易拉罐形状和尺寸的最优设计.

合集下载

易拉罐形状和尺寸的最优设计方案.

易拉罐形状和尺寸的最优设计方案.


P1
m 0.2873l r1, r2 , l, h 0

r2 r1

1,2 ,3 0
(2)考虑压强引起的底面弧度变化
上拱的底面,顶盖实际上也不是平面的,略有 上拱,这些要求也许保证了和饮料罐的薄的部分 的焊接(粘合)很牢固、耐压。
对于上拱的底面,是为了耐压,从物理角度 分析曲面下的压强,若液体表面为曲面,则表 面张力有拉平液面的趋势,从而对液体产生附 加压强。
3
m

a

r1
b2
r2
c2
r1
br2
c
s.t.
m 0.2873l r1, r2 ,l, h 0
(模型六为求解问题 三的完善模型)

r2 r1

1,2 0
问题四:自己设计易拉罐最优形状和尺寸模型
(1)考虑美观度的情形 在模型六的基础上引,入美
图3 各点罐壁厚度 相 同的含圆台易拉

模型五:
(2)易拉罐有不同罐壁厚度的情
形 如图,易拉罐所需材料
Y
量为r22:h
3
m r12 r22
r1r2


r2

c2
h

d


3
m

a

r1

b2

r2

c2
r1 br2
c
min M

br2

c

s.t.
m 0.2873l r1, r2,l, h 0

r2 r1

a,b,c, d 0

易拉罐形状和尺寸的最优设计

易拉罐形状和尺寸的最优设计
模型三的假设:椭球切割法 V=

1 2 h 2 z2 a h12 2 ) dz h a (1 2 12 b b 2
h 2
2

建立数学模型三:
目标函数:
min SV
1 2 12b 2 b k
a 2 2b k h 2k1 2 2 2 2 k h 2k1 2ab 12b k h 2k1 2 2 2 b k 12b k h 2k1
2r1
1 =12b 2 b k 2
a 2 2b k h 2k1 2 2 2 2 k h 2k1 2ab 12 b k h 2k1 2 2 2 b k 12 b k h 2k1
11.210 11.141
内直径 内高 圆柱内高
d=2r=6.6-2×0.011=6.578cm h=11.210-0.034-0.035=11.141cm h2=h-h1=11.141-1.301=9.84cm
从上表的数据可以做如下假设: 1. k1=k2=3k
2. h=2d=4r
问题二求解:
模型一: 目标函数: min SV=(2πrk+πk2)×(h+k





h SV上底=SV下底=

h k1 2 h 2
2 z2 a (1 2 ) dz b
2r1
1 2 3h 2 6hk1 4k12 a k1 12 = 2 12 b
椭球的内长轴为b,内短轴为a SV=SV侧+SV上底+SV下底 侧壁.上下底厚度为k.k1

c题易拉罐形状和尺寸的最优设计

c题易拉罐形状和尺寸的最优设计

min SV (r, h) s.t. r 0, h 0, g(r.h) 0
模型的求解
从约束中解出一个变量,化条件极值问题为求一元函数 的无条件极值问题
g(r, h) r 2h V 0 h V ( r 2 )
使原问题化为:求 r : h 使 S 最小,即,求r 使下式最小.
某种意义下的最优设计。当然, 果是否可以合理地说明你们
对于单个的易拉罐来说,这种 所测量的易拉罐的形状和尺
最优设计可以节省的钱可能是 寸,例如说,半径和高之比
很有限的,但是如果是生产几 等等。
亿,甚至几十亿个易拉罐的话, 可以节约的钱就很可观了。

③考虑壁厚及顶盖厚和壁厚 不同的情况下求最优模型。
问题分析
S(r) 2 (2r V ( r 2 )) 2 (2r3 V ) 0
r2

r即圆3之柱2V比的为,直1径:1和高
h

V
r
2
V

3
4 2
V2
3

4 2V 3 3V 2
3

8V
2
2r d
b2rahd132d421 1
表一:自己测量得到的易拉罐所需数据表(单位:mm)
②饮料罐顶盖所用材料的体积为 b r2
③饮料罐底部所用材料的体积为 b r2
所用材料的体积 :
,
SV (r, h) 2 rhb 2 r(1 )b2 h b2 (1 )b3 b r2 b r2
罐内体积 V(r, h):
V (r, h) r 2h
实际上,饮料罐的形状是左平 面图形绕其中轴线旋转而成的 立体.
可以把饮料罐的体积看成两部 分,一是锥台,二是圆柱体.

易拉罐形状和尺寸的最优设计

易拉罐形状和尺寸的最优设计
易拉罐形状和尺寸的最优设计
目录
• 引言 • 易拉罐的历史与现状 • 易拉罐形状和尺寸的影响因素 • 最优设计的探索与实验 • 最优设计的实现与应用 • 结论与展望
01
引言
主题简介
• 易拉罐作为一种常见的包装容器,广泛应用于饮料、食品等领 域。其形状和尺寸的设计对于产品的展示、运输、存储以及消 费者的使用体验等方面都有着重要的影响。因此,研究易拉罐 形状和尺寸的最优设计,对于提升产品品质、降低生产成本以 及增强市场竞争力等方面都具有重要的意义。
形状单一,缺乏个性化,难以满 足消费者多样化的需求。
定制化易拉罐优点
可根据客户需求进行个性化设计 ,适用范围广。
可重复使用易拉罐缺点
成本较高,清洗和保养较为麻烦 ,消费者接受度有待提高。
可重复使用易拉罐优点
可减少浪费和环境污染,节约资 源。
定制化易拉罐缺点
成本较高,生产周期较长,消费 者认知度有限。
材料选择和设计应考虑环保和可持续性。
实验设计与方法
文献调研
查阅相关文献,了解现有易拉罐的设 计和市场情况。
用户调研
通过问卷和访谈,收集用户对易拉罐 的期望和需求。
原型制作与测试
根据设计思路制作多个原型,进行实 际使用测试。
数据分析
收集用户反馈,分析数据,优化设计。
实验结果与分析
功能性测试结果
原型在开启、关闭和携带方面表现良好,满 足基本功能需求。
研究目的和意义
• 随着市场竞争的加剧和消费者需求的多样化,对于包装容器的要求也越来越高。易拉罐作为包装容器的一种,其形状和尺 寸的设计直接影响到产品的外观、使用便利性以及存储运输的效率。因此,研究易拉罐形状和尺寸的最优设计,旨在满足 消费者对于产品外观和使用体验的需求,提升产品的市场竞争力,同时降低生产成本,为企业创造更大的经济效益。

易拉罐形状和尺寸的最优设计

易拉罐形状和尺寸的最优设计

易拉罐形状和尺寸的最优设计我们只要稍加留意就会发现销量很大的饮料(例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。

看来,这并非偶然,这应该是某种意义下的最优设计。

当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。

现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。

具体说,请你们完成以下的任务:1.取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。

2.设易拉罐是一个正圆柱体。

什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。

3.设易拉罐的中心纵断面如下图所示,即上面部分是一个正圆台,下面部分是一个正圆柱体。

什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸。

4.利用你们对所测量的易拉罐的洞察和想象力,做出你们自己的关于易拉罐形状和尺寸的最优设计。

摘要本文利用游标卡尺分别测出355毫升易拉罐的各项数据。

设易拉罐是一个圆柱体时,我们采用等厚度面积法将体积问题转化为面积问题,再运用极值的知识求出最优比例。

设易拉罐中心纵断面上面部分是一个正圆台,下面部分是一个正圆柱体时,我们通过对其厚度、材料的密度分布、易拉罐的预留体积做一系列假设,建立相应数学模型,运用LINGO、CAD等工具求出其最优设计。

对于易拉罐的设计,我们着重从经济、视觉、安全和消费者心理几个角度入手设计,并建立对应数学模型验证其可行性。

关键词:黄金分割率等厚度面积法一、问题重述二、模型假设1.不考虑易拉罐具体制作工艺,仅对形状、尺寸及重量等非工程及技术量作出相应的分析。

2022高教社杯全国大学生数学建模竞赛题目

2022高教社杯全国大学生数学建模竞赛题目

2022高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)C题:易拉罐形状和尺寸的
最优设计
我们只要稍加留意就会发现销量很大的饮料(例如饮料量为355毫升
的可口可乐、青岛啤酒等)的饮料罐(即易拉罐)的形状和尺寸几乎都是一
样的。

看来,这并非偶然,这应该是某种意义下的最优设计。

当然,对于
单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如
果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。


在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。

具体说,请
你们完成以下的任务:
1.取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮
料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、
高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。

2.设易拉罐是一个正圆柱体。

什么是它的最优设计?其结果是否可
以合理地说明你们所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。

3.设易拉罐的中心纵断面如下图所示,即上面部分是一个正圆台,
下面部分是一个正圆柱体。

什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉
罐的形状和尺寸。

4.利用你们对所测量的易拉罐的洞察和想象力,做出
你们自己的关于易拉罐形状和尺寸的最优设计。

5.用你们做本题以及以前学习和实践数学建模的亲身体验,写一篇短文(不超过1000字,你们的论文中必须包括这篇短文),阐述什么是数学建模、它的关键步骤,以及难点。

易拉罐形状和尺寸的最优设计

易拉罐形状和尺寸的最优设计

2
问题分析
任何企业都希望能投入最少的成本以获得最大的利润,要使易拉罐的设计达到最优 即所耗材料费用应最省,因此我们可以将所耗材料费用看成是我们所要求的目标函数. 材料费用通常是以单位面积来衡量的,从制造工艺的角度来看,侧面和顶盖、底面 的造价是不同的,通常底面造价比侧面造价要高,这主要取决于底面比侧面厚度要大, 因为如果底面和侧面一样薄,就很难将易拉罐拉开;如果侧面和底面一样厚,则浪费材 料. 易拉罐总的费用应为顶盖、底面和侧面的面积乘以各自相应单位面积的造价,而底 面和侧面的造价与其相应的厚度有关,厚度越大造价越高,反之,厚度越小造价越低. 又表面积乘以厚度为体积,从而我们可以将目标函数由求所耗材料的最小费用转化为求 所耗材料的最小体积. 我们在全文数据库中查得:铝制易拉罐的罐体采用的生产工艺是一次成型的,它并 不要从一块大的铝片上裁下材料[1].所以,我们不用考虑余料的问题,只需考虑现在所 耗的材料. 罐的容积是一定的( 355 毫升) ,即为目标函数的约束条件. 综合以上分析,对于问题二、问题三、问题四,我们可以建立一个以易拉罐所耗材 料体积为目标函数,罐的容积为约束条件建立一个非线性优化模型.
半径 r 图② 易拉罐的中心纵断面 设易拉罐的侧面厚度为 d ,底面外侧圆半径为 r ,罐高为 h ,罐的容积为 V ,侧面 所用材料的体积为 V侧 ,顶盖和底面所用材料的体积之和为 V底 ,所用材料体积为 V材 . 其中, d 和 V 是固定参数, r 和 h 是自变量, V材 为因变量. 由第一问在网上查到的资料“侧面的厚度与顶盖、底面的厚度之比为 1: 2 ” ,得底面 厚度为 2d ; 侧面所用材料的体积为: V侧 [ r 2 (r d ) 2 ]h ; 顶盖和底面所用材料的体积为: V底 2 (r d ) 2 2d ;

易拉罐形状和尺寸的最优设计

易拉罐形状和尺寸的最优设计
结论:易拉罐总高:底直径=2:1,上下底之比=1:2,与实 际比较分析了各种原因。
关键词:易拉罐 最优设计
一、问题的提出
每年我国易拉罐的使用量是很大的,(近年我国每年 用易拉罐亿只),如果每个易拉罐在形状和尺寸作优化设 计,节约一点用料,则总的节约就很大了。为此提出下述 问题:
1:取一个饮料量为355毫升的易拉罐,例如355毫升的可口 可乐饮料罐,测量验证模型所需要的数据,例如易拉罐各 部分的直径、高度、厚度等,并把数据列表加以说明。
4

v r3
是 s ( r ) 的最小值点。
4
此时,易拉罐的直径
D 2r 2 3 v
4
易拉罐的高 hv r2v3(4v 2)2434v 4r2D
4.结果分析
上述模型及其求解得到的结论是:在正圆柱体易拉罐体积一 定时,当高与直径之比为2:1时,易拉罐的用料最省。 即为考虑用料最少,正圆柱体易拉罐的的高与直径之比为2:1是 最优设计。 此结果正好符合实际大多数易拉罐的形状和尺寸。如我们所测的 355毫升的可口可乐易拉罐高104,直径65,(比例2:1.06), 其它355毫升的易拉罐如青岛啤酒、百威啤酒、统一冰红茶、统 一鲜橙多等其比例都如此。 又如 180毫升的雀巢咖啡高10.5mm,直径54mm(比例为2:1.02)。
对问题三,在易拉罐基本尺寸,高与直径之比2:1的条件下 ,将上面为正圆台的易拉罐用料优化设计,转化为正圆柱部分 一定而研究此正圆台的用料优化设计。
圆台面积s(r)r2(R r) 2(r2 9 r v R 2R 2)2 (R r)2
用数学软件求得最优解r=1.467, h=1.93时,s=45.07最小 。
问题二再解 上述问题二的解中,是基于一个重要假设:“易拉罐顶盖厚

易拉罐的形状和尺寸的最优设计

易拉罐的形状和尺寸的最优设计

易拉罐的形状和尺寸的最优设计摘要本文讨论了以假设易拉罐的上、下底面及侧面所用材料相同为前提,在相同体积情况下,哪种形状的易拉罐所用材料最少。

将易拉罐设计成正圆柱体,分析并建立了非线性规划模型,用连续函数求极值的方法,获得结果;探讨了易拉罐形状为由上面圆台和下面正圆柱体组成的最优化设计,建立了非线性规划模型,分别用隐函数求导数和拉格朗日乘子两种方法求解;最后采用相同体积时球体表面积最小这一数学结论,以及便于运输和放置的实际状况,我们把易拉罐形状设计为用两个平面截去顶部后的圆台,建立非线性规划模型。

也尝试用旋转曲线建立球体最优设计。

通过计算对比结果,第二种形状(目前使用易拉罐形状)是最优的。

本文还对模型进行了推广。

关键词: 非线性规划拉格朗日定理隐函数一.问题重述日常生活中,我们稍加留意就会发现很多的饮料罐(即易拉罐)形状和尺寸几乎都一样。

看来,这并非偶然,这应该是某种意义下的最优设计。

当然,单个易拉罐的生产,对资源充分利用,节约生产成本并不明显。

但如果生产的数量非常多的话,那么节约的钱就很可观了。

为什么不同工厂的易拉罐采用统一规格?从数学的角度怎样给予合理的解释?易拉罐的圆柱底面圆的直径与圆柱的高的比是多少才为最优?和现实中的实际情况有什么差异,为什么?假设易拉罐的上、下底面及侧面所用的材料相同,则在相同的体积情况下,哪种形状和尺寸的饮料罐所用的材料最少则成本就越低,也就最合理。

需要研究的内容:(1) 对现实生活中易拉罐(可口可乐罐为例)的准确测量,包括罐体形状,尺寸等。

(2) 当易拉罐为一正圆柱体时,讨论它的最优设计方案,通过对半径和高的比值来说明和验证所测量的相关数据。

(3)当易拉罐有上面圆台和下面正圆柱体组成,如下图:讨论这种形状的最优方案,并与实际测量数据相分析比较。

(4) 查阅资料,发挥想象力,设计出易拉罐形状和尺寸最优的方案。

进行拉罐设计成本最小问题的数学建模及求解过程。

最后,总结做本题以及以前学习和实践数学建模的亲身体验,写一篇短文,阐述什么是数学建模、它的关键步骤,以及难点。

罐形状和尺寸的最优设计方案

罐形状和尺寸的最优设计方案

易拉罐形状和尺寸的最优设计摘要易拉罐十分流行,对易拉罐的优化设计有重要的经济意义与实际意义。

对问题一,我们通过实际测量得出(355ml )易拉罐各部分的数据。

对问题二,在假设易拉罐盖口厚度与其他部分厚度之比为3:1的条件下,建立易拉罐用料模型2()2(2)vs r rd r rππ=+,由微积分方法求最优解,结论:易拉罐高与直径之比2:1,用料最省; 在假定易拉罐高与直径2:1的条件下,将易拉罐材料设想为外体积减内体积,得用料模型:2min (,)(,)0.00s r h g r h r h v s t r h π⎧=-=⎪>⎨⎪>⎩用微积分方法得最优解:易拉罐盖子厚度与其他部分厚度为3:1。

对问题三,在易拉罐基本尺寸,高与直径之比2:1的条件下,将上面为正圆台的易拉罐用料优化设计,转化为正圆柱部分一定而研究此正圆台的用料优化设计。

模型圆台面积2()(s r r R r ππ=++用数学软件求得最优解r=1.467, h=1.93时,s=45.07最小。

结论:易拉罐总高:底直径=2:1,上下底之比=1:2,与实际比较分析了各种原因。

对问题四,从重视外观美学要求(黄金分割),认为高与直径之比1:0.4更别致、美观。

对这种比例的正圆柱体易拉罐作了实际优化分析。

另从美学及经济学的角度提出正四面柱体易拉罐的创新设想,分析了这样易拉罐的优缺点和尺寸优化设计。

对问题五,写出了我们对数学建模的体会文章。

关键词:易拉罐 最优设计 数学建模一、问题的提出每年我国易拉罐的使用量是很大的,(近年我国每年用易拉罐6070亿只),如果每个易拉罐在形状和尺寸作优化设计,节约一点用料,则总的节约就很大了。

为此提出下述问题:1.取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量验证模型所需要的数据,例如易拉罐各部分的直径、高度、厚度等,并把数据列表加以说明。

2.设易拉罐是一个正圆柱体。

什么是它的最优设计?其结果是否可以合理地说明所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。

易拉罐形状和尺寸的最优设计

易拉罐形状和尺寸的最优设计

易拉罐形状和尺寸的最优设计组员:邢登峰,张娜,刘梦云摘要研究易拉罐形状和尺寸的最优设计可以节约的资源是很可观的。

问题一,我们通过实际测量得出(355ml )易拉罐各部分的数据。

问题二,在假设易拉罐盖口厚度与其他部分厚度之比为3:1的条件下,建立易拉罐用料模型2()2(2)vs r rd r rππ=+,由微积分方法求最优解,结论:易拉罐高与直径之比2:1,用料最省; 在假定易拉罐高与直径2:1的条件下,将易拉罐材料设想为外体积减内体积,得用料模型:2min (,)(,)0.00s r h g r h r h v s t r h π⎧=-=⎪>⎨⎪>⎩用微积分方法得最优解:易拉罐盖子厚度与其他部分厚度为3:1。

问题三,在易拉罐基本尺寸,高与直径之比2:1的条件下,将上面为正圆台的易拉罐用料优化设计,转化为正圆柱部分一定而研究此正圆台的用料优化设计。

模型圆台面积2()(s r r R r ππ=++用数学软件求得最优解r=1.467, h=1.93时,s=45.07最小。

结论:易拉罐总高:底直径=2:1,上下底之比=1:2,与实际比较分析了各种原因。

问题四,从重视外观美学要求(黄金分割),认为高与直径之比1:0.4更别致、美观。

对这种比例的正圆柱体易拉罐作了实际优化分析。

另从美学及经济学的角度提出正四面柱体易拉罐的创新设想,分析了这样易拉罐的优缺点和尺寸优化设计。

最后写出了我们对数学建模的体会文章。

关键词:易拉罐 最优设计 数学建模问题重述在生活中我们会发现销量很大的饮料 (例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。

看来,这并非偶然,这应该是某种意义下的最优设计。

当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。

现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。

易拉罐形状和尺寸的最优设计

易拉罐形状和尺寸的最优设计

易拉罐形状和尺寸的最优设计指导老师:宋跃武梁军李大伟,何安娜,任婧康摘要:为了最大限度地减少单罐质量、提高材料利用率、降低生产成本。

本文根据易拉罐实际测量的数据,按照数学建模问题的要求,分别给出正圆柱体易拉罐的最优设计和上部为圆台下部为圆柱时易拉罐的最优设计;然后,给出关于易拉罐形状和尺寸的的最优设计, 这个设计用料最省、外观精美和手握舒适。

关键词:目标函数条件极值易拉罐厚度单罐重量Optimal Design for the Shape and Size of CanLI Dawei, HE Anna, REN Jingkang Instructor:SONG Yuewu, Liang Jun (Sanjiang University,Jiangsu Nanjing 210012 ,China)Abstract: For the decreasing in the weight of a can and the increasing in the avail of material and the reducing in the cost of production, the optimal design for the shape and size of can is present in this paper. Firstly, the optimum design for the cylinder can is present by according to its measuring data and the demands of mathematical modeling. Secondly, the optimum design for the can of circular truncated top and columnar bottom is also present. Finally, the optimal design for the shape and size of can is proposed, and the superiorities of the proposed design in the avail of material and the handsome of form and the comfortable of handclasp are testified.Keywords: Target function; Conditional extremum; Can thickness; Can weight1 概述如何在易拉罐生产中最大限度地减轻单罐质量,提高材料利用率,降低生产成本,是企业追求的重要目标。

易拉罐形状和尺寸的最优设计

易拉罐形状和尺寸的最优设计

07级数学实验—探索实验报告学院:理学院专业:统计学班级:统计071姓名:高袁屠凤华姚鹏成治尧2010 年 1 月 3 日易拉罐的形状和尺寸的最优设计问题 ——高袁 屠凤华 姚鹏 成治尧 统计071分工:高袁:编程屠凤华:数据测量和文章处理 姚鹏 成治尧:分析结论摘要饮料灌装是饮料生产中十分重要的一环,饮料灌装容器的设计不仅直接关系到生产企业的制造成本,同是也决定着饮料产品的品质和价值。

理想的饮料灌装容器应能起到以下作用:保护内在质量、免受物理损坏、使用方便、便于运输、和促进销售。

在日常生活中,我们总会买些易拉罐装的饮料和食品,殊不知,易拉罐的设计便包含了一定的物理、数学知识。

对易拉罐的设计,生产者总会考虑让它成本最低,并且功能最强。

如:设计一个体积固定为V 的圆柱形易拉罐,什么样的设计方案最优?首先我们根据测的一组数据得直径和高的比值接近黄金分割点。

本文基于用铝材料做成一个容积一定的圆柱形的容器用料最省问题,我们分析说明表面积最小是正圆柱体的最优设计。

再从实际情况出发,注意到罐的顶盖比其他部分都要厚,我们引入了厚度因子a,并结合模型<一>的结论r:h=1:4,考虑用材料的体积SV ,建立模型<二>,得出a=3.再以此为基础,建立模型<三>:Min S=[2H R ⨯⨯π+2R ⨯π+32r ⨯π+22)3.0()(h h r R +⨯+⨯π]b ⨯S.t. V=H R ⨯⨯2π+)(3133r R -⨯⨯πR=r+0.3h设定从顶盖到胖体部分的斜率为 a. 并代入工程生产中普遍认定的斜率0.3,运用Mathematica 软件求解,得出h=4r 的结论,这与我们在第一问中用游标卡尺所测得的数据吻合.对此时的SV 进行求偏导数,得出极值点为h=5.36221, r=1.49597, R=3.1046, H=10.8017.问题四我们用曲面积分思想建立了模型〈四〉:Min )(23220212002122R R r R R r R H R SV ---⨯⨯++⨯+⨯⨯=ππππb ⨯ S.t V=H R ⨯⨯2π+])()[(332032202R R h R R h R --+-⨯-⨯⨯ππ得出我们设计的易拉罐H=6.54 h=2.54 R=3.82 直径:高度=2R :(H+h )一、问题的提出:我们只要稍加留意就会发现销量很大的饮料 (例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。

易拉罐形状和尺寸的最优设计--实践周(10软件)

易拉罐形状和尺寸的最优设计--实践周(10软件)

易拉罐形状和尺寸的最优设计生活中像可口可乐、青岛啤酒这类饮料量约355毫升的易拉罐拥有相同的形状和尺寸,考虑到其销量可能大至几亿,甚至几十亿,那么我们认为指定形状后的最优设计就是最省料的设计。

本文建立模型解决圆柱形及圆柱圆台组合形易拉罐的最优设计问题,并在节省材料和人性化的基础之上设计出一种新的易拉罐.1 对实际易拉罐的测量与统计取一个生活中常见的355毫升的易拉罐,采用15次测量求平均值的方法对真值进行估计,并根据样本数据取置信度为0.85,得到均值和置信区间如表1所示.表1 所测易拉罐的尺寸大小 /mm总高H 圆柱高h 圆柱外 直径D 圆台内 直径d 圆台 高l 壁厚b 下底 厚度c 上盖 厚度a 均值和置信区间123.38 ±0.034102.54 ±0.02966.00 ±0.03756.36 ±0.03512.80 ±0.0360.13 ±0.0130.13 ±0.0150.30 ±0.0142 圆柱形易拉罐的最优设计——模型一2.1模型建立:此时易拉罐的形状见图1,易拉罐的体积是一定的,现将易拉罐分成侧面、上底面和下底面三部分(下底面与侧壁同厚、上顶面厚度记为b β),分别计算三部分的用料体积并得出总体积为(注意到:b R b h ,,由此可得到用料的近似值): 222222322(,)()[(1)]22(1)(1)(1)2(1)V R h V V V R b R h b b R b R R h b R bh bbR bR h b R bππβπππππππππ⎡⎤=++= +-+++β⎣⎦+ =++β+++β++β≈++β顶柱侧底又因为易拉罐的容积V 一定,即2R h V π=,所以建立以下条件极值优化模型[1]: 目0, 0m in (,)R h V R h >>约束条件: 2R h V π=图1 圆柱形易拉罐 2.2 模型求解:将2Vh Rπ=代入(,)V R h 得()22()2(1)VV R h R Rb R bRπππ=++β,,令32222[(1)](1)0dVVbb R R V dR R Rππ⎡⎤=+β-=+β-=⎣⎦,解R =因此,2(1(1)Vh Rπ==+β=+β,由于220d V dR>,故所得唯一驻点使目标函数取得最小值[2].综上所述,当355毫升易拉罐简化为圆柱体时,从用料最省的角度进行易拉罐尺寸的最优化设计,其设计方案为:32.48R m m =,107.18h m m =,此时使用的原材料最少,为34262.83mm .对比实测数据易知,将易拉罐简化为圆柱形进行最优设计所得尺寸与实测数据有一定的差异.3 圆台与圆柱组合形易拉罐的最优设计——模型二及模型三3.1模型二的建立:此时易拉罐的中心纵面图见图2,现将易拉罐分成圆柱部分的侧面、圆台部分的侧面、上底面和下底面四部分,分别计算三部分的用料体积并得出总体积为(注意到:b R b h ,,由此可得到用料的近似值): 222222222223222(,,,)[()][(1)]11()()()()()3322()2V R r h l V V V V R b R h b b r b R l R b r b R b r b l R r R r R b r b b h b R bh R b bl R r b R b r b R bh lR b lrbππββππππππβπππππππβπππ=+++=+-++++⎡⎤+++++++-++⎣⎦=++++++++≈++++顶柱侧底台又因为易拉罐的容积V 一定,即()22213R h lRR r rV ππ+++=目标函数:0, 0,0,0min (,,,)R h r l V R r h l >>>> 约束条件:2221()3R h l R R r r V ππ+++=图2 圆台形纵面图3.2模型二求解:将()22213V l R r Rr h Rππ-++=代入(,,,)V R r h l 得到:()()222222(),,,,,()3bV bl RrR r VR r l h R r l Rb r b lb R r RRπππβπ++=++-++对l 求偏导,得:222()()()(2)33V b R r Rr b b R r R r R r lRRπππ∂++=-++=-+∂,因为()()203bR r R r Rπ-+>,所以函数()(,,,,,)V R r l h R r l 是关于l 的增函数,那么,l 越大,所用的材料就越多,因此0l =时,即为圆柱形易拉罐时用料最省.3.3模型二的改进及其求解-模型三结合实际生活中常见的易拉罐,它们的顶部确实加上一个圆台,然而通过这一问的解答, 圆台与圆柱相结合是达不到用材料最少的,我们便考虑到这样的设计涉及到易拉罐的坚固性、可使用性及美观性.利用物理知识可以知道,圆柱上加上一定斜率的圆台后能使罐顶达到一定的机械强度;可使用性指罐顶的半径必须达到一定长才能使人易于扳开拉环;美观程度可以用直径与高的比与黄金比例间的差距来衡量.根据这三个条件将该模型归结为一个有约束条件的非线性最优化问题.根据实际测量值,现假设圆台的夹角余切在0.3到0.4之间 ,[]0.56,0.70∈直径高(黄金比例为0.618),圆台的顶盖半径大于24m m .则建立非线性规划模型为:目标函数:0, 0,0,0min (,,,)R h r l V R r h l >>>>约束条件:2221()30.30.420.560.70,,,0R h l R Rr r V R r lRh l R r h l ππ+++=⎧⎪⎪-⎪≤≤⎪⎨⎪≤≤⎪+⎪⎪>⎩ 利用MATLAB7.1最优化工具箱中的fmincon 函数求解[3],求解时要对模型做进一步的约束, 结合模型一的结果,我们取:32R ≥,24r ≥,R r >,107h ≥,12.1l ≥,规定步长为0.01m m ,经过搜索得到一个最优解:33.55,28.71,R mm r mm = = 107.00,h mm =12.10l m m =,此时上部是一个正圆台,下部是一个正圆柱体,用料为34471.60mm .对比于实际数据和模型一的结果,显然更加接近实际值,这说明我们对模型二的改进是合理的.4 基于若干设计原则的新易拉罐的最优设计-模型四4.1模型的建立:在对两种简化后的易拉罐进行最优设计的分析后,我们综合考虑了易拉罐的形状、手感和观感方面对易拉罐进行重新设计.从形状来看,罐内装有大量液体,在运输过程中会对罐体壁产生很大的冲力,为了使罐体受力均匀,故将罐体壁设计成旋转体.同时为了降低罐底受到的较大压力,将下底面设计成凸起的形状.再结合球形用材少容积大的好处,我们将圆台设计为半球,即上盖变成了半球.从手感方面考虑,在成年人中,女性手掌的尺寸一般小于男性,这里我们以女性手掌尺寸为参考.当大拇指和中指这两个部位的距离达不到易拉罐横切面周长的一半时,则手感不佳且不易握牢.因此,当成年女性正常握持易拉罐时,其大拇指指尖到中指指尖间的圆弧长度应不小于罐身半周长.从观感来看,将易拉罐底面直径与高的比设置在黄金分割比的附近为佳,此处规定其值在0.56到0.70考虑以上各种因素,新设计的易拉罐形状见图3图3 新易拉罐形状图 图4 新易拉罐纵面图为减小冲力,罐内需留出少量空间,同时考虑底部有凸起的部分,因此将罐体容积设计成390毫升。

易拉罐形状和尺寸的最优设计(西南交通大学数学建模国家一等奖)

易拉罐形状和尺寸的最优设计(西南交通大学数学建模国家一等奖)

易拉罐形状和尺寸的最优设计摘要本文以用于制造易拉罐的原料总体积最省为优化目标,通过构建多元函数和建立非线性规划模型,利用热力学,材料力学,立体几何相关方面的知识对容积为355 ml 的易拉罐的形状与尺寸进行了优化设计,并在综合考虑各方面因素的情况下,构想出了一个外形较美观,手感较好,制造成品所需材料体积又较省的易拉罐模型。

问题一中,结合问题的特殊性,我们首先对实物体各部分的尺寸进行了详细测量,并在多次试验的基础上求取平均值,以达到测量的平均误差最小。

通过测量,我们发现易拉罐一些部位的厚度是不一致的,从而确定了应该以原料总体积最小作为优化目标,而不仅仅在于原料面积最小。

问题二中,我们按照此优化目标,建立了有条件约束的非线性规划模型,并结合原问题将其转化为我们熟悉的一元函数极值问题。

通过适当的运算,其解析解为:半径与高之比1: (1λ+2λ),再利用实测数据中的厚度来计算其数值结果为1:4.4,并用实测半径与高之比1:4.3来验证,两者非常接近,得出该模型是合理有效的。

问题三中,我们在模型一的基础上,考虑到二氧化碳气体的易挥发性,利用盖-吕萨克定律和碳酸化原理合理地为易拉罐内饮料设计了一个满足最大膨胀体积的空间,从而优化设计出了比模型一更加合理的易拉罐。

问题四中,我们再在模型二基础上重新构思了多种新形状的易拉罐,利用圆周定理综合分析考虑选出一种各方面较优的形状(圆柱与球缺组成的)用同样原理的模型优化其尺寸,同样利用LINGO 软件解得其尺寸及大致所需材料,经比较分析可得出这种形状的易拉罐较优,所需材料比同容积的其它形状的易拉罐少,各部分比例也较适中。

本文最大的特色是对原问题作出了合理假设,将实物体转化为几何图形,并尽量避开物理化学对我们建立数学模型的影响,通过对其形状从简单的到复杂的都得出类似的结论。

我们研究易拉罐的结构是由简易到复杂,层层递进地考察易拉罐的形状和尺寸,但始终没离开实测数据,时时回归实测数据以验证模型,得出与实际相吻合的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则由对问题二的前一解的结论, h 4r 得 结论 : 3 。
4 1 ,
5.结果分析 3 )与我们对355ml可 易拉罐顶盖厚度是侧面厚度的3倍( 口可乐等易拉罐的实测数据完全一致(见问题(1)的解)。 问题三 1.补充假设,在基本假设的基础上我们补充下述假设: 在本问题中假设易拉罐如图3所示,即上面是正圆台,下面是正 圆柱体。
二、基本假设
1.本文研究易拉罐形状和尺寸的最优设计,不考虑具体的用料 (假设为铝材),也不考虑易拉罐的工艺过程。 2.易拉罐的形状和尺寸假设为“正圆柱体”或“正圆台与正圆 柱体的结合”等等。 3.易拉罐的基本构造为“两片罐”。 4.实际测量允许有一定的误差。 (对不同问题的研究再作补充假设)。 5. 不考虑压强
r
由微积分方法求最优解,结论:易拉罐高与直径之比2:1, 用料最省; 在假定易拉罐高与直径2:1的条件下,将易拉罐材料 设想为外体积减内体积,得用料模型:
min s ( r , h) g ( r , h) r 2 h v 0 s.t.r 0 h 0
用微积分方法得最优解:易拉罐盖子厚度与其他部分厚度为3:1。 对问题三,在易拉罐基本尺寸,高与直径之比2:1的条件下, 将上面为正圆台的易拉罐用料优化设计,转化为正圆柱部分一 定而研究此正圆台的用料优化设计。 圆台面积 9v 2 2 2 s(r ) r ( R r ) 2 2 ( R r ) (r rR R 2 ) 2 用数学软件求得最优解r=1.467, h=1.93时,s=45.07最小。 结论:易拉罐总高:底直径=2:1,上下底之比=1:2,与实 际比较分析了各种原因。
2.符号说明: r:易拉罐的半径; h:易拉罐的高; v:易拉罐内体积(容积); sv:易拉罐所用材料的体积; b:易拉罐除顶盖外的厚度; :顶盖厚度参数,即顶盖厚度 b。 3.问题分析与模型 由于易拉罐尺寸优化设计要研究到易拉罐各部分厚度问题, 可设想一个易拉罐所用材料是易拉罐外形体积减去内部体积(见 图2)。 易拉罐用料=侧面材料+底面材料+顶盖材料
易拉罐形状和尺寸的最优设计

报告人:刘璐 201231208
摘要
易拉罐十分流行,对易拉罐的优化设计有重要的经济 意义与实际意义。 对问题一,我们通过实际测量得出(355ml)易拉罐各部 分的数据。 对问题二,在假设易拉罐盖口厚度与其他部分厚度之比 为3:1的条件下,建立易拉罐用料模型 s (r ) 2rd ( v 2 2r ),
v r h
则所需材料为
v s(r ) 2 rd ( 2 2r )r (0, ) r
2
模型求解,用微积分方法
'
令 s ' (r ) 0 讨论当 r 3 当 r 因此 故
3
3
v s (r ) 2 d ( 2 4r ) r ,解得 r 3 v 。 4
3.问题分析与模型 在本问题中,易拉罐的最优设计着眼于每个易拉罐用料最少。 因此需要考虑易拉罐的形状、尺寸和厚度,已假设易拉罐顶部厚 度是侧面厚度的3倍。 因此一个易拉罐所需材料为: 侧面的材料+底面的材料+顶部的材料 2 2 s 2 rhd r d 3 r d 即 2 rd (h 2r ) 假设易拉罐的体积V一定
时,
v 4
s (r ) 0
'
; ;
v 时, 4
s (r ) 0
'
v 是 4
s(r )
v 4
的极小值,而 r (0, ) 没有其它极值点, 是
r
3
s(r ) 的最小值点。
此时,易拉罐的直径
D 2r 2 3 v 4
易拉罐的高
v v h 2 r
3
(4 )2 v 3 4 4r 2D 2 v 4
用数学软件求S的最小值(其中如前分析取V=35ml,R=3.2cm), 得: 当r=1.467cm,h=1.93cm时, 正圆台表面积最小值s=45.07( cm2 )
结论:常见的正圆台与正圆柱体结合的易拉罐,只考虑形状 和尺寸变化用料最少的优化设计标准是:①总高度与底直径之比 为2:1, ②正圆台的高与上底直径之比约为2:3(即h:2r≈2: 3),相应易拉罐上下底直径之比为 2r : 2R 1: 2 。 4.结果分析 上述结果是不考虑其他因素,仅就易拉罐形状和尺寸变化, 考虑其基本用料最省的数学结论,对实际易拉罐的设计有一定参 考意义。 但上述结果与现今实际的易拉罐尺寸有出入,以可口可乐等 355ml易拉罐为例,其r=2.9cm h=1.2cm。 我们分析这种差异的原因是易拉罐的实际设计必须要考虑形 状和尺寸以外的其他各种因素。 ①加工工艺:可口可乐等铝制易拉罐是“两片”构成(即正圆柱体 侧面及底为一部
sv=( (r b)2 - r 2 )(h+(1+ )b)+b r 2 b r 2
将上式化简,有
sv(r, h) 2 rhb (1 ) r b 2 r(1 )b h b (1 )b
2 2 2
3
r ,则 b 2 , b3 很小,所以可将带 b 2 , b3 作简化,因为 b 的项忽略。 2 有 sv(r, h) s(r, h) 2 rhb r (1 )b 记 g (r , h) r 2 h v (v是已知的,即罐容积一定)。
三.模型的假设与求解
问题一 : 我们实际测量355ml易拉罐的各种数据如下表:
常见易拉Байду номын сангаас尺寸(mm)
问题二 1.补充假设,在基本假设的基础上我们补充下述假设: 在本问题的研究中,假设易垃罐是一个正圆柱体; 假设易拉罐侧面和底面的厚度相同,顶部的厚度是侧面厚度的3倍; 体积一定的柱体中,正圆柱体的表面积最小。 2. 符号说明: h:易拉罐的高; r:易拉罐的上下底半径; d:易拉罐金属板的厚度; V:易拉罐的体积; D:易拉罐上下底直径。
求正圆台的面积得模型: 正圆台面积=顶盖面积+圆台侧面积
S r 2 (r R ) h 2 ( R r ) 2 1 h(r 2 rR R 2 ) 3 3V 即h (r 2 rR R 2 ) V
2 9 v 2 代入有S= r 2 (r R ) ( R r ) 2 2 2 (r rR R )
模 型 推 广
用该数学模型解决了现实问题,甚至解决了当前生产生活中 的一些技术难关,并将具体模型应用与实际生产中,给社会带来 一些经济效益。 就易拉罐的设计和尺寸的最优设计而言,考虑了易拉罐罐底 为何设计成弧形的拱面,这样设计对易拉罐设计有何作用,如何 设计易拉罐各部分材料的厚度和设计,并证明如何设计是最省的。
4.结果分析
上述模型及其求解得到的结论是:在正圆柱体易拉罐体积一 定时,当高与直径之比为2:1时,易拉罐的用料最省。 即为考虑用料最少,正圆柱体易拉罐的的高与直径之比为2:1是 最优设计。 此结果正好符合实际大多数易拉罐的形状和尺寸。如我们所测的 355毫升的可口可乐易拉罐高104,直径65,(比例2:1.06), 其它355毫升的易拉罐如青岛啤酒、百威啤酒、统一冰红茶、统 一鲜橙多等其比例都如此。 又如 180毫升的雀巢咖啡高10.5mm,直径54mm(比例为2:1.02)。
得数学模型
min s(r , h)
g ( r , h) r 2 h v 0 s.t r 0 h0
4.模型求解 v 2 由约束条件 g (r, h) r h v 0 ,得 h r 2 ,代入目标函数 2v 2 s(r , h(r )) b (1 )r r 2b 令 3 s' 2 (1 ) r v 0 r v 得 r3 (1 ) 又因为 所以
问题二再解 上述问题二的解中,是基于一个重要假设:“易拉罐顶盖厚 度是其他部分厚度的3倍”。这是由实测数据得到,并认为是易拉 罐开口原理(即开口边缘切口,便于拉开),要求顶盖有一定的 厚度,现去除此假设,做一般地研究。
1.补充假设:
假设易拉罐是一个正圆柱体; 假设易拉罐侧面厚度与底面厚度相同,与顶盖厚度不同(如图2)。
分,上密封盖为一部分,分别简称为“罐体”和“封盖”)。 将铝材罐体缩口形成上部圆台部分,为了使“封口盖”能扣紧 “罐体”。圆台侧面的坡度(斜率)有一定要求(如斜率~ 0.4), 即为了封口盖的工艺要求,易拉罐上部侧面的(坡度)不能过小, (按数学优化计算则)。 同样是加工工艺的要求,若r较小,较小,即圆台侧面坡度小, 则从圆罐上口“缩口”成圆台形时,此加工也增加难度(如容易 起皱)。 ②外形美观:按上述数学优化计算,易拉罐上下底直径之比1:2, 虽然材料省,但上底开口小,形状就不美观。
2.符号说明 R:易拉罐正圆柱体半径(也即是正圆台下底半径); r:易拉罐正圆台上底半径; h1:易拉罐正圆柱体高; V1:易拉罐正圆柱体容积; h :易拉罐正圆台高; V:易拉罐正圆台容积。
3.问题分析与模型
因为上述解问题二的结论(正圆柱体易拉罐用料最省的形状 和尺寸的最优设计是h=2D)已确定了圆柱形易拉罐的基本尺寸, 若易拉罐体积一定,则基本的高与半径可大致确定,即易拉罐的 圆柱体部分确定。所以这里我们可以由此简化问题为研究正圆台 部分的优化设计。以常见的可口可乐等355ml易拉罐为例,易拉 罐可取定R=32mm,h1=110mm,于是测算出V=35ml. 于是问题三转化为,已知易拉罐上部正圆台体积V一定,底半 径R一定时,其上底半径r和高h为何值(或r与h比例是多少)正 圆台的表面积最小,如图4:
关键词:易拉罐
最优设计
一、问题的提出
每年我国易拉罐的使用量是很大的,(近年我国每年 用易拉罐亿只),如果每个易拉罐在形状和尺寸作优化设 计,节约一点用料,则总的节约就很大了。为此提出下述 问题: 1:取一个饮料量为355毫升的易拉罐,例如355毫升的可口 可乐饮料罐,测量验证模型所需要的数据,例如易拉罐各 部分的直径、高度、厚度等,并把数据列表加以说明。 2:设易拉罐是一个正圆柱体。什么是它的最优设计?其结 果是否可以合理地说明所测量的易拉罐的形状和尺寸,例 如说,半径和高之比,等等。 3.设易拉罐的上面部分是一个正圆台,下面部分是一个正 圆柱体。什么是它的最优设计?其结果是否可以合理地说 明所测量的易拉罐的形状和尺寸。
相关文档
最新文档