《近世代数基础》(修订本)张禾瑞.著__课后答案__PPt格式

合集下载

近世代数习题解答(张禾瑞)三章

近世代数习题解答(张禾瑞)三章

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载近世代数习题解答(张禾瑞)三章地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容近世代数习题解答第三章环与域1 加群、环的定义1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的.证(ⅰ)若S是一个子群则是S的零元,即对的零元,即(ⅱ)若今证是子群由对加法是闭的,适合结合律,由,而且得再证另一个充要条件:若是子群,反之故2. ,加法和乘法由以下两个表给定:证明,作成一个环证对加法和乘法的闭的.对加法来说,由习题6,和阶是4的非循环群同构,且为交换群.乘法适合结合律事实上.当或,的两端显然均为.当或x=c,的两端显然均为.这已讨论了所有的可能性,故乘法适合结合律.两个分配律都成立事实上,第一个分配律的成立和适合律的讨论完全一样,只看或以及或就可以了.至于第二个分配律的成立的验证,由于加法适合交换律,故可看或 (可省略的情形)的情形,此时两端均为剩下的情形就只有R作成一个环.2 交换律、单位元、零因子、整环1. 证明二项式定理在交换环中成立.证用数学归纳法证明.当时,显然成立.假定时是成立的:看的情形(因为)即二项式定理在交换环中成立.2. 假定一个环对于加法来说作成一个循环群,证明是交换环. 证设是生成元则的元可以写成(整数)证明,对于有单位元的环来说,加法适合交换律是环定义里其他条件的结果 (利用)证单位元是, 是环的任意二元,找一个我们还没有提到过的有零因子的环.证令是阶为的循环加群规定乘法:而则显然为环.阶为2 有而但即为零因子或者为矩阵环.证明由所有实数 (整数)作成的集合对于普通加法和乘法来说是一个整环.证令整数(ⅰ) 是加群适合结合律,交换律自不待言.零元的负元(ⅱ)乘法适合结合律,交换律,并满足分配律.(ⅲ)单位元(ⅲ) R没有零因子,任二实数或3 除、环、域1. {所有复数是有理数}证明对于普通加法和乘法来说是一个域.证和上节习题5同样方法可证得F是一个整环.并且(ⅰ)有(ⅱ) 即中至少一个因而有,使故为域2. {所有实数是有理数}证明对于普通加法和乘法来说是一个域.证只证明有逆元存在.则中至少有一个 ,我们说不然的话,若则矛盾)但不是有理数既然则的逆为证明例3的乘法适合结合律.证又,5. 验证,四元数除环的任意元 ,这里是实数,可以写成的形式.证4 无零因子环的特征1. 假定是一个有四个元的域,证明.()的特征是2;()的或1的两个元都适合方程证 () 设的特征为则的(加)群的非零元的阶所 (是群的阶)但要求是素数,() 设由于,所以加法必然是,而故有又构成乘群,所以乘法必然是(否则 )故有这样, 显然适合2. 假定是模的一个剩余类.证明,若同互素,那么所有的书都同互素(这时我们说同互素).证设且则由于故有 ,且有因为所以3. 证明, 所有同互素的模的剩余类对于剩余类的乘法来说作成一个群(同互素的剩余类的个数普通用符号来表示,并且把它叫做由拉函数)证而同互素}显然非空,因为(ⅰ)则又有(ⅱ)显然适合结合律.(ⅲ)因为有限,所以的阶有限.若即由此可得即有另一个消去律同样可证成立.作成一个群4. 证明,若是, 那么(费马定理)证则而的阶是的阶的一个因子因此即5 子环、环的同态1. 证明,一个环的中心是一个交换子环.证设是环的中心.显然,是环的任意元是子环,至于是交换环那是明显的.2. 证明, 一个除环的中心是个域.证设!是除环!是中心由上题知是的交换子环显然,即包含非零元,同时这个非零元是的单位元.即!是一个域3. 证明, 有理数域是所有复数是有理数)作成的域的唯一的真子域. 证有理数域是的真子域.设!是的一个子域,则(因为是最小数域)若而则这就是说,是的唯一真子域.4. 证明, 有且只有两自同构映射.证有理数显然变为其自己.假定则由或这就证明完毕.当然还可以详细一些:确是的两个自同构映射.现在证明只有这两个.若(有理数变为其自己)则由若是有理数,在就出现矛盾,所以有因而在就是说, 只能或i5. 表示模3的剩余类所作成的集合.找出加群的所有自同构映射,这找出域!的所有自同构映射.证 1)对加群的自同构映射自同构映射必须保持!故有2)对域的自同构映射.自同构映射必须保持,所有只有6. 令是四元数除环, 是子集{一切这里阿是实数,显然与实数域同构.令是把中换成后所得集合;替规定代数运算.使,分别用表示的元 ,那么的元可以写成是实数)的形式(参看习题). 验证.,证 1)对来说显然2){一切实数{一切(实数一切复数对是不属于的的元.一切规定由于与的补足集合没有共同元,容易验证是与间的一一映射.规定的两个唤的和等于它们的逆象的和的象.的两个元的积等于它们的逆象的积的象.首先,这样规定法则确是的两个代数运算.其次,对于这两个代数运算以及的两个代数运算来说在之下(3)由习题5知这里实数这是因为令(4)同样6 多项式环1. 证明, 假定是一个整环,那么上的一个多项式环也是一个整环.证 !是交换环交换环,有单位元是的单位元,没有零因子没有零因子事实上,则因为没有零因子,所以因而这样是整环2.假定是模7的剩余类环,在里把乘积计算出来解原式=3. 证明:(ⅰ)(ⅱ) 若是上的无关未定元,那么每一个都是上的未定元. 证(ⅰ){一切一切由于因而(ⅱ)设即因为是上的无关未定元,所以即是上的未定元4. 证明:(ⅰ) 若是和上的两组无关未定元,那么(ⅱ) !上的一元多项式环能与它的一个真子环同构.证(ⅰ)根据本节定理3容易验证这样(ⅱ)令一切显然但不然的话这与是上未定元矛盾.所以是上未定元显然故有(ⅰ)这就是说,是的真子环,且此真子环与同构.7 理想1. 假定是偶数环,证明,所有整数是的一个理想,等式!对不对? 证是的一个理想.等式不对这是因为没有单位元,具体的说但2. 假定是整数环,证明证是整数环,显然又3. 假定例3的是有理数域,证明,这时是一个主理想.证因为2与互素,所以存在使。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答第二章群论1群论1.全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律.2.举一个有两个元的群的例子.证G={1,-1}对于普通乘法来说是一个群.3.证明,我们也可以用条件1,2以及下面的条件4,5'来作群的定义:4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa eA_1证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e因为由4 G有元a能使a'a =e1 1 1 '所以(a a)e = (a a)(a a )即a a = e(2)一个右恒等元e 一定也是一个左恒等元,意即由ae = a 得ea = a即ea = a这样就得到群的第二定义.(3)证ax二b可解取x = a这就得到群的第一定义.反过来有群的定义得到4,5'是不困难的.2单位元,逆元,消去律1.若群G的每一个元都适合方程x2二e,那么G就是交换群.证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba .2.在一个有限群里阶大于2的元的个数是偶数._1 n —1 n n —1 —1证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ • a m=e 这与a的阶是n矛盾「a的阶等于a °的阶_4 _4 2(2)a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾(3) a b 贝U a「b'斗总起来可知阶大于2的元a与a双双岀现,因此有限群里阶大于2的元的个数一定是偶数3.假定G是个数一个阶是偶数的有限群,在G里阶等于2的元的个数一定是奇数.证根据上题知,有限群G里的元大于2的个数是偶数;因此阶<2的元的个数仍是偶数,但阶是1的元只有单位元,所以阶<2的元的个数一定是奇数.4.一个有限群的每一个元的阶都是有限的证a := G故a a2…a m…a n…€ G由于G是有限群,所以这些元中至少有两个元相等:m n n _ma =a (m n) 故a 二en - m是整数,因而a的阶不超过它.4群的同态假定在两个群G和G的一个同态映射之下,a》a,a和a的阶是不是一定相同?证不一定相同丄 c _1 +23 _1 +伍例如G 二{1, , }-2 2对普通乘法G,G都作成群,且(x^1 (这里x是G的任意元,1是G的元)由••可知G s G—1+&3 —1—iJ3但11的阶都是3.2 2而1的阶是1.5变换群1 11. ------------------------------------------ 假定I是集合的一个非变换,1会不会有一个左逆元T ,使得I =Z ?证我们的回答是回有的 A ={1,2,3,— }3f 2 3 f 44f 3 4-显然是一个非--- 变换但'二2.假定A是所有实数作成的集合.证明.所有A的可以写成x > ax b,a,b是有理数,a = 0形式的变换作成一个变换群.这个群是不是一个交换群?证(1) - : x—ax ■ bca,cb d是有理数ca尸0 ;是关闭的.⑵显然时候结合律⑶ a =1 b =0 则:Xr X而.J .二. ;所以构成变换群.又d X"x 1故1 - 21因而不是交换群3.假定S 是一个集合 A 的所有变换作成的集合,我们暂时仍用旧符号.:a 》a ' = .(a)来说明一个变换..证明,我们可以用.「2: a“【[.2(a)] = j.2(a)来规定一个S 的乘法,这个乘法也适合结合律,并且 对于这个乘法来说;还是S 的单位元.证 彳: a —. d (a)那么.「2: a “ i [ .2(a)] = i 2(a) 显然也是A 的一个变换. 现在证这个乘法适合结合律 : 故 (•1・2)・3 =・1(・2・3) 再证;还是S 的单位元4 .证明一个变换群的单位元一定是恒等变换证设;是是变换群G 的单位元G , G 是变换群,故.是—变换,因此对集合 A 的任意元a ,有A 的元b ,;(a) »( (a)) = ;• (b) = • (b) =a另证■- (x)(x)根据1.7.习题3知t i(x) =x5.证明实数域上一切有逆的 n n 矩阵乘法来说,作成一个群。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章近世代数习题解答第二章群论1群论1.全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律.2.举一个有两个元的群的例子.证G={1,-1}对于普通乘法来说是一个群.3.证明,我们也可以用条件1,2以及下面的条件4,5'来作群的定义:4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa eA_1证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e1 1 1 '所以(a a)e = (a a)(a a )即a a = e(2)一个右恒等元e 一定也是一个左恒等元,意即由ae = a 得ea = a即ea = a这样就得到群的第二定义.(3)证ax二b可解取x = a这就得到群的第一定义.反过来有群的定义得到4,5'是不困难的.2单位元,逆元,消去律1.若群G的每一个元都适合方程x2二e,那么G就是交换群.证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba .2.在一个有限群里阶大于2的元的个数是偶数._1 n —1 n n —1 —1证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶_4 _4 2(2)a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾(3) a b 贝U a「b'斗总起来可知阶大于2的元a与a双双岀现,因此有限群里阶大于2的元的个数一定是偶数3.假定G是个数一个阶是偶数的有限群,在G里阶等于2的元的个数一定是奇数.证根据上题知,有限群G里的元大于2的个数是偶数;因此阶<2的元的个数仍是偶数,但阶是1的元只有单位元,所以阶<2的元的个数一定是奇数.4.一个有限群的每一个元的阶都是有限的证a := G故a a2…a m…a n…€ G由于G是有限群,所以这些元中至少有两个元相等:m n n _ma =a (m n) 故a 二en - m是整数,因而a的阶不超过它.4群的同态假定在两个群G和G的一个同态映射之下,a》a,a和a的阶是不是一定相同?证不一定相同丄 c _1 +23 _1 +伍例如G 二{1, , }-2 2对普通乘法G,G都作成群,且(x^1 (这里x是G的任意元,1是G的元)由??可知G s G—1+&3 —1—iJ3但11的阶都是3.2 2而1的阶是1.5变换群1 11. ------------------------------------------ 假定I是集合的一个非变换,1会不会有一个左逆元T ,使得I =Z ?证我们的回答是回有的 A ={1,2,3,— }3f 2 3 f 44f 3 4-显然是一个非--- 变换但'二2.假定A是所有实数作成的集合.证明.所有A的可以写成x > ax b,a,b是有理数,a = 0形式的变换作成一个变换群.这个群是不是一个交换群?证(1) - : x—ax ■ bca,cb d是有理数ca尸0 ;是关闭的.⑵显然时候结合律⑶ a =1 b =0 则:Xr X而.J .二. ;所以构成变换群.又d X"x 1故1 - 21因而不是交换群3.假定S 是一个集合 A 的所有变换作成的集合,我们暂时仍用旧符号.:a 》a ' = .(a)来说明一个变换..证明,我们可以用.「2:a“【[.2(a)] = j.2(a)来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说;还是S 的单位元.证彳: a —. d (a)那么.「2:a “ i [ .2(a)] = i 2(a) 显然也是A 的一个变换. 现在证这个乘法适合结合律:故 (?1?2)?3 =?1(?2?3) 再证;还是S 的单位元4 .证明一个变换群的单位元一定是恒等变换证设;是是变换群G 的单位元G , G 是变换群,故.是—变换,因此对集合 A 的任意元a ,有A 的元b ,;(a) ?( (a)) = ;? (b) = ? (b) =a另证■- (x)(x)根据1.7.习题3知t i(x) =x5.证明实数域上一切有逆的 n n 矩阵乘法来说,作成一个群。

近世代数课后习题参考答案(张禾瑞)-1

近世代数课后习题参考答案(张禾瑞)-1

近世代数课后习题参考答案(张禾瑞)-1近世代数课后习题参考答案第一章基本概念1 集合1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明如下当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故BA =2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A,这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = ,2 映射1.A =}{100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射.2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象.3 代数运算1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法是AA ?到D 的代数运算;是不是找的到这样的D ?解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不只一个.2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解?a b c aa b ca b cc a a a a a c c a b bd a aca a a4 结合律1.A ={所有不等于零的实数}. 是普通除法:bab a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 212)11(= , 2)21(1= ,从而)21(12)11( ≠.2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律?解? 这个代数运算不适合结合律c b a c b a 22)(++= ,c b a c b a 42)(++=)()(c b a c b a ≠ 除非0=c .3.A ={c b a ,,},由表所给的代数运算适合不适合结合律?解? 经过27个结合等式后可以得出所给的代数运算适合结合律.5 交换律1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律?解? 一般地a b b a -≠- 除非b a =.2.},,,{d c b a A =,由表a b c d a a b c d b b d a c c c a b d dd c a b所给出代数运算适合不适合交换律?a b c aa b cc a cc a b解? d d c = , a c d =从而c d d c ≠.故所给的代数运算不适合交换律.6 分配律假定:?⊕,是A 的两个代数运算,并且⊕适合结合律,⊕?,适合两个分配律.证明)()()()(22122111b a b a b a b a ?⊕?⊕?⊕? )()()()(22211211b a b a b a b a ?⊕?⊕?⊕?= 证?)()()()(22122111b a b a b a b a ?⊕?⊕?⊕? =])[(])[(221121b a a b a a ?⊕⊕?⊕ =)()(2121b b a a ⊕?⊕=)]([)]([212211b b a b b a ⊕?⊕⊕?)()()()(22211211b a b a b a b a ?⊕?⊕?⊕?=7 一一映射、变换1.A ={所有0?的实数},=-A {所有实数}.找一个A 与-A 间的意义映射.证φ:a a a log =→-因为a 是大于零的实数,所以a log 是实数即A a ∈,而--∈A a ,而且b a b a log log =?=.因此φ是A 到-A 的映射.又给了一个-A 的任意元-a ,一定有一个A 的元a ,满足-=a a log ,因此φ是A 到-A 的满射.a a a log =→-b b b l o g =→-若b a ≠, 则b a log log ≠.即 --≠?≠b a b a 因此φ又是A 到-A 的单射.总之,φ是A 到-A 的一一映射.2. A ={所有0≥的实数},=-A {所有实数-a ,10≤≤-a }. 找一个A 到-A 的满射. 证a a a s i n :=→-φ,容易验证φ是A 到-A 的满射.3.假定φ是A 与-A 间的一个一一映射,a 是A 的一个元.?)]([1=-A φφ)]([1=-a φφ若φ是A 的一个一一变换,这两个问题的回答又该是什么?解? a a =-)]([1φφ, a a =-)]([1φφ未必有意义;当φ是A 的一一变换时,.)]([,)]([11a a a a ==--φφφφ8 同态1.A ={所有实数x },A 的代数运算是普通乘法.以下映射是不是A 到A 的一个子集-A 的同态满射?x x a →) x x b 2)→ 2)x x c → x x d -→)证? )a 显然=-A {所有0≥的实数}.又由于y x xy xy =→ 可知x x →是A 到-A 的同态满射.)b 由于)2)(2(2y x xy xy ≠→ ( 除非0=xy )所以x x 2→不是A 到-A 的同态满射.)c 由于222)()()(y x xy xy =→,易知2x x →是A 到-A 的同态满射.这里-A ={所有0≥的实数}.)d 一般来说,))((y x xy --≠-,:所以x x -→不是A 到-A 的同态满射 .2. 假定A 和-A 对于代数运算ο和-ο来说同态,-A 和=A 对于代数运算-ο和=ο来说同态,证明 A 和=A 对于代数运算ο和=ο来说同态。

近世代数课后习题参考答案(张禾瑞) (1)

近世代数课后习题参考答案(张禾瑞) (1)

近世代数课后习题参考答案第二章群论1群论1. 全体整数的集合对于普通减法来说是不是一个群?证 不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证 }1,1{-=G 对于普通乘法来说是一个群.3. 证明, 我们也可以用条件1,2以及下面的条件''5,4来作群的定义:'4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立'5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1得e a a =-1因为由'4G 有元'a 能使e a a =-'1 所以))(()('111a a a a e a a ---=e a a a e a a aa a ====----'1'1'11][)]([即 e a a =-1(2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea =a ae a a a a aa ea ====--)()(11即 a ea =这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-=b be b aa b a a ===--)()(11这就得到群的第一定义.反过来有群的定义得到''5,4是不困难的.2单位元,逆元,消去律1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群. 证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有ba a b ab ab ===---111)(.2. 在一个有限群里阶大于2的元的个数是偶数.证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n nn===⇒=---111)()(若有n m 〈 使e a m =-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a 的阶等于1-a 的阶 (2)a 的阶大于2, 则1-≠a a 若 e a a a =⇒=-21 这与a 的阶大于2矛盾(3) b a ≠ 则 11--≠b a总起来可知阶大于2的元a 与1-a 双双出现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数.证 根据上题知,有限群G 里的元大于2的个数是偶数;因此阶2≤的元的个数仍是偶数,但阶是1的元只有单位元,所以阶 2≤的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的.证 G a ∈故 G a a a a nm∈ ,,,,,,2由于G 是有限群,所以这些元中至少有两个元相等:n m a a =)(n m 〈 故 e a m n =- m n -是整数,因而a 的阶不超过它.4群的同态假定在两个群G 和-G 的一个同态映射之下,-→a a ,a 和-a 的阶是不是一定相同? 证 不一定相同 例如 }231,231,1{i i G +-+-= }1{=-G对普通乘法-G G ,都作成群,且1)(=x φ(这里x 是G 的任意元,1是-G 的元)由 φ可知 G ∽-G 但231,231i i --+-的阶都是3.而1的阶是1.5变换群1. 假定τ是集合的一个非一一变换,τ会不会有一个左逆元1-τ,使得εττ=-1?证 我们的回答是回有的},3,2,1{ =A1τ: 1→1 2τ 1→12→1 2→3 3→2 3→4 4→3 4→5 ……τ显然是一个非一一变换但 εττ=-12. 假定A 是所有实数作成的集合.证明.所有A 的可以写成b a b ax x ,,+→是有理数,0≠a 形式的变换作成一个变换群.这个群是不是一个交换群? 证 (1) :τb ax x +→:λd cx x +→:τλd cb cax d b ax c x ++=++→)(d cb ca +,是有理数 0≠ca 是关闭的.(2) 显然时候结合律(3) 1=a 0=b 则 :εx x → (4) :τb ax +)(1:1ab x a x -+→-τ 而 εττ=-1所以构成变换群.又 1τ: 1+→x x:2τx x 2→:21ττ)1(2+→x x :12ττ12+→x x故1221ττττ≠因而不是交换群.3. 假定S 是一个集合A 的所有变换作成的集合,我们暂时仍用旧符号τ:)('a a a τ=→来说明一个变换τ.证明,我们可以用21ττ: )()]([2121a a a ττττ=→来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说ε还是S 的单位元. 证 :1τ)(1a a τ→:2τ)(2a a τ→那么:21ττ)()]([2121a a a ττττ=→ 显然也是A 的一个变换. 现在证这个乘法适合结合律:)]()[(:)(321321a a ττττττ→)]]([[321a τττ==→)]([:)(321321a a ττττττ)]]([[321a τττ故 )()(321321ττττττ= 再证ε还是S 的单位元:ε)(a a a ε=→:ετ)()]([a a a ττε=→τ:τε)()]([a a a τετ=→∴τεετ=4. 证明一个变换群的单位元一定是恒等变换。

(完整word版)近世代数课后习题参考答案(张禾瑞)-2

(完整word版)近世代数课后习题参考答案(张禾瑞)-2

近世代数课后习题参考答案第二章 群论1 群论1. 全体整数的集合对于普通减法来说是不是一个群?证 不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证 }1,1{-=G 对于普通乘法来说是一个群.3. 证明, 我们也可以用条件1,2以及下面的条件''5,4来作群的定义:'4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立'5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1 证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1 得e a a =-1 因为由'4G 有元'a 能使e a a =-'1 所以))(()('111a a a a e a a ---=e a a a e a a aa a ====----'1'1'11][)]([ 即 e a a =-1(2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea = a ae a a a a aa ea ====--)()(11 即 a ea =这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-=b be b aa b a a ===--)()(11 这就得到群的第一定义.反过来有群的定义得到''5,4是不困难的.2 单位元,逆元,消去律1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群.证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有ba a b ab ab ===---111)(.2. 在一个有限群里阶大于2的元的个数是偶数.证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n n n ===⇒=---111)()(若有n m 〈 使e a m =-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a 的阶等于1-a 的阶 (2)a 的阶大于2, 则1-≠a a 若 e a a a =⇒=-21 这与a 的阶大于2矛盾(3) b a ≠ 则 11--≠b a总起来可知阶大于2的元a 与1-a 双双出现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数.证 根据上题知,有限群G 里的元大于2的个数是偶数;因此阶2≤的元的个数仍是偶数,但阶是1的元只有单位元,所以阶 2≤的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的.证 G a ∈故 G a a a a n m ∈ ,,,,,,2由于G 是有限群,所以这些元中至少有两个元相等: n m a a = )(n m 〈 故 e a m n =-m n -是整数,因而a 的阶不超过它.4 群的同态假定在两个群G 和-G 的一个同态映射之下,-→a a ,a 和-a 的阶是不是一定相同? 证 不一定相同 例如 }231,231,1{i i G +-+-= }1{=-G对普通乘法-G G ,都作成群,且1)(=x φ(这里x 是G 的任意元,1是-G 的元)由 φ可知 G ∽-G但 231,231i i --+-的阶都是3. 而1的阶是1.5 变换群1. 假定τ是集合的一个非一一变换,τ会不会有一个左逆元1-τ,使得εττ=-1?证 我们的回答是回有的},3,2,1{ =A1τ: 1→1 2τ 1→12→1 2→33→2 3→4 4→3 4→5 … …τ显然是一个非一一变换但 εττ=-12. 假定A 是所有实数作成的集合.证明.所有A 的可以写成b a b ax x ,,+→是有理数,0≠a 形式的变换作成一个变换群.这个群是不是一个交换群? 证 (1) :τ b ax x +→ :λ d cx x +→:τλ d cb cax d b ax c x ++=++→)( d cb ca +,是有理数 0≠ca 是关闭的.(2) 显然时候结合律(3) 1=a 0=b 则 :ε x x → (4) :τ b ax +)(1:1a b x a x -+→-τ 而 εττ=-1所以构成变换群. 又 1τ: 1+→x x :2τ x x 2→ :21ττ )1(2+→x x :12ττ 12+→x x 故1221ττττ≠因而不是交换群.3. 假定S 是一个集合A 的所有变换作成的集合,我们暂时仍用旧符号τ:)('a a a τ=→ 来说明一个变换τ.证明,我们可以用21ττ: )()]([2121a a a ττττ=→来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说ε还是S 的单位元.证 :1τ )(1a a τ→ :2τ )(2a a τ→那么:21ττ )()]([2121a a a ττττ=→ 显然也是A 的一个变换. 现在证这个乘法适合结合律:)]()[(:)(321321a a ττττττ→)]]([[321a τττ= =→)]([:)(321321a a ττττττ)]]([[321a τττ 故 )()(321321ττττττ= 再证ε还是S 的单位元 :ε )(a a a ε=→ :ετ )()]([a a a ττε=→τ:τε )()]([a a a τετ=→∴ τεετ=4. 证明一个变换群的单位元一定是恒等变换。

近世代数教学PPT课件

近世代数教学PPT课件

拟枚举: 自然数的集合可以记作 1,2,3,4,5....n..... , 拟枚
举可以用来表示能够排列出来的的集合, 像 自然数、整数…
描述法:
如果一个集A是由一切具有某一性质的元 素所组成的,那么就用记号
A {x | x具有某一性质
来表示.
第18页/共187页
A {x | 1 x 1, x R } 表示一切大于-1且小于1
第14页/共187页
第一章 基本概念
§1 集 合 §2 映射与变换 §3 代数运算 §4 运算率 §5 同态与同构 §6 等价关系与集合的分类
第15页/共187页
§1 集 合
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素.
我们常用大写拉丁字母A,B,C,…表示集合,用 小写拉丁字母a,b,c,…表示元素. 如果a是集合A的
第6页/共187页
阿贝尔
加罗华
被誉为天才数学家的伽罗瓦(1811-1832)是近世代数的创始人之一。他深入研 究了一个方程能用根式求解所必须满足的本质条件,他提出的“伽罗瓦域”、“伽 罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题。伽罗瓦群理论被 公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的 解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何 图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的 问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计 算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运 算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生 了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义 哲学的产生和发展都发生了巨大的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档