成反比例练习

合集下载

九年级数学:反比例函数练习题(含解析)

九年级数学:反比例函数练习题(含解析)

九年级数学:反比例函数练习题(含解析)一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为( )A.y =2x +1B.y =22xC.y =-15xD.y =x 2-2x 2﹒函数y =k 23kx 是反比例函数,则k 的值是( )A.-1B.2C.±2D.±2 3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数4﹒一次函数y =-x +a -3(a 为常数)与反比例函数y =-4x的图象交于A 、B 两点,当A 、B 两点关于原点对称时,a 的值是( )A.0B.-3C.3D.45﹒反比例函数y =-2x的图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A.y 1<y 2<0B.y 1<0<y 2C.y 1>y 2>0D. y 1>0>y 26﹒如图,直线y =-x +3与y 轴交于点A ,与反比例函数y =k x(k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A.y =4xB.y =-4xC.y =2xD.y =-2x7﹒已知反比例函数y =kx的图象经过点P (-1,2),则这个函数的图象位于( )A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限8﹒如果等腰三角形的底边长为x ,底边上的高为y ,它的面积为10时,则y 与x 的函数关系式为( ) A.y =10x B.y =5xC.y =20xD.y =20x9﹒已知变量y 与x 成反比例函数关系,当x =3时,y =-6,那么当y =3时,x 的值是( )A.6B.-6C.9D.-910. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )m 1 2 3 4 5 6 7v -6.10 -2.90 -2.01 -1.51 -1.19 -1.05 -0.86A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m二、细心填一填11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3.13.若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____. 14.如图,直线y =-x +b 与双曲线y =-1x(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2=__________.(第14题图)15.一批零件300个,一个工人每小时做15个,用关系表示人数x 与完成任务所需时间y 之间的函数关系为_______________________.16.把一个长、宽、高分别为3cm ,2cm ,1cm 的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (cm 2)与高h (cm )之间的函数关系式为________________________. 三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M(件)与所需天数t(天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件?19.已知y=y1+y2,y1与x2成正比例关系,y2与x成反比例关系,且当x=1时,y=3;当x=-1时,y=1.(1)求y与x之间的函数表达式;(2)当x=-12时,求y的值.20.反比例函数y=k(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)x作AB⊥x轴于点B,交反比例函数图于点D,且AB=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(小时)之间的函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系;(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x(元)与销售量y(张)之间有如下关系:x/元 3 4 5 6y/张20 15 12 10(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.21.5 反比例函数课时练习题(1)参考答案一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为()A.y =2x +1B.y =22x C.y =-15xD.y =x 2-2x 解答:A.y =2x+1,y 是x 的一次函数,故A 不合题意;B.y =22x ,y 是x 2的反比例函数,故B 不合题意; C.y =-15x,y 是x 的反比例函数,故C 符合题意;D.y =x 2-2x ,y 是x 的二次函数,故D 不合题意, 故选:C. 2﹒函数y =k 23kx -是反比例函数,则k 的值是( )A.-1B.2C.±2D. 解答:∵y =k 23kx -是反比例函数,∴k 2-3=-1,且k ≠0, 解得:k , 故选:D.3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数 解答:∵y 与x 成反比例,x 与z 成反比例, ∴设y =1k x①,x =k 2z ②, 把②代入①得:y =12k k z, 故y 与z 成反比例函数关系, 故选:B.4﹒一次函数y=-x+a-3(a 为常数)与反比例函数y=-4x的图象交于A、B两点,当A、B 两点关于原点对称时,a的值是()A.0B.-3C.3D.4【解答】设A(t,-4t),∵A、B两点关于原点对称,∴B(-t,4t),把A(t,-4t ),B(-t,4t),分别代入y=-x+a-3得:4343t att at⎧-=-+-⎪⎪⎨⎪=+-⎪⎩①②,①+②得:2a-6=0,则a=3,故选:C.5﹒反比例函数y=-2x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0B.y1<0<y2C.y1>y2>0D. y1>0>y2【解答】∵反比例函数y=﹣2x中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选:D.6﹒如图,直线y=-x+3与y轴交于点A,与反比例函数y=kx(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=4x B.y=-4xC.y=2x D.y=-2x【解答】∵直线y=﹣x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C(﹣1,4),把C(﹣1,4)代入y=kx得:k=-4,∴反比例函数的解析式为:y=-4x.故选:B.7﹒已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限【解答】∵反比例函数y=kx的图象经过点P(-1,2),∴k=-1×2=-2<0,∴反比例函数的图象分布在二、四象限,故选:D.8﹒如果等腰三角形的底边长为x,底边上的高为y,它的面积为10时,则y与x的函数关系式为()A.y=10xB.y=5xC.y=20xD.y=20x解答:根据题意,得:12xy=10,∴y=20x,故选:C.9﹒已知变量y与x成反比例函数关系,当x=3时,y=-6,那么当y=3时,x的值是()A.-6B. 6C.-9D.9解答:设y=kx,把x=3,y=-6代入得:k=-18,∴y=18x,∴当x=3时,y=-6,故选:A.10. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m解答:将m 的值代入各选项的函数关系式中,看v 的值是否与表中数据相近,若相近,则为正确的解析式,如把m =1代入各式:A.v =-1;B.v =-6;C.v =-4;D.v =-6.再把m =2代入各式:A.v =2;B.v =-12;C.v =-7;D.v =-3.由此可发现D 选项的值与表中数据相近,故D 选项符合题意, 故选:D. 二、细心填一填11. 3; 12. m ≠1,4; 13. y =6x; 14. 2; 15. y =20x ; 16. S =6h. 11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 解答:∵函数y =(m +3)28m x-是反比例函数,∴8-m 2=-1,且m +3≠0, ∴m =3, 故答案为:3. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3. 解答:∵函数y =1m x-是反比例函数, ∴m -1≠0,则m ≠1, 由m -1=3得:m =4, 故答案为:m ≠1,4.13.若函数y =-kx +2k +2与y =kx(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____.【解答】把方程组22y kx kkyx=-++⎧⎪⎨=⎪⎩消去y得:-kx+2k+2=kx,整理得:kx2-(2k+2)x+k=0,由题意得:△=(2k+2)2-4k2>0,解得:k>-12,∴当k>-12时,函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,故答案为:k>-12且k≠0.14.如图,直线y=-x+b与双曲线y=-1x(x<0)交于点A,与x轴交于点B,则OA2-OB2=__________.【解答】∵直线y=﹣x+b与双曲线y=﹣1x(x<0)交于点A,设A的坐标(x,y),∴x+y=b,xy=﹣1,而直线y=﹣x+b与x轴交于B点,∴OB=b,∴又OA2=x2+y2,OB2=b2,∴OA2﹣OB2=x2+y2﹣b2=(x+y)2﹣2xy﹣b2=b2+2﹣b2=2.故答案为:2.15.一批零件300个,一个工人每小时做15个,用关系表示人数x与完成任务所需时间y之间的函数关系为_______________________.解答:由题意得:人数x与完成任务所需时间y之间的函数关系为y=30015x=20x,故答案为:y=20x.16.把一个长、宽、高分别为3cm,2cm,1cm的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________________________.解答:由题意得:Sh=3×2×1,则S=6h,故答案为:S=6h.三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?解答:(1)每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式为:w =1600t(t >4), (2)由题意,得:16004t --1600t=16001600(4)(4)t t t t ---=264004t t -,答:每天要多做264004t t-(t >4)件夏凉小衫才能完成任务. 18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件? 解答:(1)60×8=480(件), 故答案为:480;(2)乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式为y =480t(t >0), (3)把t =5代入上式得M =96,故如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工96件.19.已知y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系,且当x =1时,y =3;当x =-1时,y =1.(1)求y 与x 之间的函数表达式; (2)当x =-12时,求y 的值. 解答:∵y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系, ∴可设y 1=k 1x 2,y 2=2k x,把x =1时,y =3和x =-1时,y =1代入得:121231k k k k +=⎧⎨-=⎩,解得:1221k k =⎧⎨=⎩,∴y 与x 之间的函数表达式为y =2x 2+1x, (2)当x =-12时, y =2×(-12)2+(-2)=-32.20.反比例函数y =k x(k ≠0,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图于点D ,且AB =3BD . (1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标. 【解答】(1)∵A (1,3), ∴AB =3,OB =1, ∵AB =3BD , ∴BD =1, ∴D (1,1),将D (1,1)代入反比例函数解析式得:k =1; (2)由(1)知,k =1, ∴反比例函数的解析式为:y =1x,由31y x y x =⎧⎪⎨=⎪⎩得:33x y ⎧=⎪⎨⎪=⎩或33x y ⎧=-⎪⎨⎪=-⎩, ∵x >0,∴C (3,3), (3)如图,作C 关于y 轴的对称点C ′,连接C ′D 交y 轴于M ,则d =MC +MD 最小, ∴C ′(-3,3), 设直线C ′D 的解析式为y =kx +b ,∴331k b k b ⎧=-+⎪⎨⎪=+⎩,解得:323232k b ⎧=-⎪⎨=-⎪⎩, ∴y =(3-23)x +23-2, 当x =0时,y =23-2, ∴M (0,23-2).21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x (小时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系; (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【解答】(1)当0≤x <4时,设直线解析式为:y =kx , 将(4,8)代入得:8=4k , 解得:k =2,故直线解析式为:y =2x ,当4≤x ≤10时,设直反比例函数解析式为:y =k x, 将(4,8)代入得:8=4k , 解得:k =32,故反比例函数解析式为:y =32x ; 因此血液中药物浓度上升阶段的函数关系式为y =2x (0≤x <4),下降阶段的函数关系式为y =32x(4≤x ≤10). (2)当y =4,则4=2x ,解得:x =2, 当y =4,则4=32x,解得:x =8, ∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x (元)与销售量y(张)之间有如下关系:(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.解答:(1)由表中数据可以发现x与y的乘积是一个定值,所以可知y与x成反比例,设y=kx,把(3,20)代入得:k=60,∴y与x的函数关系式为y=60x;(2)当x=10时,y=6,所以日销售单价为10元时,贺卡的日销售量是6张;(3)∵W=(x-2)y=60-120x,又∵x≤10,∴当x=10时,W最大=60-12010=48,故日销售单价为10元时,每天获得的利润最大,最大利润为48元.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.解答:∵点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,∴a=4,∵点M(2,4)在反比例函数y=kx(k为常数,k≠0)图象上∴k=2×4=8,∴反比例函数的解析式为y=8x;(2)假设函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”(x,2x), 则有3mx-1=2x,整理得:(3m-2)x=1,当3m-2≠0,即m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当3m-2=0,即m=23时,x无解,综合上述,当m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当m=23时,函数图象上不存在“理想点”.。

六年级下数学一课一练-成反比例的量-人教新课标(带解析)

六年级下数学一课一练-成反比例的量-人教新课标(带解析)
C.车轮半径一定,行驶的路程和车轮的转数
D.小明的身高与所跳的高度
8.要运一堆煤,每次运的吨数和运的次数( )
A.成正比例关系 B.成反比例关系 C.没有关系 D.不成比例
9.行驶的路程一定,车轮的直径和转动的周数这两个量是( )
A.不成比例 B.成比例 C.成反比例 D.成正比例
10.妈妈每天工作的时间一定,她制造每个零件的时间和零件个数( )
18.
正比例;反比例
【解析】
因为路程=速度(一定)×时间,所以路程和时间成正比例,若路程不变,则时间×速度=路程(一定),所以时间和速度成反比例。
19.

【解析】
当x×y=k(一定)时,x和y成反比例。根据反比例的意义,可知道A和B成反比例。
20.
10
【解析】
当x×y=k(一定)时,x和y成反比例。若x和y成反比例,则x×y为定值=3×90=270,当y=27时,x=270÷27=10,所以填10。
16.
B
【解析】
当x×y=k(一定)时,x和y成反比例。每个零件所用的时间×加工零件的数量=每天的工作时间(一定),所以加工每个零件所用的时间与加工零件的数量成反比例。
17.
D
【解析】
当x×y=k(一定)时,x和y成反比例。A成正比例,B不成比例,C不成比例,D底×高=平行四边形的面积(一定),所以底和高成反比例。
也就是长方体的底面积和高的乘积一定,所以长方体的底面积和高是成反比例关系。
4.
B
【解析】
当x×y=k(一定)时,x和y成反比例。飞行的速度×飞行的时间=航程(一定),所以飞行速度和飞行时间成反比例。
5.
A
【解析】
当x×y=k(一定)时,x和y成反比例。因为(上底+下底)×高÷2=梯形的面积(一定)所以上、下底的和与高成反比例。

人教版数学六年级下册4.2.2 成反比例的量练习卷(基础+拔高)

人教版数学六年级下册4.2.2 成反比例的量练习卷(基础+拔高)

第1页,总12页绝密·启用前人教版数学六年级下册4.2.2 成反比例的量练习卷(基础+拔高)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列各题中两种量成反比例关系的是( )。

A .购买面值1.5元的邮票,邮票枚数与总价 B .三角形面积一定,底和高C .车轮直径一定,车轮行驶的路程和转数D .如果x =3y ,x 和y2.a 和b 成反比例关系的式子是( )。

A .5a =4b B .a 5=b 4C .5a =4bD .5a =b +43.两个量成反比例的是( ). A .圆柱的体积一定,它的底面积与高 B .看一本书,已看的页数和剩下的页数 C .圆的周长和它的直径 D .单价一定,总价和数量4.下面各题中的两种量成反比例关系的是( )。

A .单价一定,总价与数量B .圆柱的体积一定,圆柱的底面积与高C .圆的面积与它的半径第2页,总12页5.运输队要运输一批货物,运走的吨数与剩下的吨数( ) A .成正比例 B .成反比例 C .不成比例6.( )中的两种量不成比例。

A .从北京到广州,列车行驶的平均速度和所需时间B .一箱苹果,吃去的个数和剩下的个数C .同一时刻同一地点物体的高度和影子的长度D .三角形的面积一定,它的底和高 7.下列各项中,两种量成比例的是( )。

A .圆的面积和它的直径 B .被减数一定,差与减数C .工作总量一定,工作效率和工作时间8.下面各选项中的两个变化的量,成反比例的是( )。

A .自行车行驶的路程一定,车轮的周长与车轮需要转动的圈数 B .一个人跑步的速度和他的体重。

C .三角形的高一定,它的面积和底。

D .笑笑从家步行到学校,已走的路程和剩下的路程 9.汽车总辆数一定,每排停放的辆数和停放的排数( )。

A .成正比例 B .成反比例 C .不成比例 D .不成反比例 二、填空题10.A =7B ,A 和B 成_____比例,7÷A=B ,A 和B 成_____比例。

(完整版)反比例函数基础练习题及答案

(完整版)反比例函数基础练习题及答案

反比例函数练习一一.选择题(共22小题)1.(2015春•泉州校级期中)下列函数中,y是x的反比例函数的为()A.y=2x+1 B.C.D.2y=x2.(2015春•兴化市校级期中)函数y=k是反比例函数,则k的值是()A.﹣1 B.2 C.±2 D.±3.(2015春•衡阳县期中)若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A.m=2 B.m=﹣1 C.m=1 D.m=04.(2014•汕尾校级模拟)若y与x成反比例,x与z成反比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定5.(2014春•常州期末)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥6.(2015•贺州)已知k1<0<k2,则函数y=和y=k2x﹣1的图象大致是()A.B. C.D.7.(2015•滦平县二模)在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A.B.C.D.8.(2015•上海模拟)下列函数的图象中,与坐标轴没有公共点的是()A.B.y=2x+1 C.y=﹣x D.y=﹣x2+19.(2015•宝安区二模)若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.(2015•鱼峰区二模)若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.611.(2012•颍泉区模拟)如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()第11题图第12题图A.πB.2πC.4πD.条件不足,无法求12.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=13.(2014•随州)关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小14.(2014•昆明)如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k 的图象大致是()A.B.C.D.15.(2014•天水)已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个16.(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=17.(2014•阜新)反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣118.(2015•凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()第18题图第19题图A.10 B.11 C.12 D.1319.(2015•眉山)如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D 点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3 D.420.(2014•绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()第20题图第21题图A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2 21.(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小22.(2014•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24二.填空题(共4小题)23.(2015•锦江区一模)已知y=(a﹣1)是反比例函数,则a=.24.(2014•江西模拟)已知反比例函数的解析式为y=,则最小整数k=.25.(2013•路北区二模)函数y=,当y≥﹣2时,x的取值范围是(可结合图象求解).26.(2014•贵阳)若反比例函数的图象在其每个象限内,y随x的增大而增大,则k的值可以是.(写出一个符合条件的值即可)三.解答题(共4小题)27.(2014春•东城区校级期中)已知反比例函数y=﹣(1)说出这个函数的比例系数;(2)求当x=﹣10时函数y的值;(3)求当y=6时自变量x的值.28.(2013春•汉阳区校级期中)已知函数y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?29.(2013•德宏州)如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?30.(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.答案:一.选择题(共22小题)1.C 2.D 3.B 4.A 5.C 6.C 7.B 8.A 9.C 10.C 11.B 12.D 13.D 14.B 15.B 16.A 17.D 18.C 19.B20.B 21.C 22.C二.填空题(共4小题)23.-1 24.1 25.x≤-2或x>0 26.-1(答案不唯一)三.解答题(共4小题)27.28.29.30.。

反比例六年级练习题

反比例六年级练习题

反比例六年级练习题一、填空题(每题2分,共10分)1. 若x和y成反比,且当x=3时,y=6,则当x=4时,y=。

2. 若x和y成反比,且当x=5时,y=10,则当x=10时,y=。

3. 若x和y成反比,且当x=4时,y=12,则当x=6时,y=。

4. 若x和y成反比,且当x=8时,y=2,则当x=12时,y=。

5. 若x和y成反比,且当x=7时,y=21,则当y=7时,x=。

二、选择题(每题4分,共20分)1. 若x和y成反比,当x=2时,y=6,那么y=16对应的x的值是:A. 3B. 4C. 6D. 82. 若x和y成反比,当x=4时,y=12,那么y=5对应的x的值是:A. 10B. 8C. 6D. 33. 若x和y成反比,当x=10时,y=3,那么y=8对应的x的值是:A. 1B. 2C. 4D. 54. 若x和y成反比,当x=7时,y=28,那么y=9对应的x的值是:A. 28B. 21C. 14D. 105. 若x和y成反比,当x=12时,y=4,那么y=8对应的x的值是:A. 6B. 9C. 10D. 16三、计算题(每题6分,共30分)1. 若x和y成反比,当x=2时,y=10,求x=6时y的值。

2. 若x和y成反比,当x=8时,y=12,求x=16时y的值。

3. 若x和y成反比,当x=3时,y=21,求y=7时x的值。

4. 若x和y成反比,当x=6时,y=18,求y=6时x的值。

5. 若x和y成反比,当x=4时,y=16,求x=5时y的值。

四、综合题(每题10分,共30分)1. 寿司店的人均消费额与顾客数量成反比。

当有10个顾客时,人均消费额为20元;当有15个顾客时,人均消费额为15元。

若现有30元,那么能请来几个朋友一起吃寿司?2. 水管工人在4小时里完成了80%的工作量。

若继续以相同的速度工作,他还需多长时间完成剩下的工作量?3. 甲乙两人一起修筑一段公路,甲一个人花8天能修好,乙一个人花10天能修好。

初三反比例练习题

初三反比例练习题

初三反比例练习题反比例关系是数学中常见的一种关系,变量之间的乘积为常数。

在初三数学练习中,我们经常会遇到涉及反比例关系的题目。

本文将为大家列举一些初三反比例练习题,以便同学们更好地掌握此类问题的解题方法。

1. 甲工人在8个小时内可以完成一项工作,如果只工作6个小时,需要多少人才能完成同样的工作?解析:设完成这项工作所需工人数为x。

根据反比例的关系可得:工人数 ×工作时间 = 常数8 × 1 = x × 6可以得到:x = 4答案是:4人。

2. 一辆汽车以每小时60公里的速度行驶,则行驶800公里需要多少时间?解析:设行驶800公里所需的时间为t。

根据反比例的关系可得:时间 ×速度 = 常数t × 60 = 800可以得到:t = 800 / 60 = 13.33答案是:13.33小时。

3. 甲螺丝批每分钟可以拧5颗螺丝,乙螺丝批每分钟可以拧3颗螺丝。

两个螺丝批同时工作,共同完成100颗螺丝需要多少时间?解析:设完成100颗螺丝所需的时间为t。

根据反比例关系,甲螺丝批和乙螺丝批的拧螺丝速度可以相加,得到总的拧螺丝速度。

总速度 = 甲螺丝批速度 + 乙螺丝批速度每分钟拧螺丝总数 = 5 + 3 = 8可以得到:8t = 100解方程可得:t = 100 / 8 = 12.5答案是:12.5分钟。

4. 甲水龙头每分钟可以灌满一个水池,乙水龙头每分钟可以灌满3个水池。

两个水龙头同时工作,共同灌满12个水池需要多少时间?解析:设共同灌满12个水池所需的时间为t。

根据反比例关系,甲水龙头和乙水龙头的灌水速度可以相加,得到总的灌水速度。

总速度 = 甲水龙头速度 + 乙水龙头速度每分钟灌水总数 = 1 + 3 = 4可以得到:4t = 12解方程可得:t = 12 / 4 = 3答案是:3分钟。

5. 一辆公交车以每小时40公里的速度行驶,如果以每小时50公里的速度行驶,则从甲地到乙地需要减少多少时间?解析:设原本需要的时间为t。

八年级正比例和反比例比例练习题

八年级正比例和反比例比例练习题

八年级正比例和反比例比例练习题1. 正比例关系问题1:某汽车行驶600公里需要消耗30升汽油,如果行驶900公里,需要消耗多少升汽油?解答:设行驶900公里需要消耗的汽油量为x升。

根据正比例关系,可得以下比例:600公里 / 30升 = 900公里 / x升通过交叉乘积,得到:600x =解方程可得:x = 45因此,行驶900公里需要消耗45升汽油。

问题2:某商品的价格为20元,如果买3个,总金额是多少?解答:设买3个商品的总金额为y元。

根据正比例关系,可得以下比例:1个商品 / 20元 = 3个商品 / y元通过交叉乘积,得到:y = 60因此,买3个商品的总金额是60元。

2. 反比例关系问题1:工人A 2小时可以完成一项工作,如果工人B只有1小时的时间,能完成多少该项工作?解答:设工人B在1小时内完成的工作量为y。

根据反比例关系,可得以下比例:工人A的工作时间 / 工人B的工作时间 = 工人B的工作量 / 工人A的工作量通过交叉乘积,得到:2小时 / 1小时 = y / 1解方程可得:y = 2因此,工人B在1小时内能完成2个该项工作。

问题2:某项任务需要10个工人一起完成,如果只有5个工人能来,完成该任务需要多少时间?解答:设完成该任务需要的时间为t小时。

根据反比例关系,可得以下比例:工人数 / 时间 = 原先的工人数 / 原先的时间通过交叉乘积,得到:10个工人 / t小时 = 5个工人 / 1小时解方程可得:t = 2因此,如果只有5个工人能来,完成该任务需要2小时。

以上为八年级正比例和反比例比例练题的部分解答。

六年级反比例的练习题

六年级反比例的练习题

六年级反比例的练习题1. 某书店每本书的售价与购买数量成反比例关系,购买5本该书时需要25元,请问购买8本该书需要多少元?解析:购买5本书需要25元,即书的售价与购买数量的乘积等于常数,设该常数为k,则有 5 × 25 = k。

要求购买8本书的价格,即 8 ×x = k,其中x为该书的售价。

解方程可得 x = 5 × 25 ÷ 8 = 15.625。

所以购买8本该书需要15.625元。

2. 一辆汽车以60千米的时速行驶,需要6小时到达目的地。

请问以80千米的时速行驶,需要多少小时能够到达同样的目的地?解析:行驶的路程与速度成反比例关系,即路程与时间的乘积为常数。

假设常数为k,则有 60 × 6 = k。

要求以80千米的时速行驶的时间,即 80 × x = k,其中x为所需时间。

解方程可得 x = 60 × 6 ÷ 80 = 4.5。

所以以80千米的时速行驶,需要4.5小时能够到达同样的目的地。

3. 一个邮递员每天送快递,每天送100个快递需要2个小时。

请问如果他每天送150个快递,需要多少小时?解析:送快递的数量与所需时间成反比例关系,即数量与时间的乘积为常数。

设常数为k,则有 100 × 2 = k。

要求送150个快递所需时间,即 150 × x = k,其中x为所需时间。

解方程可得 x = 100 × 2 ÷ 150 =1.3333。

所以送150个快递需要1.3333小时。

4. 一辆汽车行驶了240千米所用的时间为4小时,请问行驶480千米需要多少小时?解析:行驶的路程与时间成反比例关系,即路程与时间的乘积为常数。

假设常数为k,则有 240 × 4 = k。

要求行驶480千米所需时间,即480 × x = k,其中x为所需时间。

解方程可得 x = 240 × 4 ÷ 480 = 2。

反比例专项练习30题(有答案)

反比例专项练习30题(有答案)

反比例专项练习30题(有答案)1.下表中,x与y成反比例,那么☆表示的数是()x 5 ☆y 120 150A.3B.4C.6.252.以下四幅图象中,表示成反比例的是()A.B.C.D.3.a与b成反比例的条件是()A.a÷b=c(c一定)B.c×a=b(c一定)C.a×b=c(c一定)D.a×c=b(b一定)4.成反比例的两种量在变化过程中,一种量扩大,另一种量()A.扩大B.缩小C.不变5.下列关系式中x、y 都不为0,则x与y不是成反比例关系的是()A.x=B.y=3÷x C.x=×πD.x=6.表示a和b这两种量成反比例的关系式是()A.a+b=8 B.a﹣b=8 C.a×b=8 D.a÷b=8 7.下列各式中,a和b成反比例的是()A.9a=6b B.a×=1 C.a×8=8.长方形的面积一定,长和宽()A.成正比例B.成反比例C.不成比例9.表示a与b成反比例关系式的式子是()A.a+b=8 B.a﹣b=8 C.a=5b D.a b=710.已知=,那么A和B()A.成反比例B.成正比例C.不成比例D.无法确定11.如果5a=3b,那么a和b()关系.A.成正比例B.成反比例C.不成比例12.4X﹣5Y=0,(X、Y不等于0),X和Y()A.成正比例B.成反比例C.不成比例13.a与b()A.成正比例B.成反比例C.不成比例14.教室里的面积一定,教室里的人数和每人占地的面积()A.成反比例B.成正比例C.不成比例D.无法确定是否成比例15.关于正反比例的判断,以下说法正确的是()A.三角形的面积一定,它的底和高成反比例B.一个人的身高与体重成反比例C.圆的半径和面积成正比例16.已知a与b成反比例,b与c成反比例,那么a与c的关系是()A.正比例B.反比例C.不成比例D.无法确定17.x和y成反比例关系的是()A.x+y=100 B.x:5=3:y C.20x=5y18.如果=,那么x和y()A.成正比例B.成反比例C.不成比例19.A÷C=B,当A一定时,B与C成反比例._________.20.六年级同学排队做广播操,每行人数和排成的行数成_________比例;出油率一定,花生油的质量和花生的质量,成_________比例;3x=y,x和y成_________比例;实际距离一定,图上距离和比例尺成_________比例.21.如果AB=K+2(K一定),那么A和B成反比例._________.22.一项工程的总量一定,已经完成的工作量与剩下的工作量成反比例._________.23.x与y成反比例关系,根据条件完成下表.x 15 20 30 40y 400 240 200 10024.用36米长的篱笆围一个长方形的鸡舍,围成的长和宽成反比例._________.25.假如ab+13=37,那么a与b成反比例._________.26.直角三角形的两个锐角大小成反比例._________.27.圆周长计算公式为C=2πr,当C一定,π和r 成反比例._________.28.已知x和y是成反比例关系,根据表中的条件填写下表.x 2_________40_________y 5_________0.1_________29.运一批货物,每天运的吨数和需要的天数如下表:每天运的吨数300 150 100 75 60 50需要的天数 1 2 3 4 5 6(1)写出几组这两组量中的对应的两个数的积,并比较积的大小.(2)说明这个积表示什么?(3)表中相关联的两个量成反比例吗?为什么?30.观察下面的两个表,然后回答问题.(1)上表中各有哪两种相关联的量?(2)在各表的两种相关的量中,一种量是怎样随着另一种量的变化而变化的?它们的变化规律各有什么特征?(3)哪个表中的两种量成正比例关系?哪个表中的两种量成反比例关系?参考答案:1.150☆=5×120,50☆=600,☆=4;故选:B.2.A、图象表示的两个量的比值一定,不属于反比例的意义;B、图象分成两部分,一部分是一个量随另一个量的增加而增加,而另一部分是一个量随另一个量的增加而减少,不属于反比例的意义,C、图象中两个量对应的数的乘积是600,是一定的,符合反比例的意义,D、两个量对应的数的乘积是不一定的,属于不符合反比例的意义,故选:C.3.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.只有a×b=(定量),a与b才成反比例.只有C选项符合反比例的意义.故选:C4.成反比例的两种量在变化过程中,一种量扩大,另一种量缩小,变化方向应该相反;故选:B.5.A、因为x=,则有xy=4(一定),所以x和y成反比例;B、因为y=3÷x,则有xy=3(一定),所以x和y成反比例;C、因为x=×π,则有xy=π(一定),所以x和y成反比例;D、因为x=,则有=4(一定),所以x和y成正比例;故选:D6.A,因为a=b=8(一定),是a、b的和一定,所以a、b不成比例;B,a﹣b=8(一定),是a、b的差一定,所以a、b不成比例;C,a×b=8(一定),是a、b的乘积一定,所以a、b成反比例;D,a÷b=8(一定),是a、b的比值一定,所以a、b成正比例;故选:C7.选项A,因为9a=6b,则=,无法确定a和b的乘积是否一定,则不成反比例;选项B,因为a×=1,则ab=3(值一定),所以a和b成反比例;选项C,因为a×8=,则=40,无法确定a和b的乘积是否一定,则不成反比例;故答案为:B8.根据长方形的面积公式,长×宽=长方形的面积(一定),符合反比例的意义xy=k(一定),所以长方形的面积一定,长和宽成反比例.故选B9.选项A,由a+b=8,不能判定a和b成什么比例;选项B,由a﹣b=8,不能判定a和b成什么比例;选项C,由a=5b可得=5(定值),所以a和b成正比例;选项D,因为ab=7(定值),则a和b成反比例;故答案为:D10.=,AB=3×5=15(一定),所以A与B成反比例,故选:A11.5a=3b,那么:a:b=;是个定值,一个因数一定,积和另一个因数成正比例.故答案选:A12.因为4X﹣5Y=0,则4x=5y,x:y=5:4(一定),所以x和y成正比例;故选:A13.,﹣=0,=,ab=3(一定),故选:B14.人数×每人占地的面积=教室里的面积,教室里的面积一定,也就是这两种量的乘积一定,所以成反比例;故选A.15.A、因为三角形的面积=底×高÷2,所以底×高=三角形的面积×2(一定),即底和高的乘积一定,符合反比例的意义,所以三角形的面积一定,它的底和高成反比例;B、因为一个人的身高和体重的乘积不是一定的,比值也不是一定的,所以一个人的身高与体重不成比例;C、因为圆的面积=π×半径的平方,即圆的面积÷半径的平方=π(一定),所以圆的面积与半径的平方成正比例,但圆的面积与半径不成比例;故选:A16.因为a和b成反比例,所以ab=k1(一定),则b=,因为,b和c成反比例,所以bc=k2(一定),把b=,代入式子bc=k2(一定),得出:a:c=(一定),是a和c对应的比值一定,所以a和c成正比例;故选:A17.A、x+y=100,是和一定,既不符合正比例的意义也不符合反比例的意义,所以x和y不成反比例;B、x:5=3:y,xy=15(一定),符合反比例的意义,所以x和y成反比例;C、20x=5y,x:y=0.25(一定),符合正比例的意义,不符合反比例的意义,所以x和y成正比例,不成反比例;故选:B18.因为=;所以4x=4.5y;x:y=4.5:4;x:y=1.125(一定);可以看出,x和y是两个相关联的变化的量,它们相对应的比值是1.125,是一定的,所以x和y成正比例关系.故选:A19.因为:A÷C=B,所以:B×C=A(一定);可以看出,B和C是两种相关联的量,B随C的变化而变化,A是一定的,也就是B与C相对应数的乘积一定,所以B与C成反比例关系.故答案为:正确20.六年级同学排队做广播操,每行人数和排成的行数成反比例;出油率一定,花生油的质量和花生的质量,成正比例;3x=y,x和y成正比例;实际距离一定,图上距离和比例尺成正比例.21.如果AB=K+2(K一定),k一定,那么k+2也是一定的,可以看出,A和B是两种相关联的量,A随B的变化而变化.k+2是一定的,也就是A与B相对应数的乘积一定,符合反比例的意义.所以A与B成反比例关系.故答案为:正确.22.一项工程的总量一定,已经完成的工作量与剩下的工作量成反比例.×.23.15×400=6000,6000÷20=300,6000÷240=25,6000÷40=150,6000÷100=60;故答案为:x 15 20 25 30 40 60y 400 300 240 200 150 10024.因为长方形的长+宽=篱笆的总长度×(一定),是长和宽对应的和一定,不是乘积一定,所以围成的长和宽不成比例.故判断为:错误25.因为ab+13=37,则:ab=24(一定),所以a和b成反比例;故答案为:正确.26.直角三角形的两个锐角大小成反比例.×.27.圆周长计算公式C=2πr中,2π是一定的,当C一定,那么r也是一定的,这样在这个关系式中,所有的量都是一定的,所以当C一定,π和r不成任何比例,所以“当C一定,π和r 成反比例”是错误的.28.因为2×5=10,所以10÷=50,10÷0.1=100,10÷40=0.25,10÷=12,故答案为:50,100,0.25,1229.(1)300×1=300,150×2=300,100×3=300,75×4=300,60×5=300,50×6=300,因为积都是300,所以积相等;(2)每天运的吨数×需要的天数=这批货物的总吨数,所以这个积表示这批货物的总吨数;(3)因为表中相对应的两个数的乘积一定,符合反比例的意义,所以成反比例关系30.(1)根据题干分析可得,上表左边两种相关联的量是路程与时间;左边表格中两种相关联的量是速度与时间;据此即可解答;(2)左边表格中:路程随着时间的变化而变化,右边表格中:时间随着速度的变化而变化;(3)左边表格:20÷1=40÷2=60÷3=20,所以速度一定时,路程与速度成正比例;右边表格:60×1=30×2=20×3=60,所以路程一定时,速度与时间成反比例。

小学数学正比反比练习题

小学数学正比反比练习题

小学数学正比反比练习题正文:一、正比例关系练习题1. 小明每天骑自行车上学,他的速度和用时的关系是什么?如果他以每小时15公里的速度骑行,那么骑行5小时能够走多远?2. 一辆汽车以每小时80公里的速度行驶,行驶4小时后,它能够走多远?3. 将正比例关系列为函数的形式:设x是小明骑自行车所花费的时间(小时),y是他骑行的距离(公里),写出函数y和x之间的关系式。

4. 小明骑自行车到山上游玩,用时与距离的关系是正比例关系。

他用时2小时到达离家20公里的山脚,那么他用时3小时能够到达离家多远的山脚?5. 一辆汽车以每小时60公里的速度行驶,行驶2小时15分钟后,它能够走多远?二、反比例关系练习题1. 公司A生产一批产品需要5个工人工作3天完成,那么如果只有3个工人参与生产,需要多少天才能完成?2. 某项工程由6个工人完成,需要12天,如果增加工人的数量,能否缩短工期?为什么?3. 设x是某项工程所需要的工人数,y是完成这项工程所需的天数。

当工人数增加时,工期缩短了吗?写出x和y之间的关系式。

4. 利用反比例关系解决实际问题:某项工程由10个工人完成,需要20天。

如果只有5个工人参与工作,那么需要多少天才能完成?5. 公司A和公司B生产某种产品,两个公司的产能成反比例关系。

如果公司B的产能是公司A的2倍,那么公司B需要多久才能完成和公司A一样多的产品?结语:通过以上练习题,我们可以更好地理解小学数学中的正比例关系和反比例关系。

掌握了这两种关系的概念和求解方法,我们可以更好地应用于实际生活中的问题求解。

希望同学们能够通过不断地练习,加深对正反比例关系的理解和运用能力。

人教版数学六年级上册《练习课(正比例和反比例)》

人教版数学六年级上册《练习课(正比例和反比例)》
p×t=组装的手机总数(一定)
(2)p与t成什么比例关系?
p与t成反比例关系
状元成才路
3.一个手机组装车间要完成一批任务,每天组装手机 的数量与需要的天数如下表。【选自教材P49 练习九】
p
t
(3)如果这批组装任务需要8天完成,每天要组装多少部手机?
p×t=组装的手机总数(一定)
500×24÷8=1500(部) 答:每天组装1500部手机。
状元成才路
状元成才路
练习课(正比例和反比例)
R·六年级下册
复习回顾
一辆汽车在公路上行驶,行驶的时间和路程如下表。
路程(千米) 60
时间(时)
1
120 300 600 1200
2
5 10 20
一辆汽车在公路上行驶,行驶的时间和速度如下表。
速度(千米/时) 100 50 20 10 5
时间(时)
1
2
5 10 20
。 需时间如下表 【选自教材P50 练习九】
v
t
(3)如果火车的平均速度为 325 千米/时,驶完全程需要 多长时间? vt = 1300 1300÷325 = 4(时) 答:驶完全程需要 4 小时。
状元成才路
5.下面的图象表示斑马和长颈鹿的奔跑情况。
【选自教材P50 练习九】
(1)斑马的奔跑路程与奔跑时 间是否成正比例关系?长颈鹿呢?
状元成才路
1.一种铅笔每支售价0.5元,把下表填写完整。
数量/支 0 1 2 3 4 5 6 …
总价/元 0 0.5 1 1.5 2 2.5 3 …
(1)把铅笔的数量与总价所对应 的点在图中描出来,并连线。
(2)买7支铅笔需要多少钱?3.5元

正比例与反比例练习题

正比例与反比例练习题

正比例与反比例练习题1. 小明每天骑自行车上学,他发现骑行的时间和他的速度成正比。

如果他以每小时10公里的速度骑行,那么上学的时间是多少?解答: 假设骑行的时间是 x 小时,则速度和时间成正比,可以表示为 10/x = k,其中 k 是比例系数。

根据比例关系可得,x = 10/k。

由题意可知,当速度为10公里/小时时,上学时间为x小时,代入公式得到:x = 10/k。

因此,上学的时间为 10/k 小时。

2. 某工厂生产零件的速度和工人数量成正比。

如果有8个工人能够在5小时内生产完500个零件,那么10个工人需要多长时间才能生产1000个零件?解答: 假设生产零件的时间是 x 小时,则工人数量和时间成正比,可以表示为 8/5 = 10/x。

通过交叉乘积得到方程 8x = 50,解得 x = 6.25。

因此,10个工人需要6.25小时才能生产完1000个零件。

3. 小红做作业的速度和作业量成反比。

如果她能够在12小时内完成180页的作业,那么她在4小时内能完成多少页的作业?解答: 假设完成作业的页数是 y 页,则速度和作业量成反比,可以表示为 180/12 = y/4。

通过交叉乘积得到方程 180*4 = 12y,解得 y = 60。

因此,小红在4小时内能完成60页的作业。

4. 某项任务由8个工人在10天内完成,如果增加到12个工人,需要多少天才能完成同样的工作?解答: 假设完成任务的时间是 x 天,则工人数量和时间成反比,可以表示为 8*10 = 12*x。

通过交叉乘积得到方程 80 = 12x,解得 x = 6.67。

因此,增加到12个工人需要6.67天才能完成同样的工作。

由于天数不能为小数,可以向上取整,并得出需要7天才能完成。

5. 某车辆的速度和行驶时间成反比。

如果车辆以每小时80公里的速度行驶,那么行驶1000公里需要多长时间?解答: 假设行驶的时间是 y 小时,则速度和时间成反比,可以表示为 80/y = k,其中 k 是比例系数。

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。

自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。

1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。

2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。

3) 设三角形的底边、对应高、面积分别为a、h、S。

当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。

4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。

3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。

4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。

5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。

二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。

(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。

)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。

六年级数学下册《成反比例的量》练习题(附答案解析)

六年级数学下册《成反比例的量》练习题(附答案解析)

六年级数学下册《成反比例的量》练习题(附答案解析)学校:___________姓名:___________班级:_____________一、选择题1.自然数m 和它的倒数( )。

A .成正比例B .成反比例C .不成比例D .无法确定2.关于圆,下列说法( )是错误的。

A .圆的周长与直径成正比例B .圆的周长与半径成正比例C .圆的面积与半径成正比例D .圆的周长与面积不成正比例3.表示x 与y 成正比例的式子是( )。

A .x -y =5B .34y x = C .x +y =20 D .0y x= 4.下面所给例子中( )不成比例。

A .速度一定时,路程和所用时间B .单价一定时,数量和总价C .长方形的面积和宽D .圆锥底面积一定时,体积和高5.下列说法正确的是( )。

A .长方形的长一定,面积和宽成反比例关系B .一个人的年龄与身高不成比例关系C .小红的年龄与她姥姥的年龄成正比例关系6.观察如图的统计,下列说法正确的是( )。

A .长颈鹿比斑马跑得快B .斑马每分钟跑0.8千米/分C .长颈鹿20分钟跑了16千米D .斑马奔跑时间与奔跑路程成反比例7.xy=30中,x,y的关系是()。

A.成正比例B.成反比例C.不成比例8.下面各题中的各种量不成比例的是()。

A.梯形的上、下底的和不变,梯形的面积和高B.在一块菜地上种南瓜和茄子的面积C.如果ba14=,a和b9.下列各数量关系中,成正比例关系的是()。

A.圆的周长和它的半径B.运送一批货物,每天运的吨数和需要的天数C.总价一定,买的数量和单价D.全班人数一定,出勤人数和缺勤人数10.下面几组量不成反比例的是()。

A.圆周长一定,圆的直径和圆周率B.长方形面积一定,长和宽C.路程一定,时间和速度D.比的前项一定,比的后项和比值二、填空题11.如果4a=b,则a与b成( )比例,长方体的体积一定,底面积和高成( )比例。

12.(1)一批零件2000个(填写下表)。

初中反比例练习题

初中反比例练习题

初中反比例练习题1. 设x和y为正整数,且x与y成反比例关系。

已知当x=3时,y=9。

求当x=5时,y的值。

解答:根据反比例关系,x与y的乘积应为常数。

设乘积为k,则有:3 * 9 = kk = 27当x=5时,根据反比例关系,有:5 * y = ky = k / 5 = 27 / 5 = 5.4所以,当x=5时,y的值为5.4。

2. 某商店的商品售价与销售数量成反比例关系。

已知当售价为20元时,销售数量为100件。

求当售价为15元时,销售数量的值。

解答:根据反比例关系,售价与销售数量的乘积应为常数。

设乘积为k,则有:20 * 100 = kk = 2000当售价为15元时,根据反比例关系,有:15 * 销售数量 = k销售数量= k / 15 = 2000 / 15 ≈ 133.33所以,当售价为15元时,销售数量的值为约133.33件。

3. 某车辆以恒定的速度行驶。

已知车辆以60千米/小时的速度行驶2小时所走的距离为120千米。

求车辆以80千米/小时的速度行驶4小时所走的距离。

解答:根据反比例关系,速度与时间的乘积应为距离。

设乘积为k,则有:60 * 2 = kk = 120车辆以80千米/小时的速度行驶4小时,根据反比例关系,有:80 * 4 = k距离 = k / 80 = 120 / 80 = 1.5 千米所以,车辆以80千米/小时的速度行驶4小时所走的距离为1.5千米。

注意:由于距离为实际量,所以答案为一个确定的值。

以上是初中反比例练题的解答。

希望能帮到你!。

比例和反比例 练习题(培优)

比例和反比例 练习题(培优)

比例和反比例练习题(培优)一、比例和反比例1.某工程队要铺设一条公路,前20天已铺设了2.8千米,照这样计算,剩下的4.2千米,还要多少天才能铺完?(用比例解)【答案】解:设还要X天才能铺完。

2.8:20=4.2:xX=30答:还要30天才能铺完。

【解析】【分析】照这样计算的意思就是每天铺的长度不变,铺的长度与天数成正比例,先设出未知数,根据每天铺的长度不变列出比例解答即可。

2.一辆汽车在公路上行驶,行驶的时间和路程如下图。

]2I5ft7型冷,酎(1)这辆车10小时行驶多少千米?(2)行驶600千米要多少时?【答案】(1)解:10x80=800(千米)答:这辆车10小时行驶800千米。

(2)解:600+80=7.5(小时)答:行驶600千米要7.5时。

【解析】【分析】(1)由时间路程图可知,1小时行驶的路程是80千米,即汽车的速度是80千米/小时,再由“路程=速度x时间〃进行计算;(2)由(1)可知汽车的速度,再由“时间=路程+速度”进行计算。

3.有一批树苗,原计划40人去栽,每人要栽15棵,后来又增加10人去栽,每人要栽多少棵?【答案】解:设每人要栽x棵。

40x15=(40+10)xx解得x=12答:每人要栽12棵。

【解析】【分析】原计划的人数x原计划每人栽的棵树x=实际的人数x实际每人栽的棵树,这是运用反比例的性质列比例方程并解答即可。

4.在下面的方格纸上画一画。

(每一个小方格的边长代表1cm)长方形的长:5x2=10(cm),宽:3x2=6(cm)【解析】【分析】用长方形的周长除以2求出长与宽的和,然后把长与宽的和按5:3的比分配后分别求出长和宽,然后画出指定长和宽的长方形。

5.下图表示彩带的总价和购买长度之间的对应关系。

彩带总价和长度成比例关系,购买3米彩带需元,购买7米彩带需元。

【解析】【解答】下图表示彩带的总价和购买长度之间的对应关系。

彩带总价和长度成正故答案为:正;9.6;22.4。

反比例方程应用题专项练习90题

反比例方程应用题专项练习90题

反比例方程应用题专项练习90题反比例应用题专项练习90题(有答案)1.李师傅要加工一批零件,如果每小时加工50个,6小时可以加工完.若每小时加工60个,多少小时可以加工完?(用比例解)2.某学校美化环境,用彩色水泥砖铺路面,用面积4平方分米的方砖铺要4500块,若改用面积9平方分米的方砖铺要几块?3.张师傅准备给自家的客厅里铺上地板砖,如果用面积是36平方分米的方砖就需要40块,如果改用面积是60平方分米的方砖,则需要多少块?(用比例解)4.学校微机室需用方砖铺地,用面积是16平方分米的方砖,需要150块,如果改用面积是25平方分米的方砖,需要多少块?5.电视机厂计划每天产75台电视机,12天完成任务,实际每天多生产15台,多少天可以完成任务?(用比例知识解题)6.刘师傅要加工一批零件,每小时加工40个,3小时可以完成,如果要提1小时完成任务,工作效率需提高百分之几?(用比例的方法解)7.排版一部书稿,如果每页排640个字,要200页;如果每页排800个字,可排多少页?8.用一批纸装订练习本,如果每本装订25页,可以装订36本;如果每本装订15页,可以装订多少本?(用比例解)9.一个筑路队铺一段铁路,原计划每天铺3.2千米,实际每天比原计划多铺25%,实际铺完这段铁路用了12天,原计划用多少天铺完?(用比例解)10.王奶奶家装修房子,用面积是9平方分米的方砖铺地要用160块,如果改用边长为4分米的方砖铺地,要用多少块?(用比例解)11.盖一幢职工宿舍.计划使用6米长的水管240根.后来改用8米长的水管,共需要多少根?(用比例知识解答)12.小明读一本故事书,每天读15 页,12 天读完.如果每天读20 页,几天可以读完?(比例解)13.发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,实际比计划多用了几天?(用比例知识解答)14.时新服装厂生产一批西服,原计划每天生产150套,24天可以完成任务.实际每天生产180套,实际生产了多少天?(用比例知识解)15.一辆汽车从东城开往西城,每小时行42千米,5小时到达乙城;返回时用了4小时,平均每小时行多少千米?(用比例解)16.一本书,如果每天读30页,6天可以读完,若每天读20页,要多少天才能读完?17.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)18.做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,平均每天做多少个?(比例解)19.金光电子厂要生产一批零件,原计划每天生产180个,12天完成.实际的生产效率是原计划的120%,实际多少天可以完成?(比例解)20.科学考察船计划每小时行驶25千米,48小时到达预定海域进行科学实验.如果要提前8小时到达,每小时需行驶多少千米?21.铁路工人修铁路,用每根长9米的新铁轨替换原来每根6米的旧铁轨,共换下旧铁轨240根,换上的新铁轨有多少根?(比例解)22.一批货物,原计划每天运走18吨,84天运完,实际每天运21吨,实际要几天运完?(用比例解)23.桃每千克售价1.8元,梨每千克售价2.4元.买40千克桃的钱,可以买多少千克梨?24.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)25.汽车从A到B地,每小时行60千米,需8小时到达,实际上2小时已行160千米,照这样计算,行完全程共需多少小时?(用正、反两种比例解)26.有一批饮料,每箱装24瓶,正好装50箱.如果要装60箱,每箱装多少瓶?(用比例解)27.装配小组要装配一批洗衣机,计划每天装配20台,15天完成任务.实际每天装配30台,只需几天就可以完成任务?(用比例方法解)28.同学们做操,每行站15人,正好站12行.如果每行站9人,可以站多少行?29.一个房间,用边长3分米的方砖铺地,需要432块,如果改用边长4分米的方砖铺地,需要多少块?30.一个房间,如果用边长为0.3m的方砖铺地,需800块,如果改用边长为0.2m的方砖铺地,需要多少块?(用比例解答)31.食堂有一堆煤,原计划每天烧60千克,可以烧40天,实际每天烧48千克,这堆煤实际可烧多少天?(用比例解)32.一辆汽车从甲地开往乙地,每小时行90千米,3小时到达,若要2.5小时到达,每小时需行多少千米?(用比例解)33.邮递员小李从A地到B地送信,去时每小时走20km,用可7.5小时,回的时候每小时走50km,多小时可以回到A 地?(用比例知识解)34.一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?(用比例解)35.学校买来一批图书,如果每班分30本,可以分给8个班,现在需要分给12个班,每班只能分到多少本?(用比例解)36.方叔叔开车去县城以每小时80km的速度,行了3小时,返回时每小时行90km,返回时少用了多少时间?(用比例的知识解答)37.一堆煤,计划每天烧0.5吨,可以烧40天,如果每天烧0.4吨,可以烧多少天?(用比例解)38.某车间要生产一批零件,计划每天生产80个,15天完成.实际要10天完成,平均每天应生产多少个?(用比例知识解答)39.一辆汽车从甲城开往乙城,每小时行45千米,5小时到达.返回时,每小时行驶50 千米,几小时回到甲城?(用比例解)40.小红读一本故事书,如果每天读20页,30天读完.现在每天读25页,几天读完?(用比例解)41.用边长0.2米的方砖给一间小房间铺地,要900块,如果改用边长0.3米的方砖来铺,需要多少块?(用比例解)42.用4500张白纸装订练习本,先用360张装订了40本,照这样计算,剩下的纸还能装订多少本?(用比例知识解答)43.养牛场计划5天割草3000千克,实际每天比原计划多割150千克,实际用了多少天?44.一辆汽车从甲地到乙地,如果每小时行42.6千米,要用5.4小时.如果每小时行60千米,要用几小时才能到达?45.印刷厂用一批纸装订练习本,如果每本装20页,可以装订300本.如果要装订250本练习本,每本应装订多少页?(比例解)46.如图是两个相互交合的齿轮,大齿轮的半径是2分米,小齿轮的半径是8厘米,如果大齿轮转动200周,小齿轮要转动多少周?47.某工厂计划加工一批零件,如果每天加工20个,18天可以完成,实际4天加工了96个,照这样计算,几天可以完成任务?48.一块地,用面积是0.09平方米的方砖铺满要1152块;如果改用面积是0.16平方米的方砖,需要多少块才能铺满?(用比例知识解答)49.一批游客到博鳌水城要乘游艇游览,原计划租用14只游艇,每只坐24人.但实际只租到12只,实际每只游艇应坐多少人?(用比例方法解)50.学校要装修一间会议室,用边长3分米的方砖铺地,需要600块;如果改用边长5分米的方砖铺地,需要多少块砖?(用比例解)51.一堆煤计划每天烧4吨可以烧72天.由于改进炉灶,每天节约0.8吨,这样,这堆煤可烧多少天?(用比例解)52.一间房子要用方砖铺地,用边长是3分米的方砖,需要96块,如果改用边长是4分米的方砖,买55块够不够?53.修一条路原计划每天修50米,25天修完.实际20天完成任务,实际每天修多少米?(用比例解)54.一辆汽车从甲地开往乙地,每小时行42千米,15小时可以到达,如果要提前1个小时到达,每小时应行多少千米?(用比例解答)55.一堆煤,原计划每天烧1.5吨,可以烧36天.实际每天节约0.3吨,这样可以烧几天?(用比例解)56.机床厂生产一批机器,原计划每天生产240台,25天完成,如果要提前5天完成,平均每天要生产多少台?(用比例方法解)57.学校组织远足活动,原计划每小时走3.8千米,3小时到达目的地,实际2.5小时行完全程,平均每小时多行多少千米?(用比例解答)58.“天虹”电机厂接到生产一批发电机的任务,原计划每天生产30台,12天可以完成,实际每天多生产6台,实际用多少天可以完成任务?(运用比例知识解)59.李叔叔买了一套新房,客厅是一个长方形,原计划用面积是16平方分米的方砖铺地,需要150块地砖,现在决定用长6分米,宽1分米,厚2厘米的木地板铺地,那么至少需要买这种木地板多少块?60.一间房子,用面积是18平方米的方砖铺底,需要176块,如果用面积是16平方米的方砖铺地需要多少块砖?(用比例解)61.生产一批农具,原计划每天生产240件,15天完成,实际每天多生产60件,实际多少天完成?(用比例解)62.修一条路,如果每天修1200米,8天可以修完;如果每天修800米,几天可以修完?(用比例方法解)63.一辆汽车从甲地开往乙地,若每小时行35千米,6小时到达.若每小时行42千米,几小时到达?64.一篇文章原稿每行24个字,共40行.现改为每行32个字,那么这篇文章需要打印多少行?(用比例解)65.一列火车从甲地开往乙地,每小时行120千米,8小时到达.如果每小时行100千米,几小时到达?(用比例解)66.袁师傅原来加工一个零件要用12分钟,现在减少到8分钟,原来每天加工50个零件的时间,现在每天可加工多少个零件?(用比例解)67.用同样的砖铺地,铺9平方米用砖308块,如果铺12平方米,要用多少块砖?(用比例)68.买来一批煤,计划每天烧吨,可烧20天;实际每天比原来节约20%,这样可以烧多少天?(用比例解答)69.欢欢家里装修,如果用面积为16平方分米的方砖铺地,需要180块.请你帮忙计算一下,如果改用面积为36平方分米的方砖铺地,需要多少块?(用比例方法解)70.用边长是0.6米的方砖给办公室铺地,需要2000块;如果改用边长0.8米的方砖铺地,至少需要多少块砖?71.王强从家到学校每分钟走50米,18分钟到校;放学回家时,他想比上学时少用3分钟到家,他每分钟应走多少米?(用比例解)72.学校会议室需要用方砖铺地.如果用边长8dm的方砖铺,需要725块;如果改用边长10dm的方砖铺,需要这样的方砖多少块?(此题限用比例解答.)73.电机厂要生产一批发电机,原计划每天生产20台,12天完成,实际每天多生产10台,实际用多少天完成?(用比例解)74.车队向灾区运送救灾物资,去时每小时行60千米,4.5小时到达,返回时每小时多行15千米,返回出发地点用了多长时间?(用比例解)75.装订一本书,如果每页排500个字,可以排180页,如果改为每页排600个字,可以少排多少页?(用比例解)76.钢铁厂要生产一批钢材,计划每天生产600吨,20天完成.实际每天生产800吨,实际几天完成?77.毛毛全家“六一”到中山公园游玩,拍了许多照片,毛毛买了一本24页的相册,如果每页放6张照片,刚好放16页,现在毛毛打算每页只放4张,请你帮她算一算,这本相册够放吗?(用比例解)78.何聪看一本故事书,原计划每天看45页,6天可以看完.实际每天只看30页,几天可以看完?(用比例知识解答)79.用一批纸装订练习本,每本32页,可以装订成15本.如果装订成24本,平均每本是多少页?80.李叔叔家买了新房,正准备给地面贴磁砖.如果用边长6分米的方砖铺,需要360块,如果改用边长8分米的方砖,最少需要多少整块方砖?81.工程队要修一条公路,原计划18个人25天完成.为了赶工期,需要提前10天完成,这样实际需要安排多少个工人?(用比例解)82.一辆汽车去县城以每分钟2.5km的速度,行了半小时,返回时以每小时120km的速度行驶,汽车返时用了多少分钟?(用比例解)83.印刷厂用一批纸装订英语练习本.如果每本36页,能订4000本,如果每本32页,能订多少本?84.用一批纸装订同样大小的练习本,如果每本30页,可以装订120本;现用这批纸装订了100本,每本应装订多少页?(用比例解答)85.加工一批零件,计划每小时加工40个,6小时完成,实际每小时比计划每小时多加工20%,实际加工完这批零件要多少小时?(用比例知识解答)86.工程队修一条路,每天修45米,20天可以完成任务.实际前4天修了200米,照这样计算,多少天可以完成任务?(用比例解答)87.有一批纸,可以装订每本24页的练习本216本,如果要装订出288本,那么每本应该改装成多少页?(用比例解)88.实验小学举行团体操表演,如果每列25人,要排24列,如果每列20人,要排多少列?(用比例解)89.一堆煤,原计划每天烧3吨,可以烧96天.实际每天烧2.4吨,实际可以烧多少天?(用比例方法解答)90.发电厂运来一批煤,计划每天烧吨,可以烧35天,实际每天比计划节约烧煤0.25吨,这批煤实际烧了多少天?(用比例解)参考答案:1.设x小时可以加工完,60x=50×6,x=,x=5,答:5小时可以加工完.2.设改用面积9平方分米的方砖铺要x块,9x=4×4500,x=,x=2000;答:改用面积9平方分米的方砖铺要2000块3.设需要x块,60x=36×40,60x=1440,x=24;答:需要24块4.设需要x块,25x=16×150,x=16×150÷25,x=96;答:需要96块5.设x天可以完成任务,总量一定,每天生产台数和生产天数成反比例,75:(75+15)=x:12,75×12=(75+15)×x,75×12=90×x,x=75×12÷90,x=10;答:10天可以完成任务6.设提前1小时完成任务时的工作效率为x个,40×3=x×(3﹣1),2x=40×3,x=,x=60;(60﹣40)÷40,=20÷40,=50%;答:工作效率需提高50%.7.设可排x页,640×200=800x,800x=128000,x=160;答:可排160页8.设可以装订x本,由题意得:15x=25×36,15x=900,x=60.答:可以装订60本.9.设原计划铺x天,3.2x=3.2×(1+25%)×12,3.2x=4×12,3.2x=48,x=15;答:原计划用15天铺完.10.设用边长为4分米的方砖铺地要用x块,则:(4×4)×x=160×9,16x=1440,x=1440÷16,x=90.答:要用90块11.设共需要x根;8x=6×240,x=,x=180;答:共需要180根.12.设x天可以读完,20x=15×12,x=,x=9;答:9天可以读完.13.设实际x天用完,(30﹣5)x=30×12,25x=360,x=14.4;14.4﹣12=2.4(天);答:实际比计划多用了2.4天14.设实际生产了x天,180x=150×24,x=3600÷180,x=20.答:实际生产了20天.15.设平均每小时行x千米.42×5=4x4x=210x=52.5;答:平均每小时行52.5千米.16.设要x天才能读完.20x=30×6x=180÷20x=9;答:要9天才能读完.17.设每天应装x台.50×60=40xx=x=75;答:每天应装75台.18.设平均每天做x个;12x=200×15,x=,x=250;答:平均每天做250个.19.设实际x天可以完成,180×120%×x=180×12,216x=2160,x=10;答:实际10天可以完成.20.设每小时需行驶x千米,则有(48﹣8)x=25×48,40x=1200,x=30;答:如果要提前8小时到达,每小时需行驶30千米.21.设换上的新铁轨有x 根;9x=6×240,x=,x=160;答:换上的新铁轨有160根22.设实际要x天运完,则有21x=18×84,21x=1512,x=72;答:实际要72天运完.23.1.8×40÷2.4=72÷2.4=30(千克)答:可以买30千克梨.24.设可以提前x天完成.160×15=(160+80)×(15﹣x)160×15=240×(15﹣x)15﹣x=15﹣x=10x=5答:可以提前5天完成.25.(1)设行完全程共需x 小时,160:2=(60×8):x,160:2=480:x,160x=480×2,x=,x=6;(2)行完全程共需y小时,(160÷2)×y=60×8,80y=60×8,y=,y=6;答:行完全程共需6小时26.设每箱装x瓶,60x=50×24,x=,x=20;答:每箱装20瓶.27.设只需x天就可以完成任务,30x=20×15,30x=300,x=10;答:实际每天装配30台,只需10天就可以完成任务28.设可以站x行,9x=15×12,x=,x=20,答:可以站20行.29.设需要x块.3×3×432=4×4×x16x=9×432x=243;答:需要243块30.设需要x块,0.3×0.3×800=0.2×0.2×x ,0.04x=0.09×800,x=,x=1800,答:需要1800块.31.设这堆煤实际可烧x 天,48x=60×40,48x=2400,x=50;答:这堆煤实际可烧50天.32.设每小时需行x千米,2.5x=90×3,x=,x=108,答:每小时需行108千米.33.设需要x小时回到A 地,50x=20×7.5,50x=150,x=3;答:3小时可以回到A地.34.设需要方砖x块,由题意得:0.25x=0.16×2750.25x=44x=176答:需要方砖176块.35.设每班只能分到x本,12x=30×8,12x=240,x=20;答:每班只能分到20本.36.设返回的时间为x小时,90x=80×3,x=,x=,少用的时间:3﹣=(小时),答:返回时少用了小时.37.设可以烧x天,0.4x=0.5×40,x=,x=50;答:可以烧50天.38.设平均每天生产x个,10x=80×15,x=,x=120,答:平均每天应生产120个.39.设x小时回到甲城,50x=45×5,x=,x=4.5,答:4.5小时回到甲城.40.设x天读完;25x=20×30,x=,x=24,答:24天读完41.设需要x块,0.3×0.3x=0.2×0.2×900,0.09x=0.04×900,x=36÷0.09,x=400,答:需要400块42.剩下的纸还能装订x 本,=,360x=165600,x=460;答:剩下的纸还能装订460本43.3000÷(3000÷5+150),=3000÷(600+150),=3000÷750,=4(天),答:实际用了4天.44.设要用x小时才能到达,60x=42.6×5.4,60x=230.04,x=3.834;答:如果每小时行60千米,要用3.834小时才能到达.45.设每本应装订x页,250x=20×300,x=,x=24,答:每本应装24页.46.2分米=20厘米,设小齿轮要转动x周,200×3.14×2×20=3.14×2×8×x,4000=8x,x=4000÷8,x=500,答:小齿轮要转动500周47.设x天可以完成任务,(96÷4)×x=20×18,24x=360,x=360÷24,x=15,答:15天可以完成任务.48.设需要x块才能铺满,由题意得:0.16x=0.09×1152,0.16x=103.68,0.16x÷0.16=103.68÷0.16,x=648;答:需要648块才能铺满.49.设实际每只游艇应坐x 人,12x=24×14,12x=336,x=28;答:实际每只游艇应坐28人50.设如果改用边长5分米的方砖铺地,需要x块砖,则有:(5×5)x=(3×3)×600,25x=9×600,25x=5400,x=216;答:如果改用边长5分米的方砖铺地,需要216块砖.51.设这堆煤可烧x天,(4﹣0.8)×x=4×72,3.2x=4×72,x=,x=90;答:这堆煤可烧90天.52.设改用边长是4分米的方砖需要x块,4×4×x=3×3×96,16x=9×96,x=,x=54,54<55,所以买55块够用,答:如果改用边长是4分米的方砖,买55块够用53.设实际每天修x米,20x=50×25,x=,x=62.5,答:实际每天修62.5米54.设每小时应行x千米,(15﹣1)x=42×15,14x=42×15,x=,x=45;答:每小时应行45千米.55.设这样可以烧x天,(1.5﹣0.3)×x=1.5×36,1.2x=1.5×36,x=,x=45;答:这样可以烧45天56.设平均每天要生产x 台,240×25=(25﹣5)×x,20x=240×25,x=,x=300;答:平均每天要生产300台57.设实际的速度为x千米/小时,则2.5x=3.8×3,2.5x=11.4,x=4.56;答:平均每小时多行4.56千米58.设实际用x天可以完成任务,(30+6)×x=30×12,36x=360,x=10,答:实际用10天可以完成任务.59.设至少需要买这种木地板x块,则有(6×1)x=16×150,6x=2400,x=400;答:至少需要买这种木地板400块.60.设用面积是16平方米的方砖铺地需要X块砖.16X=18×176;16X=3168;X=198;答:用面积是16平方米的方砖铺地需要198块砖.61.设实际x天完成,则有(240+60)x=240×15,300x=3600,x=12;答:实际12天完成.62.设x天可以修完,800x=1200×8,x=,x=12;答:12天可以修完63.设x小时到达.35×6=42xx=x=5答:5小时到达64.设这篇文章需要打印x 行,32x=24×40,x=,x=30,答:这篇文章需要打印30行65.设如果每小时行100千米,x小时到达,则有100x=120×8,100x=960,x=9.6;答:如果每小时行100千米,9.6小时到达.66.设现在每天可加工x个零件,则有8x=12×50,8x=600,x=75;答:现在每天可加工75个零件67.设要用x块砖,则12:x=9:3089x=308×12x=308×12÷9x=410答:要用410块砖.68.设这样可以少x天,×(1﹣20%)x=×20x×80%=5,0.2x=5,x=5÷0.2,x=25;答:这样可以少25天.69.设需要x块面积为36平方分米的方砖.36x=16×180,x=,x=80;答:如果改用面积为36平方分米的方砖铺地,需要80块.70.设至少需要x块砖,0.8×0.8x=0.6×0.6×2000,0.64x=0.36×2000,x=,x=1500,答:至少需要1500块方砖71.设他每分钟应走X米,50×18=X×(18﹣3),15X=900,X=900÷15,X=60;答:他每分钟走60米72.设需要x块砖,由题意得,10×10x=8×8×725,100x=46400,x=464;答:需要这样的方砖464块.73.设实际用x天完成,(20+10)x=20×12,30x=240,x=8;答:实际用8天完成.74.设返回出发地点用了x 小时,由题意得:(15+60)×x=60×4.5,75x=270,x=3.6.答:返回出发地点用了3.6小时75.设改为每页排600个字,可以排x页,500×180=600×x,6x=900,x=150,180﹣150=30(页);答:可以少排30页.76.设实际x天完成,800x=600×20,x=12000÷800,x=15;算术法:600×20÷800,=12000÷800,=15(天);答:实际15完成.77.设每页只放4张,可以放x页,4x=6×16,4x=96,x=24;因为这本相册有24页,所以正好够.答:这本相册够放.78.设x天可以看完;30x=45×6,x=,x=9,答:9天可以看完.79.设平均每本是x页,24×x=32×15x=x=20答:平均每本是20页.80.设如果改用边长为8分米的方砖要x块.8×8×x=6×6×360,64x=36×360,x=12960÷64,x=202.5,x≈203;答:如果改用边长为8分米的方砖最少要203块81.设实际需要安排x个工人,(25﹣10)×x=18×25,15x=450,x=30;答:实际需要安排30个工人82.每小时120km的速度行驶转化成每分钟120÷60=2km的速度行驶,半小时=30分钟;设汽车返时用了X分钟,2X=2.5×30,2X=75,X=37.5;答:汽车返时用了37.5分钟83.设可以装订x本,32x=36×4000,32x=144000,x=4500,答:可以装订4500本.84.设每本应装订x页,100x=120×30,100x=3600,x=3600÷100,x=36;答:每本应装订36页85.设实际加工完这批零件要x小时.40×(1+20%)×x=40×6,48x=240,x=5;答:实际加工完这批零件要5小时.86.x天可以完成任务,(200÷4)×x=45×20,50x=45×20,x=,x=18,答:18天可以完成任务.87.设每本应该改装成x 页,288x=216×24,x=,x=18,答:每本应该改装成18页88.设如果每列20人,要排x列,则有20x=25×24,20x=600,x=30;答:如果每列20人,要排30列89.实际可以烧x天.3×96=2.4xx=x=120答:实际可以烧120天.90.设这批煤实际烧了x 天.(1﹣0.25)x=1×35,1.25x=52.5,x=42.答:这批煤实际烧了42天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

体积÷高=底面积(一定) 正比例关系
2)当高一定时,体积与底面积成什么比例关系?
体积÷底面积=高(一定) 正比例关系
3)当体积一定时,底面积与高成什么比例关系?
底面积×高 = 体积(一定)反比例关系
你能再举一个类似的例子吗?
已知A×B=C。(A、B、C均不为0)
当A一定时,B和C成什么比例?
当B一定时,A和C成什么比例?
3.当a+b=5,那么a与b(不成 )比例。
1.铺地面积一定时,方砖边长和所需块数 成反比例。( × )
2. 2 x 5=10 ,所以2和5成反比例( × )
3.三角形面积一定,底和高成反比例( √ )
4.圆的面积一定,圆的半径和圆周率成反 比例( × ) 5.如果x与y成反比例,那么 3x 与y也成反 比例( √ ) 6.班级学生的总人数一定,出勤率与缺 勤率成反比例。( ×)
7. 分子一定时,分母和分数值成(
分母一定时,分子和分数值成(
);
)。
A.正比例
B.反比例
)。
8. 表示x和y成反比例的式子(
A. x+y=8
C. x×y=8
B. x / y =8
D. x =8 / y
1.所行的路程一定, 车轮的周长和车轮的转数( 反比例 )。 2.所行的路程一定, 车轮的直径和车轮的转数( 反比例)。 3.所行的路程一定, 车轮的半径和车轮的转数( 反比例)。 4.车轮的周长一定, 所行的路程和车轮的转数( 正比例)。 5.车轮的直径一定, 所行的路程和车轮的转数( 正比例)。
1.变化的方向相反, 一种量扩大(缩小), 另一种量反而缩小 (扩大)。
2.相对应的每两个数 2.相对应的每两个数 的比值(商)是一定的。 的乘积是一定的。 3.关系式: Y : x=k(一定)
3.关系式: X y=k(一定)
3.在体积计算中,体积、高、底面积的关系 是什么?
1)当底面积一定时,体积与高成什么比例关系?
6.车轮的半径一定, 所行的路程和车轮的转数( 正比例 )。 7.车轮的面积一定, 所行的路程和车轮的转数( 不成比例 )。 8.车轮的转数一定, 所行的路程和车轮的周长( 正比例 )。 9.车轮的转数一定, 所行的路程和车轮的直径(正比例 )。 10 .车轮的转数一定, 所行的路程和车轮的半径(正比例 )。
A.成正比例
B.成反比例 )
C.不成比例 )
1.小明的身高和体重。(
2.圆锥的体积一定,底面积和高(
3.正方体的表面积和其中一个面的面积( )
4.所行路程一定,车轮周长和车轮转数( ) 5.甲数是乙数的4/5,那么甲数与乙数( 6.长方形的周长一定,长与宽。( ) )
A.成正比例
B.成反比例
C.不成比例
判定两个相关联量是不是成反比例 主要是看它们的( 积 )是不是一定 的。 反比例关系式: x y=k (一定)
(1)工地要运20吨沙,每车的载重量与 车数。
因为每车载重量x车数=沙的总重量(积一定)
所以每车的载重量与车数成反比例。
(2)种子的总量一定,每公顷的播种 量和播种的公顷数。
因为每公顷的播种量x播种的公顷数 =种子总量(积一定),
当C一定时,A和B成什么比例?
1.三角形面积一定,底和高。
2.圆的半径和周长。
3.圆的面积一定,圆周率和半径。 4.正方形的周长和边长。
5.正方体的棱长总和与棱长。
6.正方体的表面积和棱长。
7.平行四边形的底一定,面积和高。 8.被减数一定,减数与差。
1. 如果x和y是两种相关联的量, 并且y=3x,那么y和x成( 正 )比 例。 2. x÷12=y(x≠0),那么x与y成 ( 正 )比例。
1.什么叫成反比例的量?
两种相关联的量,一种量变化,另 一种量也随着变化,如果这两种量中相 对应的两个数的积一定,这两种量就叫 做成反比例的量,它们之间的关系叫做 反比例关系。
反比例关系式:x×y=k( Nhomakorabea定)回想一下,成反比例的量有什么特征?
(1)两种相关联的量。(相关联) (2)一种量扩大,另一种量反而缩小, 一种量缩小,另一种量反而扩大。 (反变化) (3)两种量中相对应的两个数的积一 定。 (积一定)
所以每公顷的播种量与播种的公顷数 成反比例。
(3)在一块菜地上种的黄瓜和苦 瓜的面积。 因为黄瓜的面积+苦瓜的面积 =总面积(和一定) 所以黄瓜与苦瓜的面积不成比例。
(4)长方形的宽一定,面积和长。
因为
长方形的面积 宽
=长 (比值一定)
所以长方形的面积与长成正比例。
(5)书的总册数一定,每班分得的 册数和班数。
因为班分得的册数x班数=书的总册数 (积一定)
所以每班分得的册数与班数成反比例。
(6)华容做12道数学题,做完的题 和没有做的题.
因为做完的题+没有做的题=总题数 (和一定)
所以做完的题与没有做的题不成比例。
正比例 相同 点
反比例
都是两种相关联的量, 一种量随着另一种量变化。
不同 点
1. 变化的方向相同, 一种量扩大或缩小, 另一种量也扩大或缩 小。
相关文档
最新文档