,two targets of Oxytocin recorded in DrugBank are ranked1st and2nd by drugCIPHER-MS.Additionally,we find4proteins with a Ki lower than10m M in the PDSP Ki database.Without prior knowledge,drugCIPHER-MS ranks them at3rd,47th,48th and 91st out of9981possibilities.For Nefazodone,an antidepressant therapy[29],all5of the targets in DrugBank are ranked in the top 3%by drugCIPHER-MS,generating a,33fold enrichment (P=4.9e-6,Fisher exact test,one sided).Three additional drug-target binding interactions are identified in the PDSP Ki database, all of which are ranked above120th(1.2%),with a,84fold enrichment(P=3.1e-5,Fisher exact test,one sided)(Table2).It should be noted that other high-ranking proteins may also be of interest and may be indicative of potential off-target effects. Comparison with other methodsPreviously,related studies which focused on a limited number of proteins[6–8,11]suffered from limitations in high-throughput discovery of new drug-target interactions.To the best of our knowledge,though target identification on a genome-wide scale has been performed[3],there are no quantitative results we can compare with.Thus,we only try to compare drugCIPHER with a currently available non-genome-wide method,the BLM[11], which is also the most precise model for target prediction.We find that the AUCs in the BLM achieve0.973,0.970,0.953and0.858 for four drug sets:drugs targeting enzymes,ion channels,G protein-coupled receptors and nuclear receptors with known drug-target interactions of2926,1476,635and90respectively.We averaged the performance of the BLM by the weights of the number of corresponding interactions,generating an AUC of 0.9676.As shown in Figure3B and Table1,both drugCI-PHER-CS(AUC=0.981)and drugCIPHER-MS(AUC=0.988) have better performances.Moreover,there is no clear result about the generality of the BLM.In contrast,the generality of drugCIPHER-MS is well demonstrated.A genome-wide map of drug biological fingerprints The genome-wide concordance scores produced by drugCI-PHER-MS implied the importance of each protein in the biological activity of a given drug,therefore they can be viewed as a drugs biological fingerprint.We eliminated unspecific proteins which always received consistent scores for the726drugs,leaving 9639proteins(Text S1,Figure S3A).A genome-wide map of predicted biological fingerprints is comprised of the9639 concordance scores(/drugCI-PHER/Drug_biological_fingerprints.rar).We find the predicted fingerprint a better indicator for identification of drug targets compared to the therapeutic index and chemical structure,which merely include information in pharmacological space(Text S1, Figure S3B).A two-way hierarchical clustering for the726 biological fingerprints was also performed to explore the global drug-target(protein)interactions(Text S1,Figure S4). Potential novel drug applications and side effectsWe further define the drug activity resemblance as the cosine of the drug biological fingerprints and find the fingerprints can provide an alternative way to discover new drug applications and side effects.We find that some drugs,though with different main ATC categories,have similar biological fingerprints and are clustered tightly in the hierarchical clustering.Such drug pairs with an activity resemblance less than the significance level of0.05 (resemblance=0.84)were extracted(Figure4A,Table S1), including501unexpected relations among158drugs.Drug pairs with no clear chemical similarity and no common targets were extracted,as none of these interactions is obviously predictable using current knowledge.For example,Estrone,an estrogen classified as‘G’in the ATC main category,is closely associated with four antineoplastic drugs classified as‘L’in the ATC main category(P,0.05)(Figure4B).Typically,Estrone is connected with Exemestane(an Aromatase inhibitor,that disrupts the synthesis of estrogens and is used to treat various cancers[30]) with an activity resemblance of0.906(P=0.024).Interestingly,Table2.Ranks of known targets(DrugBank)and binding proteins(PDSP database)for Oxytocin and Nefazodone.Drug Database drugCIPHER-MS Rank Target Gene Symbol Entrez ID Ki Oxytocin DrugBank1PREP55502OXT5020PDSP3OXTR50210.5nM47AVPR1B5531782nM48AVPR25541544nM91AVPR1A552123nM Nefazodone DrugBank9HTR2A335612SLC6A4653233SLC6A26530267ADRA1B147305ADRA1A148PDSP32DRD21813910nM103SLC6A36531360nM119HTR1A335080nM doi:10.1371/journal.pone.0011764.t002although Estrone and the drugs it clusters with have different therapeutic effects and dissimilar chemical structures (maximum TS =0and CS =0.4)and although they do not have any knowncommon targets,the apoptotic action of Estrone has already been discovered,which makes it a promising antineoplastic agent [31,32].DrugCIPHER-MS successfully predicted thisnovelFigure 4.Exploration of novel drug applications and side effects.A ).Unexpected drug relations less than the significance level of 0.05,including 158drugs and 501relations.Drugs are colored according to their first level of ATC code.Drug pairs with known common targets are highlighted by red edges.B ).Estrone and the corresponding cluster.Four antineoplastic drugs are associated with Estrone,a hormonal therapy (P ,0.05).From small to large,the linkage resemblances (averaged)are 0.86,0.90,0.93,and 0.97in this cluster.C ).Cetirizine and the corresponding cluster.Three nervous system related-drugs are associated with Cetirizine,an anti-allergic therapy (P ,0.05).The linkage resemblances (averaged)in this cluster are 0.85,0.95,and 0.97respectively.doi:10.1371/journal.pone.0011764.g004application.Another example is Cetirizine,an anti-histamine agent used as an anti-allergic therapy[33](Figure4C),which was connected with three nervous system related-drugs(P,0.05). Similarly,no significant TS or CS is found(the maximum TS and CS are0and0.5),and no common target between Cetirizine and other drugs has been identified.Nevertheless,the side effects of Cetirizine on the nervous system have been reported[34]and supported by the SIDER database[35](Text S1).DrugCIPHER-MS also successfully detected these unexpected interactions. DiscussionIn this study,by relating pharmacological space with genomic space on the basis of the PPI network,drugCIPHER successfully identified drug-target interactions and predicted biological finger-prints in silico for726FDA approved drugs.Previously,drug biological profiles have been addressed by experimental approaches or computational methods[2,4,16,36].Alternatively,we presented another way to generate such profiles(biological fingerprints)and provided an interesting perspective for understanding drug activity. More importantly,our methods extend the candidate target proteins to a genome-wide scale(9981proteins),which greatly enlarges the number of known targets(935proteins)in DrugBank. Owing to the fact that every protein could be susceptible to drugs, this preliminary study provides us with valuable clues for identification of drug-target interactions on a large scale.The success of drugCIPHER-MS can be attributed to a number of aspects.First and most importantly,the two complementary indexes,therapeutic activity and chemical structure,are integrated together in this model,enabling us to capture compound activity comprehensively and bolster the efficiency of target identification. Second,our method benefits from current knowledge such as the known drug-target interactions,which provide us with golden standards for understanding drug mechanisms.Third,topological properties in the PPI network reflect certain basic characteristics of biological systems.Together with known drug-target interactions, such information makes it possible to relate pharmacological space with genomic space.Thus,we believe that combining heteroge-neous information could help to generate new hypotheses and boost further drug discovery.Based on drugCIPHER-MS,a genome-wide map of drug biological fingerprints for726drugs was predicted.One aspect of the results merits emphasis.By integrating TS and CS in pharmacological space and PPIs in genomic space,unexpected drug relations emerge,which demonstrate that the integration of existing multi-dimensional information may generate additional knowledge.At a significance level of0.05of the activity resemblance,501unexpected drug-drug relations are obtained (Table S1).Nevertheless,drug pairs with an activity resemblance smaller than0.84may still present pharmacological meaning.As shown in Figure S5,the blocks in the activity matrix which are not present in the TS matrix may indicate new drug applications or side effects(Text S1,Table S2).With the development of pharmacology,more and more attention has been paid to chemogenomics[15],a discipline that tries to understand the global effects of a compound in a complete biological system.Analogous to reverse and forward principles in chemogenomics,two primary applications of the biological fingerprints can be found.(a)Reverse applications: when a new gene of interest is identified,one could quickly aim at a handful of candidate drugs which are most relevant to this gene,therefore effectively narrowing down the entire compound library and increasing the efficiency of high-throughput screening in drug discovery.(b)Forward applications:the biological fingerprints are predicted on the basis of the whole biological system.To identify new drug targets,one can select the top ranked proteins in the fingerprints,and design experiments to validate these proteins,such as docking or in vitro binding assays.Together with other experimental data [4,36],these biological fingerprints allow us to identify drug targets more quickly and confidently.Currently,there are still some limitations in our methods.First, our methods are limited to a part of the entire genome:proteins with known PPIs.Therefore the completeness and quality of PPIs influence the results.As we used the gene name to represent the protein,the gene-protein discordance caused by events such as alternative splicing is currently not considered.Our future work will address the variations in the protein structure brought about by alternative splicing and its effects on drug-target interaction patterns as well as drug biological activities.Second,we assume each protein has the potential to bind small molecules.Actually, more aspects should be considered such as the druggability, cellular compartmentalization and protein level.Third,in our models,some prior knowledge about the drugs is needed,e.g.the chemical structures and the ATC codes.As the chemical structure information has been extensively addressed,we can use drugCI-PHER-CS instead of drugCIPHER-MS to enlarge the reference set while sacrificing some precision.It must be noted that the ATC classification system is not the only way to address the drug therapeutic similarity.Alternatives include pharmacology annota-tions or clinical records.In summary,this work demonstrates that the integration of multi-dimensional information in pharmacological space and genomic space gains advantages in target identification and yields additional knowledge.More importantly,the global concordance score presents a novel understanding of drug-protein interactions, and the predicted biological fingerprints could also provide us new insights into associating drugs with diseases and pathways, predicting new drug applications,as well as deciphering drug side effects.Together with network pharmacology[37],this prelimi-nary study is one step toward genome-wide drug target identification.Materials and MethodsData sourcesThe drug-ATC code interactions and known drug-target interactions were obtained from DrugBank[25]in January 2010.We extracted drugs which were(a)FDA approved,(b)with at least one ATC code and(c)with chemical structure information recorded in the KEGG compound database[38]. 726drugs were obtained(Figure5A),together with1176drug-ATC code interactions.Targets which were DNA or small RNAs were removed,as we only considered interactions between drugs and proteins,generating2225drug-target interactions for678 drugs.Protein-protein interaction information was retrieved from HPRD[26]in January2010.38,788interactions among9630 human proteins were obtained.351target proteins absent in the interactome were added into the PPI network as isolated nodes, expanding the network to9981proteins.Drug-protein binding interactions were retrieved from the PDSP Ki database[27]in February2010.Interactions with a Ki binding affinity lower than10m M were viewed as drug-target interactions [5].We eliminated the interactions which have already been included in DrugBank to make the training set and test set independent of each other.After mapping this data to our reference set,we found513additional drug-target interactions for86drugs.。

相关文档
最新文档