压力容器设计基础XXXX1102
GB150-XXXX压力容器-制造、检验和验收
▪ (2) 与国际接轨和国际贸易的需要 ▪ 1997年欧盟颁布了PED,同时实施了以技术法规为基本
安全要求、协调标准为技术支撑的安全保障体系。 ▪ 后续发布的欧洲统一压力容器标准在技术上全面满足
PED的安全基本要求,全面提出了基于失效模式设计的理 念,在设计准则、计算方法、制造检验要求等方面引入了 现代技术研究的成果。对促进贸易和提高竞争力起到了重 要的作用。 ▪ 在美国、澳大利亚和其他国家也相继修订了原有的技术 标准体系。 ▪ 相应降低了安全系数,使我国面临国外压力容器产品的 冲击,需合理修订标准(如容器分类,设计与制造阶段的 风险评估与控制,材料复验,产品焊接试件要求等),提 高中国压力容器产品的质量和国际竞争力。
(3) 解决行业关注的突出问题的需要
▪
如给予失效模式的制造、检验,成型受压
▪ 元件的性能恢复,无损检测的时间与方法等……
(4) 技术发展的需要
▪
GB 150-1998《钢制压力容器》实施以来,
我国压力容器材料、设计、制造。检验水平大幅
度提高。
▪ ——新材料开发:增加新材料制造、检验、与验 收要求。
▪ 五、GB 150.4修订的主要变化
▪ GB 150.4主要变化的原因:
▪
1、为完善我国压力容器法规、技术标准体系,与
修订后的《固定式压力容器安全技术监察规程》相适应所
做的修订(该部分变化在下表中以★标识,共23处)。
▪
2、为适应技术发展,采用先进技术所作的修订
(该部分在下表中以●标识,共12处)。
▪ — 2011年7月征求WTO成员国意见并修改定稿
▪ 三98颁布13年来中国发生的技术和管理变化
▪ ——压力容器的大型化、高参数、长周期趋势(失效模式发 生变化)
压力容器设计审核人员培训GB1503XXXX压力容器第
操作条件
平面形、O形、波形、齿形、八角形、 椭圆形等
① 非金属垫片 常用材料:石棉橡胶板、橡胶板、聚四氟乙烯、合成纤维、石墨等。 ② 金属垫片 常用材料:铜、铝、低碳钢、不锈钢、合金等。 ③ 组合式垫片 包括:金属包垫片;缠绕式垫片;带骨架的非金属垫片等。
2、法兰密封面型式
法兰密封面型式常用有突平面、凹凸面、榫槽面和环面四种。 ⑴.突平面(raised seal face) 突平面(平面)是由相对突起的一对平面组成的密封面 , 此密封面结构简单,制造方便,但密封性能相对较差, 用于较低压力场合。
⑵.凹凸面(male.female seal face) 凹凸面是由一对相配合的凹面和凸面组成的密封面, 此密封面便于安装时垫片对中,垫片不会被挤出密封面, 密封性能优于平面。适用于压力较高或介质为易燃、易爆、 有毒的场合。
内容简介
GB150.3-2011《压力容器 第3部分:设计》 第7章、附录C 、附录D 一、法兰 二、密封结构 三、焊接结构
一、法兰
概述: 螺栓法兰连接是由一对法兰、若干个螺栓、螺母和一个垫片组成,其连接方式如图 :
1、法兰类型
常用的管法兰型式: 板式平焊法兰、带颈平焊法兰、带颈对焊法兰
3、标准管法兰的选用 HG/T20592~20635-2009
⑴ HG/T20592 ~20614-2009 PN系列(欧洲体系) A、B两个系列 A系列为国际通用系列(俗称英制管) B系列为国内沿用系列(俗称公制管) 采用B系列的管法兰应在公称直径DN的数值后标注(B) ⑵ HG/T20615 ~20635-2009 Class系列(美洲体系) 注意:两个体系间不能互相配用
⑼ 选择压力容器接管法兰的压力等级或密封面形式时,应考虑介质的毒性或易燃易爆性。
压力容器设计基础1
外压容器中,当容器的内压力小于一个绝对大气压( 外压容器中,当容器的内压力小于一个绝对大气压(约 0.1MPa)时又称为真空容器。 )时又称为真空容器。
5
3.2 压力容器分类
按在生产中的作用分类
容器分类
反应 压力容器 换热 压力容器 分离 压力容器 储存 压力容器
代号
R E
主要作用
完成介质的物理 和化学反应 完成介质的热量 交换 完成介质的流体 压力平衡、 压力平衡、缓冲 和气体净化分离
4
3.2 压力容器分类
按压力等级分类
承压方式,压力容器可分为内压容器和外压容器。 承压方式,压力容器可分为内压容器和外压容器。 容器分类 低压容器 中压容器 高压容器 超高压容器 代号 L M H U 最高工作压力范围/MPa 最高工作压力范围 0.1 ≤p<1.6 < 1.6 ≤p<10.0 < 10 ≤p<100 < p≥100
10
3.3 压力容器的安全监察
安全监察范围
按我国《压力容器安全技术监察规程》的规定, 按我国《压力容器安全技术监察规程》的规定,纳入安全技 术监察范围的压力容器必须是同时具备下列三个条件的容器 同时具备三个条件
最高工作压力(p 大于等于 大于等于0.1MPa(不含液体静压力 ; 不含液体静压力); 最高工作压力 w)大于等于 不含液体静压力 内直径(非圆形截面指其最大尺寸)大于等于0.15m,且容积(V) 内直径(非圆形截面指其最大尺寸)大于等于 ,且容积 大于等于0.025m3; 大于等于 盛装介质为气体、 盛装介质为气体、液化气体或最高工作温度高于等于标准沸点的 液体。 液体。
S
C(B)
储存或盛装气体、 储存或盛装气体、 或盛装气体 液氨储罐、 液体、 液体、液化气体 液氨储罐、液化石油气储罐等 等介质
压力容器--设计基础(一)
压力容器的强度和设计(江苏省压力容器检验员培训考核班专题讲座)董金善南京工业大学过程装备研究所第一节概述一、容器的结构在工厂中可以看到许多设备。
在这些设备中,有的用来储存物料,如各种储罐、计量罐;有的进行热量交换,如各种换热器、蒸发器、冷凝器、结晶器等;有的用来进行化学反应,如反应釜、聚合釜、发酵罐、合成塔等。
这些设备虽然尺寸大小不一,形状结构不同,内部构件的型式更是多种多样,但是它们都有一个外壳,这个外壳就叫作容器。
容器一般是由筒体(圆筒)、封头(端盖)、法兰、支座、接管、人孔(手孔)、视镜、安全附件等组成(图1)。
它们统称为压力容器通用零部件,常、低压压力容器通用零部件大都已有标准,设计时可直接选用。
图-1 容器的结构二、压力容器常用标准1.国务院《特种设备安全监察条例》(2003)2.国家质量技术监督局《压力容器安全技术监察规程》 (1999)3.国家质量监督检验检疫总局《特种设备行政许可工作程序》 (2003)4.国家质量监督检验检疫总局《特种设备行政许可实施办法》 (2003)5.国家质量监督检验检疫总局《特种设备行政许可分级实施范围》(2003)6.国家质量监督检验检疫总局《锅炉压力容器制造监督管理办法》(2003)7.国家质量监督检验检疫总局《锅炉压力容器制造许可工作程序》(2003)8.国家质量监督检验检疫总局《锅炉压力容器制造许可条件》 (2003)9.国家质量监督检验检疫总局《锅炉压力容器产品安全性能监督检验规则》 (2003)10.国家质量监督检验检疫总局《压力容器压力管道设计单位资格许可和管理规则》 (2002)11.G B150-1998《钢制压力容器》12.G B151-1999《管壳式换热器》13.J B/T4735-1997《钢制焊接常压容器》14.J B4710-1992《钢制塔式容器》15.J B4731-XXXX《钢制卧式容器》16.H G/T20569-1994《机械搅拌设备》17.G B12337-1998《钢制球形储罐》18.G B16749-1997《压力容器波形膨胀节》19.J B4732-1994《钢制压力容器-分析设计标准》20.H G20580-1998《钢制化工容器设计基础规定》21.H G20581-1998《钢制化工容器材料选用规定》22.H G20582-1998《钢制化工容器强度计算规定》23.H G20583-1998《钢制化工容器结构设计规定》24.H G20584-1998《钢制化工容器制造技术要求》25.H G20585-1998《钢制低温压力容器技术规定》26.H G20531-1993《铸钢、铸铁容器》27.J B/T4734-2002《铝制焊接容器》28.J B/T4745-2002《钛制焊接容器》29.G B/T15386-1994《空冷式换热器》30.G B16409-1996《板式换热器》31.H G/T2650-1995《钢制管式换热器》32.G B5842-1996《液化石油气钢瓶》33.J B/T4750-2003《制冷装置用压力容器》34.J B/T6539-1992《微型空气压缩机用钢制压力容器》35.J B8701-1998《制冷用板式换热器》36.J B/T4751-2003《螺旋板式换热器》37.G B18442-2001《低温绝热压力容器》38.G B12130-1995《医用高压氧舱》39.G B9019-1988《压力容器公称直径》40.J B/T4700~4707-2000《压力容器法兰》41.H G20592~20635-2009《钢制管法兰、垫片、紧固件》42.G B/T9112~9124-2000《钢制管法兰》43.J B/T74~90-1994《管路法兰及垫片》44.J B/T4746-2002《钢制压力容器用封头》45.J B/T4736-2002《补强圈》46.H GJ527-1990《补强管》47.J B/T4712-1992《鞍式支座》48.J B/T4713-2007《腿式支座》49.J B/T4724-1992《支承式支座》50.J B/T4725-1992《耳式支座》51.G B16749-1997《波形膨胀节》52.H G501~502-1986《压力容器视镜》53.H G21588~21591-1995《玻璃板液面计》54.H G21592-95《玻璃管液面计》55.H G/T21584-95《磁性液面计》56.H G21514~21527-1995《碳钢、低合金钢人孔》57.H G21528~21535-1995《碳钢、低合金钢人孔》58.H GJ504~509-1986《不锈钢人孔》59.H GJ510~513-1986《不锈钢手孔》60.H G21537-1992《填料箱》61.H G21571~21572-1995《机械密封》62.H G21563~21569-1995《搅拌传动装置》63.H G5-220~222-1965《搅拌器》64.H G/T21574-1994《设备吊耳》65.G B41-1986《I型六角螺母-C级》66.G B6170-1986《I型六角螺母-A和B级》67.G B5780-1986《六角头螺栓-C级》68.G B5782-1986《六角头螺栓-A和B级》69.J B/T4714-1992《浮头式换热器和冷凝器型式和基本参数》70.J B/T4715-1992《固定管板式换热器型式和基本参数》71.J B/T4716-1992《立式热虹吸式重沸器型式和基本参数》72.J B/T4717-1992《U型管式换热器型式和基本参数》73.H G21503-1992《钢制固定式薄管板列管换热器》74.G B567-1989《拱形金属爆破片形式和参数》75.G B/T14566-93《正形金属爆破片形式和参数》76.G B/T14567-93《反形金属爆破片形式和参数》77.G B/T14568-93《开缝形金属爆破片形式和参数》78.H G/T20668-2000《化工设备设计文件编制规定》79.T CED41002-2000《化工设备图样技术要求》80.G B6654-1996《压力容器用钢板》81.G B713-1986《锅炉用碳素钢和低合金钢板》82.G B3531-1996《低温压力容器用低合金钢钢板》83.G B4237-1992《不锈钢热轧钢板》84.G B8165-1987《不锈钢复合钢板》85.G B8163-1999《输送流体用无缝钢管》86.G B9948-1988《石油裂化用无缝钢管》87.G B6479-1986《化肥设备用高压无缝钢管》88.G B5310-1995《高压锅炉用无缝钢管》89.G B/T14976-94《流体输送不锈钢无缝钢管》90.G B13296-91《锅炉、热交换器用不锈钢无缝钢管》91.J B4726-2000《压力容器用碳素钢和低合金钢锻件》92.J B4727-2000《低温压力容器用碳素钢和低合金钢锻件》93.J B4728-2000《压力容器不锈钢锻件》94.G B/T983-1995《不锈钢焊条》95.G B/T5117-1995《碳钢焊条》96.G B/T5118-1995《低合金钢焊条》97.G B5293-1985《碳素钢埋弧焊用焊剂》98.G B12470-1990《低合金钢埋弧焊用焊剂》99.G B/T14957-1994《熔化焊用钢丝》100.GB/T14958-1994《气体保护焊用钢丝》101.GB/T8110-1995《气体保护电弧焊用碳钢、低合金钢焊丝》102.JB/T2835-1979《低温钢焊条》103.JB4708-2000《钢制压力容器焊接工艺评定》104.JB/T4709-2000《钢制压力容器焊接规程》105.JB4730-1994《压力容器无损检测》106.JB/T4711-2003《压力容器涂敷和运输包装》107.JB/T613-1993《锅炉受压元件焊接技术条件》108.HG20660-2000《压力容器中化学介质毒性危害和爆炸危险程度分类》109.GB/T18182-2000《金属压力容器声发射检测及结果评价方法》三、压力容器许可证级别制造锅炉范围发证部门A 不限质检总局B 额定蒸汽压力≤2.5MPa的蒸汽锅炉;有机热载体炉。
压力容器设计基础
强度
把强度理论(公式(1))具体应用到压力容器 专业,就称这为压力容器的强度理论, 它又增加了一些具体的规定和特殊要求,由 此产生了一系列容器的设计规定和标准等。
9
强度
1、强度设计的任务: 内压容器的强度设计包含设备的壁厚设计 和在用设备的强度校核两方面。 1)设计型计算——根据给定的公称直径以及 设计压力和温度,设计出合适的壁厚,以保证 设备安全可靠。 2)校核型计算——根据已有的设备公称直径 以及工作压力和温度,判断设备的使用安全性。
17
三、压力容器强度理论
4、第四强度理论(形状改变比能理论)及相应强度条件 第四强度理论认为设备构件受外力产生弹性变形时,物 体内部也就积蓄了能量,即变形能。
单位变形体体积内所积蓄的变形能称为变形比能。当 构件变形比能达到材料的极限值时,会引起屈服破坏。
其相应的强度条件:
1 1 2 2 2 3 2 3 1 2 当 2
7
强度
σ≤K„σ‟t 公式(1)
公式(1)中的右端项是强度控制指标,即材料的 许用应力。 它涉及到材料强度指标(如抗拉强度σb、屈服强 度σs 等)的确定及安全系数的选用等问题。
当采用常规设计法,且只考虑静载问题时,系数 K=1.0;如果考虑动载荷,或采用应力分析设计法, K≥1.0,此时设计计算将更加复杂。
1 2 3
16
三、压力容器强度理论
3、第三强度理论(最大剪应力理论)及相应的强度条件
第三强度理论认为最大剪应力( σ1-σ3 )是引起材料 屈服破坏的主要因素。
其强度条件为:
当
pD pD 1 3 0 2S 2S
当
pD 2S
gb1501~4-xxxx《压力容器》新旧版内容对照表.xls
修订 150.1 4.3.2c 未变 150.1 4.3.2d 未变 150.1 4.3.2e 未变 150.1 4.3.2f 未变 150.1 4.3.2g 未变 150.1 4.3.2h 修订 150.1 4.3.2i 未变 150.1 4.3.2j 修订 150.1 4.3.3 未变 150.1 4.3.3a
3.5.1
3.5.1
第1、2、3章
压力容器的设计和制造必须接受劳动行 政部门安全监察机构的监察
设计单位应持有压力容器设计单位批准 书 制造单位应持有压力容器制造许可证
设计文件至少包括设计计算书和设计图 样。 盖有设计资格印章
制造单位必须按照设计图样要求进行制 造,如需要对原设计进行修改,应取得 原设计单位认可。
引用标准(45个) 定义
(相应符号原分别出现在各条款中)
注:个人整理,仅供参考。
第 1 页,共 29 页
GB150.1~4-2011《压力容器》新旧版内容对照表
类型 标准
条款
2011版修订内容
对应98条款
98版内容
修订 150.1
GB150.1-2011
压力容器 第1部分:通用要求(原标准名为“钢制压力 容器”)
冲击载荷,(原“流体冲击”改为“液体冲击”)
(设计压力或计算压力) (装有超压泄放装置 增加“如果具有可靠的保冷设施”;“充装系数”改为“ 装量系数”;增加“否则按相关法规确定” 增加“例如真空容器、液下容器和埋地容器”
3.2.2.2.3
3.5.4 3.5.4a
3.5.4b
3.5.4c 3.5.4d 3.5.4e 3.5.4f 3.5.4g 3.5.4h 3.5.4i/j 3.5.4k 3.5.1 3.5.1
压力容器设计基础(一)
压力容器地强度与设计<江苏省压力容器检验员培训考核班专题讲座)董金善南京工业大学过程装备研究所第一节概述一、容器地结构在工厂中可以看到许多设备.在这些设备中,有地用来储存物料,如各种储罐、计量罐;有地进行热量交换,如各种换热器、蒸发器、冷凝器、结晶器等;有地用来进行化学反应,如反应釜、聚合釜、发酵罐、合成塔等.这些设备虽然尺寸大小不一,形状结构不同,内部构件地型式更是多种多样,但是它们都有一个外壳,这个外壳就叫作容器.容器一般是由筒体<圆筒)、封头<端盖)、法兰、支座、接管、人孔<手孔)、视镜、安全附件等组成<图1).它们统称为压力容器通用零部件,常、低压压力容器通用零部件大都已有标准,设计时可直接选用.图-1 容器地结构二、压力容器常用标准1.国务院《特种设备安全监察条例》(2003>2.国家质量技术监督局《压力容器安全技术监察规程》 (1999>3.国家质量监督检验检疫总局《特种设备行政许可工作程序》 (2003>4.国家质量监督检验检疫总局《特种设备行政许可实施办法》 (2003>5.国家质量监督检验检疫总局《特种设备行政许可分级实施范围》(2003>6.国家质量监督检验检疫总局《锅炉压力容器制造监督管理办法》(2003>7.国家质量监督检验检疫总局《锅炉压力容器制造许可工作程序》(2003>8.国家质量监督检验检疫总局《锅炉压力容器制造许可条件》 (2003>9.国家质量监督检验检疫总局《锅炉压力容器产品安全性能监督检验规则》 (2003>10.国家质量监督检验检疫总局《压力容器压力管道设计单位资格许可与管理规则》 (2002>11.G B150-1998《钢制压力容器》12.G B151-1999《管壳式换热器》13.J B/T4735-1997《钢制焊接常压容器》14.J B4710-1992《钢制塔式容器》15.J B4731-XXXX《钢制卧式容器》16.H G/T20569-1994《机械搅拌设备》17.G B12337-1998《钢制球形储罐》18.G B16749-1997《压力容器波形膨胀节》19.J B4732-1994《钢制压力容器-分析设计标准》20.H G20580-1998《钢制化工容器设计基础规定》21.H G20581-1998《钢制化工容器材料选用规定》22.H G20582-1998《钢制化工容器强度计算规定》23.H G20583-1998《钢制化工容器结构设计规定》24.H G20584-1998《钢制化工容器制造技术要求》25.H G20585-1998《钢制低温压力容器技术规定》26.H G20531-1993《铸钢、铸铁容器》27.J B/T4734-2002《铝制焊接容器》28.J B/T4745-2002《钛制焊接容器》29.G B/T15386-1994《空冷式换热器》30.G B16409-1996《板式换热器》31.H G/T2650-1995《钢制管式换热器》32.G B5842-1996《液化石油气钢瓶》33.J B/T4750-2003《制冷装置用压力容器》34.J B/T6539-1992《微型空气压缩机用钢制压力容器》35.J B8701-1998《制冷用板式换热器》36.J B/T4751-2003《螺旋板式换热器》37.G B18442-2001《低温绝热压力容器》38.G B12130-1995《医用高压氧舱》39.G B9019-1988《压力容器公称直径》40.J B/T4700~4707-2000《压力容器法兰》41.H G20592~20635-2009《钢制管法兰、垫片、紧固件》42.G B/T9112~9124-2000《钢制管法兰》43.J B/T74~90-1994《管路法兰及垫片》44.J B/T4746-2002《钢制压力容器用封头》45.J B/T4736-2002《补强圈》46.H GJ527-1990《补强管》47.J B/T4712-1992《鞍式支座》48.J B/T4713-2007《腿式支座》49.J B/T4724-1992《支承式支座》50.J B/T4725-1992《耳式支座》51.G B16749-1997《波形膨胀节》52.H G501~502-1986《压力容器视镜》53.H G21588~21591-1995《玻璃板液面计》54.H G21592-95《玻璃管液面计》55.H G/T21584-95《磁性液面计》56.H G21514~21527-1995《碳钢、低合金钢人孔》57.H G21528~21535-1995《碳钢、低合金钢人孔》58.H GJ504~509-1986《不锈钢人孔》59.H GJ510~513-1986《不锈钢手孔》60.H G21537-1992《填料箱》61.H G21571~21572-1995《机械密封》62.H G21563~21569-1995《搅拌传动装置》63.H G5-220~222-1965《搅拌器》64.H G/T21574-1994《设备吊耳》65.G B41-1986《I型六角螺母-C级》66.G B6170-1986《I型六角螺母-A和B级》67.G B5780-1986《六角头螺栓-C级》68.G B5782-1986《六角头螺栓-A和B级》69.J B/T4714-1992《浮头式换热器和冷凝器型式与基本参数》70.J B/T4715-1992《固定管板式换热器型式与基本参数》71.J B/T4716-1992《立式热虹吸式重沸器型式与基本参数》72.J B/T4717-1992《U型管式换热器型式与基本参数》73.H G21503-1992《钢制固定式薄管板列管换热器》74.G B567-1989《拱形金属爆破片形式与参数》75.G B/T14566-93《正形金属爆破片形式与参数》76.G B/T14567-93《反形金属爆破片形式与参数》77.G B/T14568-93《开缝形金属爆破片形式与参数》78.H G/T20668-2000《化工设备设计文件编制规定》79.T CED41002-2000《化工设备图样技术要求》80.G B6654-1996《压力容器用钢板》81.G B713-1986《锅炉用碳素钢和低合金钢板》82.G B3531-1996《低温压力容器用低合金钢钢板》83.G B4237-1992《不锈钢热轧钢板》84.G B8165-1987《不锈钢复合钢板》85.G B8163-1999《输送流体用无缝钢管》86.G B9948-1988《石油裂化用无缝钢管》87.G B6479-1986《化肥设备用高压无缝钢管》88.G B5310-1995《高压锅炉用无缝钢管》89.G B/T14976-94《流体输送不锈钢无缝钢管》90.G B13296-91《锅炉、热交换器用不锈钢无缝钢管》91.J B4726-2000《压力容器用碳素钢和低合金钢锻件》92.J B4727-2000《低温压力容器用碳素钢和低合金钢锻件》93.J B4728-2000《压力容器不锈钢锻件》94.G B/T983-1995《不锈钢焊条》95.G B/T5117-1995《碳钢焊条》96.G B/T5118-1995《低合金钢焊条》97.G B5293-1985《碳素钢埋弧焊用焊剂》98.G B12470-1990《低合金钢埋弧焊用焊剂》99.G B/T14957-1994《熔化焊用钢丝》100.GB/T14958-1994《气体保护焊用钢丝》101.GB/T8110-1995《气体保护电弧焊用碳钢、低合金钢焊丝》102.JB/T2835-1979《低温钢焊条》103.JB4708-2000《钢制压力容器焊接工艺评定》104.JB/T4709-2000《钢制压力容器焊接规程》105.JB4730-1994《压力容器无损检测》106.JB/T4711-2003《压力容器涂敷与运输包装》107.JB/T613-1993《锅炉受压元件焊接技术条件》108.HG20660-2000《压力容器中化学介质毒性危害和爆炸危险程度分类》109.GB/T18182-2000《金属压力容器声发射检测及结果评价方法》三、压力容器许可证3. 压力容器设计许可证注:① 锅炉设计图纸由省级交由被核准地检验检测机构鉴定;② 气瓶<B 类)、氧舱设计图纸由总局核准地检验检测机构鉴定;③ 客运索道、大型友游乐设施设计图纸由总局核准地检验检测机构鉴定.第二节 压力容器应力分析一、无力矩理论1 无力矩理论锅炉压力容器地主要承压结构是壳体,而壳体是两个近距同形曲面围成地结构.两曲面地垂直距离叫壳体地厚度,平分壳体厚度地曲面叫壳体地中间面.壳体地几何形状可由中间面形状及壳体厚度确定.中间面为回转曲面地壳体叫回转壳体.圆筒壳、圆锥壳、球壳、椭球壳等都是回转壳体.当回转壳体地外径与内径之比≤1.2时,称为薄壁回转壳体,简称回转薄壳;当>1.2时,称为厚壁回转壳体.当然,这种区分是相对地,薄壳与厚壳并没有严格地界限.压力容器中地回转壳体,其几何形状及压力载荷均是轴对称地,相应压力载荷下地应力应变也是轴对称分布地.对于回转薄壳,认为其承压后地变形与气球充气时地情况相似,其内力与应力是张力,沿壳体厚度均匀分布,呈二向应力状态,壳壁中没有弯矩及弯曲应力.这种分析与处理回转薄壳地理论叫无力矩理论或薄膜理论.无力矩理论是一种近似分析及简化计算理论,在锅炉及一般压力容器应力分析和强度计算中得到广泛应用,具有足够地精确度.严格来说,任何回转壳体都具有一定壁厚,承压后其应力沿壁厚并不均匀分布,壳体中因曲率变化也有一定地弯矩及弯曲应力,当壳体较厚且需精确分析时,应采用厚壁理论及有矩理论处理.2 薄膜方程按无矩理论对回转薄壳进行应力分析时,因为应力沿壁厚均布,常将壳体应力简化到中间面上分析.如图2—1所示,壳体中间面由平面曲线AB绕同一平面内回转轴OA旋转一周而成.通过回转轴地平间面与回转面地交线叫经线;作圆锥面与壳体中间面正交,所得交线叫纬线.经线方向存在经向应力,以表示;纬线方向存在环向应力或周向应力,以表示.经向应力可用下述正交截面法求得.如图2-2所示,用一与回转壳体表面正交<垂直)地圆锥面将壳体分成两部分,考虑其中一部分在Y方向地受力平衡,则有:式中:——内压力;——垂直于壳体轴线地圆截面地平均半径;——经向应力;——壳体在被圆锥面截开部分地厚度;——圆锥面地半顶角.从而有:<2-1)区域平衡方程式<2-1)中地是圆锥母线地长度,即回转壳体曲面在纬线上地主曲率半径,或纬线曲率半径<第二曲率半径).回转壳体中地环向应力,作用在壳体地径向截面内.但在径向截面地不同纬线上,环向应力并不相同,因而无法用径向截面法求解环向应力,而只能用微元法,通过分析微元体地受力平衡求解.如图2-3所示,用两个相近地径向平面及两个相近地与经线正交地圆锥面在回转壳体上截取微元体.设:为微元体上地经向应力,作用在上下两个周<纬)向圆锥截面上;为微元体上地环向应力,作用在相邻两个经向截面上;为壳体厚度;为微元体沿经线地长度;为微元体沿环向地长度;为微元体纬线曲率半径;为微元体经线曲率半径;为两经向截面地夹角;为两圆锥截面地夹角.考虑微元体曲面法线方向地受力平衡,可有:因及都很小,所以有:即整理得:<微体平衡方程) <2-2)式<2—l)和式<2—2)是求解薄壁回转壳体在内压作用下应力地基本公式.简称薄膜方程.二、回转薄壳地薄膜应力锅炉和压力容器回转薄壳地应力,都可用薄膜方程求解.由薄膜方程求得地应力叫薄壳地薄膜应力.<一)圆筒壳圆筒壳地中间面是一条直线围绕与之相平行地另一条直线旋转一周形成地.对圆筒壳来说,其纬线曲率半径<圆筒平均半径);经线是直线,其曲率半径为无穷大.由式<2—2)可得:<2-3)由式<2—l)可得:<2-4)比较式<2-3)和式<2-4)可知,在薄壁圆筒壳体中,其环向应力与经向应力<轴向应力)和内压、圆筒半径成正比,和壁厚成反比;且环向应力在数值上是经向应力地两倍.<二)圆锥壳与圆荷壳相似,其经线是直线,曲率半径为无穷大,纬线是经线截锥地母线,纬线曲率半径是截锥母线长度,随圆锥经线到旋转轴地距离而变化<见图2-4),即,,为圆锥壳地半顶角,因而有:<2-5)<2-6)不难看出,圆锥壳上不同点地应力是不同地,从锥顶到锥底,应力随地增大而增大.锥底地环向应力是圆锥壳上地最大应力;在圆锥壳确定地一点,其环向应力是经向力地2倍;圆锥壳地半顶角对其应力有显著影响,半顶角越应圆锥形壳体地应力大,圆锥壳体中地应力越大.<三)球壳除球形容器外,某些锅炉锅筒及压力容器地封头是由半个球壳构成地,半球壳与完整地铁壳在内庄作用下地应力状态基本是相同地.对球壳来说,其曲面各个方向地曲率半径都是相同地,即为球壳地平均半径R.因而有:<2-7)即<2-8)由式<2—8)可看出球壳内地经向应力与环向应力是相等地,如果球壳与圆筒壳直径及壁厚相同,且承受同样地内压,则球壳中地经向应力和环向应力都等于圆筒壳中地经向应力.<四)椭球壳椭球壳是锅炉压力容器中使用得最为普遍地封头结构形式.椭球壳地中间面是由椭圆围绕其短轴旋转一周而成地曲面,即椭球壳曲面地母线是椭圆.设该椭圆地长轴为,短轴为,并取如图2-5所示地坐标,则椭圆方程为:要利用薄膜方程确定椭球壳内地应力,关键是正确地确定经线曲率半径和纬线曲率半径.椭球壳地经线是椭圆,经线曲率半径即椭圆地曲率半径;椭球壳地纬线是垂直于壁厚地圆锥面与椭球壳中性面地交线,纬线地曲率半径则是圆锥面地母线.由高等数学可知,如果曲线地方程为,则曲线上某点地曲率半径为:由椭圆方程得:从而得出椭圆上某点地曲率半径为:即椭球壳经线上某点地曲率半径为:由图2-5可知,椭球壳纬线上某点地曲率半径<圆锥面地母线),可由下式求得:式中,为圆锥面地半顶角,它在数值上等于椭圆在同一点地切线与轴地夹角.因而有:所以将,之值代入薄膜方程,即可求得椭球壳上任一点地应力:(2-9>(2-10>及地分布如下:在椭圆壳顶点,:有,则:在椭球壳赤道部位,有,则:地分布情况如图2-6所示.而当时,即在椭球壳地极点上,其环向应力与经向应力相等;其大小取决于椭球长短轴地比值.椭球长短轴地比值越大,极点处地应力数值也越大.当时,,此时地大小和正负取决于椭球长短轴地比值:如果,即,为正值;如果,即,为零;如果,即,为负值<压缩应力);环向应力地分布如图2-7所示.锅炉压力容器上所用地椭圆封头一般是标准椭球封头,即地椭球封头.对于标准椭球封头:顶点部位:<2-11)赤道部位:<2-12)<2-13)其应力分布如图 2-8所示.用标准椭球封头与半径等于其长半轴地圆筒壳比较,如果二者有相同地壁厚并承受同样内压,则封头赤道上地环向应力与圆筒壳上地环向应力大小相等,方向相反;封头赤道上地经向应力与圆筒壳上地经向应力大小相等,方向相同;封头极点处应力<环向及经向)地大小及方向都与圆筒壳上地环向应力相同.因而标准椭球封头可以与同厚度地圆简壳衔接匹配,所得到地容器受力比较均匀.三、圆平板地应力1 圆平板在内压作用下地弯曲由材料力学可知,当梁承受横向载荷产生弯曲变形时,梁中某截面上地内力、应力、应变及挠度之间存在着下列关系:平板在内压作用下地内力及变形情况,与梁承受横向均布载荷时地内力及变形情况在本质上是相同地,两者都产生弯曲变形,内力是弯矩及剪力.但梁地横向尺寸比梁地长度小得多,故受横向载荷后只是沿长度在载荷作用方向发生弯曲变形;平板则具有一定地长度和宽度,长宽都比其厚度大得多.在横向载荷作用下,在平板地长度方向、宽度方向及平板平面内地其他各个方向,都产生弯曲变形,即产生面地弯曲.面地弯曲可以用两个互相垂直方向地弯曲来描述,常简称为双向弯曲.平板产生双向弯曲时,弯曲应力沿板厚地分布仍然是线性地,即只随离中性轴地距离发生变化,公式仍然成立.但此处弯矩及惯性矩与梁地情况不同.锅炉压力容器地平封头、平端盖、人孔盖、手孔盖都是承受内压地平板,而且大多数是圆平板.因为承受均匀分布地内压,国平板地内力及变形都对称于过平板中心而垂直于平板面地轴,如图2-9所示.以柱坐标系分析圆平板地双向弯曲,设微元体上环向弯矩为,径向弯矩为,径向剪力为.则可通过弯曲后地挠度求解弯曲内力和应力.2 挠度微分方程及其求解弹性力学关于小挠度薄板地分析表明,圆平板某点在内压作用下地弯矩,取决于圆平板在该点地挠度:式中:——圆平板中某点承受内压后地挠度.——该点离圆平板中心地径向距离;——材料地泊松比;——圆平板板条地抗弯刚度,N·mm,,这里是材料弹性模量,是圆平板厚度.而圆平板地挠度取决于压力载荷与自身抗弯刚度:即上式为圆平板承受均布横向载荷时地挠度微分方程式,其解为:对无孔圆平板,在板中心处挠度最大.但此处,相应于地是无意义,所以,从而有:<2-14)式<3-14)中地及,可根据圆平板周界地支承条件决定.3 周边铰<简)支圆平板圆平板地周边是连接在圆筒体上地.圆筒体对圆平板周边地约束情况,由二者地相对刚度来决定、当圆筒体地壁厚比圆平板地壁厚小很多时,圆筒体只能限制圆平板在圆筒体轴线方向地位移,而对圆平板在连接处地转动约束不大,这样地约束可简化成铰支地圆平板.设铰支圆平板地半径为,则有:解得: <2-15)经计算整理,得圆平板径向及环向弯矩为:<2-16)<2-17)因为及是截面中单位宽度上地弯矩,在计算弯曲应力时必须采用截面单位宽度上地惯性矩.相应于及,截面单位宽度地惯性矩为,因此圆平板内某点地径向弯曲应力及环向弯曲应力分别为:<2-18)<2-19)最大应力产生于圆平板中心<)地表面,分别为:<2-20)<2-21)和梁弯曲时一样,圆平板双向弯曲时,以中性面为分界面,沿厚度上下两半部分地应力正负符号是相反地.为简化起见,上列各应力计算公式仅表示圆平板受拉表面地应力.铰支圆平板弯矩及表面弯曲应力地分布如图2-10所示.4 周边固支圆平板如果与圆平板连接地筒体壁厚很厚,筒体不仅限制了原平板周边沿筒体轴向地位移,而且限制了原平板在连接处地转动,则可把筒体对圆平板周边地约束情况简化为固支.固支圆平板地边界条件为:,<2-22)相应地弯矩方程式:<2-23)<2-24)圆平板上下表面<)处任一点地径向弯曲应力及环向弯曲应力分别为: <2-25)<2-26)最大弯曲应力为原平板边缘表面地径向弯曲应力,即:固支圆平板弯矩及表面弯曲应力沿半径地分布如图2-11所示.5 与相连圆筒壳地比较综合周边铰支、固支两种情况,圆平板在内压作用下地最大弯曲应力近似为:周边铰支K=0.31、固支K=0.188.而相连接地圆筒壳在内压作用下地环向薄膜应力为:假定圆平板厚度与圆筒壳相同,且近似取圆平板半径等于圆筒壳平均半径,则:通常圆筒壳地厚度远小于D,因而远大于.绝大多数容器地值均超过50,这就意味着在等厚度、同直径条件下,平板内产生地最大弯曲应力至少是圆筒壁中薄膜应力地20-30倍.如欲使圆平板中地最大弯曲应力与圆筒壳地薄膜应力相同,则圆平板地壁厚必须远大于圆筒壳壁厚:四、圆筒壳地边界效应1 基本概念承受内压地圆筒形元件,总是和其他相应地元件——封头、管板、端盖等连接在一起,组成一个封闭体,才能承受内压,以满足使用要求.在圆筒元件与其他元件相接之处,承受内压之后,其变形和受力情况与非连接部位有很大不同,这是圆筒与相连元件在相连处变形不一致、互相约束造成地.以圆筒与凸形封头连接为例<见图2-12),连接线上各点是圆筒与封头地公共点.作为圆筒筒身上地点,承受内压后其径向位移可按以下关系求出.根据广义虎克定律,环向应变为:分析环向应变与径向位移地关系,有:因而同样可以求出,作为封头上地点,连接处承受内压后地径向位移为:式中,,是凸形封头长轴与短轴之比,或长半径与短半径之比.对标准椭球封头,,因而有:即是说,在连接线上,作为筒身地一部分应沿径向向外位移;作为封头地一部分,应沿径向向外或向内位移.但封头在连接线上地径向位移量总是不同于筒身在连接线上地径向位移量,筒身向外地径向位移总是大于封头向外地径向位移.实际情况是,连接线上地点在承受内任后只能有一个径向位移,最后地变形位置只能在二者单独变形地中间位置,这样才能保持构件在连接处变形后是连续地.即二者在连接处互相约束限制.封头对圆筒地约束和限制,相当于沿圆筒端部国间连续均匀地施加弯矩和剪力,使圆筒端部产生“收口”弯曲变形,以抵消内压作用于圆筒所产生地向外径向位移.因而,封头对圆筒地附加载荷及相应引起地变形都是轴对称地.薄壁圆筒地抗弯能力很差,上述附加弯矩和剪力有时会在连接部位产生相当大地弯曲应力,甚至超过由内压造成地薄膜应力.但这种现象只发生在不同形状地元件相连接地边界区域,所以叫做“边界效应”.由边界效应产生地应力叫“不连续应力”,这是抵消不同元件在连接处变形不连续,保持实际上地变形连续在元件内出现地局部附加应力…边界应力.2 圆筒壳与凸形封头连接时地边界效应圆筒壳与凸形封头连接时,在连接处二者地几何形状是连续地.承受内压后二者虽因连接处变形不相同互相牵制,但最终到达地位置仍保持了连接部位地连续——连接处有同一地径向位移和转动角度.当凸形封头与圆筒壳地材质、壁厚都相同时,相应地因而,当凸形封头与圆筒壳相连接时,在圆筒壳连接部位附近因内压引起地附加内力为:(2-37>(2-38>(2-39>(2-39>以上各式中,为椭球封头长短轴直径之比.,随地变化趋势如图2-14所示.<边界应力变化趋势)<一)连接处<)内力及应力因为连接处弯矩等于零,因而没有相应地附加弯曲应力.连接处地径向剪力在连接处横截面上引起剪应力,平均剪应力为:连接处附加环向力在连接处造成附加环向应力:由式<2-39)及式<2—40)可知,和都是随地增加而减小地,连接处地及是最大剪力及最大环向力,因而,.因为地绝对数值较小,可忽略不计.因而连接处地主要附加应力是环向附加应力.连接处总地应力应是内压引起地薄膜应力与附加应力地代数和:<二)附加弯矩最大截面地内力和应力,地值随而变化.当,或者<取,以下同)时,达到最大值,相应地附加轴向弯曲应力为:在同一位置,及相应地附加环向应力也达最大值,其数值为:在附加弯矩最大地截面上,径向剪力减小为零,附加环向力为:由附加环向力引起地附加环向应力为:作用于该截面内某点地总应力为内压造成地薄膜应力及附加应力之和.对于标准椭圆球封头相连地圆筒,内壁处最大地环向总应力为:内外壁面处地轴向总应力分别为:五、对圆筒壳边界效应地结论1. 圆筒壳地边界效应是圆筒壳与相连元件承载后变形不一致,互相制约而产生附加内力和应力地现象.在下列‘情况下均会产生边界效应及不连续应力:①结构几何形状突变;②同形状结构厚度突变;③同形同厚结构材料突变.在分析元件应力状态时,必须有边界效应和边界应力地基本概念.2. 边界应力,自连接处起沿圆筒壳轴向迅速衰减,其影响范围仅在两元件地连接边界附近.计算表明,当或时,截面中等附加内力已衰减到边界上相应内力地5%以下.因此常把地区域视为边界效应地影响区域.一般钢材,因决定了边界效应区域地大小及衰减快慢,故称之为边界效应衰减系数.3. 边界效应中地主要附加内力是轴向附加弯矩和周向附加力.轴向附加弯矩引起地附加弯曲应力沿壁厚呈线性分布,在内外壁面分别为拉伸应力或压缩应力.拉伸应力与轴向薄膜应力叠加而使总地轴向应力加大;周向附加力引起地周向附加应力是压缩应力,可以抵消一部分周向薄膜应力,降低边界附近总地周向应力水平.4. 凸形封头与圆筒壳相连时,边界处地不连续应力很小,通常可以不予考虑;厚圆平板与圆筒壳连接时,边界处地不连续应力较大.在结构设计中,考虑边界效应,应尽量采用凸形封头而少用平板封头.采用平板封头时,要考虑采用相应地结构及工艺措施,以充分保证构件地安全.六、应力分类前面介绍了在内压等作用下元件内产生地一些应力,实际压力容器元件中地应力还不止这些,比如,元件因热胀冷缩约束所产生地热应力;元件自重、内部介质重量等会在元件内引起弯曲应力或拉伸<压缩)应。
gb1501-4-xxxx《压力容器》新旧.xls
150.1 1.3.3
150.1 1.4
150.1 1.4.1
压力容器 第1部分:通用要求(原标准名为“钢制压力 容器”) 范围 本标准适用的设计压力 本标准适用的设计压力不大于35MPa 其他金属材料制容器按相应引用标准确定 本标准适用的设计温度范围 设计温度范围:-269℃~900℃ 钢制容器不得超过按GB150.2中列入材料的允许使用温度 范围
对有均匀腐蚀或磨损的元件,应根据预期的容器设计使用
修订 150.1 4.3.6.2a
年限和介质对金属材料的腐蚀速率(及磨蚀速度)确定腐 3.5.5.2a
蚀裕量。
未变 150.1 4.3.6.2b
3.5.5.2b
未变 150.1 4.3.6.2c
3.5.5.2c
未变 150.1 4.3.7
(最小厚度)
3.5.1
3.5.1
第1、2、3章
压力容器的设计和制造必须接受劳动行 政部门安全监察机构的监察
设计单位应持有压力容器设计单位批准 书 制造单位应持有压力容器制造许可证
设计文件至少包括设计计算书和设计图 样。 盖有设计资格印章
制造单位必须按照设计图样要求进行制 造,如需要对原设计进行修改,应取得 原设计单位认可。
《固容规》管辖范围内压力容器的设计单位应持有相应的 特种设备设计许可证
3.2.1.1
修订 150.1 4.2.1.b
《固容规》管辖范围内压力容器的制造单位应持有相应的 特种设备制造许可证
3.2.1.1
修订 150.1 4.2.2
职责
3.2.2
新增 150.1 4.2.2.1
用户或设计委托方的职责 a)-g)
修订 150.1 1.5
压力容器设计审核人员培训GB1503-XXXX压力容器第3
54
二、密封结构
GB150.3-2011《压力容器 第3部分 设计》附录C
[ ]tf 设计温度下法兰的许用应力
49
H
R
2
[ ]tf
H T
2
[ ]tf
H 轴向应力 R 径向应力 T 环向应力
[ ]tf 设计温度下法兰的许用应力
50
7.5.3.5 法兰刚度校核
当法兰在相同的操作条件下有成功的使用经验时, 可以免除刚度校核。否则:
对整体法兰和按整体法兰计算的任意法兰,刚度指 数按(7-23)计算:
J
52.14VI MO
λ
Eδ
2 o
K1ho
1
51
式中: K1—刚度系数,取0.3 E—法兰材料的弹性模量,Mpa; 当法兰设计力矩Mo为预紧控制时,E取常温下的弹性模量, 当法兰设计力矩Mo为操作控制时,E取设计温度下的弹性模量, 其他系数同7.5.3.1
立式容器的槽面或凹面应向上,卧式容器的 槽面或凹面应位于筒体上。
22
⑺ 法兰热处理
碳素钢或低合金钢制法兰在下列任一情况下 进行正火热处理: a、法兰断面厚度大于50mm ; b、锻制法兰。
用碳素钢或低合金钢板材或型材制造的法兰环 对接接头、焊制整体法兰,应经焊后热处理。
23
⑻ 选用标准法兰的步骤
a、按照公称直径DN和设计压力P确定法兰类型。 b 、按照P≤[P]的原则确定法兰的公称压力PN。 c、按照公称直径DN和公称压力PN,查出法兰的各
部分尺寸,并标记出标准代号。
24
5、非标法兰设计( GB150.3-2011第7章)
⑴ 螺栓法兰连接设计的内容 a. 确定垫片材料、型式及尺寸; b. 确定螺栓材料、规格及数量; c. 确定法兰材料、密封面型式及结构尺寸; d. 进行应力校核, 计算中所有尺寸均不包括腐蚀
压力容器设计基础
态时,材料进入塑性流动而失效 工程上广泛应用
13
❖ 歪曲应变能理论——第四强度理论
考虑了三个主应力对材料强度的共同影响
压力容器失效准则及设计理论基础
GB150压力容器常规设计
❖ 基于第一强度理论,弹性失效,不允许进入塑性变形 ❖ 结构部件的应力状态计算
薄膜无力矩理论:将整体部件视为厚度方向应力相同的薄膜,只能承 受拉、压应力,不能承受弯曲应力
压力容器的概念
正确使用法规、标准、规范
❖ 法规与标准、规范的关系 ❖ 正确使用标准规范(摘自ASME前言)
压力容器的建造包括选材、设计、制造、检验、试验等一系列工作内容 标准规范包括了对压力容器建造工作的如下三方面的基本内容:强制性要
求,特殊禁用规定,非强制性指南 标准规范不可能涉及容器建造的所有方面、细节,对于那些没有提及的内
( 园筒周向应力)
可近似理解为,椭圆封头壁厚是园筒壁厚的K倍。
a/b越大,越扁平,长轴收缩多,变形越大,应力也大。 K与Di/2hi关系查表 7.1
2、受压元件——封头
3)稳定性
在内压作用下,长轴缩短,产生压应力,存在周向失稳可能,标准控 制最小厚度来保证。(GB150 表7-1 下部说明)
在外压作用下,短轴缩短,产生压应力,球面部分存在失稳可能,用 图表法进行校核计算。
2、受压元件——园筒和球壳
2.1园筒和球壳
园筒和球壳壁厚是根据弹性力学最大主应力理论中径公式导出:
H
4Di2Pc Di
DiPc
4
t
P 2cD · lilP 2cDi t
1
Pc Di
4 t
2
Pc Di
2 t
中径(Di+δ)替代Di
压力容器设计基础(
压力容器设计基础
12
压力容器工作条件及特点
压力条件
超高压人造水晶釜:~200MPa 低密度聚乙烯反应釜:~300MPa 低真空:100kPa~3kPa(绝压)
中真空:3kPa~0.1Pa(绝压) 高真空:0.1Pa~0.1mPa(绝压) 甚高真空:0.1mPa~0.1μPa(绝压) 超高真空:≤0.1μPa(绝压)
作用 设备及其内件、附件自重 设备内盛装的物料重量,试验状态下的液体重量 来自支承、连接管道及相邻设备的作用载荷 设备运输、安装、维修时可能承受的作用载荷
压力容器设计基础
16
压力容器工作条件及特点
装置的大型化
炼油装置中的减压蒸馏塔 直径10000 长40000 乙烯装置中的丙烯塔 直径10000 高94000 重量1100吨 氨合成塔 直径2500 长22000 壁厚200 甲醇反应器 直径6500 长14000 壁厚220 核工业中的沸水反应堆 直径7800 壁厚190 重量1000吨 煤液化加氢反应器 直径4810 壁厚338 重量2040吨 乙二醇列管式反应器 直径5000 长10000 管数9000 立式圆筒形油品贮罐 直径100000 高21800 容积150000m3
压力容器设计基础
14
压力容器工作条件及特点
介质的危害性
在石油、化工、天然气的工业生产装置中,参与过程的绝大部分是易 燃、易爆、有毒或有腐蚀性的物质,同时这些物质的状态在工艺过程 中受温度、压力的控制不断变化。
压力容器设计基础
15
压力容器工作条件及特点
其他载荷条件
风载荷、地震载荷 有些设备可能是在循环载荷作用下运行,同时还可能承受热应力循环
沸点的液体。
压力容器设计基础
压力容器设计基础知识讲稿.doc
压力容器设计基础知识讲稿(20140325)目录一.基本概念1.1 压力容器设计应遵循的法规和规程1.2 标准和法规(规程)的关系。
1.3 压力容器的含义(定义)1.4 压力容器设计标准简述1.5 D1级和D2级压力容器说明二.GB150-1998《钢制压力容器》1.范围2.标准3.总论3.1 设计单位的资格和职责3.3 GB150管辖的容器范围3.4 定义及含义3.5 设计参数选用的一般规定3.6 许用应力3.7 焊接接头系数3.8 压力试验和试验压力4.对材料的要求4.1 选择压力容器用钢应考虑的因素4. 2 D类压力容器受压元件用钢板4.3 钢管4.4 钢锻件4. 5 焊接材料4.6 采用国外钢材的要求4.7 钢材的代用规定4.8 特殊工作环境下的选材5.内压圆筒和内压球体的计算5. 1 内压圆筒和内压球体计算的理论基础5.2 内压圆筒计算5.3 球壳计算6.外压圆筒和外压球壳的设计6.1 受均匀外压的圆筒(和外压管子)6.2 外压球壳6.3 受外压圆筒和球壳计算图的来源简介6.4 外压圆筒加强圈的计算7.封头的设计和计算7.1 封头标准7.2 椭圆形封头7. 3 碟形封头7.4 球冠形封头7.5 锥壳8.开孔和开孔补强8.1 开孔的作用8.2 开检查孔的要求8.3 开孔的形状和尺寸限制8.4 补强要求8.5 有效补强范围及补强面积8.6 多个开孔的补强9 法兰连接9.1 简介9.2 法兰连接密封原理9. 3 法兰密封面的常用型式及优缺点9.4 法兰型式9.5 法兰连接计算要点9.6 管法兰连接10.压力容器的制造、检验和验收10.1 制造许可10.2 材料验收及加工成形10. 3 焊接10.4 D类压力容器热处理10.5 试板和试样10.8 无损检测10. 9 液压试验10.10 容器出厂证明文件。
11.安全附件和超压泄放装置11.1 安全附件11.2 超压泄放装置11.3 压力容器的安全泄放量11.4 安全阀三、GB151-1999《管壳式换热器》01 简述02 标准与GB150-1998《钢制压力容器》的关系。
第三章 压力容器常规设计力学基础
b点处轴向应变和周向应变
d (u(b)) du d w d w = − z 2 = εx − z 2 ε x (b) = dx dx dx dx wz w ε θ (b) = − , R >> z, ε θ (b) = = ε θ R−z R
2
2
③虎克定律
1 [σ θ (b ) − µσ x (b ) ] E 1 ε x (b ) = [σ x (b ) − µσ θ (b ) ] E E E Ez (b ) [ε x (b ) + υε θ (b ) ] = σx = (ε x + υε θ ) − 2 2 1−υ 1−υ 1−υ 2 E [ε θ (b ) + υε x (b ) ] = E 2 (ε θ + υε x ) − Ez υ2 σ θ (b ) = 1−υ 2 1−υ 1−υ 将 ε x 和 ε θ 用位移表示
Nϕ R1
+
Nθ = pz R2
一个方程两个未知数解不出,补充一个方程,利用截面 法,截出一个分离体列出分离体轴向内外力的平衡方程
外力 pz 和Q在轴向方向合力
F = πr
2
p
z
− ∑ Q cos α
内力为轴向合力
F ' = 2 π rt σ ϕ sin ϕ F +F' =0 2 π rt σ ϕ sin ϕ = π r 2 p z − ∑ Q cos α pzr ∑ Q cos α = − 2 t sin ϕ 2 π rt sin ϕ
第三章 压力容器常规设计力学基础
3.1前言 我国压力容器常规设计标准为GB 150-98,该标准中的容器 与部件设计公式涉及到的力学理论。主要有: ●无力矩薄膜理论——推导出圆柱体及各种轴对称壳体壁厚计 算公式 ●有力矩理论——主要用于推导各不连续区域应力。例如封头 与筒体连接区,鞍座区域,法兰设计及开孔区域等应力分析均 为有力矩理论。 ●平板理论——用于推导平板封头,矩形容器设计公式等 ●外压容器弹性小挠度理论——用于推导外压容器设计公式 上述力学分析基本方法均为弹性力学取微元法,并结合材料 力学的截面法。
压力容器设计基础(172页)
压力容器设计基础一.概述1、标准适用的压力范围GB150-1998《钢制压力容器》设计压力P:0.1~35 MPa真空度:≥0.02 MPaGB151-1999《管壳式换热器》设计压力P:0.1~35 MPa真空度:≥0.02 MPa公称压力PN≤35 MPa,公称直径DN≤2600mmPN•DN≤1.75×104JB4732-95《钢制压力容器-分析设计标准》设计压力P:0.1~100 MPa真空度:≥0.02 MPaJB/T4735-1997《钢制焊接常压容器》设计压力P:圆筒形容器:-0.02 MPa≤P≤0.1 MPa立式圆筒形储罐、圆筒形料仓 -500Pa≤P≤0.2000 Pa矩形容器:连通大气GB12337-1998《钢制球形储罐》设计压力P≤4MPa,公称容积V≥50M3 JB4710-2000 《钢制塔式容器》设计压力P:0.1~35MPa(对工作压力<0.1MPa内压塔器,P取 0.1MPa)高度范围 h>10m 且h/D(直径)>52.设计时应考虑的载荷1)内压、外压或最大压差;2)液体静压力(≥5%P);需要时,还应考虑以下载荷3)容器的自重(内件和填料),以及正常工作条件下或压力试验状态下内装物料的重力载荷;4)附属设备及隔热材料、衬里、管道、扶梯、平台等的重力载荷;5)风载荷、地震力、雪载荷;6)支座、座底圈、支耳及其他形式支撑件的反作用力;7)连接管道和其他部件的作用力;8)温度梯度或热膨胀量不同引起的作用力;9)包括压力急剧波动的冲击载荷;10)冲击反力,如流体冲击引起的反力等;11)运输或吊装时的作用力。
3、设计单位的职责1)设计单位应对设计文件的正确性和完整性负责。
2)压力容器的设计文件至少应包括设计计算书和设计图样。
3)压力容器的设计总图应盖有压力容器设计资格印章。
4.容器范围GB150管辖的容器范围是指壳体及其连为整体的受压零部件1)容器与外部管道连接2)接管、人孔、手孔等的承压封头、平盖及其紧固件3)非受压元件与受压元件的焊接接头。
GB150-XXXX《压力容器》宣贯
nA4 SAD级
• 指压力容器应力分析设计。
• 注:不属于《压力容器安全技术监察规程》、《超高压容器安全技术监察规程》 范围的压力容器,其设计单位至少应当取得压力容器A级、C级或D级中任一级 别的许可。
10
四. 《固定式压力容器安全技术监察规程》
★TSG R0004-2009《容规》附件A *记忆诀窍
☆<<容规>>的适用范围对介质的限定是: • ⑴气体、 • ⑵液化气体、 • ⑶介质最高工作温度高于或者等于其标准沸
点的液体; ☆ GB150的适用范围对介质没有限定。
13
五. GB150与《容规》的适用范围的差异
★ GB150与《容规》的适用形式上的差异
☆<<容规>>的适用形式的限定是:固定式压力 容器 TSG R0004
产生的失效形式等进行全面分析和评估,并采用不同的设计方法; • 3. 根据容器的操作条件和作用,正确选择材料和合理的结构设
计; • 4. 必须遵守我国的有关标准、规范和制造技术条件;对于重要
容器,还应进行全面的Leabharlann 术经济分析。2前言
• 压力容器设计要考虑
• 一、有足够的强度
容器壳体及附件必须具有足够的强度来承受工作 载荷。设计时要尽可能地使零部件达到等强度。
① TSG R0001 《非金属压力容器安全技术监察规程》 ② TSG R0002 《超高压容器安全技术监察规程》 ③ TSG R0003 《简单压力容器安全技术监察规程》 ④ TSG R0005 《移动式压力容器安全技术监察规程》
☆ GB150的适用范围对形式没有限定。
14
六. GB150《压力容器》
• GB150是一本人手一册的工具 书,我们每个人要熟练运用!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力容器设计基础
2
压力容器
TSG R0004-2009《固定式压力容器安全技术监察规程》1.3条: 工作压力大于或者等于0.1MPa(表压,不含液体静压力,下
同); 工作压力与容积的乘积大于或者等于2.5MPa·L; 盛装介质为气体、液化气体以及介质最高工作温度高于等于标准
沸点的液体。
压力容器设计基础
压力容器设计基础
14
压力容器工作条件及特点
介质的危害性
在石油、化工、天然气的工业生产装置中,参与过程的绝大部分是易 燃、易爆、有毒或有腐蚀性的物质,同时这些物质的状态在工艺过程 中受温度、压力的控制不断变化。
压力容器设计基础
15
压力容器工作条件及特点
其他载荷条件
风载荷、地震载荷 有些设备可能是在循环载荷作用下运行,同时还可能承受热应力循环
压力容器设计基础
19
近代压力容器的发展趋势
大型化,高参数 高温蠕变 低应力脆断 疲劳问题
压力容器设计基础
20
对压力容器的基本要求
满足(工艺)使用要求 安全可靠性
强度、刚度、稳定性、密封性、耐蚀性
合理的经济成本
压力容器设计基础
21
压力容器强度失效准则有三种观点
压力容器设计基础
12
压力容器工作条件及特点
压力条件
超高压人造水晶釜:~200MPa 低密度聚乙烯反应釜:~300MPa 低真空:100kPa~3kPa(绝压)
中真空:3kPa~0.1Pa(绝压) 高真空:0.1Pa~0.1mPa(绝压) 甚高真空:0.1mPa~0.1μPa(绝压) 超高真空:≤0.1μPa(绝压)
压力容器设计基础
13
压力容器工作条件及特点
介质腐蚀条件
同一种材料在不同介质中,不同材料在同一介质中,同一种材料同一 种介质在不同内部、外部条件下都会表现出不同的腐蚀规律。 碳钢在稀硫酸中极不耐蚀,但在浓硫酸中却很稳定; 铅耐稀硫酸,但不能在浓硫酸中使用; 不锈钢在中、低浓度的硝酸中耐蚀,但不耐浓硝酸的腐蚀; 碳钢在稀硫酸中是均匀腐蚀,奥氏体不锈钢在氯化物的水溶液中 会由于应力腐蚀而产生裂纹。
Ⅰ类 Ⅱ类 Ⅲ类
压力容器设计基础
8
压力容器的分类
根据“压力容器压力管道设计许可证”分类
A类:A1(超高压容器、高压容器)、A2(第三类低、中压容器)、 A3(球形储罐)、A4(非金属压力容器);
C类:C1(铁路罐车)、C2(汽车罐车或长管拖车)、C3(罐式集 装箱);
D类:D1(第一类压力容器)、D2(第二类低、中压容器); SAD类:压力容器分析设计。
3
压力容器的分类
根据生产装置中工艺单元过程分类
非均相(液固、气固)分离 搅拌与混合
制冷与深冷
热量传递
蒸发
结晶
蒸馏
吸收与解析
萃取
吸附
干燥
反应
贮存
压力容器设计基础
4
压力容器的分类
根据生产过程中的作用原理分类
反应容器(R) 换热容器(E) 分离容器(S) 储存容器(C)(球罐B)
压力容器设计基础
装箱); D类:D1(第一类压力容器)、D2(第二类低、中压容器)。
压力容器设计基础
10
压力容器的分类
其他分类方法
按容器主体材料 按容器结构型式 按容器截面形状 按容器主轴线方向 按容器壁厚
压力容器设计基础
11
压力容器工作条件及特点
温度条件
液氢装置:-253℃ 液态空气及其他气体的制取:-196℃ 苯乙烯装置中SMART反应器:650℃ 乙烯生产装置中的管式裂解类
根据压力等级分类
低压容器(L) 中压容器(M) 高压容器(H) 超高压容器(U) 常压容器
压力容器设计基础
6
压力容器的分类
根据温度分类
GB150:≤-20℃ 低温容器 日本:<-10℃ 英国: <0℃ 德国: <-10℃
压力容器设计基础
7
压力容器的分类
根据《容规》分类
压力容器设计基础
9
压力容器的分类
根据“压力容器制造许可证”分类
A类:A1(超高压容器、高压容器)、A2(第三类低、中压容器)、 A3(球形储罐现场组焊或球壳板制造)、A4(非金属压力容器)A5 (医用氧仓);
B类:B1(无缝气瓶)、B2(焊接气瓶)、B3(特种气瓶); C类:C1(铁路罐车)、C2(汽车罐车或长管拖车)、C3(罐式集
作用 设备及其内件、附件自重 设备内盛装的物料重量,试验状态下的液体重量 来自支承、连接管道及相邻设备的作用载荷 设备运输、安装、维修时可能承受的作用载荷
压力容器设计基础
16
压力容器工作条件及特点
装置的大型化
炼油装置中的减压蒸馏塔 直径10000 长40000 乙烯装置中的丙烯塔 直径10000 高94000 重量1100吨 氨合成塔 直径2500 长22000 壁厚200 甲醇反应器 直径6500 长14000 壁厚220 核工业中的沸水反应堆 直径7800 壁厚190 重量1000吨 煤液化加氢反应器 直径4810 壁厚338 重量2040吨 乙二醇列管式反应器 直径5000 长10000 管数9000 立式圆筒形油品贮罐 直径100000 高21800 容积150000m3
压力容器设计基础
17
压力容器工作条件及特点
结构多样性
卧式、立式、换热器、塔器、圆筒形贮槽、球罐、空冷器、余热锅炉 等
换热器: 固定管板式、浮头式、填函式、U形管式; 单管程、多管程; 双管板、带导流筒、带膨胀节
压力容器设计基础
18
压力容器工作条件及特点
主要结构组成
受内压或外压的圆筒壳 各种形式的封头、平盖 开孔及其补强元件 法兰连接 膨胀节
压力容器设计基础
李洪亮
压力容器设计基础
1
压力容器
《特种设备安全监察条例》第九十九条第(二)款: 压力容器是指盛装气体或者液体,承载一定压力的密闭设备,其
范围规定为最高工作压力大于或者等于0.1MPa(表压),且压 力与容积的乘积大于或者等于2.5MPa·L的气体、液化气体和最高 工作温度高于或者等于标准沸点的液体的固定式容器和移动式容 器;盛装公称工作压力大于或者等于0.2MPa(表压),且压力 与容积的乘积大于或者等于1.0MPa·L的气体、液化气体和标准沸 点等于或者低于60℃液体的气瓶;氧舱等。