高考理科数学试题及答案1004
2022年河南省高考数学试卷理科真题及参考答案
2022年河南省高考数学理科真题及参考答案注意事项1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}5,432,1,,=U ,集合M 满足{}3,1=M C U ,则()A.M∈2 B.M∈3 C.M∉4 D.M∉52.若i z 21-=,且0=++b z a z ,其中a ,b 为实数,则()A.2,1-==b a B.2,1=-=b a C.2,1==b a D.2,1-=-=b a3.已知向量a ,b 1=3=3=-,则=⋅b a ()A.2- B.1- C.1D.24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111a b +=,212111a a b ++=,32131111a a a b +++=,……,以此类推,其中() 2,1=∈*k Na k .则()A.51b b < B.83b b < C.26b b < D.74b b <5.设F 为抛物线x y C 4:2=的焦点,点A 在C 上,点()0,3B ,若BF AF =,则=AB ()A.2B.22 C.3D.236.执行右图的程序框图,输出的=n ()A.3B.4C.5D.67.在正方体1111D C B A ABCD -,E ,F 分别为AB ,BC 的中点,则()A.平面EF B 1⊥平面1BDDB.平面EF B 1⊥平面BD A 1C.平面EF B 1∥平面AC A 1D.平面EF B 1∥平面DC A 118.已知等比数列{}n a 的前3项和为168,4252=-a a ,则=6a ()A.14B.12C.6D.39.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.31B.21 C.33 D.2210.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为1p ,2p ,3p ,且0123>>>p p p .记该棋手连胜两盘的概率为p ,则()A.p 与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p 最大C.该棋手在第二盘与乙比赛,p 最大D.该棋手在第二盘与丙比赛,p 最大11.双曲线C 的两个焦点1F ,2F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且53cos 21=∠NF F ,则C 的离心率为()A.25 B.23 C.213 D.21712.已知函数()x f ,()x g 的定义域为R ,且()()52=-+x g x f ,()()74=--x f x g .若()x g y =的图象关于直线2=x 对称,()42=g ,则()=∑=221k k f ()A.21-B.22-C.23-D.24-二、填空题:本题共4小题,每小题5分,共20分。
全国统一高考数学试卷理科参考答案与试题解析
全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,110每小题4分,1115每小题5分,满分65分)1.(4分)设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=()A .{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}考点:交集及其运算.分析:解出集合N中二次不等式,再求交集.解答:解:N={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选B点评:本题考查二次不等式的解集和集合的交集问题,注意等号,较简单.2.(4分)如果直线ax+2y+2=0与直线3x﹣y﹣2=0平行,那么实数a等于()A .﹣6B.﹣3C.D.考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:根据它们的斜率相等,可得=3,解方程求a的值.解答:解:∵直线ax+2y+2=0与直线3x﹣y﹣2=0平行,∴它们的斜率相等,∴=3,∴a=﹣6.故选A.点评:本题考查两直线平行的性质,两直线平行,斜率相等.3.(4分)函数y=tan ()在一个周期内的图象是()A .B.C.D.考点:正切函数的图象.专题:综合题.分析:先令tan ()=0求得函数的图象的中心,排除C,D;再根据函数y=tan ()的最小正周期为2π,排除B.解答:解:令tan ()=0,解得x=kπ+,可知函数y=tan ()与x 轴的一个交点不是,排除C,D∵y=tan ()的周期T==2π,故排除B故选A点评:本题主要考查了正切函数的图象.要熟练掌握正切函数的周期,单调性,对称中心等性质.4.(4分)已知三棱锥P﹣ABC的三个侧面与底面全等,且AB=AC=,BC=2.则二面角P﹣BC﹣A的大小为()A .B.C.D.考点:平面与平面之间的位置关系;与二面角有关的立体几何综合题.专题:计算题.分析:要求二面角P﹣BC﹣A的大小,我们关键是要找出二面角P﹣BC﹣A的大小的平面角,将空间问题转化为平面问题,然后再分析二面角P﹣BC﹣A的大小的平面角所在的三角形的其它边与角的关系,解三角形进行求解.解答:解:如图所示,由三棱锥的三个侧面与底面全等,且AB=AC=,得PB=PC=,PA=BC=2,取BC的中点E,连接AE,PE,则∠AEP即为所求二面角的平面角.且AE=EP=,∵AP2=AE2+PE2,∴∠AEP=,故选C.点评:求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AEP为二面角P﹣BC﹣A的平面角,通过解∠AEP所在的三角形求得∠AEP.其解题过程为:作∠AEP→证∠AEP是二面角的平面角→计算∠AEP,简记为“作、证、算”.5.(4分)函数y=sin ()+cos2x的最小正周期是()A .B.πC.2πD.4π考点:三角函数的周期性及其求法.分析:先将函数化简为:y=sin(2x+θ),即可得到答案.解答:解:∵f(x)=sin ()+cos2x=cos2x ﹣sin2x+cos2x=(+1)cos2x ﹣sin2x=sin(2x+θ)∴T==π故选B.点评:本题主要考查三角函数的最小正周期的求法.属基础题.6.(4分)满足arccos(1﹣x)≥arccosx的x的取值范围是()A .[﹣1,﹣]B.[﹣,0]C.[0,]D.[,1]考点:反三角函数的运用.专题:计算题.分析:应用反函数的运算法则,反函数的定义及性质,求解即可.解答:解:arccos(1﹣x)≥arccosx 化为cos[arccos(1﹣x)]≤cos[arccosx]所以1﹣x≤x,即:x,又x∈[﹣1,1],所以x的取值范围是[,1]故选D.点评:本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,是中档题.7.(4分)将y=2x的图象____________再作关于直线y=x对称的图象,可得到函数y=log2(x+1)的图象()A .先向左平行移动1个单位B.先向右平行移动1个单位C .先向上平行移动1个单位D.先向下平行移动1个单位考点:反函数;函数的图象与图象变化.分析:本题考查函数图象的平移和互为反函数的函数图象之间的关系两个知识点,作为本题,可以用逐一验证的方法排除不合题意的选项,验证的个数在1到3个,对于本题,这不是最佳选择,建议逆推得到平移后的解析式,这样就可以方便的观察到平移的方向及单位数.解答:解:利用指数式和对数式的互化,由函数y=log2(x+1)解得:x=2y﹣1则函数y=log2(x+1)(x>﹣1)的反函数为y=2x﹣1(x∈R)即函数y=2x平移后的函数为y=2x﹣1,易见,只需将其向下平移1个单位即可.故选D点评:本题采用先逆推获取平移后的解析式的方法,得到解析式后平移的方向和单位便一目了然,简便易行,值得尝试.8.(4分)长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()A .20πB.25πC.50πD.200π考点:球的体积和表面积.专题:计算题.分析:设出球的半径,由于直径即是长方体的体对角线,由此关系求出球的半径,即可求出球的表面积.解答:解:设球的半径为R,由题意,球的直径即为长方体的体对角线,则(2R)2=32+42+52=50,∴R=.∴S球=4π×R2=50π.故选C点评:本题考查球的表面积,球的内接体,考查计算能力,是基础题.9.(4分)曲线的参数方程是(t是参数,t≠0),它的普通方程是()A .(x﹣1)2(y﹣1)=1B.y=C.D.考点:参数方程的概念.专题:计算题.分析:由题意知x=1﹣,可得x﹣1=﹣,将方程两边平方,然后与y﹣1=﹣t2,相乘消去t即可求解.解答:解:∵曲线的参数方程是(t是参数,t≠0),∴,∴将两个方程相乘可得,(x﹣1)2(1﹣y)=1,∴y=,故选B.点评:此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.10.(4分)函数y=cos2x﹣3cosx+2的最小值为()A .2B.0C.D.6考点:函数的值域;余弦函数的定义域和值域.专题:计算题.分析:先进行配方找出对称轴,而﹣1≤cosx≤1,利用对称轴与区间的位置关系求出最小值.解答:解:y=cos2x﹣3cosx+2=(cosx﹣)2﹣∵﹣1≤cosx≤1∴当cosx=1时ymin=0,故选B点评:本题以三角函数为载体考查二次函数的值域,属于求二次函数的最值问题,属于基本题.11.(5分)椭圆C与椭圆关于直线x+y=0对称,椭圆C的方程是()A .B.C.D.考点:直线与圆锥曲线的综合问题.专题:计算题.分析:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.根据原椭圆方程可求得其中心坐标,进而求得其关于直线x+y=0对称点,则椭圆方程可得.解答:解:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.∵椭圆的中心为(3,2)关于直线x+y=0对称的点为(﹣2,﹣3)故椭圆C的方程为故选A.点评:本题主要考查了直线与椭圆的关系及点关于直线对称的问题.属基础题.12.(5分)圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是()A .πB.2πC.πD.π考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过圆台的底面面积,求出上下底面半径,利用侧面积公式求出母线长,然后求出圆台的高,即可求得圆台的体积.解答:解:S1=π,S2=4π,∴r=1,R=2,S=6π=π(r+R)l,∴l=2,∴h=.∴V=π(1+4+2)×=π.故选D点评:本题是基础题,通过底面面积求出半径,转化为求圆台的高,是本题的难点,考查计算能力,常考题.13.(5分)(•碑林区一模)定义在区间(﹣∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式:①f(b)﹣f(﹣a)>g(a)﹣g(﹣b);②f(b)﹣f(﹣a)<g(a)﹣g(﹣b);③f(a)﹣f(﹣b)>g(b)﹣g(﹣a);④f(a)﹣f(﹣b)<g(b)﹣g(﹣a),其中成立的是()A .①与④B.②与③C.①与③D.②与④考点:函数奇偶性的性质.分析:根据f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f (b),对①②③④进行逐一验证即可得答案.解答:解:由题意知,f(a)>f(b)>0又∵f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f(b);∴①f(b)﹣f(﹣a)>g(a)﹣g(﹣b)⇔f(b)+f(a)>f(a)﹣f(b)⇔f(b)>﹣f(b),故①对②不对.③f(a)﹣f(﹣b)>g(b)﹣g(﹣a)⇔f(b)+f(a)>f(b)﹣f(a)⇔f(a)>﹣f(a),故③对④不对.故选C.点评:本题主要考查函数奇偶性的应用.14.(5分)不等式组的解集是()A .{x|0<x<2}B.{x|0<x<2.5}C.D.{x|0<x<3}考点:其他不等式的解法.专题:压轴题.分析:可以直接去绝对值解不等式,比较复杂;可结合答案用特值法解决.解答:解:取x=2满足不等式,排除A;再取x=2.5,不满足,排除B、D故选C点评:本题考查解绝对值不等式和分式不等式问题,要注意选择题的特点,选择特殊做法解决.15.(5分)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有()A .150种B.147种C.144种D.141种考点:排列、组合的实际应用;计数原理的应用.专题:计算题;压轴题.分析:由题意知从10个点中任取4个点有C104种取法,减去不合题意的结果,4点共面的情况有三类,取出的4个点位于四面体的同一个面上;取任一条棱上的3个点及该棱对棱的中点;由中位线构成的平行四边形,用所有的结果减去不合题意的结果即可得答案.解答:解:从10个点中任取4个点有C104种取法,其中4点共面的情况有三类.第一类,取出的4个点位于四面体的同一个面上,有4C64种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4顶点共面,有3种.以上三类情况不合要求应减掉,∴不同的取法共有C104﹣4C64﹣6﹣3=141种.故选D.点评:本题考查分类计数原理,考查排列组合的实际应用,是一个排列组合同立体几何结合的题目,解题时注意做到不重不漏.二、填空题(共4小题,每小题4分,满分16分)16.(4分)已知的展开式中x3的系数为,常数a的值为4.考点:二项式定理;二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求出第r+1项,令x的指数为3求出展开式中x3的系数,列出方程解得.解答:解:的展开式的通项为=令解得r=8∴展开式中x3的系数为∵展开式中x3的系数为∴解得a=4故答案为4点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.17.(4分)(•陕西模拟)已知直线的极坐标方程为,则极点到该直线的距离是.考点:简单曲线的极坐标方程;与圆有关的比例线段;不等式的基本性质.专题:计算题;压轴题.分析:先将原极坐标方程中的三角函数式展开后两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解即得.解答:解:将原极坐标方程,化为:ρsinθ+ρcosθ=1,化成直角坐标方程为:x+y﹣1=0,则极点到该直线的距离是=.故填;.点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.18.(4分)的值为.考点:角的变换、收缩变换.专题:计算题;压轴题.分析:先将分式中的15°化为7°+8°,利用两角和的余弦、正弦展开,分子、分母分组提取sin7°,cos7°,再用同角三角函数的基本关系式,化简,然后,就会求出tan15°,利用两角差的正切,求解即可.解答:解:=======tan15°=tan(45°﹣30°)===,故答案为:点评:本题考查角的变换,两角和的正弦、余弦,同角三角函数的基本关系式,考查学生运算能力,是中档题.19.(4分)已知m、l是直线,α、β是平面,给出下列命题:①若l垂直于α内两条相交直线,则l⊥α;②若l平行于α,则l平行于α内所有的直线;③若m⊊α,l⊊β且l⊥m,则α⊥β;④若l⊊β且l⊥α,则α⊥β;⑤若m⊊α,l⊊β且α∥β,则l∥m.其中正确命题的序号是①④.考点:空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.专题:压轴题.分析:对于①,考虑直线与平面垂直的判定定理,符合定理的条件故正确;对于②,考虑直线与平面平行的性质定理以及直线与平面的位置关系,故错误;对于③考虑α⊥β的判定方法,而条件不满足,故错误;对于④符合面面垂直的判定定理,故正确;对于⑤不符合线线平行的判定,故错误.正确命题的序号是①④解答:解:①,符合定理的条件故正确;②,若l平行于α,则l与α内的直线有两种:平行或异面,故错误;③m⊊α,l⊊β且l⊥m,则α与β可以相交但不垂直;④符合面面垂直的判定定理,故正确;⑤若m⊊α,l⊊β且α∥β,则l∥m或者异面,错误,故正确命题的序号是①④.点评:本题考查立体几何中线线关系中的平行、线面关系中的垂直、面面关系中的垂直的判定方法,要注意对比判定定理的条件和结论,同时要注意性质定理、空间直线与直线、直线与平面、平面与平面的位置关系的应用.三、解答题(共6小题,满分69分)20.(10分)已知复数,.复数,z2ω3在复数平面上所对应的点分别为P,Q.证明△OPQ是等腰直角三角形(其中O为原点).考点:复数代数形式的混合运算.分析:利用复数三角形式,化简复数,.然后计算复数,z2ω3,计算二者的夹角和模,即可证得结论.解答:解法一:,于是,,=因为OP与OQ的夹角为,所以OP⊥OQ.因为,所以|OP|=|OQ|由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.解法二:因为,所以z3=﹣i.因为,所以ω4=﹣1于是由此得OP⊥OQ,|OP|=|OQ|.由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.点评:本小题主要考查复数的基本概念、复数的运算以及复数的几何意义等基础知识,考查运算能力和逻辑推理能力,是中档题.21.(11分)已知数列{an},{bn}都是由正数组成的等比数列,公比分别为p、q,其中p>q,且p≠1,q≠1.设cn=an+bn,Sn为数列{cn}的前n项和.求.考点:等比数列的通项公式;极限及其运算;数列的求和.专题:计算题.分析:先根据等比数列的通项公式分别求出an和bn,再根据等比数列的求和公式,分别求得Sn和Sn﹣1的表达式,进而可得的表达式,分p>1和p<1对其进行求极限.解答:解:,.分两种情况讨论.(Ⅰ)p>1.∵,====p.(Ⅱ)p<1.∵0<q<p<1,==点评:本小题主要考查等比数列的概念、数列极限的运算等基础知识,考查逻辑推理能力和运算能力.22.(12分)甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?考点:根据实际问题选择函数类型;基本不等式在最值问题中的应用.专题:应用题.分析:(1)全程运输成本有两部分组成,将其分别分别表示出来依题意建立起程运输成本y(元)表示为速度v(千米/时)的函数,由题设条件速度不得超过c千米/时.故定义域为v∈(0,c].(2)由(1)知,全程运输成本关于速度的函数表达式中出现了积为定值的情形,由于等号成立的条件有可能不成立,故求最值的方法不确定,对对速度的范围进行分类讨论,如等号成立时速度值不超过c,则可以用基本不等式求求出全程运输成本的最小值,若等号成立时速度值大于最高限速v,可以判断出函数在(0,c]上的单调性,用单调性求出全程运输成本的最小值.解答:解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为故所求函数及其定义域为(2)依题意知S,a,b,v都为正数,故有当且仅当,.即时上式中等号成立若,则当时,全程运输成本y最小,若,即a>bc2,则当v∈(0,c]时,有==因为c﹣v≥0,且a>bc2,故有a﹣bcv≥a﹣bc2>0,所以,且仅当v=c时等号成立,也即当v=c时,全程运输成本y最小.综上知,为使全程运输成本y最小,当时行驶速度应为;当时行驶速度应为v=c.点评:本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力.23.(12分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.(1)证明AD⊥D1F;(2)求AE与D1F所成的角.考点:异面直线及其所成的角.专题:计算题;证明题.分析:(1)证明线线垂直可先证线面垂直,欲证AD⊥D1F,可先证AD⊥面DC1,即可证得;(2)先通过平移将两条异面直线平移到同一个起点,取AB的中点G,将D1F平移到A1G,AB与A1G构成的锐角或直角就是异面直线所成的角,利用三角形全等求出此角即可.解答:解:(Ⅰ)∵AC1是正方体,∴AD⊥面DC1.又D1F⊂面DC1,∴AD⊥D1F.(Ⅱ)取AB中点G,连接A1G,FG.因为F是CD的中点,所以GF、AD平行且相等,又A1D1、AD平行且相等,所以GF、A1D1平行且相等,故GFD1A1是平行四边形,A1G∥D1F.设A1G与AE相交于点H,则∠AHA1是AE与D1F所成的角,因为E是BB1的中点,所以Rt△A1AG≌Rt△ABE,∠GA1A=∠GAH,从而∠AHA1=90°,即直线AE与D1F所成角为直角.点评:本小题主要考查异面直线及其所成的角,考查逻辑推理能力和空间想象能力,属于基础题.25.(12分)(•北京模拟)设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x﹣2y=0的距离最小的圆的方程.考点:直线与圆的位置关系.专题:压轴题.分析:圆被x轴分成两段圆弧,其弧长的比为3:1,劣弧所对的圆心角为90°,设圆的圆心为P(a,b),圆P截X轴所得的弦长为,截y轴所得弦长为2;可得圆心轨迹方程,圆心到直线l:x﹣2y=0的距离最小,利用基本不等式,求得圆的方程.解答:解法一:设圆的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截X轴所得的弦长为,故r2=2b2,又圆P截y轴所得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1.又点P(a,b)到直线x﹣2y=0的距离为,所以5d2=|a﹣2b|2=a2+4b2﹣4ab≥a2+4b2﹣2(a2+b2)=2b2﹣a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取得最小值.由此有解此方程组得或由于r2=2b2知.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.解法二:同解法一,得∴得①将a2=2b2﹣1代入①式,整理得②把它看作b的二次方程,由于方程有实根,故判别式非负,即△=8(5d2﹣1)≥0,得5d2≥1.∴5d2有最小值1,从而d有最小值.将其代入②式得2b2±4b+2=0.解得b=±1.将b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.综上a=±1,b=±1,r2=2.由|a﹣2b|=1知a,b同号.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.点评:本小题主要考查轨迹的思想,求最小值的方法,考查综合运用知识建立曲线方程的能力.易错的地方,P到x轴,y轴的距离,不能正确利用基本不等式.24.(12分)设二次函数f(x)=ax2+bx+c(a>0),方程f(x)﹣x=0的两个根x1,x2满足0<x1<x2<.(1)当x∈(0,x1)时,证明x<f (x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,证明x0<.考点:一元二次方程的根的分布与系数的关系;不等式的证明.专题:证明题;压轴题;函数思想;方程思想;作差法.分析:(1)方程f(x)﹣x=0的两个根x1,x2,所以构造函数,当x∈(0,x1)时,利用函数的性质推出x<f (x),然后作差x1﹣f(x),化简分析出f(x)<x1,即可.(2).方程f(x)﹣x=0的两个根x1,x2,函数f(x)的图象,关于直线x=x0对称,利用放缩法推出x0<;解答:证明:(1)令F(x)=f(x)﹣x.因为x1,x2是方程f(x)﹣x=0的根,所以F(x)=a(x﹣x1)(x﹣x2).当x∈(0,x1)时,由于x1<x2,得(x﹣x1)(x﹣x2)>0,又a>0,得F(x)=a(x﹣x1)(x﹣x2)>0,即x<f(x).x1﹣f(x)=x1﹣[x+F(x)]=x1﹣x+a(x1﹣x)(x﹣x2)=(x1﹣x)[1+a(x﹣x2)]因为所以x1﹣x>0,1+a(x﹣x2)=1+ax﹣ax2>1﹣ax2>0.得x1﹣f(x)>0.由此得f(x)<x1.(2)依题意知因为x1,x2是方程f(x)﹣x=0的根,即x1,x2是方程ax2+(b﹣1)x+c=0的根.∴,因为ax2<1,所以.点评:本小题主要考查一元二次方程、二次函数和不等式的基础知识,考查综合运用数学知识分析问题和解决问题的能力.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
2023年黑龙江省高考理科数学真题及参考答案
2023年黑龙江省高考理科数学真题及参考答案一、选择题1.设5212ii iz +++=,则=z ()A .i 21-B .i21+C .i -2D .i+22.设集合R U =,集合{}1<=x x M ,{}21<<-=x x N ,则{}=≥2x x ()A .()N M C U ⋃B .MC N U ⋃C .()N M C U ⋂D .NC M U ⋃3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .304.已知()1-=ax xe xe xf 是偶函数,则=a ()A .2-B .1-C .1D .25.设O 为平面坐标系的坐标原点,在区域(){}41,22≤+≤y x y x 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于4π的概率为()A .81B .61C .41D .216.已知函数()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,直线6π=x 和32π=x 为函数()x f y =的图象的两条对称轴,则=⎪⎭⎫⎝⎛-125πf ()A .23-B .21-C .21D .237.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种8.已知圆锥PO 的底面半径为3,O 为底面圆心,PB P A ,为圆锥的母线,︒=∠120AOB ,若P AB ∆的面积等于439,则该圆锥的体积为()A .πB .π6C .π3D .π639.已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角D AB C --为150°,则直线CD 与平面ABC 所成角的正切值为()A .51B .52C .53D .5210.已知等差数列{}n a 的公差为32π,集合{}*∈=N n a S n cos ,若{}b a S ,=,则=ab ()A .1-B .21-C .0D .2111.已知B A ,是双曲线1922=-y x 上两点,则可以作为B A ,中点的是()A .()1,1B .()2,1-C .()3,1D .()4,1-12.已知圆122=+y x O :,2=OP ,过点P 作直线1l 与圆O 相切于点A ,作直线2l 交圆O 于C B ,两点,BC 中点为D ,则PD P A ⋅的最大值为()A .221+B .2221+C .21+D .22+二、填空题13.已知点()51,A 在抛物线px y C 22=:上,则A 到C 的准线的距离为.14.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则y x z -=2的最大值为.15.已知{}n a 为等比数列,63542a a a a a =,8109-=a a ,则=7a .16.已知()()xxa a x f ++=1,()1,0∈a ,若()x f 在()∞+,0为增函数,则实数a 的取值范围为.三、解答题(一)必做题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i i y x ,()10,2,1 =i ,试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记i i i y x z -=()10,2,1 =i ,记1021,z z z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果1022s z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.在ABC ∆中,︒=∠120BAC ,2=AB ,1=AC .(1)求ABC ∠sin ;(2)若D 为BC 上一点,且︒=∠90BAD ,求ADC ∆的面积.19.如图,在三棱锥ABC P -中,BC AB ⊥,2=AB ,22=BC ,6==PC PB ,BC AP BP ,,的中点分别为O E D ,,,DO AD 5=,点F 在AC 上,AO BF ⊥.(1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角C AO D --的正弦值.20.已知椭圆C :()012222>>=+b a bx a y 的离心率为35,点()02,-A 在C 上.(1)求C 的方程;(2)过点()3,2-的直线交曲线C 于Q P ,两点,直线AQ AP ,交y 轴于N M ,两点,求证:线段MN 中点为定点.21.已知函数()()1ln 1+⎪⎭⎫⎝⎛+=x a x x f .(1)当1-=a 时,求曲线()x f 在()()1,1f 的切线方程;(2)是否存在实数b a ,使得曲线⎪⎭⎫⎝⎛=x f y 1关于直线b x =对称,若存在,求出b a ,的值;如果不存在,请说明理由;(3)若()x f 在()∞+,0存在极值,求a 的取值范围.(二)选做题【选修4-4】22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤=24sin 2πθπθρ,曲线2C :⎩⎨⎧==ααsin 2cos 2y x (α为参数,παπ<<2).(1)写出1C 的直角坐标方程;(2)若直线m x y +=既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】23.已知()22-+=x x x f .(1)求不等式()x x f -≤6的解集;(2)在直角坐标系xOy 中,求不等式组()⎩⎨⎧≤-+≤06y x yx f 所确定的平面区域的面积.参考答案一、选择题123456789101112BADDCDCBCBDA1.解:()i i ii i i i i i i z 21112211212252-=--=+=+-+=+++=,则i z 21+=2.解:由题意可得{}2<=⋃x x N M ,则()=⋃N M C U {}2≥x x .3.解:如图所示,在长方体1111D C B A ABCD -中,2==BC AB ,31=AA ,点K J I H ,,,为所在棱上靠近点1111,,,A D C B 的三等分点,N M L O ,,,为所在棱的中点,则三视图所对应的几何体为长方体1111D C B A ABCD -去掉长方体11LMHB ONIC -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方体.4.解:∵()1-=ax xe xe xf 是偶函数,则()()=--x f x f ()()[]01111=--=-------axx a x ax x axx e e e x e e x e xe ,又∵x 不恒为0,可得()01=--xa xee ,则()x a x 1-=,∴2=a .5.解:∵区域(){}41,22≤+≤y x y x 表示以()00,O 为圆心,外圆半径2=R ,内圆半径1=r 的圆环,则直线OA 的倾斜角不大于4π的部分如阴影所示,在第一象限对应的圆心角4π=∠MON ,结合对称性可得所求概率为41242=⨯=ππp .6.解:∵()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,∴26322πππ=-=T ,且0>ω,则π=T ,22==Tπω.当6π=x 时,()x f 取得最小值,则Z k k ∈-=+⋅,2262ππϕπ,则Z k k ∈-=,652ππϕ,不妨取0=k 则()⎪⎭⎫ ⎝⎛-=652sin πx x f ,则2335sin 125=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππf .7.解:有1本相同的读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分布乘法公式则共有⋅16C 12025=A 种.8.解:在AOB ∆中,︒=∠120AOB ,而3==OB OA ,取AC 中点C ,连接PC OC ,,有AB OC ⊥,AB PC ⊥,如图,︒=∠30ABO ,23=OC ,32==BC AB ,由P AB ∆的面积为439得439321=⨯⨯PC ,解得233=PC ,于是6232332222=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-=OC PC PO ,∴圆锥的体积()πππ663313122=⨯⨯=⨯⨯=PO OA V .9.解:取AB 的中点E ,连接DE CE ,,∵ABC ∆为等腰直角三角形,AB 为斜边,则有AB CE ⊥,又ABD ∆为等边三角形,则AB DE ⊥,从而CED ∠为二面角DAB C --的平面角,即︒=∠150CED ,显然E DE CE =⋂,⊂DE CE ,平面CDE ,又⊂AB 平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面CE ABC =,直线⊂CD 平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2=AB ,则1=CE ,3=DE,在CDE ∆中,由余弦定理得:72331231cos 222=⎪⎪⎭⎫⎝⎛-⨯⨯⨯-+=∠⋅-+=CED DE CE DE CE CD ,由正弦定理得CEDCDDCE DE ∠=∠sin sin ,即7237150sin 3sin =︒=∠DCE ,显然DCE ∠是锐角,7257231sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=∠-=∠DCE DCE ,∴直线CD 与平面ABC 所成角的正切值为53.10.解:依题意,等差数列{}n a 中,()⎪⎭⎫⎝⎛-+=⋅-+=323232111πππa n n a a n ,显然函数==n a y cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+3232cos 1ππa n 的周期为3,而*∈N n ,即n a cos 最多有3个不同取值,又{}{}b a Nn a n ,cos =∈*,而在321cos ,cos ,cos a a a 中,321cos cos cos a a a ≠=或321cos cos cos a a a =≠,于是有⎪⎭⎫ ⎝⎛+=32cos cos πθθ,即有Z k k ∈=⎪⎭⎫ ⎝⎛++,232ππθθ,解得Z k k ∈-=,3ππθ213cos cos cos 3cos 343cos 3cos 2-=-=⎪⎭⎫ ⎝⎛--=⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=ππππππππππk k k k k ab 11.解:由对称性只需考虑()1,1,()2,1,()3,1,()4,1即可,注意到()3,1在渐近线上,()1,1,()2,1在渐近线一侧,()4,1在渐近线的另一侧.下证明()4,1点可以作为AB 的中点.设直线AB 的斜率为k ,显然k 存在.设()41+-=x k y l AB :,直线与双曲线联立()⎪⎩⎪⎨⎧=-+-=194122y x x k y ,整理得()()()094429222=------k x k k xk ,只需满足⎩⎨⎧>∆=+0221x x ,∴()29422=--k k k ,解得49=k ,此时满足0>∆.12.解:如图所示,1=OA ,2=OP ,则由题意可知:︒=∠45APO ,由勾股定理可得122=-=OA OP P A ,当点D A ,位于直线PO 异侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛+⨯=⎪⎭⎫ ⎝⎛+⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22-+=-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=42sin 2221πα∵40πα≤≤,则4424ππαπ≤-≤-,∴当442ππα-=-时,PD P A ⋅有最大值1.当点D A ,位于直线PO 同侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22++=+=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++=42sin 2221πα∵40πα≤≤,则2424ππαπ≤+≤,∴当242ππα=+时,PD P A ⋅有最大值为221+.二、填空题13.49;14.8;15.2-;16.⎪⎪⎭⎫⎢⎣⎡-1,21513.解:由题意可得:()1252⨯=p ,则52=p ,∴抛物线的方程为x y 52=,准线方程为45-=x ,点A 到C 的准线的距离为49451=⎪⎭⎫ ⎝⎛--.14.作出可行域如下图所示,∵y x z -=2,∴z x y -=2,联立有⎩⎨⎧=+-=-9213y x y x ,解得⎩⎨⎧==25y x 设()2,5A ,显然平移直线x y 2=使其经过点A 此时截距z -最小,则z 最大,代入得8=z .15.解:设{}n a 的公比为()0≠q q ,则q a q a a a a a a 5263542⋅==,显然0≠n a ,则24q a =,即231q q a =,则11=q a ,∵8109-=a a ,则89181-=⋅q a q a ,则()()3351528-=-==q q,则23-=q ,则25517-==⋅=q q q a a .16.⎪⎪⎭⎫⎢⎣⎡-1,215解析:()()()a a a a x f xx+++='1ln 1ln ,由()x f 在()∞+,0为增函数可知()∞+∈,0x 时,()0≥'x f 恒成立,只需()0min ≥'x f ,而()()()01ln 1ln 22>+++=''a a a a x f xx,∴()()()01ln ln 0≥++='>'a a f x f ,又∵()1,0∈a ,∴⎪⎪⎭⎫⎢⎣⎡-∈1,215a .三、解答题(一)必做题17.解:(1)∵i i i y x z -=()10,2,1 =i ,∴9536545111=-=-=y x z ;62=z ;83=z ;84-=z ;155=z ;116=z ;197=z ;188=z ;209=z ;1210=z .()()[]1112201819111588691011011021=++++++-+++⨯=++=z z z z ∵()∑=-=1012101i i z z s ,将各对应值代入计算可得612=s (2)由(1)知:11=z ,612=s,∴5122106121061210222=⨯==s ,121112==z ,∴1022s z ≥∴甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高18.解:(1)根据题意,由余弦定理可得:72112212cos 222222=⎪⎭⎫ ⎝⎛-⨯⨯⨯-+=∠⋅-+=BAC AC AB AC AB BC ∴7=BC 由正弦定理ABC AC A BC ∠=∠sin sin ,即ABC∠=sin 1237,解得1421sin =∠ABC .(2)由三角形面积公式可得430sin 2190sin 21=︒⨯⨯⨯︒⨯⨯⨯=∆∆AD AC AD AB S S ACDABD ,则103120sin 12215151=⎪⎭⎫⎝⎛︒⨯⨯⨯⨯==∆∆ABC ACD S S .19.解:(1)连接OF OE ,,设tAC AF =,则()BC t BA t AF BA BF +-=+=1,BC BA AO 21+-=,AO BF ⊥,则()[]()()0414********=+-=+-=⎪⎭⎫⎝⎛+-⋅+-=⋅t t BC t BA t BC BA BC t BA t AO BF 解得21=t ,则F 为AC 的中点,由F O E D ,,,分别为AC BC P A PB ,,,的中点,于是AB OF AB DE AB DE 2121∥,,∥=,即OF DE OF DE =,∥,则四边形ODEF 为平行四边形,DO EF DO EF =,∥,又⊄EF 平面ADO ,⊂DO 平面ADO ,∴EF ∥平面ADO .(2)由(1)可知EF ∥OD ,则266==DO AO ,,得2305==DO AD ,因此215222==+AD AO OD ,则AO OD ⊥,有AO EF ⊥,又BF AO ⊥,F EF BF =⋂,⊂EF BF ,平面BEF ,则有AO ⊥平面BEF ,又⊂AO 平面ADO ,∴平面ADO ⊥平面BEF .(3)过点O 作BF OH ∥交AC 于点H ,设G BE AD =⋂,由BF AO ⊥得AO HO ⊥,且AH FH 31=,又由(2)知,AO OD ⊥,则DOH ∠为二面角C AO D --平面角,∵E D ,分别为P A PB ,的中点,因此G 为P AB ∆的重心,即有,31,31BE GE AD DG ==又AH FH 31=,即有GF DH 23=,622642622215234cos 2⨯⨯-+=⨯⨯-+=∠P A ABD ,解得14=P A ,同理得26=BE ,于是3222==+BF EF BE ,即有EF BE ⊥,则35262631222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⨯=GF ,从而315=GF ,21531523=⨯=DH ,在DOH ∆中,215,262321====DH OD BF OH ,于是22221sin ,22232624154346cos 2=⎪⎪⎭⎫ ⎝⎛--=∠-=⨯⨯-+=∠DOH DOH .∴二面角C AO D --的正弦值为22.20.解:(1)由题意可得⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==352222a c e c b a b ,解得⎪⎩⎪⎨⎧===523c b a ,∴椭圆的方程为14922=+x y。
2020年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)
D. y 2x 1
【答案】B 【解析】 【分析】
求得函数 y f x 的导数 f x ,计算出 f 1 和 f 1 的值,可得出所求切线的点斜式方程,化简即可. 【详解】 f x x4 2x3 , f x 4x3 6x2 , f 1 1, f 1 2 ,
因此,所求切线的方程为 y 1 2 x 1 ,即 y 2x 1.
2.设集合 A={x|x2–4≤0},B={x|2x+a≤0},且 A∩B={x|–2≤x≤1},则 a=( )
A. –4
B. –2
C. 2
D. 4
【答案】B
【解析】
【分析】
由题意首先求得集合 A,B,然后结合交集的结果得到关于 a 的方程,求解方程即可确定实数 a 的值.
【详解】求解二次不等式 x2 4 0 可得: A x | 2 x 2,
两圆的方程相减可得: 2x y 1 0 ,即为直线 AB 的方程.
故选:D.
【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的
转化能力和数学运算能力,属于中档题.
12.若 2a log2 a 4b 2 log4 b ,则( )
A. a 2b
B. a 2b
,即12
9
p 2
,解得
p
=
6.
故选:C.
【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.
5.某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x(单位:°C)的关系,在 20 个不同的温度
条件下进行种子发芽实验,由实验数据 (xi , yi )(i 1, 2,, 20) 得到下面的散点图:
A.
最新普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)(含答案)
绝密★启用前2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N I =A .2A .3A .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A51121117A 8.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2A 12F 分别是A 二、填空题:本题共4小题,每小题5分,共20分。
2023年高考全国甲卷理科数学+答案解析
2023年高考理科数学(全国甲卷)一、选择题1.设集合{31,},{32,}A x x k k Z B x x k k Z ==+∈==+∈∣∣,U 为整数集,()A B =U ð()A.{|3,}x x k k =∈ZB.{31,}x x k k Z =-∈∣C.{32,}xx k k Z =-∈∣ D.∅2.若复数()()i 1i 2,R a a a +-=∈,则=a ()A.-1 B.0·C.1D.23.执行下面的程序框遇,输出的B =()A.21B.34C.55D.894.向量||||1,||a b c ==-=,且0a b c ++=,则cos ,a c b c 〈--〉= ()A.15-B.25-C.25D.455.已知正项等比数列{}n a 中,11,n a S =为{}n a 前n 项和,5354S S =-,则4S =()A.7B.9C.15D.306.有60人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.17.“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件8.已知双曲线22221(0,0)x y a b a b-=>>的离心率为,其中一条渐近线与圆22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A.15B.5C.5D.59.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为()A.120B.60C.40D.3010.已知()f x 为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位所得函数,则() y f x =与1122y x =-的交点个数为()A.1B.2C.3D.411.在四棱锥P ABCD -中,底面ABCD 为正方形,4,3,45AB PC PD PCA ===∠=︒,则PBC 的面积为()A.B.C. D.12.己知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则||PO =()A.25B.302C.35D.352二、填空题13.若2π(1)sin 2y x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a ________.14.设x ,y 满足约束条件2333231x y x y x y -+≤⎧⎪-≤⎨⎪+≥⎩,设32z x y =+,则z 的最大值为____________.15.在正方体1111ABCD A B C D -中,E ,F 分别为CD ,11A B 的中点,则以EF 为直径的球面与正方体每条棱的交点总数为____________.16.在ABC 中,2AB =,60,BAC BC ∠=︒=,D 为BC 上一点,AD 为BAC ∠的平分线,则AD =_________.三、解答题17.已知数列{}n a 中,21a =,设n S 为{}n a 前n 项和,2n n S na =.(1)求{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .18.在三棱柱111ABC A B C -中,12AA =,1A C ⊥底面ABC ,90ACB ∠=︒,1A 到平面11BCC B 的距离为1.(1)求证:1AC A C =;(2)若直线1AA 与1BB 距离为2,求1AB 与平面11BCC B 所成角的正弦值.19.为探究某药物对小鼠的生长抑制作用,将40只小鼠均分为两组,分别为对照组(不加药物)和实验组(加药物).(1)设其中两只小鼠中对照组小鼠数目为X ,求X 的分布列和数学期望;(2)测得40只小鼠体重如下(单位:g ):(已按从小到大排好)对照组:17.318.420.120.421.523.224.624.825.025.426.126.326.426.526.827.027.427.527.628.3实验组:5.46.66.86.97.88.29.410.010.411.214.417.319.220.223.623.824.525.125.226.0(i )求40只小鼠体重的中位数m ,并完成下面2×2列联表:m<m≥对照组实验组(ii )根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用.参考数据:k 0.100.050.010()20P k k ≥ 2.7063.8416.63520.设抛物线2:2(0)C y px p =>,直线 2 10x y -+=与C 交于A ,B 两点,且||AB =.(1)求p ;(2)设C 的焦点为F ,M ,N 为C 上两点,0MF NF ⋅=,求MNF 面积的最小值.21.已知3sin π(),0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭(1)若8a =,讨论()f x 的单调性;(2)若()sin 2f x x <恒成立,求a 的取值范围.四、选做题22.已知(2,1)P ,直线2cos :1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),l 与x 轴,y 轴正半轴交于A ,B 两点,||||4PA PB ⋅=.(1)求α的值;(2)以原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.23.已知()2||, 0 f x x a a a =-->.(1)解不等式()f x x<(2)若()y f x =与坐标轴围成的面积为2,求a .2023年高考理科数学(全国甲卷)答案解析一、选择题1.A 因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z =,所以,(){}|3,U A B x x k k ==∈Z ð.故选:A .2.C因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =.故选:C.3.B当1n =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112n =+=;当2n =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213n =+=;当3n =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314n =+=;当4n =时,判断框条件不满足,跳出循环体,输出34B =.故选:B.4.D 因为0a b c ++= ,所以a b c +=-r r r ,即2222a b a b c ++⋅= ,即1122a b ++⋅=rr ,所以0a b ⋅=.如图,设,,OA a OB b OC c === ,由题知,1,OA OB OC OAB === 是等腰直角三角形,AB 边上的高22,22OD AD ==,所以23222CD CO OD =+=+=,1tan ,cos 3AD ACD ACD CD ∠==∠=,2cos ,cos cos 22cos 1a cbc ACB ACD ACD 〈--〉=∠=∠=∠-24215=⨯-=.故选:D.5.C由题知()23421514q q q q q q ++++=++-,即34244q q q q +=+,即32440q q q +--=,即(2)(1)(2)0q q q -++=.由题知0q >,所以2q =.所以4124815S =+++=.故选:C.6.A 报名两个俱乐部的人数为50607040+-=,记“某人报足球俱乐部”为事件A ,记“某人报兵乓球俱乐部”为事件B ,则505404(),()707707P A P AB ====,所以4()7()0.85()7P AB P BA P A ===∣.故选:A .7.B当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选:B8.D 由e =,则222222215c a b b a a a +==+=,解得2ba=,所以双曲线的一条渐近线不妨取2y x =,则圆心(2,3)到渐近线的距离55d ==,所以弦长45||5AB ===.故选:D 9.B记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天社区服务,再从剩余的4人抽取2人各参加星期六与星期天的社区服务,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天社区服务,也各有12种方法,所以恰有1人连续参加了两天社区服务的选择种数有51260⨯=种.故选:B.10.C因为πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.11.C 法一:连结,AC BD 交于O ,连结PO ,则O 为,AC BD 的中点,如图,因为底面ABCD 为正方形,4AB =,所以AC BD ==DO CO ==,又3PC PD ==,PO OP =,所以PDO PCO ≅ ,则PDO PCO ∠=∠,又3PC PD ==,AC BD ==PDB PCA ≅ ,则PA PB =,在PAC △中,3,45PC AC PCA ==∠=︒,则由余弦定理可得22222cos 32923172PA AC PC AC PC PCA =+-⋅∠=+-⨯⨯=,故PA =,则PB =,故在PBC 中,43,P PB C C B ===,所以222916171cos 22343PC BC PB PCB PC BC +-+-∠===⋅⨯⨯,又0πPCB <∠<,所以22sin 3PCB ∠=,所以PBC的面积为1122sin 34223S PC BC PCB =⋅∠=⨯⨯⨯=法二:连结,AC BD 交于O ,连结PO ,则O 为,AC BD的中点,如图,因为底面ABCD 为正方形,4AB =,所以AC BD ==在PAC △中,3,45PC PCA =∠=︒,则由余弦定理可得2222cos 32923172PA AC PC AC PC PCA =+-⋅∠=+-⨯⨯=,故PA =,所以22217cos 217PA PC AC APC PA PC +-∠==-⋅,则17cos 3317PA PC PA PC APC ⎛⎫⋅=∠=⨯-=- ⎪ ⎪⎝⎭,不妨记,PB m BPD θ=∠=,因为()()1122PO PA PC PB PD =+=+ ,所以()()22PA PCPB PD +=+ ,即222222PA PC PA PC PB PD PB PD ++⋅=++⋅ ,则()217923923cos m m θ++⨯-=++⨯⨯,整理得26cos 110m m θ+-=①,又在PBD △中,2222cos BD PB PD PB PD BPD =+-⋅∠,即23296cos m m θ=+-,则26cos 230m m θ--=②,两式相加得22340m -=,故PB m ==故在PBC 中,43,P PB C C B ===,所以222916171cos 22343PC BC PB PCB PC BC +-+-∠===⋅⨯⨯,又0πPCB <∠<,所以22sin 3PCB ∠=,所以PBC 的面积为11sin 34223S PC BC PCB =⋅∠=⨯⨯⨯=故选:C.12.B方法一:设12π2,02F PF θθ∠=<<,所以122212tan tan 2PF F F PF S b b θ∠== ,由22212222cos sin 1tan 3cos cos 2cos +sin 1tan 5F PF θθθθθθθ--∠====+,解得:1tan 2θ=,由椭圆方程可知,222229,6,3a b c a b ===-=,所以,12121116222PF F p p S F F y y =⨯⨯=⨯=⨯ ,解得:23p y =,即2399162p x ⎛⎫=⨯-= ⎪⎝⎭,因此302OP ==.故选:B .方法二:因为1226PF PF a +==①,222121212122PF PF PF PF F PF F F +-∠=,即2212126125PF PF PF PF +-=②,联立①②,解得:22121215,212PF PF PF PF =+=,而()1212PO PF PF =+ ,所以1212OP PO PF PF ==+ ,即1213022PO PF PF =+=.故选:B .方法三:因为1226PF PF a +==①,222121212122PF PF PF PF F PF F F +-∠=,即2212126125PF PF PF PF +-=②,联立①②,解得:221221PF PF +=,由中线定理可知,()()222212122242OP F F PF PF +=+=,易知12F F=,解得:302OP =.故选:B .二、填空题13.【答案】2【解析】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++,所以()()()()221cos s 1co f x x x x x f x -=-++++-==,又定义域为R ,故()f x 为偶函数,所以2a =.故答案为:2.14.【答案】15【解析】作出可行域,如图,由图可知,当目标函数322z y x =-+过点A 时,z 有最大值,由233323x y x y -+=⎧⎨-=⎩可得33x y =⎧⎨=⎩,即(3,3)A ,所以max 332315z =⨯+⨯=.故答案为:1515.【答案】12【解析】设正方体棱长为2,EF 中点为O ,取AB ,1BB 中点,G M ,侧面11BB C C 的中心为N ,连接,,,,FG EG OM ON MN ,如图,由题意可知,O 为球心,在正方体中,2222222EF FG EG =++=,即2R =,则球心O 到1BB的距离为OM ==,所以球O 与棱1BB 相切,球面与棱1BB 只有1个交点,同理,根据正方体的对称性知,其余各棱和球面也只有1个交点,所以以EF 为直径的球面与正方体每条棱的交点总数为12.故答案为:1216.【答案】2【解析】如图所示:记,,AB c AC b BC a ===,方法一:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:1b =由ABC ABD ACD S S S =+ 可得,1112sin 602sin 30sin 30222b AD AD b ⨯⨯⨯=⨯⨯⨯+⨯⨯⨯ ,解得:13212AD b +===+.故答案为:2.方法二:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:1b =由正弦定理可得,62sin 60sin sin b B C==,解得:62sin 4B =,2sin 2C =,因为1>>45C = ,180604575B =--= ,又30BAD ∠=o ,所以75ADB ∠= ,即2AD AB ==.故答案为:2.三、解答题17.【答案】(1)1n a n =-(2)()1222nn T n ⎛⎫=-+ ⎪⎝⎭【解析】(1)因为2n n S na =,当1n =时,112a a =,即10a =;当3n =时,()33213a a +=,即32a =,当2n ≥时,()1121n n S n a --=-,所以()()11221n n n n n S S a na n a ---==--,化简得:()()121n n n a n a --=-,当3n ≥时,131122n n a a an n -====-- ,即1n a n =-,当1,2,3n =时都满足上式,所以()*1N n a n n =-∈.(2)因为122n n n a n +=,所以12311111232222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,2311111112(1)22222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得,123111111111222222111222211n n nn n n n T ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+-⎝=-⎭⨯-⨯ ,11122nn ⎛⎫⎛⎫=-+⎪⎪⎝⎭⎝⎭,即()1222nn T n ⎛⎫=-+ ⎪⎝⎭,*N n ∈.18.【答案】(1)证明见解析(2)13【解析】(1)如图,1AC ⊥ 底面ABC ,BC ⊂面ABC ,1A C BC ∴⊥,又BC AC ⊥,1,A C AC ⊂平面11ACC A ,1AC AC C ⋂=,BC ∴⊥平面ACC 1A 1,又BC ⊂平面11BCC B ,∴平面11ACC A ⊥平面11BCC B ,过1A 作11A O CC ⊥交1CC 于O ,又平面11ACC A 平面111BCC B CC =,1A O ⊂平面11ACC A ,1A O ∴⊥平面11BCC B 1A 到平面11BCC B 的距离为1,11∴=A O ,在11Rt A CC △中,111112,AC AC CC AA ⊥==,设CO x =,则12C O x =-,11111,,AOC AOC ACC △△△为直角三角形,且12CC =,22211CO A O A C +=,2221111A O OC C A +=,2221111A C A C C C +=,2211(2)4x x ∴+++-=,解得1x =,111AC A C A C ∴===1AC AC ∴=(2)111,,AC A C BC A C BC AC =⊥⊥ ,1Rt Rt ACB ACB ∴△≌△1BA BA ∴=,过B 作1BD AA ⊥,交1AA 于D ,则D 为1AA 中点,由直线1AA 与1BB 距离为2,所以2BD =11A D = ,2BD =,1A B AB ∴==,在Rt ABC △,BC ∴==,延长AC ,使AC CM =,连接1C M ,由1111,CM A C CM A C =∥知四边形11A CMC 为平行四边形,11C M A C ∴∥,1C M ∴⊥平面ABC ,又AM ⊂平面ABC ,1C M AM∴⊥则在1Rt AC M △中,112,AM AC C M AC ==,1AC ∴=,在11Rt AB C △中,1AC =,11B C BC ==1AB ∴==又A 到平面11BCC B 距离也为1,所以1AB 与平面11BCC B1313=.19.【答案】(1)分布列见解析,()1E X =(2)(i )23.4m =;列联表见解析,(ii )能【解析】(1)依题意,X 的可能取值为0,1,2,则022020240C C 19(0)C 78P X ===,120224010C C 20(1)C 39P X ===,202020240C C 19(2)C 78P X ===,X12P197820391978所以X 的分布列为:故192019()0121783978E X =⨯+⨯+⨯=.(2)(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由于原数据已经排好,所以我们只需要观察对照组第一排数据与实验组第二排数据即可,可得第11位数据为14.4,后续依次为17.3,17.3,18.4,19.2,20.1,20.2,20.4,21.5,23.2,23.6, ,故第20位为23.2,第21位数据为23.6,所以23.223.623.42m +==,故列联表为:m<m ≥合计对照组61420实验组14620合计202040(ii )由(i )可得,240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯,所以能有95%的把握认为药物对小鼠生长有抑制作用.20.【答案】(1)2p =(2)12-【解析】(1)设()(),,,A A B B A x y B x y ,由22102x y y px-+=⎧⎨=⎩可得,2420y py p -+=,所以4,2A B A B y y p y y p +==,所以A B AB y ==-==,即2260p p --=,因为0p >,解得:2p =.(2)因为()1,0F ,显然直线MN 的斜率不可能为零,设直线MN :x my n =+,()()1122,,,M x y N x y ,由24y x x my n ⎧=⎨=+⎩可得,2440y my n --=,所以,12124,4y y m y y n +==-,22161600m n m n ∆=+>⇒+>,因为0MF NF ⋅=,所以()()1212110x x y y --+=,即()()1212110my n my n y y +-+-+=,亦即()()()()2212121110m y y m n y y n ++-++-=,将12124,4y y m y y n +==-代入得,22461m n n =-+,()()22410m n n +=->,所以1n ≠,且2610n n -+≥,解得3n ≥+或3n ≤-.设点F 到直线MN 的距离为d,所以d =12MN y y ==-=1==-,所以MNF的面积()2111122S MN d n =⨯⨯=-=-,而3n ≥+或3n≤-,所以,当3n =-时,MNF的面积(2min 212S =-=-21.【答案】(1)答案见解析.(2)(,3]-∞【解析】(1)326cos cos 3sin cos sin ()cos x x x x xf x a x'+=-22244cos 3sin 32cos cos cos x x x a a x x+-=-=-令2cos x t =,则(0,1)t ∈则2223223()()t at t f x g t a t t '-+-==-=当222823(21)(43)8,()()t t t t a f x g t t t '+--+====当10,2t ⎛⎫∈ ⎪⎝⎭,即ππ,,()042x f x '⎛⎫∈< ⎪⎝⎭.当1,12t ⎛⎫∈ ⎪⎝⎭,即π0,,()04x f x '⎛⎫∈> ⎪⎝⎭.所以()f x 在π0,4⎛⎫ ⎪⎝⎭上单调递增,在ππ,42⎛⎫⎪⎝⎭上单调递减(2)设()()sin 2g x f x x=-()22222323()()2cos 2()22cos 12(21)24at t g x f x x g t x t a t t t t''+-=-=--=-=+-+-设223()24t a t t tϕ=+-+-322333264262(1)(22+3)()40t t t t t t t t t tϕ'--+-+=--+==->所以()(1)3t a ϕϕ<=-.1︒若(,3]a ∈-∞,()()30g x t a ϕ'=<-≤即()g x 在0,2π⎛⎫⎪⎝⎭上单调递减,所以()(0)0g x g <=.所以当(,3],()sin 2a f x x ∈-∞<,符合题意.2︒若(3,)a ∈+∞当22231110,333t t t t ⎛⎫→-=--+→-∞ ⎪⎝⎭,所以()t ϕ→-∞.(1)30a ϕ=->.所以0(0,1)t ∃∈,使得()00t ϕ=,即00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()00g x '=.当()0,1,()0t t t ϕ∈>,即当()00,,()0,()x x g x g x '∈>单调递增.所以当()00,,()(0)0x x g x g ∈>=,不合题意.综上,a 的取值范围为(,3]-∞.四、选做题22.【答案】(1)3π4(2)cos sin 30ραρα+-=【解析】(1)因为l 与x 轴,y 轴正半轴交于,A B 两点,所以ππ2α<<,令0x =,12cos t α=-,令0y =,21sin t α=-,所以21244sin cos sin 2PA PB t t ααα====,所以sin 21α=±,即π2π2k α=+,解得π1π,42k k α=+∈Z ,因为ππ2α<<,所以3π4α=.(2)由(1)可知,直线l 的斜率为tan 1α=-,且过点()2,1,所以直线l 的普通方程为:()12y x -=--,即30x y +-=,由cos ,sin x y ραρα==可得直线l 的极坐标方程为cos sin 30ραρα+-=.23.【答案】(1),33a a ⎛⎫ ⎪⎝⎭(2)263【解析】(1)若x a ≤,则()22f x a x a x =--<,即3x a >,解得3a x >,即3a x a <≤,若x a >,则()22f x x a a x =--<,解得3x a <,即3a x a <<,综上,不等式的解集为,33a a ⎛⎫ ⎪⎝⎭.(2)2,()23,x a x a f x x a x a -+≤⎧=⎨->⎩.画出()f x 的草图,则()f x 与坐标轴围成ADO △与ABCABC 的高为3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以||=AB a 所以21132224OAD ABC S S OA a AB a a +=⋅+⋅== ,解得263a =。
2020年高考理科数学试卷(全国1卷)(附详细答案)
2绝密★启用前2020年普通高等学校招生全国统一考试理科数学本试卷共5页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若z =1+i ,则22z z -=()A .0B .1C .D .2解:z =1+i ⇒z 2-2z=z (z -2)=(1+i )(i -1)=i 2-12=-2⇒|z 2-2z|=2.选D .2.设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A∩B ={x |-2≤x ≤1},则a =()A .-4B .-2C .2D .4解:A=[-2,2],B=(-∞,2a -],A ∩B=[-2,1]⇒2a-=1⇒a=-2.选B .3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.514 B.512- C.514+ D.512解:设正四棱锥的底面边长为a ,高为h ,斜高为b ,则222211154210224b b b ab h b a a a a +⎛⎫⎛⎫⎛⎫==-⇒--=⇒=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(舍负).选 C.4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A .2B .3C .6D .9解:91262pp +=⇒=.选C.5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(xi ,yi )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是()A .y =a +bxB .y =a +bx 2C .y =a +bexD .y =a +b ln x解:选D .6.函数f (x )=x 4-2x 3的图像在点(1,f (1))处的切线方程为()A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1解:'32'()46,(1)1,(1)2f x x x f k f =-=-==-∴切线方程为(1)2(1)y x --=--,即21y x =-+.选B .7.设函数f (x )=cos()6x πω+在[-π,π]的图像大致如下图,则f (x )的最小正周期为()A.109πB.76πC.43π D.32π解:由图可知T<π-(-π)<2T,即222212πππωωω<<⨯⇒<<又42,962k k Z πππωπ⎛⎫-+=-∈ ⎪⎝⎭⇒92(2),43k k Z ω=-∈∴当0k =时,32ω=,从而43T π=,选C .8.()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中x 3y 3的系数为()A .5B .10C .15D .20解:()()()22555y y x x y x x y x y x x ⎛⎫++=+++ ⎪⎝⎭()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中含x 3y 3的项为22234455y xC x y C x yx +∴()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中x 3y 3的系数为245515C C +=,选C .9.已知α∈(0,π),且3cos2α-8cos α=5,则sin α=()A.53B.23 C.13 D.593cos2α-8cos α=5⇒3(2cos 2α-1)-8cos α-5=0⇒(3cos α+2)(cos α-2)=0∴cos α=23-这里α∈(0,π),所以2225sin 1cos 1()33αα=-=--,选A.10.已知A ,B ,C 为球O 的球面上的三个点,O 1为△ABC 的外接圆.若O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为A .64πB .48πC .36πD .32π解:设AB =BC =AC =OO 1=a ,则O 1A=33a r =又22234123O S r a πππ⎛⎫===⇒= ⎪ ⎪⎝⎭ ,从而24r =在Rt∆O 1OA 中,22216R a r =+=2464S R ππ==球选A.11.已知M ::x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作M 的切线PA ,PB ,切点为A ,B ,当|PM ||AB|最小时,直线AB 的方程为()A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=0解:22:(1)(1)4M x y -+-= 的圆心为M (1,1),半径为2PA ,PB 是 M 的切线,设PM ∩AB=C ,则PA ⊥AM ,PM ⊥ABAC AMRt PAM Rt ACM PA PM∆∆⇒= ,即1224ACAM PM AB AM PA PA PA PM =⇒== 当|PM||AB |最小时,PA 最小,此时,PM ⊥l ,AB //l,22521PM ==+由2AM MC MP = ,即225MC =,得5MC =∴555PC PM MC =-==设AB:2x+y+c =0155c =⇒=∴AB:2x+y+1=0,选D .12.若242log 42log aba b +=+,则()A .a >2bB .a <2bC .a >b 2D .a <b 2解:显然2()2log xf x x =+是R +上的增函数若a <2b ,则()(2)f a f b <,即2222log 2log 2aba b +<+………………………❶又22422log 42log 2log a b b a b b+=+=+………………………………………❷❶-❷得220log 2log 1b b <-=怛成立,选B .二、填空题:本题共4小题,每小题5分,共20分。
高考理科数学试题(带答案解析)
高考理科数学试题(带答案解析)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的(1)在等差数列{}n a 中,241,5a a ==,则{}n a 的前5项和5S =(A)7(B)15(C)20(D)25【答案】:B【解析】:422514,d a a =-=-=2d =,1252121,3167a a d a a d =-=-=-=+=+=155()5651522a a S +⨯⨯===【考点定位】本题考查等差数列的通项公式及前n 项和公式,解题时要认真审题,仔细解答.(2)不等式1021x x -≤+的解集为(A)1,12⎛⎤-⎥⎝⎦(B)1,12⎡⎤-⎢⎥⎣⎦(C)[)1,1,2⎛⎫-∞-+∞ ⎪⎝⎭(D)[)1,1,2⎡⎤-∞-+∞⎢⎥⎣⎦(3)对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是(A)相离(B)相切(C)相交但直线不过圆心(D)相交且直线过圆心(4)8+的展开式中常数项为(A)3516(B)358(C)354(D)105【答案】B【解析】:8821881()2rrr r r r r T C C --+==令820r -=解得4r =展开式中常数项为4458135()28T C ==【考点定位】本题考查利用二项展开式的通项公式求展开式的常数项(5)设tan ,tan αβ是方程2320x x -+=的两根,则tan()αβ+的值(A)-3(B)-1(C)1(D)3【答案】:A【解析】:tan tan 3,tan tan 2αβαβ+==,则tan tan 3tan()31tan tan 12αβαβαβ++===---【考点定位】本此题考查学生灵活运用韦达定理及两角和的正切函数公式化简求值.(6)设,,x y R ∈向量(,1),(1,),(2,4)a x b y c ===- ,且,//a c b c ⊥ ,则||a b +=(C)(D)10(7)已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的(A)既不充分也不必要的条件(B)充分而不必要的条件(C)必要而不充分的条件(D)充要条件【答案】:D【解析】:由()f x 是定义在R 上的偶函数及[0,1]上的增函数可知在[-1,0]减函数,又2为周期,所以[3,4]上的减函数【考点定位】本题主要通过常用逻辑用语来考查函数的奇偶性和对称性,进而来考查函数的周期性.根据图象分析出函数的性质及其经过的特殊点是解答本题的关键.(8)设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f -(D )函数()f x 有极大值(2)f -和极小值(2)f(9)设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是(A )(0,2)(B )(0,3)(C )(1,2)(D )(1,3)【答案】:A【解析】:2221()22BE =-=,BF BE <,22AB BF =<,【考点定位】本题考查棱锥的结构特征,考查空间想象能力,极限思想的应用,是中档题.(10)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为(A )34π(B )35π(C )47π(D )2π[【答案】:D【解析】:由对称性:221,,(1)(1)1y x y x y x≥≥-+-≤围成的面积与221,,(1)(1)1y x y x y x≤≥-+-≤围成的面积相等得:A B 所表示的平面图形的面积为22,(1)(1)1y x x y ≤-+-≤围成的面积即2122R ππ⨯=25115112lim lim 555n n n n nn n→∞→∞++++===【考点定位】本题考查极限的求法和应用,n 都没有极限,可先分母有理化再求极限;(13)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且35cos ,cos ,3,513A B b ===则c =【答案】:c =145【解析】:由35cos ,cos 513A B ==得412sin ,sin ,513A B ==由正弦定理sin sin a bA B=得43sin 13512sin 513b A a B ⨯===由余弦定理22a c =2+b -2cbcosA 得22590c -c+56=0则c =145【考点定位】利用同角三角函数间的基本关系求出sinB 的值本题的突破点,然后利用正弦定理建立已知和未知之间的关系.同时要求学生牢记特殊角的三角函数值.(14)过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF =。
高考理科数学试题及答案(高清版)
普通高等学校夏季招生全国统一考试数学理工农医类(福建卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.理科:第Ⅱ卷第21题为选考题,其他题为必考题,满分150分.第Ⅰ卷一、选择题:(理科)本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(文科)本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足z i =1-i ,则z 等于()A .-1-i B .1-i C .-1+i D .1+i A .3+4i B .5+4i C .3+2i D .5+2i2.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为()A .1B .2C .3D .43.下列命题中,真命题是()A .x 0∈R ,0ex ≤B .x ∈R ,2x >x 2C .a +b =0的充要条件是1ab=-D .a >1,b >1是ab >1的充分条件4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A .球B .三棱锥C .正方体D .圆柱5.下列不等式一定成立的是()A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R )D .2111x >+(x ∈R )6.如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为()A .14B .15C .16D .177.设函数1,()0,x D x x ⎧=⎨⎩为有理数,为无理数,则下列结论错误的是()A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数8.已知双曲线22214x y b-=的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于()AB.C .3D .59.若函数y =2x 图象上存在点(x ,y )满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为()A .12B .1C .32D .210.函数f (x )在[a ,b ]上有定义,若对任意x 1,x 2∈[a ,b ],有()()12121()22x x f f x f x +≤[+],则称f (x )在[a ,b ]上具有性质P .设f (x )在[1,3]上具有性质P ,现给出如下命题:①f (x )在[1,3]上的图象是连续不断的;②f (x 2)在[1]上具有性质P ;③若f (x )在x =2处取得最大值1,则f (x )=1,x ∈[1,3];④对任意x 1,x 2,x 3,x 4∈[1,3],有12341()44x x x x f +++≤[f (x 1)+f (x 2)+f (x 3)+f (x 4)].其中真命题的序号是()A .①②B .①③C .②④D .③④第Ⅱ卷二、填空题:(理科)本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.(文科)本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.11.(a +x )4的展开式中x 3的系数等于8,则实数a =________.12s 值等于________.13.已知△ABC 的等比数列,则其最大角的余弦值为________.14.数列{a n }的通项公式πcos12n a n =+,前n 项和为S n ,则S 2012=________.15.对于实数a 和b ,定义运算“*”:22*.a ab a b a b b ab a b ⎧-≤=⎨->⎩,,,设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是__________.三、解答题:(理科)本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.(文科)本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:品牌甲乙首次出现故障时间x (年)0<x ≤11<x ≤2x >20<x ≤2x >2轿车数量(辆)2345545每辆利润(万元)123 1.8 2.9将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.17.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin13°cos17°;②sin 215°+cos 215°-sin15°cos15°;③sin 218°+cos 212°-sin18°cos12°;④sin 2(-18°)+cos 248°-sin(-18°)cos48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.18.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1.(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.19.如图,椭圆E :22221x y a b+=(a >b >0)的左焦点为F 1,右焦点为F 2,离心率12e =.过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M 的坐标;若不存在,说明理由.20.已知函数f(x)=e x+ax2-e x,a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(2)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.21.(1)选修4-2:矩阵与变换设曲线2x2+2xy+y2=1在矩阵1ab⎛⎫= ⎪⎝⎭A(a>0)对应的变换作用下得到的曲线为x2+y2=1.①求实数a,b的值;②求A2的逆矩阵.(2)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),π32⎛⎫⎪⎪⎝⎭,圆C的参数方程为22cos,2sinxyθθ=+⎧⎪⎨=⎪⎩(θ为参数).①设P为线段MN的中点,求直线OP的平面直角坐标方程;②判断直线l与圆C的位置关系.(3)选修4-5:不等式选讲已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].①求m的值;②若a,b,c∈R+,且11123ma b c++=,求证:a+2b+3c≥9.22.(文)已知函数f(x)=ax sin x-32(a∈R),且在[0,π2]上的最大值为π32-.(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.1.A由z i=1-i,得221i(1i)i i i i+11ii i11z---=====----.2.B∵a1+a5=10=2a3,∴a3=5.故d=a4-a3=7-5=2.3.D∵a>1>0,b>1>0,∴由不等式的性质得ab>1,即a>1,b>1⇒ab>1.4.D∵圆柱的三视图中有两个矩形和一个圆,∴这个几何体不可以是圆柱.5.C∵x2+1≥2|x|⇔x2-2|x|+1≥0,∴当x≥0时,x2-2|x|+1=x2-2x+1=(x-1)2≥0成立;当x<0时,x2-2|x|+1=x2+2x+1=(x+1)2≥0成立.故x2+1≥2|x|(x∈R)一定成立.6.C∵由图象知阴影部分的面积是3122121211)d()32326x x x x=⋅-=-=⎰,∴所求概率为11616=.7.C ∵D (x )是最小正周期不确定的周期函数,∴D (x )不是周期函数是错误的.8.A由双曲线的右焦点与抛物线y 2=12x 的焦点重合,知32pc ==,c 2=9=4+b 2,于是b 2=5,b =.因此该双曲线的渐近线的方程为2y x =±,即20y ±=.故该双曲线的焦点到其渐近线的距离为d ==.9.B由约束条件作出其可行域如图所示:由图可知当直线x =m 经过函数y =2x 的图象与直线x +y -3=0的交点P 时取得最大值,即得2x =3-x ,即x =1=m .10.D ①如图1,图1在区间[1,3]上f (x )具有性质P ,但是是间断的,故①错.②可设f (x )=|x -2|(如图2),当x ∈[1,3]时易知其具有性质P ,但是f (x 2)=|x 2-2|=222,1x x x x ⎧-≤≤⎪⎨-<≤⎪⎩P (如图3).故②错.图2图3③任取x 0∈[1,3],则4-x 0∈[1,3],1=f (2)=004()2x x f +-≤12[f (x 0)+f (4-x 0)].又∵f (x 0)=1,f (4-x 0)≤1,∴12[f (x 0)+f (4-x 0)]≤1.∴f (x 0)=f (4-x 0)=1.故③正确.④3412123422()(42x x x x x x x x f f ++++++=≤34121()+()222x x x x f f ++⎡⎤⎢⎥⎣⎦≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)],故④正确.11.答案:2解析:∵T r +1=4C r a r x 4-r ,∴当4-r =3,即r =1时,T 2=14C ·a ·x 3=4ax 3=8x 3.故a =2.12.答案:-3解析:(1)k =1,1<4,s =2×1-1=1;(2)k =2,2<4,s =2×1-2=0;(3)k =3,3<4,s =2×0-3=-3;(4)k =4,直接输出s =-3.13.答案:24-解析:设△ABC 的最小边长为a (m >0),则其余两边长为,2a ,故最大角的余弦值是22222cos 4θ==-.14.解析:∵函数πcos2n y =的周期2π4π2T ==,∴可用分组求和法:a 1+a 5+…+a 2009=50311+1=503++个...;a 2+a 6+...+a 2010=(-2+1)+(-6+1)+...+(-2010+1)=-1-5- (2009)503(12009)2--=-503×1005;a 3+a 7+…+a 2011=50311+1=503++个…;a 4+a 8+…+a 2012=(4+1)+(8+1)+…+(2012+1)=503(52013)2⨯+=503×1009;故S 2012=503-503×1005+503+503×1009=503×(1-1005+1+1009)=3018.15.答案:(1316,0)解析:由已知,得()22200x x x f x x x x ⎧≤⎪⎨⎪⎩-,,=-+,>,作出其图象如图,结合图象可知m 的取值范围为0<m <14,当x >0时,有-x 2+x =m ,即x 2-x +m =0,于是x 1x 2=m .当x <0时,有2x 2-x -m =0,于是314x -=.故123(118)4m x x x =.设h (m )=m (1,∵h ′(m)=(1-+[m()]=10,∴函数h (m )单调递减.故x 1x 2x 3的取值范围为(1316,0).16.解:(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则231()5010P A +==.(2)依题意得,X 1的分布列为X 1123P125350910X 2的分布列为X 2 1.82.9P110910(3)由(2)得,E (X 1)=1×125+2×350+3×910=14350=2.86(万元),E (X 2)=1.8×110+2.9×910=2.79(万元).因为E (X 1)>E (X 2),所以应生产甲品牌轿车.17.解:方法一:(1)选择②式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=13144-=.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α·(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+2sin αcos α+14sin 2α-2sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.方法二:(1)同方法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1cos21cos(602)22αα-+︒-+-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°·cos2α+sin60°sin2α)-32sin αcos α-12sin 2α=12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α)=11131cos2cos24444αα--+=.18.解:(1)以A 为原点,AB ,AD ,1AA的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E (2a,1,0),B 1(a,0,1),故1AD =(0,1,1),1B E =(2a -,1,-1),1AB =(a,0,1),AE =(2a,1,0).∵1AD ·1B E =2a-×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE .此时DP=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥1AB ,n ⊥AE ,得00.2ax z axy +=⎧⎪⎨+=⎪⎩,取x =1,得平面B 1AE 的一个法向量n =(1,2a-,-a ).要使DP ∥平面B 1AE ,只要n ⊥DP ,有2a -az 0=0,解得012z =.又DP平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时12AP =.(3)连接A 1D ,B 1C ,由长方体ABCD A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D .∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(Ⅰ)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴1AD 是平面A 1B 1E 的一个法向量,此时1AD=(0,1,1).设1AD 与n 所成的角为θ,则11·2cos ||||a a AD AD θ--== n n .∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°3322a =,解得a =2,即AB 的长为2.19.解:方法一:(1)因为|AB |+|AF 2|+|BF 2|=8,即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8,又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a ,所以4a =8,a =2.又因为12e =,即12c a =,所以c =1.所以b ==故椭圆E 的方程是22143x y +=.(2)由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且∆=0,即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*)此时024443km k x k m =-=-+,y 0=kx 0+m =3m ,所以P (4k m -,3m ).由4x y kx m =⎧⎨=+⎩,,得Q (4,4k +m ).假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上.设M (x 1,0),则0MP MQ ⋅=对满足(*)式的m ,k 恒成立.因为MP =(14k x m--,3m ),MQ =(4-x 1,4k +m ),由0MP MQ ⋅= ,得211141612430kx k kx x m m m-+-+++=,整理,得(4x 1-4)km+x 12-4x 1+3=0.(**)由于(**)式对满足(*)式的m ,k 恒成立,所以1211440,430,x x x -=⎧⎨-+=⎩解得x 1=1.故存在定点M (1,0),使得以PQ 为直径的圆恒过点M .方法二:(1)同方法一.(2)由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且∆=0,即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*)此时024443km k x k m =-=-+,y 0=kx 0+m =3m ,所以P (4k m -,3m ).由4x y kx m =⎧⎨=+⎩,,得Q (4,4k +m ).假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上.取k =0,m =,此时P (0,Q (4,以PQ 为直径的圆为(x -2)2+(y)2=4,交x 轴于点M 1(1,0),M 2(3,0);取12k =-,m =2,此时P (1,32),Q (4,0),以PQ 为直径的圆为225345()()2416x y -+-=,交x 轴于点M 3(1,0),M 4(4,0).所以若符合条件的点M 存在,则M 的坐标必为(1,0).以下证明M (1,0)就是满足条件的点:因为M 的坐标为(1,0),所以MP =(41k m --,3m),MQ =(3,4k +m ),从而1212330k kMP MQ mm ⋅=--++= ,故恒有MP MQ ⊥ ,即存在定点M (1,0),使得以PQ 为直径的圆恒过点M .20.解:(1)由于f ′(x )=e x +2ax -e ,曲线y =f (x )在点(1,f (1))处切线斜率k =2a =0,所以a =0,即f (x )=e x -e x .此时f ′(x )=e x -e ,由f ′(x )=0得x =1.当x ∈(-∞,1)时,有f ′(x )<0;当x ∈(1,+∞)时,有f ′(x )>0.所以f (x )的单调递减区间为(-∞,1),单调递增区间为(1,+∞).(2)设点P (x 0,f (x 0)),曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0),令g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),故曲线y =f (x )在点P 处的切线与曲线只有一个公共点P 等价于函数g (x )有唯一零点.因为g (x 0)=0,且g ′(x )=f ′(x )-f ′(x 0)=e x -e x 0+2a (x -x 0).(1)若a ≥0,当x >x 0时,g ′(x )>0,则x >x 0时,g (x )>g (x 0)=0;当x <x 0时,g ′(x )<0,则x <x 0时,g (x )>g (x 0)=0.故g (x )只有唯一零点x =x 0.由P 的任意性,a ≥0不合题意.(2)若a <0,令h (x )=e x -e x 0+2a (x -x 0),则h (x 0)=0,h ′(x )=e x +2a .令h ′(x )=0,得x =ln(-2a ),记x ′=ln(-2a ),则当x ∈(-∞,x *)时,h ′(x )<0,从而h (x )在(-∞,x *)内单调递减;当x ∈(x *,+∞)时,h ′(x )>0,从而h (x )在(x *,+∞)内单调递增.①若x 0=x *,由x ∈(-∞,x *)时,g ′(x )=h (x )>h (x *)=0;x ∈(x *,+∞)时,g ′(x )=h (x )>h (x *)=0,知g (x )在R 上单调递增.所以函数g (x )在R 上有且只有一个零点x =x *.②若x 0>x *,由于h (x )在(x *,+∞)内单调递增,且h (x 0)=0,则当x ∈(x *,x 0)时有g ′(x )=h (x )<h (x 0)=0,g (x )>g (x 0)=0;任取x 1∈(x *,x 0)有g (x 1)>0.又当x ∈(-∞,x 1)时,易知g (x )=e x +ax 2-[e +f ′(x 0)]x -f (x 0)+x 0f ′(x 0)<e x 1+ax 2-[e +f ′(x 0)]x -f (x 0)+x 0f ′(x 0)=ax 2+bx +c ,其中b =-[e +f ′(x 0)],c =e x 1-f (x 0)+x 0f ′(x 0).由于a <0,则必存在x 2<x 1,使得ax 22+bx 2+c <0.所以g (x 2)<0.故g (x )在(x 2,x 1)内存在零点,即g (x )在R 上至少有两个零点.③若x 0<x *,仿②并利用3e 6xx >,可证函数g (x )在R 上至少有两个零点.综上所述,当a <0时,曲线y =f (x )上存在唯一点P (ln(-2a ),f (ln(-2a ))),曲线在该点处的切线与曲线只有一个公共点P .21.(1)选修4-2:矩阵与变换解:①设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′).由 0 1x a y b '⎛⎫⎛⎫= ⎪ ⎪'⎝⎭⎝⎭x ax y bx y ⎛⎫⎛⎫= ⎪ ⎪+⎝⎭⎝⎭,得,.x ax y bx y '=⎧⎨'=+⎩又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1,即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1.依题意得222,22,a b b ⎧+=⎨=⎩解得1,1,a b =⎧⎨=⎩或1,1,a b =-⎧⎨=⎩因为a >0,所以1,1.a b =⎧⎨=⎩②由①知, 1 01 1⎛⎫=⎪⎝⎭A ,2 1 0 1 0 1 01 1 1 1 2 1⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A ,所以|A 2|=1,(A 2)-1= 1 02 1⎡⎤⎢⎥-⎣⎦.(2)选修4-4:坐标系与参数方程解:①由题意知,M ,N 的平面直角坐标分别为(2,0),(0,233).又P 为线段MN 的中点,从而点P 的平面直角坐标为(1,33),3②因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),(0,3),所以直线l 30y +-=.又圆C 的圆心坐标为(2,),半径r =2,圆心到直线l 的距离32d r ==<,故直线l 与圆C 相交.(3)选修4-5解:①因为f (x +2)=m -|x |,f (x +2)≥0等价于|x |≤m ,由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }.又f (x +2)≥0的解集为[-1,1],故m =1.②由①知111123a b c ++=,又a ,b ,c ∈R +,由柯西不等式得a +2b +3c =(a +2b +3c )(11123a b c ++)≥29=.。
高考理科数学试卷及答案解析(文字版)
普通高等学校招生全国统一考试数学(理工农医类)(福建卷及详解)一.选择题:本小题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数()sin cos f x x x =最小值是A .-1 B.12-C.12D.12.已知全集U=R ,集合2{|20}A x x x =->,则C U A 等于A .{x ∣0≤x ≤2}B {x ∣0<x<2}C .{x ∣x<0或x>2}D {x ∣x ≤0或x ≤2}3.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4,则公差d 等于A .1B53C.-2D 34.22(1cos )x dx ππ-+⎰等于A .π B.2C.π-2D.π+25.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是A .()f x =1xB.()f x =2(1)x -C .()f x =xe D()ln(1)f x x =+6.阅读右图所示的程序框图,运行相应的程序,输出的结果是A .2B .4C.8D .167.设m ,n 是平面α内的两条不同直线,1l ,2l 是平面β内的两条相交直线,则α//β的一个充分而不必要条件是A.m //β且l //α B.m //l 且n //l 2C.m//β且n //βD.m//β且n //l 28.已知某运动员每次投篮命中的概率低于40%。
现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。
经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为A .0.35B 0.25C 0.20D 0.159.设a ,b ,c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,若a ⊥c 且∣a∣=∣c∣,则∣b •c∣的值一定等于A .以a ,b 为两边的三角形面积B 以b ,c 为两边的三角形面积C .以a ,b 为邻边的平行四边形的面积D 以b ,c 为邻边的平行四边形的面积10.函数()(0)f x ax bx c a =++≠的图象关于直线2bx a=-对称。
高考理科数学普通高等学校招生全国统一考试 附答案120
高考理科数学普通高等学校招生全国统一考试(附答案)注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()(1)18.下图是某地区2000年至环境基础设施投资额y(单位:亿元)的折现图。
(第7题图)高考模拟复习试卷试题模拟卷高三上学期期末考试数学理试题汇编圆锥曲线一、填空题1、(宝山区高三上学期期末)抛物线212y x =-的准线与双曲线22193x y -=的两条渐近线所围成的三角形的面积等于.2、(崇明县高三上学期期末)在△ABC 中,AN =4,BC =∠CBA =4π,.若双曲线Γ以AB 为实轴,且过点C ,则Γ的焦距为3、(奉贤区高三上学期期末)若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p =________4、(虹口区高三上学期期末)如图,已知双曲线C 的右焦点为F 的右顶点A 作实轴的垂线,与其一条渐近线相交于点B ;若双曲线C 距为4,OFB ∆为等边三角形(O 为坐标原点,即双曲线 C 的中心),则双曲线C 的方程为_________________.5、(黄浦区高三上学期期末)已知k ∈Z ,若曲线222x y k +=与曲线无交点,则k =.6、(金山区高三上学期期末)以椭圆1162522=+y x 椭圆的右焦点为焦点的抛物线方程是7、(静安区高三上学期期末)已知抛物线2y ax =的准线方程是14y =-,则a =. 8、(闵行区高三上学期期末)点P 、Q 均在椭圆2222:11x y a a Γ+=-(1)a >上运动,12F F 、是椭圆Γ的左、右焦点,则122PF PF PQ +-的最大值为.9、(普陀区高三上学期期末)设P 是双曲线22142x y -=上的动点,若P 到两条渐近线的距离分别为12,d d ,则12d d ⋅=_________.10、(松江区高三上学期期末)已知抛物线2:4C y x =的准线为l ,过(1,0)M 且斜率为k 的直线与l 相交于点A ,与抛物线C 的一个交点为B .若2AM MB =,则 k = ▲ .11、(杨浦区高三上学期期末)抛物线C 的顶点为原点O ,焦点F 在x 轴正半轴,过焦点且倾斜角为4π的直线l 交抛物线于点,A B ,若AB 中点的横坐标为3,则抛物线C 的方程为_______________.填空题参考答案:1、 2、8 3、 4、2213y x -= 5、1±6、y2=12x7、18、2a9、4310、± 11、x 4y 2= 12、 13、 14、 15、 16、 17、 二、选择题1、(嘉定区高三上学期期末)已知圆M 过定点)0,2(,圆心M 在抛物线x y 42=上运动,若y 轴截圆M 所得的弦为AB ,则||AB 等于( )A .4B .3C .2D .12、(青浦区高三上学期期末)已知抛物线22(0)y px p =>与双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个交点,且AF x ⊥轴,若l 为双曲线一、三象限的一条渐近线,则l 的倾斜角所在的区间可能是………………………(). (A )0,6π⎛⎫ ⎪⎝⎭(B ),64ππ⎛⎫ ⎪⎝⎭(C ),43ππ⎛⎫ ⎪⎝⎭(D ),32ππ⎛⎫⎪⎝⎭3、(松江区高三上学期期末)已知双曲线2215x y m -=的右焦点与抛物线212y x =的焦点相同,则此双曲线的渐近线方程为.A y x =.B y x =.C y x =.D y =选择题参考答案:1、A2、D3、A三、解答题(第23题图)1、(宝山区高三上学期期末)已知椭圆2212x y +=上两个不同的点A,B 关于直线1(0)2y mx m =+≠对称.(1)若已知)21,0(C ,M 为椭圆上动点,证明:210≤MC ; (2)求实数m 的取值范围;(3)求AOB ∆面积的最大值(O 为坐标原点).22(),x y 对应点的曲线方程是C .(1)、求C 的标准方程;(2)、直线1:0l x y m -+=与曲线C 相交于不同两点,M N ,且满足MON ∠为钝角,其中O 为直角坐标原点,求出m 的取值范围.3、(虹口区高三上学期期末)已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为,F 短轴的两个端点分别为,A B 、且2,AB =ABF ∆为等边三角形 .(1) 求椭圆C 的方程;(2) 如图,点M 在椭圆C 上且位于第一象 限内,它关于坐标原点O 的对称点为N ; 过点 M 作x 轴的垂线,垂足为H ,直线NH 与椭圆C 交于另一点J ,若12HM HN ⋅=-,试求以线段NJ 为直径的圆的方程;(3)已知12l l 、是过点A 的两条互相垂直的直线,直线1l 与圆22:4O x y +=相交于P Q 、两点,直线2l 与椭圆C 交于另一点R ;求PQR ∆面积取最大值时,直线1l 的方程.4、(黄浦区高三上学期期末)已知椭圆Γ:22221x y a b+=(0a b >>),过原点的两条直线1l 和2l 分别与Γ交于点A 、B 和C 、D ,得到平行四边形ACBD .(1)当ACBD 为正方形时,求该正方形的面积S .(2)若直线1l 和2l 关于y 轴对称,Γ上任意一点P 到1l 和2l 的距离分别为1d 和2d ,当2212d d +为定值时,求此时直线1l 和2l 的斜率及该定值.(3)当ACBD 为菱形,且圆221x y +=内切于菱形ACBD 时,求a ,b 满足的关系式.5、(嘉定区高三上学期期末)在平面直角坐标系xOy 内,动点P 到定点)0,1(-F 的距离与P 到定直线4-=x 的距离之比为21. (1)求动点P 的轨迹C 的方程;(2)若轨迹C 上的动点N 到定点)0,(m M (20<<m )的距离的最小值为1,求m 的值. (3)设点A 、B 是轨迹C 上两个动点,直线OA 、OB 与轨迹C 的另一交点分别为1A 、1B ,且直线OA 、OB 的斜率之积等于43-,问四边形11B ABA 的面积S 是否为定值?请说明理由.椭圆C 上一点,从原点O 向圆()()8:2020=-+-y y x x R 作两条切线,切点分别为Q P ,.(1)若直线OQ OP ,互相垂直,且点R 在第一象限内,求点R 的坐标; (2) 若直线OQ OP ,的斜率都存在,并记为21,k k ,求证:01221=+k k .7、(静安区高三上学期期末)设P1和P2是双曲线22221x y a b-=上的两点,线段P1P2的中点为M ,直线P1P2不经过坐标原点O.(1)若直线P1P2和直线OM 的斜率都存在且分别为k1和k2,求证:k1k2=22ab ;(2)若双曲线的焦点分别为1(F 、2F ,点P1的坐标为(2,1),直线OM 的斜率为32,求由四点P1、 F1、P2、F2所围成四边形P1 F1P2F2的面积.8、(闵行区高三上学期期末)已知椭圆Γ的中心在坐标原点,且经过点3(1,)2,它的一个焦点与抛物线2:4y x E =的焦点重合. (1)求椭圆Γ的方程;(2)斜率为k 的直线l 过点()1,0F ,且与抛物线E 交于A B 、两点,设点(1,)P k -,PAB △的面积为k 的值;(3)若直线l 过点()0,M m (0m ≠),且与椭圆Γ交于C D 、两点,点C 关于y 轴的对称点为Q ,直线QD 的纵截距为n ,证明:mn 为定值.9、(浦东新区高三上学期期末)在平面直角坐标系xOy 中,对于点),(00y x P 、直线:l 0=++c by ax,我们称δ=为点),(00y x P 到直线:l 0=++c by ax 的方向距离。
.高考数学(理科)真题及答案[全国卷I]之欧阳美创编
2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B )如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( ) A .{2|-<x x } B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x( )A .21B .1C .52球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径D .413.设复数ωω++-=1,2321则i =( ) A .ω- B .2ωC .ω1-D .21ω4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为 ( )A .1)1(22=++y x B .122=+y xC .1)1(22=++y x D .1)1(22=-+y x 5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( ) A .6π-B .6πC .12π-D .12π6.函数xe y -=的图象( )A .与x e y =的图象关于y 轴对称 B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与xe y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为( )A .31B .33 C .32D .368.在坐标平面内,与点A (1,2)距离为1,且与点B(3,1)距离为2的直线共有( )A .1条B .2条C .3条D .4条9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ=( )A .511B .511-C .2D .-210.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππD .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为( )A .4πB .2πC .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有( ) A .56个B .57个C .58个D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有314.设y x ,满足约束条件: 则y x z 23+=的最大值是.15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是.16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱 ②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号). 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =; (Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S n n a a n n 证明:(Ⅰ)数列}{n S n是等比数列;(Ⅱ).41n n a S =+20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l与C相交于A、B两点。
普通高等学校招生全国统一考试数学理试题(课标卷,解析版)
2020 年一般高等学校招生全国一致考试理科数学注息事项 :1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷 ( 非选择题 ) 两部分。
答卷前,考生务势必自己的姓名、准考据号填写在本试卷和答题卡相应地点上。
2.问答第Ⅰ卷时。
选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需变动 . 用橡皮擦洁净后,再选涂其余答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上. 写在本试卷上无效·4.考试结束后 . 将本试卷和答且卡一并交回。
第一卷一.选择题:本大题共12 小题,每题 5 分,在每题给同的四个选项中,只有一项为哪一项切合题目要求的。
( 1)已知会合A{1,2,3,4,5}, B{( x, y) x A, y A, x y A} ;,则 B 中所含元素的个数为()(A) 3(B) 6(C)(D)【分析】选Dx 5, y 1,2,3,4 , x 4, y 1,2,3 , x 3, y 1,2 , x 2, y1 共10个( 2)将2名教师,4名学生疏成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由 1名教师和 2 名学生构成,不一样的安排方案共有()( A) 12种( B) 10种(C) 种(D) 种【分析】选 A甲地由 1名教师和 2 名学生:C21C4212 种2( 3)下边是对于复数z的四个命题:此中的真命题为()1 i 1p2: z22i p3: z1ip4 : z1p : z 2的共轭复数为的虚部为( A) p2 , p3(B)p1 , p2(C ) p , p(D ) p , p【分析】选 C22(1i)1izi ( 1i)( 1 i )1p1 : z 2 ,p2: z22i , p3 : z 的共轭复数为1i ,p4: z的虚部为1( 4)设F F是椭圆E :x2y21(a b 0) 的左、右焦点,P为直线3a上一点,1 22b2xa2F 2 PF 1 是底角为 30o 的等腰三角形,则 E 的离心率为( )(A)1( B) 2(C )(D )23【分析】选 CF 2 PF 1 是底角为 30o的等腰三角形PF 2F 2 F 1 2( 3a c) 2cec32 a4( 5)已知 a n为等比数列, a 4a 7 2 , a 5a 68 ,则 a 1a10()(A) 7(B)5(C )( D )【分析】选 Da 4 a 7 2,a 5a 6a 4 a 78 a 44, a 72或a 42, a 7 4a 4 4, a 7 2 a 1 8, a 10 1 a 1 a 107a 42, a 74a10 8, a 11a 1a107( 6)假如履行右侧的程序框图,输入正整数N ( N 2) 和实数 a 1 ,a 2 ,..., a n ,输出 A, B ,则()( A) A B 为 a 1 , a 2 ,..., a n 的和(B) AB为 a 1 , a 2 ,..., a n 的算术均匀数2(C ) A 和 B 分别是 a 1, a 2 ,..., a n 中最大的数和最小的数(D ) A 和 B 分别是 a 1, a 2 ,..., a n 中最小的数和最大的数【分析】选 C( 7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()( A) 6(B) 9 (C) (D)【分析】选 B该几何体是三棱锥,底面是俯视图,高为 3此几何体的体积为1 1 V63393 2( 8)等轴双曲线C 的中心在原点,焦点在 x 轴上, C 与抛物线 y 216 x 的准线交于 A, B两点, AB4 3 ;则 C 的实轴长为()(A) 2( B) 2 2(C )( D )【分析】选 C设 C : x 2 y 2 a 2 (a 0) 交 y 2 16x 的准线 l : x4于 A( 4,2 3)B(4,23)得: a 2( 4) 2(2 3) 2 4a 22a 4( 9)已知0 ,函数 f ( x)sin( x) 在 ( , ) 上单一递减。
普通高等学校招生全国统一考试理科数学全国卷试题及答案
202X 年一般高等学校招生全国统一考试理科数学考前须知:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和卷子指定位置上。
2.答复选择题时,选出每题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答复非选择题时,将答案写在答题卡上。
写在本卷子上无效。
3.考试结束后,将本卷子和答题卡一并交回。
一、选择题:此题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,完成翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的选项是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和.假设3243S S S =+,12a =,则=5a A .12- B .10- C .10D .125.设函数32()(1)f x x a x ax =+-+.假设()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱外表上的点M 在正视图上的对应点为A ,圆柱外表上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点〔–2,0〕且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.假设g 〔x 〕存在2个零点,则a的取值范围是 A .[–1,0〕B .[0,+∞〕C .[–1,+∞〕D .[1,+∞〕10.下列图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的地域记为Ⅰ,黑色局部记为Ⅱ,其余局部记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .假设OMN △为直角三角形,则|MN |= A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A 33B 23C 32D 3 二、填空题:此题共4小题,每题5分,共20分。
普通高等学校招生国统一考试数学试题 理卷,含答案 试题
2021年普通高等招生全国统一考试数学试题理〔卷〕本套试卷一共5页,150分。
考试时长120分钟。
所有考生必须将答案答在答题卡上,在试卷上答题无效。
在在考试完毕之后以后,将本套试卷和答题卡一起交回。
第一局部〔选择题一共40分〕一、选择题一共8小题,每一小题5分,一共40分。
在每一小题列出的四个选项里面,选出符合题目要求的一项。
〔1〕集合A={x||x|<2},B={–2,0,1,2},那么A B=〔A〕{0,1} 〔B〕{–1,0,1}〔C〕{–2,0,1,2} 〔D〕{–1,0,1,2}〔2〕在复平面内,复数11i的一共轭复数对应的点位于〔A〕第一象限〔B〕第二象限〔C〕第三象限〔D〕第四象限〔3〕执行如下图的程序框图,输出的s值为〔A〕12〔B〕56〔C 〕76〔D 〕712〔4〕“十二平均律〞是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的开展做出了重要奉献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.假设第一个单音的频率为f ,那么第八个单音的频率为 〔A 〕32f 〔B 〕322f 〔C 〕1252f〔D 〕1272f〔5〕某四棱锥的三视图如下图,在此四棱锥的侧面中,直角三角形的个数为〔A 〕1 〔B 〕2 〔C 〕3〔D 〕4〔6〕设a ,b 均为单位向量,那么“33-=+a b a b 〞是“a ⊥b 〞的〔A 〕充分而不必要条件 〔B 〕必要而不充分条件 〔C 〕充分必要条件〔D 〕既不充分也不必要条件〔7〕在平面直角坐标系中,记d 为点P 〔cos θ,sin θ〕到直线20x my --=的间隔 ,当θ,m 变化时,d 的最大值为〔A 〕1〔B 〕2〔C 〕3〔D 〕4〔8〕设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤那么〔A 〕对任意实数a ,(2,1)A ∈〔B 〕对任意实数a ,〔2,1〕A ∉〔C 〕当且仅当a <0时,〔2,1〕A ∉ 〔D 〕当且仅当32a ≤时,〔2,1〕A ∉ 第二局部〔非选择题 一共110分〕二、填空题一共6小题,每一小题5分,一共30分。
最新普通高等学校招生理科数学全国统一考试试题(湖南卷)(含解析)
普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出地四个选项中,只有一项是符合题目要求地 .1.复数()()1=+g为虚数单位在复平面上对应地点位于z i i iA.第一象限 B.第二象限 C.第三象限D.第四象限2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用地 抽样方法是A .抽签法B .随机数法C .系统抽样法D .分层抽样法3.在锐角中ABC ∆,角,A B 所对地 边长分别为,a b .若2sin ,a B A =则角等于A .12πB .6πC .4π D .3π 4.若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是A .5-2B .0C .53D .525.函数()2ln f x x =地 图像与函数()245g x xx =-+地 图像地交点个数为 A .3 B .2 C .1D .06. 已知,a b 是单位向量,0a b =g .若向量c 满足1,c a b c --=则的取值范围是A .⎤⎦ B .⎤⎦C .1⎡⎤⎣⎦ D .1⎡⎤⎣⎦7.已知棱长为1地 正方体地 俯视图是一个面积为1地 正方形,则该正方体地 正视图地 面积不可能...等于A .1 B C .2D .28.在等腰三角形ABC中,=4AB AC=,点P是边AB上异于,A B 地一点,光线从点P出发,经,BC CA发射后又回到原点P(如图1).若光线QR经过ABC∆地中心,则AP 等A.2 B.1 C.83D.43二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分)9.在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为 . 10.已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为 12 .11.如图2,在半径为7地 O e 中,弦,AB CD 相交于点,2P PA PB ==,1PD =,则圆心O 到弦CD 地 距离为 .必做题(12-16题)12.若209,Tx dx T =⎰则常数的值为 .13.执行如图3所示地 程序框图,如果输入1,2,a b a ==则输出的的值为 9 .14.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>地 两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆地 最小内角为30o ,则C 地 离心率为___。
高考卷-普通高等学校招生全国统一考试-理科数学(解析版)
高考卷-普通高等学校招生全国统一考试-理科数学(解析版)20xx年普通高等学校招生全国统一考试-理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A={x|x1000的最小偶数n,那么在和两个空白框中,可以分别填入() A.A>1000和n=n+1 B.A>1000和n=n+2 C.A1000和n=n+1 D.A1000和n=n+2 9.已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 10.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为() A.16 B.14 C.12 D.10 11.设xyz为正数,且,则() A.2x100且该数列的前N项和为2的整数幂.那么该款软件的激活码是() A.440 B.330 C.220 D.110 二、填空题:本题共4小题,每小题5分,共20分. 13.已知向量a,b的夹角为60°,|a|=2, | b |=1,则| a +2 b |= . 14.设x,y满足约束条件,则的最小值为 . 15.已知双曲线C:(a>0,b>0)的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________. 16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分. 17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为(1)求sinBsinC; (2)若6cosBcosC=1,a=3,求△ABC的周长18.(12分)如图,在四棱锥P-ABCD中,AB//CD,且 (1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.2210.04 10.05 9.95 经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σb>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上. (1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点. 21.(12分)已知函数=ae2x+(a﹣2)ex﹣x. (1)讨论的单调性;(2)若有两个零点,求a的取值范围. (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4,坐标系与参数方程](10分)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为. (1)若a=-1,求C与l的交点坐标;(2)若C上的点到l的距离的最大值为,求a. 23.[选修4—5:不等式选讲](10分)已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│. (1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围. 【参考答案】 1.A 【解析】,∴,, 2. B 【解析】设正方形边长为,则圆半径为则正方形的面积为,圆的面积为,图中黑色部分的概率为则此点取自黑色部分的概率为. 3. B 【解析】设,则,得到,所以.故正确;若,满足,而,不满足,故不正确;若,,则,满足,而它们实部不相等,不是共轭复数,故不正确;实数没有虚部,所以它的共轭复数是它本身,也属于实数,故正确;4. C 【解析】联立求得得5. D 【解析】因为为奇函数,所以,于是等价于| 又在单调递减故选D 6. C 【解析】对的项系数为对的项系数为,∴的系数为故选C 7. B 【解析】由三视图可画出立体图该立体图平面内只有两个相同的梯形的面 8. D 【解析】因为要求大于1000时输出,且框图中在“否”时输出∴“ ”中不能输入排除A、B 又要求为偶数,且初始值为0,“ ”中依次加2可保证其为偶故选D 9. D 【解析】,首先曲线、统一为一三角函数名,可将用诱导公式处理..横坐标变换需将变成,即.注意的系数,在右平移需将提到括号外面,这时平移至,根据“左加右减”原则,“”到“”需加上,即再向左平移. 10. A 【解析】设倾斜角为.作垂直准线,垂直轴易知同理,又与垂直,即的倾斜角为而,即.,当取等号即最小值为,故选A 11. D 【解析】取对数:. 则,故选D 12.A 【解析】设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推设第组的项数为,则组的项数和为由题,,令→且,即出现在第13组之后第组的和为组总共的和为若要使前项和为2的整数幂,则项的和应与互为相反数即→ 则故选A 13.【解析】∴ 14. 【解析】不等式组表示的平面区域如图所示由,得,求的最小值,即求直线的纵截距的最大值当直线过图中点时,纵截距最大由解得点坐标为,此时 15. 【解析】如图,,∵,∴,∴ 又∵,∴,解得∴16. 【解析】由题,连接,交与点,由题,,即的长度与的长度或成正比设,则,三棱锥的高则令,,令,即,则则体积最大值为 17.解:(1)面积.且由正弦定理得,由得. (2)由(1)得,又,,由余弦定理得① 由正弦定理得,② 由①②得,即周长为 18.(1)证明:∵ ∴,又∵,∴ 又∵,、平面∴平面,又平面∴平面平面(2)解:取中点,中点,连接,∵ ∴四边形为平行四边形∴ 由(1)知,平面∴平面,又、平面∴,又∵,∴ ∴、、两两垂直∴以为坐标原点,建立如图所示的空间直角坐标系设,∴、、、,∴、、设为平面的法向量由,得令,则,,可得平面的一个法向量∵,∴ 又知平面,平面∴,又∴平面即是平面的一个法向量∴ 由图知二面角为钝角,所以它的余弦值为 19.解:(1)由题可知尺寸落在之内的概率为,落之外的概率为.由题可知(2)(i)尺寸落在之外的概率为,由正态分布知尺寸落在之外为小概率事件,因此上述监控生产过程的方法合理.(ii),需对当天的生产过程检查.因此剔除剔除数据之后:. 20.解:(1)根据椭圆对称性,必过、又横坐标为1,椭圆必不过,所以过三点将代入椭圆方程得,解得,∴椭圆的方程为:.(2)当斜率不存在时,设得,此时过椭圆右顶点,不存在两个交点,故不满足.当斜率存在时,设联立,整理得 , 则又,此时,存在使得成立.∴直线的方程为当时,所以过定点. 21.解:(1)由于故当时,,.从而恒成立.在上单调递减当时,令,从而,得.单调减极小值单调增综上,当时,在上单调递减;当时,在上单调递减,在上单调递增(2)由(1)知,当时,在上单调减,故在上至多一个零点,不满足条件.当时,.令.令,则.从而在上单调增,而.故当时,.当时.当时若,则,故恒成立,从而无零点,不满足条件.若,则,故仅有一个实根,不满足条件.若,则,注意到..故在上有一个实根,而又.且.故在上有一个实根.又在上单调减,在单调增,故在上至多两个实根.又在及上均至少有一个实数根,故在上恰有两个实根.综上,. 22.解:(1)时,直线的方程为.曲线的标准方程是,联立方程,解得:或,则与交点坐标是和(2)直线一般式方程是.设曲线上点.则到距离,其中.依题意得:,解得或 23.解:(1)当时,,是开口向下,对称轴的二次函数.,当时,令,解得在上单调递增,在上单调递减∴此时解集为.当时,,.当时,单调递减,单调递增,且.综上所述,解集.(2)依题意得:在恒成立.即在恒成立.则只须,解出:.故取值范围是.。
(完整版)普通高等学校招生全国统一考试理科数学试题和答案_全国1卷
专业资料绝密★启用前2017 年一般高等学校招生全国一致考试理科数学本试卷 5 页, 23 小题,满分150 分。
考试用时120 分钟。
注意事项: 1.答卷前,考生务势必自己的姓名、考生号、考场号和座位号填写在答题卡上。
用 2B 铅笔将试卷种类(B)填涂在答题卡相应地点上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要变动,用橡皮擦洁净后,再选涂其余答案。
答案不可以答在试卷上。
3.非选择题一定用黑色笔迹的钢笔或署名笔作答,答案一定写在答题卡各题目指定地区内相应地点上;如需变动,先划掉本来的答案,而后再写上新答案;禁止使用铅笔和涂改液。
不按以上要求作答无效。
4.考生一定保证答题卡的整齐。
考试结束后,将试卷和答题卡一并交回。
一、选择题:此题共12 小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项是切合题目要求的。
1.已知会合A x | x 1 ,B { x |3x1} ,则A.A I B { x | x 0}B.A U B RC.A U B{ x | x 1}D.A I B2.如图,正方形ABCD 内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分对于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是A.1B.48C.1D.2 43.设有下边四个命题p1:若复数 z 知足1R ,则 z R ; p2:若复数 z 知足z2R ,则z R ;zp3:若复数 z1, z2知足 z1z2 R ,则z1z2;p4:若复数 z R ,则 z R . 此中的真命题为A.p1, p3B.p1, p4C.p2, p3D.p2, p44.记S n为等差数列{ a n} 的前 n 项和.若 a4 a5 24 , S6 48 ,则 { a n} 的公差为A.1 B. 2 C. 4 D. 85.函数f ( x)在( , ) 单一递减,且为奇函数.若 f (1) 1,则知足 1 f ( x 2) 1 的 x 的取值范围是A.[ 2,2] B.[ 1,1] C.[0,4] D.[1,3]6.(1 1)(1 x)6 睁开式中 x2的系数为x2A. 15 B. 20 C. 30 D.35 7.某多面体的三视图以下图,此中正视图和左视图都由正方形和等腰直角三角形构成,正方形的边长为2,俯视图为等腰直角三角形. 该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A. 10B. 12C. 14D. 168.右边程序框图是为了求出知足3n2n1000 的最小偶数 n ,那么在和两个空白框中,能够分别填入A.B.C.D.A 1000 n n 1和A 1000和 n n 2 A1000和 n n 1 A 1000和 n n 29.已知曲线C1 : y cos x,C 2 : y sin(2 x 2) ,则下3面结论正确的选项是A.把C1上各点的横坐标伸长到本来的 2 倍,纵坐标不变,再把获得的曲线向右平移π个6 单位长度,获得曲线 C 2B.把C1上各点的横坐标伸长到本来的 2 倍,纵坐标不变,再把获得的曲线向左平移π12个单位长度,获得曲线 C2C.把C上各点的横坐标缩短到本来的 1 倍,纵坐标不变,再把获得的曲线向右平移π个1 2 6单位长度,获得曲线 C 2D .把 C 1 上各点的横坐 短到本来的1倍, 坐 不 ,再把获得的曲 向左平移π212个 位 度,获得曲C 210.已知 F 抛物 C : y 24 x 的焦点, F 作两条相互垂直的直 l 1, l 2 ,直 l 1 与 C 交于 A 、B 两点,直 l 2 与 C 交于 D 、 E 两点, | AB |+| DE | 的最小A . 16B . 14C . 12D .1011. xyz 正数,且 2x3y 5z ,A . 2x 3y 5zB .C . 3y5z 2xD .5z 2x 3 y3 y 2x5z12.几位大学生响 国家的 呼吁,开 了一款 用 件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
13. 一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X =. 14. 函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是.15. 等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 16. 已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N =.三、解答题:共70分。
解答应写出文字说明、解答过程或演算步骤。
第17~21题为必做题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cos B(2)若6a c += , ABC ∆面积为2,求.b18.(12分)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下: 1.设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;2.填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法 新养殖法3.根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)P ()0.050 0.010 0.001 k3.8416.63510.82819.(12分)如图,四棱锥PABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线//CE 平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所 成锐角为o 45 ,求二面角MABD 的余弦值 20. (12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1) 求点P 的轨迹方程;(2)设点Q 在直线x=3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F. 21.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2ef x --<<.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,按所做的第一题计分。
22.[选修44:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.23.[选修45:不等式选讲](10分)已知330,0,2a b a b >>+=,证明: (1)33()()4a b a b ++≥; (2)2a b +≤.参考答案1.D2.C【解析】1是方程240x x m -+=的解,1x =代入方程得3m =∴2430x x -+=的解为1x =或3x =,∴{}13B =,3.B【解析】设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.4.B【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半. 5.A【解析】目标区域如图所示,当直线-2y =x+z 取到点()63--,时,所求z 最小值为15-.6.D【解析】只能是一个人完成2份工作,剩下2人各完成一份工作.由此把4份工作分成3份再全排得2343C A 36⋅=7.D【解析】四人所知只有自己看到,老师所说及最后甲说的话.甲不知自己成绩→乙、丙中必有一优一良,(若为两优,甲会知道自己成绩;两良亦然)→乙看了丙成绩,知自己成绩→丁看甲,甲、丁中也为一优一良,丁知自己成绩.8.B【解析】0S =,1k =,1a =-代入循环得,7k =时停止循环,3S =. 9.A【解析】取渐近线by x a =,化成一般式0bx ay -=,圆心()20,到直线距离为2223b a b =+ 得224c a =,24e =,2e =.10.C【解析】M ,N ,P 分别为AB ,1BB ,11B C 中点,则1AB ,1BC 夹角为MN 和NP 夹角或其补角(异面线所成角为π02⎛⎤ ⎥⎝⎦,)可知1152MN AB ==,1122NP BC ==,作BC 中点Q ,则可知PQM △为直角三角形. 1=PQ ,12MQ AC =ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠14122172⎛⎫=+-⨯⨯⋅-= ⎪⎝⎭,7=AC则7MQ =,则MQP △中,22112MP MQ PQ =+= 则PMN △中,222cos 2MN NP PM PNM MH NP+-∠=⋅⋅又异面线所成角为π02⎛⎤ ⎥⎝⎦,,则余弦值为10.11.A 【解析】()()2121x f x x a x a e -'⎡⎤=+++-⋅⎣⎦, 则()()32422101f a a e a -'-=-++-⋅=⇒=-⎡⎤⎣⎦,则()()211x f x x x e -=--⋅,()()212x f x x x e -'=+-⋅, 令()0f x '=,得2x =-或1x =, 当2x <-或1x >时,()0f x '>, 当21x -<<时,()0f x '<, 则()f x 极小值为()11f =-.12.B【解析】几何法:如图,2PB PC PD +=(D 为BC 中点), 则()2PA PB PC PD PA ⋅+=⋅,要使PA PD ⋅最小,则PA ,PD 方向相反,即P 点在线段AD 上, 则min 22PD PA PA PD ⋅=-⋅, 即求PD PA ⋅最大值, 又323PA PD AD +==⨯=, 则223324PA PD PA PD ⎛⎫+⎛⎫ ⎪⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭≤, PD CBA则min 332242PD PA ⋅=-⨯=-. 解析法:建立如图坐标系,以BC 中点为坐标原点, ∴()03A ,,()10B -,,()10C ,. 设()P x y ,, ()3PA x y=--,,()1PB x y =---,,()1PC x y =--,,∴()222222PA PB PC x y y ⋅+=-+则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,3y =.13.1.96【解析】有放回的拿取,是一个二项分布模型,其中0.02=p ,100n =则()11000.020.98 1.96x D np p =-=⨯⨯= 14.1【解析】()23πsin 3cos 042f x x x x ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,令cos x t =且[]01t ∈, 则当3t =时,()f x 取最大值1. 15.2+1n n 【解析】设{}n a 首项为1a ,公差为d .则3123a a d =+=求得11a =,1d =,则n a n =,()12n n n S +=16.6【解析】28y x =则4p =,焦点为()20F ,,准线:2l x =-,如图,M 为F 、N 中点,l FN M C BAOyx故易知线段BM 为梯形AFMC 中位线, ∵2CN =,4AF =, ∴3ME =又由定义ME MF =, 且MN NF =, ∴6NF NM MF =+=17.【解析】(1)依题得:21cos sin 8sin84(1cos )22B B B B -==⋅=-. ∵22sin cos 1B B +=, ∴2216(1cos )cos 1B B -+=, ∴(17cos 15)(cos 1)0B B --=, ∴15cos 17B =, (2)由⑴可知8sin 17B =. ∵2ABC S =△, ∴1sin 22ac B ⋅=, ∴182217ac ⋅=, ∴172ac =, ∵15cos 17B =, ∴22215217a cb ac +-=,∴22215a c b +-=, ∴22()215a c ac b +--=,∴2361715b --=,∴2b =.18.【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B“新养殖法的箱产量不低于50kg ”为事件C而()0.04050.03450.02450.01450.0125P B =⨯+⨯+⨯+⨯+⨯(2)由计算可得2K 的观测值为 ∵15.705 6.635> ∴()2 6.6350.001P K ≈≥∴有99%以上的把握产量的养殖方法有关.(3)150.2÷=,()0.20.0040.0200.0440.032-++=80.0320.06817÷=,85 2.3517⨯≈ 50 2.3552.35+=,∴中位数为52.35.19.【解析】(1)令PA 中点为F ,连结EF ,BF ,CE .∵E ,F 为PD ,PA 中点,∴EF 为PAD △的中位线,∴12EF AD ∥.又∵90BAD ABC ∠=∠=︒,∴BC AD ∥. 又∵12AB BC AD ==,∴12BC AD ∥,∴EF BC ∥. ∴四边形BCEF 为平行四边形,∴CE BF ∥. 又∵BF PAB ⊂面,∴CE PAB 面∥(2)以AD 中点O 为原点,如图建立空间直角坐标系.设1AB BC ==,则(000)O ,,,(010)A -,,,(110)B -,,,(100)C ,,,(010)D ,,,(00P ,.M 在底面ABCD 上的投影为M ',∴MM BM ''⊥.∵45MBM '∠=︒,∴MBM '△为等腰直角三角形.∵POC △为直角三角形,OC =,∴60PCO ∠=︒.设MM a '=,3CM a '=,31OM a '=-.∴3100M a ⎛⎫'- ⎪ ⎪⎝⎭,,. 222231610133BM a a a a ⎛⎫'=++=+=⇒= ⎪ ⎪⎝⎭.∴3211OM a '=-=-. ∴21002M ⎛⎫'- ⎪ ⎪⎝⎭,,,26102M ⎛⎫- ⎪ ⎪⎝⎭,, 2611AM ⎛⎫=- ⎪ ⎪⎝⎭,,,(100)AB =,,.设平面ABM 的法向量11(0)m y z =,,. 1160y z +=,∴(062)m =-,, (020)AD =,,,(100)AB =,,.设平面ABD 的法向量为2(00)n z =,,,(001)n =,,.∴10cos ,m n m n m n⋅<>==⋅. ∴二面角M AB D --的余弦值为10. 20.【解析】 ⑴设()P x y ,,易知(0)N x ,(0)NP y =,又1022NM NP ⎛== ⎪⎝⎭,∴2M x y ⎛⎫⎪⎝⎭,,又M 在椭圆上. ∴22122x += ⎪⎝⎭,即222x y +=. (3)Q Q y -,,()P P P x y ,,(0)Q y ≠,⑵设点由已知:()(3)1P P P Q P OP PQ x y y y y ⋅=⋅---=,,, ()21OP OQ OP OP OQ OP ⋅-=⋅-=,∴213OP OQ OP ⋅=+=, ∴33P Q P Q P P Q x x y y x y y ⋅+=-+=.设直线OQ :3Q y y x =⋅-,因为直线l 与OQ l 垂直.∴3l Qk y =故直线l 方程为3()P P Qy x x y y =-+, 令0y =,得3()P Q P y y x x -=-, 13P Q P y y x x -⋅=-, ∴13P Q P x y y x =-⋅+,∵33P Q P y y x =+,∴1(33)13P P x x x =-++=-,若0Q y =,则33P x -=,1P x =-,1P y =±, 直线OQ 方程为0y =,直线l 方程为1x =-, 直线l 过点(10)-,,为椭圆C 的左焦点.21.【解析】 ⑴ 因为()()ln 0f x x ax a x =--≥,0x >,所以ln 0ax a x --≥.令()ln g x ax a x =--,则()10g =,()11ax g x a x x-'=-=, 当0a ≤时,()0g x '<,()g x 单调递减,但()10g =,1x >时,()0g x <; 当0a >时,令()0g x '=,得1x a=. 当10x a <<时,()0g x '<,()g x 单调减;当1x a>时,()0g x '>,()g x 单调增. 若01a <<,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调减,()110g g a ⎛⎫<= ⎪⎝⎭;若1a >,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调增,()110g g a ⎛⎫<= ⎪⎝⎭;若1a =,则()()min 110g x g g a ⎛⎫=== ⎪⎝⎭,()0g x ≥.综上,1a =.⑵()2ln f x x x x x =--,()22ln f x x x '=--,0x >.令()22ln h x x x =--,则()1212x h x x x-'=-=,0x >. 令()0h x '=得12x =, 当102x <<时,()0h x '<,()h x 单调递减;当12x >时,()0h x '>,()h x 单调递增.所以,()min 112ln 202h x h ⎛⎫==-+< ⎪⎝⎭.因为()22e 2e 0h --=>,()22ln 20h =->,21e 02-⎛⎫∈ ⎪⎝⎭,,122⎛⎫∈+∞ ⎪⎝⎭,,所以在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上,()h x 即()f x '各有一个零点.设()f x '在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上的零点分别为02x x ,,因为()f x '在102⎛⎫⎪⎝⎭,上单调减,所以当00x x <<时,()0f x '>,()f x 单调增;当012x x <<时,()0f x '<,()f x 单调减.因此,0x 是()f x 的极大值点.因为,()f x '在12⎛⎫+∞ ⎪⎝⎭,上单调增,所以当212x x <<时,()0f x '<,()f x 单调减,2x x >时,()f x 单调增,因此2x 是()f x 的极小值点.所以,()f x 有唯一的极大值点0x .由前面的证明可知,201e 2x -⎛⎫∈ ⎪⎝⎭,,则()()24220e e e e f x f ---->=+>.因为()00022ln 0f x x x '=--=,所以00ln 22x x =-,则 又()()22000000022f x x x x x x x =---=-,因为0102x <<,所以()014f x <. 因此,()201e 4f x -<<. 22.【解析】⑴设()()00M P ρθρθ,,, 则0||OM OP ρρ==,.解得4cos ρθ=,化为直角坐标系方程为()2224x y -+=.()0x ≠⑵连接AC ,易知AOC △为正三角形.||OA 为定值.∴当高最大时,AOB S △面积最大,如图,过圆心C 作AO 垂线,交AO 于H 点 交圆C 于B 点, 此时AOB S △最大23.【解析】⑴由柯西不等式得:()()()2255334a b a b a b ++=+=≥1a b ==时取等号. ⑵∵332a b +=∴()()222a b a ab b +-+= ∴()()232a b b ab α⎡⎤++-=⎣⎦∴()()332a b ab a b +-+=∴()()323a b aba b +-=+由均值不等式可得:()()32232a b a b ab a b +-+⎛⎫= ⎪+⎝⎭≤ ∴()()32232a b a b a b +-+⎛⎫ ⎪+⎝⎭≤ ∴()()33324a b a b ++-≤∴()3124a b +≤ ∴2a b +≤ 当且仅当1a b ==时等号成立.高考数学高三模拟试卷试题压轴押题期末考试数学理试题分类汇编数列一、选择题1、(菏泽市高三上学期期末)已知正项等比数列{}n a 满足:7652a a a =+,若存在两项,m n a a 使得1=4m n a a a ⋅,则14m n+的最小值为( ) A. 32 B. 53 C. 256D.不存在2、(济南市高三上学期期末)设等差数列{}n a 的前n 项和为n S ,且满足201620170,0S S ><,对任意正整数n ,都有n k a a ≥,则k 的值为 A.1006B.1007C.1008D.10093、(胶州市高三上学期期末)若等差数列{}n a 的前7项和721S =,且21a =-,则6a = A.5B.6C.7D.84、(泰安市高三上学期期末)设{}n a 是公差为正数的等差数列,若1310a a +=,且1316a a =,则111213a a a ++等于 A.75 B.90 C.105D.120 参考答案1、A 【解析】因为,所以,即,解得。