8.4变速器齿轮设计

合集下载

变速器设计 (2)

变速器设计 (2)

变速器设计
变速器是一种用于控制引擎输出转速的机械装置。

其主要
作用是根据不同的路况和车速需求,将发动机的转速转化
为合适的车轮转速,以提供适合的力量和扭矩,并实现车
辆动力传递和行驶。

变速器设计的关键是根据车辆的使用要求和性能需求来选
择合适的齿轮比。

齿轮比是指驱动轴与驱动轮之间齿轮的
大小比例。

一般来说,低齿轮比可以提供更大的马力和扭矩,适用于起步和爬坡;高齿轮比可以提供更高的车速,
适用于平路和高速行驶。

另外,变速器设计还需要考虑以下几个因素:
1. 齿轮材料:齿轮应选择耐磨损、高强度和耐腐蚀的材料,以确保可靠性和寿命。

2. 齿轮配对:齿轮的齿形和齿数要进行合理设计,确保顺畅的齿轮传动和低噪音。

3. 润滑系统:变速器需要设计合理的润滑系统,以确保齿轮传动的平稳工作和降低摩擦损失。

4. 控制系统:现代变速器通常由电子控制单元(ECU)控制,需要设计合适的控制算法和传感器来实现自动控制和顺畅的换档。

5. 散热系统:由于变速器工作时会产生较大的热量,需要设计合适的散热系统,以维持变速器的正常工作温度。

综上所述,变速器设计需要综合考虑力量、扭矩、速度、可靠性和经济性等因素,以满足不同车辆使用需求和性能要求。

只有合理设计的变速器才能确保汽车的良好动力性能和可靠性。

汽车变速器齿轮的强度分析【毕业作品】

汽车变速器齿轮的强度分析【毕业作品】

汽车变速器齿轮的强度分析摘要:随着汽车技术的不断提高,对变速器结构强度的要求越来越高,作为变速器关键部件的齿轮,工作环境恶劣,易损坏。

齿轮的质量关系着变速器能否平稳高效运转。

齿轮强度分析,是齿轮承载能力、振动、噪声、齿形优化等研究的基础。

变速器齿轮常见损坏形式有接触疲劳引起的齿面点蚀和弯曲疲劳引起的轮齿折断。

为判断是否发生损坏,需进行齿轮接触强度和弯曲强度分析。

运用经典方法分析齿轮强度,需要计算的系数很多,计算过程繁琐。

因此,有必要对其分析过程进行规范化总结归纳,并开发出带有专业特点的齿轮强度分析模块,使用户只需输入一些参数,按照一定的流程操作,即可完成齿轮强度分析。

变速器齿轮接触和弯曲问题的有限元分析,是齿轮结构设计与优化的有效手段。

建立有效的有限元分析模型,准确求解齿轮的应力与变形有重要意义。

运用有限元法进行齿轮接触和弯曲问题仿真,在接触刚度、网格划分方法、网格疏密控制、载荷作用位置等方面还存在一些问题,有必要对其进行深入研究。

目前,有限元软件中尚没有专门的齿轮应力建模与仿真模块,实现齿轮应力有限元分析模块的二次开发,可以提高工作效率,缩短设计周期。

关键词:变速器齿轮,接触强度,弯曲强度Auto ransmission gear strength analysisAbstract:With the continuous improvement of automotive technology,the demand of the transmission structural strength has become more and more increasingly.As a key component of the transmission,the working conditions of gears are poor and the gears are easy to damage.The quality of gears decides whether the transmission can operate smoothly and efficiently or not.The analysis of gear strength is the basis for the research of the gears carrying capacity,vibration,noise,profile optimization.The common forms of damage are tooth surface pitting caused by contact and tooth broken caused by bending fatigue.As to determine whether the damage occurred,the gear contact and bending strength need to ing classical method to calculate gear strength, many factors need to calculate,the process is very trouble.It is necessary to normalize and summarize the analysis process,and to develop the gear strength analysis professional module.The complete gear strength can be finished the certain input parameters are only provided.The finite element analysis of transmission gear contact and bending is an effective means of gear structural design and optimization.To establish the efficient and precise analysis of the gear contact and bending stress,there are some problems in the contact rigidity,mesh method,mesh density control,load lines.It is necessary to conduct in-depth study.There are so many gear pairs in transmission that it is difficult to analyze and calculate.At present, there is no application software having special module for gear stress simulation analysis.To develop professional modules of parametric modeling and simulation for gear stress analysis can greatly improve efficiency and shorten the design cycle.目录1绪论------------------------------------------------------------------ 1 1.1变速器齿轮强度分析的研究背景---------------------------------------- 1 1.1.1变速器齿轮失效形式------------------------------------------------ 1 1.1.2变速器齿轮强度分析方法-------------------------------------------- 1 1.2变速器齿轮强度分析与评价的研究现状---------------------------------- 2 1.2.1变速器齿轮强度分析的经典方法-------------------------------------- 2 1.2.2变速器齿轮强度分析的有限元法-------------------------------------- 3 1.2.3变速器齿轮强度评价方法-------------------------------------------- 4 1.3有限元软件ANSYS概述------------------------------------------------ 5 1.3.1 ANSYS简介-------------------------------------------------------- 5 1.3.2 ANSYS内部语言简介------------------------------------------------ 5 1.3.3 ANSYS二次开发功能------------------------------------------------ 5 1.4本文主要研究工作---------------------------------------------------- 6 2齿轮强度经典分析方法-------------------------------------------------- 7 2.1齿轮接触应力和齿根应力分析的经典方法-------------------------------- 7 2.1.1齿轮接触应力分析经典方法------------------------------------------ 7 2.1.2齿根应力分析经典方法---------------------------------------------- 7 2.2齿轮许用接触应力分析经典方法---------------------------------------- 8 2.2.1齿轮许用接触应力-------------------------------------------------- 8 2. 2. 2接触寿命系数---------------------------------------------------- 9 2.2.3润滑剂系数------------------------------------------------------- 10 2.2.4速度系数--------------------------------------------------------- 10 2.2.5粗糙度系数------------------------------------------------------- 11 2.2.6工作硬化系数----------------------------------------------------- 11 2.2.7接触尺寸系数----------------------------------------------------- 12 2.3齿轮许用齿根应力分析经典方法--------------------------------------- 12 2.3.1齿轮许用齿根应力------------------------------------------------- 122.3.2弯曲寿命系数----------------------------------------------------- 12 2.3.3相对齿根圆角敏感系数--------------------------------------------- 14 2.3.4相对齿根表面状况系数--------------------------------------------- 15 2.3.5弯曲尺寸系数----------------------------------------------------- 16 2.4本章小结----------------------------------------------------------- 16 3齿轮应力分析有限元法------------------------------------------------- 16 3.1面-面接触有限元分析关键问题---------------------------------------- 17 3.1.1接触面和目标面确定----------------------------------------------- 17 3.1.2单元类型选择----------------------------------------------------- 17 3.1.3接触协调条件----------------------------------------------------- 19 3.2斜齿轮接触应力分析有限元法----------------------------------------- 20 3.2.1单元属性定义----------------------------------------------------- 20 3.2.2网格划分方法研究与应用------------------------------------------- 21 3.2.3接触单元和目标单元生成------------------------------------------- 25 3.2.4接触应力求解与结果分析------------------------------------------- 26 3.2.5接触应力仿真影响因素分析----------------------------------------- 27 3.3斜齿轮弯曲应力分析有限元法----------------------------------------- 30 3.3.2整体单元尺寸对仿真影响分析--------------------------------------- 32 3.3.3线网格细化对仿真影响分析----------------------------------------- 34 3.3.4面网格细化对仿真影响分析----------------------------------------- 37 3.3.5网格划分控制确定------------------------------------------------- 42 3.3.6不同载荷作用位置对仿真影响分析----------------------------------- 43 3.4本章小结-------------------------------------------- 错误!未定义书签。

汽车变速器齿轮设计及问题分析

汽车变速器齿轮设计及问题分析

汽车变速器齿轮设计及问题分析摘要:在车辆传动齿轮的设计和应用方面,越来越多地使用了两个重要的原因,即传输的强度和结构。

在这种情况下,高刚度齿轮的设计应该更深入地研究。

在传统的机械传动齿轮的设计中,模块、压力角、速度梯度和螺旋角等参数是影响机器噪声和强度的重要因素。

这些参数的计算公式是根据传输类型的选择计算的。

与此同时,齿轮的尺寸和强度可以根据相关公式精确地获得。

关键词:齿轮载荷谱;压力角;齿轮噪声指标前言:在变速箱的设计应用中,变速箱的强度和结构越来越频繁。

研究高风险变换器的设计是很有意义的,它的设计具有一定的特异性,并在这些问题的背景下进行了研究。

重要的是要确定模块的数量,压力角,齿轮齿数,螺旋桨角等,这些都是传统机械齿轮的噪声和强度的重要组成部分。

在变速箱的选择中采用了上述参数的计算公式。

与此同时,齿轮的尺寸和强度可以根据相关公式来精确计算,这是不重复的。

由于计算机的快速发展和他们的受欢迎程度,可以设计出更精确的齿轮传动齿轮传动齿轮。

但它不只是依赖于软件,它只是一个辅助计算工具,更合理的齿轮必须是由人设计的。

1齿轮载荷谱的制定在计算齿轮强度时,最重要的测量是建立齿轮载荷谱。

在齿轮上的应力是用理论的最大载荷来计算的,并与齿轮的可采性相比较。

然而,理论结果与所使用的齿轮有很大的不同。

1.1齿轮载荷的差异在齿轮的实际应用中,由于紧急停车、启动和道路状况等因素,齿轮并不总是承载额定载荷,这将导致比变速箱等传动部件的额定载荷更大的冲击载荷。

但是,当车辆处于良好状态时,负载小于额定负载。

因此,在确定试验方法时,应准确进行技术处理。

例如,峰值负载大于120%,小于50%的负载被删除,或者直接使用额定负载。

1.2齿轮工作循环次数的差别不同类别的齿轮的工作周期数必须与实际使用的周期不同。

不同的模型之间存在差异,即使它们使用相同的速度盒。

例如,起重设备和拖拉机,其使用基本上是不同的。

使用高质量的建筑设备的效率比拖拉机低,因为拖拉机通常在道路或道路上行驶。

变速器齿轮设计PPT演示课件

变速器齿轮设计PPT演示课件
图1中的中间轴式四挡变速器传动方案示例的区别为图1a、b所示方案有四对 常啮合齿轮,倒挡用直齿滑动齿轮换挡,图1c所示传动方案的二、三、四挡用常 啮合齿轮传动,而一、倒挡用直齿滑动齿轮换挡。

图1 中间轴式四挡变速器传动方案
© GJT, 08 November 2019, Guo Zuirun; all rights reserved
中心距越小,轮齿的接触应力越大,齿轮寿命越短。因此,最小允许
中心距应当由保证轮齿有必要的接触强度来确定。
© GJT, 08 November 2019, Guo Zuirun; all rights reserved
3
变速器齿轮设计
二、中间轴式变速器的特点
中间轴式变速器传动方案的共同特点是:(1)设有直接挡; (2)一挡有较大的 传动比; (3)挡位高的齿轮采用常啮合齿轮传动,挡位低的齿轮(一挡)可以采 用或不采用常啮合齿轮传动; (4) 除一挡以外,其他挡位采用同步器或啮合套换 挡; (5)除直接挡以外,其他挡位工作时的传动效率略低。
变速器齿轮设计
产品开发中心 2008.10.18
© GJT, 08 November 2019, Guo Zuirun; all rights reserved
1
变速器齿轮设计
目录
一、 概述 二、 中间轴式变速器的特点 三 、 变速器主要参数的选择 四、 直齿圆柱齿轮传动的强度计算 五、 斜齿圆柱齿轮传动的强度计算 六、 GJT使用的齿轮CAE分析工具 七、 GJT齿轮开发流程
越复杂,使轮廓尺寸和质量加大,而且在使用时换挡频率也增高。 在最低挡传动比不变的条件下,增加变速器的挡数会使变速器相邻的低挡与高 挡之间的传动比比值减小,使换挡工作容易进行。 挡数选择的要求: 相邻挡位之间的传动比比值在1.8以下。 高挡区相邻挡位之间的传动比比值要比低挡区相邻挡位之间的比值小。 目前,轿车一般用4~5个挡位变速器, 货车变速器采用4~5个挡或多挡,多 挡变速器多用于重型货车和越野汽车。

8+4变速器设计

8+4变速器设计

第一章绪论随着社会经济展和农业机械化水平的提高,拖拉机保有量迅猛增长,同时对拖拉机性能和质量提出了更高的要求。

拖拉机制造商不仅面临着用户对产品性能与质量越来越高的要求,而且面临着严格的技术法规约束以及降低产品成本等压力。

因此在拖拉机与拖拉机的开发过程中,广泛采用各种先进的技术和理论方法,使设计过程自动化,以满足产品设计的需要已成为必然趋势。

在工程设计中应当采用先进的技术和理论方法,使设计过程自动化、合理化,以满足产品设计的需要优化设计方法则提供了一条可能高效率的求得最优的设计方案的途径。

传动系是拖拉机的主要组成部分,变速器又是传动系的重要部件,因此拖拉机变速器的性能改良设计能够大大提升传动系的性能。

在拖拉机制造的多年发展历史中,变速箱的技术进步和水平一直处于举足轻重的地位,但传统的拖拉机变速器存在着诸多的陷,虽然随着我国农机水平的不断提高,正在不断的完善和成熟,但变速器方面的技术,但与发达国家仍存在着不小的差距,我国是一个农业大国,拖拉机的制造和使用在数量上一直处于世界的前列,如果能够实现拖拉机的优化,相信能够节约成本,提高效率,使我国的农业生产实现增产增收的美好愿望,本人此次毕业设计的课题以东方红1302R履带拖拉机为为原形,对其传动方案实现优化设计。

履带拖拉机车适用于在大型农场和工作量较大的农村作业,主要应用在深耕,旋耕,收获谷物,播种等农业生产场合。

为此在动力性、通过性、工作稳定速度,可靠性,耐用,等方面对设计者提出了更高的要求!改变落后的拨齿换挡式变速器,提高工作效率和使用性能,进一步提高动力性和经济性,对我国这样的农业大国意义重大。

此次设计在原有的设计基础上对其加以改进,以期能够最大限度的在一定程度上达到优化的目的。

这是本人的毕业设计课题,我会力争做到最好,在此次设计过程中,查阅了大量文献资料,经过复杂的运算,并且与导师和同组的队友经过深刻的探讨与交流,终于完成了这份设计,而这个过程中我也得到了巨大的成长和提升。

变速器设计

变速器设计

变速器设计引言变速器是一种用于改变机械系统的输出速度和扭矩的装置。

它在各种机械和交通工具中起着至关重要的作用,例如汽车、船只、飞机等。

本文将介绍变速器的设计原理和常见的设计方法。

设计概述•变速器的主要功能是通过改变输入和输出的齿轮组合来改变传动比,从而实现不同的输出速度和扭矩。

•变速器通常由输入轴、输出轴和一组齿轮组成。

不同的齿轮组合会导致不同的传动比。

•变速器的设计需要考虑多个因素,包括传动比的范围、传动效率、噪音和可靠性等。

设计流程1.确定设计要求:根据应用需求确定变速器的传动比范围、承载能力、工作环境等。

2.选取合适的齿轮类型:常见的齿轮类型包括直齿轮、斜齿轮和行星齿轮等,根据需求选取合适的齿轮类型。

3.计算传动比:根据设计要求和齿轮类型计算出不同齿轮组合的传动比。

4.进行齿轮设计:根据计算得到的传动比,进行齿轮的几何和强度设计。

5.进行模拟和分析:使用计算机辅助设计(CAD)工具进行齿轮的模拟和分析,检查设计的合理性和可靠性。

6.制造和装配:根据最终的设计结果进行齿轮的制造和装配,确保变速器的性能和质量。

齿轮设计齿轮是变速器中最关键的组件之一,它们决定了传动比、噪音和传动效率等性能。

齿轮设计的关键要点如下:•齿轮的模数选择:齿轮的模数确定了齿轮尺寸的比例,并且对变速器的传动比和承载能力有重要影响。

•齿轮的齿数计算:根据传动比和齿轮模数计算出齿轮的齿数,确保齿轮的尺寸匹配和传动比准确。

•齿轮的强度设计:根据扭矩和转速等参数进行齿轮的强度设计,确保齿轮在工作时不会发生破裂或变形等失效。

模拟和分析通过使用计算机辅助设计(CAD)工具进行齿轮的模拟和分析,可以有效地评估设计的合理性和可靠性。

常见的模拟和分析方法包括:•齿轮接触分析:通过对齿轮的接触区域进行分析,评估齿轮的接触应力和接触疲劳寿命等参数。

•齿轮动力学分析:通过考虑齿轮的动力学特性,评估齿轮的振动、噪音和传动效率等性能。

•齿轮热力学分析:通过考虑齿轮的热传导和热膨胀等因素,评估齿轮的温升和热失效等情况。

浅谈汽车变速器中的齿轮设计

浅谈汽车变速器中的齿轮设计

浅谈汽车变速器中的齿轮设计齿轮作为汽车变速器的重要组成部件,其设计的好坏对变速器起着至关重要的作用,所以我们要对各个齿轮的材料、结构以及主要参数做出正确的选择和设计。

标签:汽车;变速器;齿轮;设计1 齿轮的材料选择国内汽车变速器齿轮的材料主要采用20CrMnTi、20Mn2TiB、15MnCr5、20MnCr5、25MnCr5、28MnCr5,而国外汽车变速器齿轮大都选用铬镍合金钢。

变速器齿轮的渗碳层深度推荐采用下列数值:法面模数mn≤3.5mm ,渗碳层深度为0.8~1.2mm;法面模数3.5<mn<5mm,渗碳层深度为0.9~1.3mm;法面模数mn≥5mm,渗碳层深度为1.0~1.6mm。

某些轻型货车和乘用车的齿轮采用40Cr 钢,并进行氰化处理。

2 齿轮的结构形式直齿圆柱齿轮和斜齿圆柱齿轮是变速器中最常用到的两种结构形式。

在变速器设计中,不同档位选取的齿轮形式可能不同,倒挡和低档一般用直齿圆柱齿轮,而对于常啮合齿轮则选用斜齿圆柱齿轮。

3 齿轮主要参数选择3.1 模数和压力角选择模数对于齿轮有很大影响,选用较大的模数可以减少齿轮质量,而选用较小的模数则可以降低变速器的噪声。

对于不同类型的车辆变速器应选用的模数也不同,乘用车减小工作噪声比较重要,因此齿轮要选较小模数,而货车减小质量更为重要,因此齿轮要选较大模数;变速器低挡齿轮应选用大些的模数,其他挡位选用另一种模数,很少情况下会选同一种模数,而倒挡齿轮选用的模数往往与一挡接近。

对于直齿轮,压力角为28°时强度最高,超过28°时强度增加不多;对于斜齿轮,压力角为25°时强度最高。

乘用车为了增加齿轮重合度来降低噪声应选15°或16°等较小的角度,而商用车为了提高齿轮承载力应选22.5°或25°等较大的角度。

3.2 螺旋角和齿宽螺旋角的选取对于变速器中的斜齿轮有着很大影响,这包括齿轮工作时的噪声大小,齿轮轮齿的强度以及轴向力等。

变速器齿轮传动原理与设计

变速器齿轮传动原理与设计

变速器齿轮传动原理与设计一、引言变速器是汽车驱动系统中至关重要的设备之一。

其主要作用是通过齿轮传动,调整发动机的输出转速和扭矩,以满足不同的行驶需求。

在本文中,我们将探讨变速器齿轮传动的原理和设计。

二、齿轮传动原理1. 齿轮传动概述齿轮传动是利用齿轮之间的啮合来传递动力和运动的装置。

它通过不同尺寸和齿数的齿轮组合,实现不同的传动比。

2. 基本齿轮参数齿轮的基本参数包括齿数、模数、齿宽等。

齿数决定了传动比,模数决定了齿轮的尺寸,齿宽则影响传动的承载能力和传动效率。

3. 齿轮啮合角齿轮啮合角是指两齿轮啮合线上任意两点之间的夹角。

合适的啮合角可以提高齿轮传动的平稳性和传动效率。

4. 齿轮传动效率齿轮传动的效率是指输入功率和输出功率之间的比值。

影响齿轮传动效率的因素包括啮合角、齿轮材料和润滑状况等。

三、变速器设计1. 变速器类型常见的变速器类型包括手动变速器和自动变速器。

手动变速器需要驾驶员通过操作离合器和换挡杆来实现变速,而自动变速器则通过液压系统和电子控制单元来自动完成变速。

2. 变速器结构变速器通常由多个齿轮副组成,其中包括输入轴、输出轴和中间的变速齿轮。

通过控制不同齿轮的啮合,可以实现不同的传动比。

3. 变速器控制系统自动变速器配备有复杂的控制系统,通过传感器和电子控制单元实时监测车速、发动机负荷等参数,以确定最佳的换挡时机和换挡方式。

4. 变速器优化设计在变速器的设计过程中,需要考虑传动比、齿轮尺寸、齿轮模数等因素。

通过优化设计,可以提高变速器的传动效率和可靠性。

四、结论变速器齿轮传动是汽车驱动系统中至关重要的组成部分。

了解变速器齿轮传动的原理和设计,可以帮助我们更好地理解汽车的变速器工作原理,并在设计和使用过程中做出更科学的决策。

通过不断的研究和优化,可以提高汽车变速器的性能和可靠性,满足不断发展的行驶需求。

变速器齿轮设计

变速器齿轮设计

变速器齿轮设计齿轮传动是机械传动中最重要的传动之一,形式很多,应用广泛,传递功率可达近十万千瓦,其主要特点:效率高、结构紧凑、工作可靠,寿命长、传动比稳定。

一、齿轮材料的选取齿轮是机械设备中应用最常见的机械零件,其主要功能是传递动力、改变运动速速和方向。

齿轮材料的种类很多,在选择时应考虑的因素很多,根据齿轮的工作条件及失效形式,要求制造齿轮的材料应具有下列性能:1)高的弯曲疲劳强度,足够的齿心强度和韧性,防止疲劳、冲击和过载断裂;2)高的接触疲劳强度及高的齿面硬度和耐磨性,防止齿面损伤;3)良好的切削加工性能和热处理工艺性能及焊接工艺性能。

齿轮材料的选择原则1)齿轮材料必须满足工作条件的要求,这是选择齿轮材料首先考虑的因素;2)应考虑齿轮尺寸的大小、毛坯成型方法及热处理和制造工艺;3)正火碳钢,不论毛坯的制作方法如何,只能用于制作在载荷平稳或轻度冲击下工作的齿轮,不能承受大的冲击载荷,调质碳钢可用于制作在中等冲击载荷下工作的齿轮;4)合金钢常用于制作高速、重载并载冲击载荷下工作的齿轮;汽车、拖拉机齿轮主要分装载变速箱和差速器中,他们工作时,承受载荷大,超载和受冲击频繁,工作条件恶劣,目前广泛使用的齿轮用钢是20CrMnTi合金渗碳钢,该钢具有较高的强度(σ=1100MPa),径淬火及低温回火后,表面硬度可达HRC58~62,心部硬度为HRC30~45,并具有较好的切削加工性能和热处理工艺性能,渗碳速度块,淬火变形小,对过热不敏感,渗碳后可直接淬火。

二、齿轮参数的初步确定齿轮传动的主要尺寸,可按下述两种方法来确定:(一)除受外部结构尺寸限定外,可参照同类产品用类比法确定,然后再进行强度校核,确定齿轮的参数 1.模数和压力角齿轮模数的因素很多,其中最主要的是齿轮的强度、质量、传动噪声、工艺要求。

减小模数,增加齿宽会使传动噪声降低,反之则能减轻变速器的质量。

主要从工艺要求出发,所有斜齿轮的法向模数均取mm m t 5=,所有直齿轮的模数均取mm m 4=。

汽车变速器齿轮设计及问题研讨

汽车变速器齿轮设计及问题研讨

汽车变速器齿轮设计及问题研讨随着汽车行业的不断发展和技术的不断进步,汽车的性能和功效要求也在不断提高。

变速器作为汽车的重要组成部分,其齿轮设计及问题成为了重要的研究课题。

本文旨在探讨汽车变速器齿轮设计及问题,并提出可行的解决方案。

一、汽车变速器齿轮设计原理1.1 齿轮传动原理汽车变速器齿轮是实现不同转速和扭矩之间相互传递的重要组件。

其基本原理是利用不同大小的齿轮进行配对,通过齿轮的啮合来实现功率的传递。

具体而言,当两个齿轮啮合时,一方称为驱动轮,另一方称为从动轮。

驱动轮转动时,从动轮也会转动,但转速和扭矩会根据两个齿轮的尺寸比例而发生变化,从而实现不同速度和力矩的传递。

1.2 齿轮设计要点汽车变速器齿轮的设计要点有很多,其中包括齿轮的直径、齿数、齿轮啮合角、啮合压力角、齿轮材料等。

这些要点的合理设计能够有效提高齿轮传动的效率和可靠性,降低发动机负荷和燃油消耗,并提高汽车的动力性能和行驶舒适度。

1.3 齿轮制造工艺在汽车变速器齿轮的制造过程中,需要考虑到齿轮的精度、表面光洁度、齿形合理性等因素。

通常情况下,齿轮的制造工艺包括锻造、车削、磨齿、淬火等过程,以确保齿轮能够满足设计要求和使用条件。

二、汽车变速器齿轮存在的问题及解决方案2.1 噪音问题汽车变速器齿轮在工作时,可能会因为啮合不良、齿轮形状不合理、齿轮精度不高等原因产生噪音。

针对这一问题,可以通过优化齿轮的设计和材料选择,提高齿轮的制造工艺水平,降低齿轮的运动速度和负荷等方式来减少噪音的产生,以提高汽车的使用舒适性。

2.2 磨损问题汽车变速器齿轮在长时间的使用过程中,可能会出现磨损现象。

这主要是由于齿轮的表面质量不高、润滑不良、使用条件恶劣等原因导致的。

为了解决这一问题,可以采用高强度和高硬度的材料制造齿轮,优化齿轮的表面光洁度和润滑系统,增加润滑油的冷却和过滤,以减少磨损的发生。

2.3 疲劳问题汽车变速器齿轮在长期的工作过程中,可能会因为载荷循环次数过大、应力集中、材料疲劳等原因产生疲劳现象。

变速器齿轮设计

变速器齿轮设计

8.4 变速箱齿轮设计方法8.4.1 变速箱齿轮的设计准则:由于汽车变速箱各档齿轮的工作情况是不相同的,所以按齿轮受力、转速、噪声要求等情况,应该将它们分为高档工作区和低档工作区两大类。

齿轮的变位系数、压力角、螺旋角、模数和齿顶高系数等都应该按这两个工作区进行不同的选择。

高档工作区:通常是指三、四、五档齿轮,它们在这个区内的工作特点是行车利用率较高,因为它们是汽车的经济性档位。

在高档工作区内的齿轮转速都比较高,因此容易产生较大的噪声,特别是增速传动,但是它们的受力却很小,强度应力值都比较低,所以强度裕量较大,即使削弱一些小齿轮的强度,齿轮匹配寿命也在适用的范围内。

因此,在高档工作区内齿轮的主要设计要求是降低噪声和保证其传动平稳,而强度只是第二位的因素。

低档工作区:通常是指一、二、倒档齿轮,它们在这个区内的工作特点是行车利用率低,工作时间短,而且它们的转速比较低,因此由于转速而产生的噪声比较小。

但是它们所传递的力矩却比较大,轮齿的应力值比较高。

所以低档区齿轮的主要设计要求是提高强度,而降低噪声却是次要的。

在高档工作区,通过选用较小的模数、较小的压力角、较大的螺旋角、较小的正角度变位系数和较大的齿顶高系数。

通过控制滑动比的噪声指标和控制摩擦力的噪声指标以及合理选用总重合度系数、合理分配端面重合度和轴向重合度,以满足现代变速箱的设计要求,达到降低噪声、传动平稳的最佳效果。

而在低档工作区,通过选用较大的模数、较大的压力角、较小的螺旋角、较大的正角度变位系数和较小的齿顶高系数,来增大低档齿轮的弯曲强度,以满足汽车变速箱低档齿轮的低速大扭矩的强度要求。

以下将具体阐述怎样合理选择这些设计参数。

8.4.2 变速箱各档齿轮基本参数的选择:1 合理选用模数:模数是齿轮的一个重要基本参数,模数越大,齿厚也就越大,齿轮的弯曲强度也越大,它的承载能力也就越大。

反之模数越小,齿厚就会变薄,齿轮的弯曲强度也就越小。

对于低速档的齿轮,由于转速低、扭矩大,齿轮的弯曲应力比较大,所以需选用较大的模数,以保证其强度要求。

汽车制造与维修——变速器齿轮设计

汽车制造与维修——变速器齿轮设计

图3 中间轴式六挡变速器传动方案
© GJT, 22 November 2020, Guo Zuirun; all rights reserved
6
变速器齿轮设计
图4为常见的倒挡布置方案。图4b方案的优点是倒挡利用了一挡齿轮,缩短了 中间轴的长度。但换挡时有两对齿轮同时进入啮合,使换挡困难。图4c方案能获 得较大的倒挡传动比,缺点是换挡程序不合理。图4d方案对4c的缺点做了修改。 图4e所示方案是将一、倒挡齿轮做成一体,将其齿宽加长。图4f所示方案适用于 全部齿轮副均为常啮合的齿轮,挡换更为轻便。
5~6之间,其它货车则更大。
© GJT, 22 November 2020, Guo Zuirun; all rights reserved
9
变速器齿轮设计
4、中心距A
▪ 对中间轴式变速器,中间轴与第二轴之间的距离称为变速器中心距A。
变速器中心距是一个基本参数,对变速器的外形尺寸、体积和质量大小、 轮齿的接触强度有影响。
为了缩短变速器轴 向长度,倒挡传动采用 图4g所示方案。缺点是 一、倒挡各用一根变速 器拨叉轴,使变速器上 盖中的操纵机构复杂一 些。
图4 倒挡布置方案
© GJT, 22 November 2020, Guo Zuirun; all rights reserved
7
变速器齿轮设计
三、变速器主要参数的选择
图1中的中间轴式四挡变速器传动方案示例的区别为图1a、b所示方案有四对 常啮合齿轮,倒挡用直齿滑动齿轮换挡,图1c所示传动方案的二、三、四挡用常 啮合齿轮传动,而一、倒挡用直齿滑动齿轮换挡。
图1 中间轴式四挡变速器传动方案
© GJT, 22 November 2020, Guo Zuirun; all rights reserved

变速器设计

变速器设计

变速器设计第一步:需求分析在变速器设计之前,需要明确变速器的用途和要求。

例如,设计一个汽车变速器时,需要确定最大扭矩、最大转速、最小转速、理想传动效率等等。

同时,也需要考虑所使用的发动机的转速特性和动力要求。

第二步:设计参数确定设计参数的确定非常重要,包括传动比的选择、传动器件的类型等等。

传动比取决于所需的车速范围和所使用的发动机的转速特性。

传输装置可以是齿轮、链条、带传动等等,这取决于设计需求和空间限制。

第三步:齿轮设计齿轮设计是变速器设计中最复杂的部分之一、首先,需要根据所需的传动比和齿轮类型来确定齿轮的参数,例如齿轮模数、齿数、压力角等。

然后,利用齿轮模数、转速和所需传动比等信息,计算齿轮的尺寸和齿形。

第四步:经济性评估在设计过程中,需要考虑经济性因素。

这包括变速器制造成本、使用寿命、能源效率等等。

根据所设计的变速器方案,可以进行整体经济性评估,包括成本评估和能源效率评估。

如果经济性不满足要求,可能需要进行优化设计。

第五步:验证和测试设计完成后,需要对变速器进行验证和测试。

这可以通过计算机模拟、实验室测试和实际使用测试等方式来完成。

验证和测试的目的是确保设计满足要求,并进行必要的调整和改进。

最后,根据测试结果,可以对变速器进行进一步的改进和优化。

这个过程可能需要多次迭代,直到设计满足各项要求为止。

总结起来,变速器设计是一个复杂而繁琐的过程,需要考虑多个因素。

设计者需要通过需求分析确定设计参数,然后进行齿轮设计,并对设计进行经济性评估。

最后,通过验证和测试来确认设计的有效性,并进行必要的优化。

浅析变速器齿轮设计

浅析变速器齿轮设计
(4)螺旋角:为了保证齿轮间的啮合度,一般采用较大的螺旋 角,然后检测其运转是否平稳,运转噪音是否过大等,无异常现象则 可以投入使用。需要注意的是螺旋角不宜太大,以避免齿轮出现弯曲 等现象。低挡齿轮,螺旋角选择15º~25º为宜,以保证其抗弯强度。
(5)齿宽:齿宽的选取一般围绕齿轮模数进行。齿宽选取不 当,会影响齿轮的运转稳定性。齿宽越大其承载能力越高,但易导 致轴的挠度变形等问题,使齿轮受力不均,因此齿宽不宜过大。
计算轮齿实际强度值时,可查阅相关经验公式、经验值与具体 参数,得到轮齿接触作用力与弯曲作用力。然后不断调整参数值以 使轮齿具有足够的强度,防止因强度不足而出现表皮脱落、轮齿断 裂、轮齿严重磨损等问题的产生。
作者简介: 段辉,学生,本科,研究方向为车辆工程。
1ห้องสมุดไป่ตู้0
2018.04
Copyright©博看网 . All Rights Reserved.
2 齿轮主要参数选择
(1)齿数:齿数的选择一般应满足以下4个条件:满足传动比及 行星齿轮互不干涉等要求;获得尽可能高的动力性与经济性要求;不 产生根切现象;可相互啮合的齿轮,其齿数不能存在公因数。
(2)压力角:一般选择25º压力角以获得最大强度,直齿轮一般 保持在28º。此外,节圆处渐开线曲率半径与齿根圆齿厚会随着压力角 的增大而增大,使不根切的最少齿数减少,接触强度提高。
(6)齿顶高系数:为了保证轮齿弯曲强度与重合度,齿顶高 系数不宜过小,实际运用中大都采用标准为1.00的齿顶高系数。少 数变速器采用的长齿齿轮,使用的齿顶高系数会>1.00,因为它相 较于普通齿轮,在动载荷、振动及噪音控制等方面具有更加优异的 性能,而且可增大重合度。
(7)端向变位系数:若变位系数选择合理,可使齿轮产生根切 的概率降低,从而使其中心距达到配凑。变位系数选择原则为:保证 啮合时不干涉、保证必要的重合度与齿顶厚、保证加工时不顶切、保 证加工时不根切。

变速器齿轮设计要点讲解

变速器齿轮设计要点讲解

变速器齿轮设计要点讲解1.齿轮齿数和齿廓:齿轮的齿数和齿廓决定了齿轮的传动比和传力能力。

齿数过少会导致传动比不稳定,齿廓不合理会导致齿轮磨损和噪音增大。

因此,设计者需要根据变速器的传输需求和负载情况来确定齿数和齿廓的设计参数。

2.齿轮材料和硬度:齿轮材料的选择直接影响到齿轮的强度和耐磨性。

常见的齿轮材料有合金钢、铸铁、铜合金等。

设计者需要根据变速器的工作环境和使用寿命要求来选择合适的齿轮材料,并根据材料的硬度要求进行热处理,以提高齿轮的硬度和耐磨性。

3.齿轮模数和齿宽:齿轮的模数和齿宽决定了齿轮的尺寸和承载能力。

模数过大会导致齿轮尺寸过大,模数过小会导致齿轮强度不足。

齿宽过小会导致齿面接触应力集中,齿宽过大会增加齿轮的重量和惯量。

设计者需要根据变速器的传动扭矩和转速要求来选择合适的齿轮模数和齿宽。

4.齿轮配对和啮合角:齿轮的配对质量和啮合角的选择直接影响到齿轮传动的噪音和效率。

设计者需要通过正确选择啮合角和采用合适的啮合修形来提高齿轮传动的平稳性和效率。

5.齿轮加工和磨削工艺:齿轮的加工和磨削质量对于齿轮传动的运行平稳性和可靠性有重要影响。

设计者需要选择合适的加工和磨削工艺,并确保齿轮的加工精度和表面质量达到要求。

6.齿轮润滑和散热:齿轮在传动过程中会产生热量,设计者需要考虑齿轮的润滑和散热问题,以确保齿轮在高负载和高转速工况下的可靠性和寿命。

综上所述,变速器齿轮设计要关注齿轮齿数和齿廓、齿轮材料和硬度、齿轮模数和齿宽、齿轮配对和啮合角、齿轮加工和磨削工艺、齿轮润滑和散热等关键要点,以保证变速器的性能和可靠性。

设计者需要通过综合考虑这些要点,根据实际应用需求进行合理的设计和优化。

浅析变速器齿轮设计

浅析变速器齿轮设计

浅析变速器齿轮设计摘要:变速器作为汽车的核心组成部分,通过不同的齿轮组合将发动机输出扭矩和转速转变为所需的扭矩和转速,获得不同的动力输出。

在汽车机械式变速器中,齿轮是决定其性能最重要的部件,不仅影响到变速器的使用寿命,而且还决定了变速器的 NVH 性能。

本文针对轻微型商用车的变速器齿轮,对其进行设计,详见如下。

关键词:变速器;齿轮;设计1齿轮的材料选择在齿轮选材方面,国外大都采用铬镍合金钢,国内主要采用20CrMnTiH和20CrNiMoH等合金钢。

变速器齿轮中渗碳层的数值一般较为固定,当渗碳层深度范围为1.1~1.7mm时,法面模数的应用参考值为mn≥5mm;当渗碳层深度范围为0.8~1.3mm时,法面模数的应用参考值尽量为mn≥5mm;当渗碳层深度范围为0.7~1.2mm时,则法面模数的应用参考值为mn≤3.5mm。

2齿轮主要参数选择(1)齿数:齿数的选择一般应满足以下4个条件:满足传动比及行星齿轮互不干涉等要求;获得尽可能高的动力性与经济性要求;不产生根切现象;可相互啮合的齿轮,其齿数不能存在公因数。

(2)压力角:一般选择25º压力角以获得最大强度,直齿轮一般保持在28º。

此外,节圆处渐开线曲率半径与齿根圆齿厚会随着压力角的增大而增大,使不根切的最少齿数减少,接触强度提高。

(3)模数:齿轮模数取决于轮齿的弯曲疲劳强度等因素,考虑到维修难度与加工工艺性,变速器中不宜采用过多的齿轮种类。

常规设计是一、倒挡齿轮使用1种模数,高速挡齿轮使用1种模数,中间挡齿轮模数取二者之间。

此外应注意增大模数、减小齿宽会使变速器减重;而减小模数、增大齿宽会使变速器降噪。

轿车对变速器的噪声要求较高,而货运应注重质量要求。

(4)螺旋角:为了保证齿轮间的啮合度,一般采用较大的螺旋角,然后检测其运转是否平稳,运转噪音是否过大等,无异常现象则可以投入使用。

需要注意的是螺旋角不宜太大,以避免齿轮出现弯曲等现象。

8.4变速器齿轮设计

8.4变速器齿轮设计

8.4 变速箱齿轮设计方法8.4.1 变速箱齿轮的设计准则:由于汽车变速箱各档齿轮的工作情况是不相同的,所以按齿轮受力、转速、噪声要求等情况,应该将它们分为高档工作区和低档工作区两大类。

齿轮的变位系数、压力角、螺旋角、模数和齿顶高系数等都应该按这两个工作区进行不同的选择。

高档工作区:通常是指三、四、五档齿轮,它们在这个区内的工作特点是行车利用率较高,因为它们是汽车的经济性档位。

在高档工作区内的齿轮转速都比较高,因此容易产生较大的噪声,特别是增速传动,但是它们的受力却很小,强度应力值都比较低,所以强度裕量较大,即使削弱一些小齿轮的强度,齿轮匹配寿命也在适用的范围内。

因此,在高档工作区内齿轮的主要设计要求是降低噪声和保证其传动平稳,而强度只是第二位的因素。

低档工作区:通常是指一、二、倒档齿轮,它们在这个区内的工作特点是行车利用率低,工作时间短,而且它们的转速比较低,因此由于转速而产生的噪声比较小。

但是它们所传递的力矩却比较大,轮齿的应力值比较高。

所以低档区齿轮的主要设计要求是提高强度,而降低噪声却是次要的。

在高档工作区,通过选用较小的模数、较小的压力角、较大的螺旋角、较小的正角度变位系数和较大的齿顶高系数。

通过控制滑动比的噪声指标和控制摩擦力的噪声指标以及合理选用总重合度系数、合理分配端面重合度和轴向重合度,以满足现代变速箱的设计要求,达到降低噪声、传动平稳的最佳效果。

而在低档工作区,通过选用较大的模数、较大的压力角、较小的螺旋角、较大的正角度变位系数和较小的齿顶高系数,来增大低档齿轮的弯曲强度,以满足汽车变速箱低档齿轮的低速大扭矩的强度要求。

以下将具体阐述怎样合理选择这些设计参数。

8.4.2 变速箱各档齿轮基本参数的选择:1 合理选用模数:模数是齿轮的一个重要基本参数,模数越大,齿厚也就越大,齿轮的弯曲强度也越大,它的承载能力也就越大。

反之模数越小,齿厚就会变薄,齿轮的弯曲强度也就越小。

对于低速档的齿轮,由于转速低、扭矩大,齿轮的弯曲应力比较大,所以需选用较大的模数,以保证其强度要求。

变速器齿轮工艺设计说明书

变速器齿轮工艺设计说明书

变速器齿轮工艺设计说明书一、分析零件图(如图1)1、零件名称:变速器齿轮12、材料:18CrMnTi3、产量:100件4、技术要求:1)、齿面渗碳层深度0.6-1.0,表面淬硬度HRC56-62,齿心部硬度HRC 33-48;2)、齿廓倒角0.5x45;3)、未注倒角为1x45。

二、锻造工艺性分析首先,运行计算机辅助自由锻锻件工艺设计软件,进入用户界面。

在主菜单中,选择"工艺方法分析"子菜单。

点击后进入"工艺方法分析"界面,此时,对零件可进行结构分析,缺陷分析,零件作用分析。

对零件的锻造工艺性分析完成后,点击"返回",系统则回到计算机辅助自由锻锻件工艺设计软件的主界面。

下面是变速器齿轮的锻造工艺性分析结果:(1)分析该零件,得出:锻造的目的是侧重于成形、减少加工余量。

(2)分析锻后零件性能可能变化的趋势。

在锻造时,由于锻件本身的成分、组织的不均匀和各处受力情况不同,锻件内各处的变形情况也不同,变形首先发生在那些先满足屈服准则的部分。

因此,有的地方先变形,有的地方后变形;有的地方变形大,有的地方变形小,由于存在变形的不均匀性,将在个部分变形金属之间产生相互影响,产生附加应力(例如在镦粗时坯料侧表面切向产生的附加拉应力等)和残余应力等,带来一些不良的影响。

所以在锻造时要注意以下几方面:一,为防止镦粗时产生纵向弯曲,圆柱体坯料高度与直径之比不应超过 2.5~3,在2~2.2的范围内更好。

二,镦粗时每次的压缩量应小于材料塑性允许的范围。

三、绘制锻件图在主菜单中,选择"工艺制定"子菜单。

点击后进入"工艺制定"界面,在菜单项中,选择"根据零件图绘制锻件图" 子菜单,双击进入"根据零件图绘制锻件图"界面。

根据提示可完成变速器齿轮的锻件图绘制过程。

步骤如下:(1)确定锻件形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.4 变速箱齿轮设计方法8.4.1 变速箱齿轮的设计准则:由于汽车变速箱各档齿轮的工作情况是不相同的,所以按齿轮受力、转速、噪声要求等情况,应该将它们分为高档工作区和低档工作区两大类。

齿轮的变位系数、压力角、螺旋角、模数和齿顶高系数等都应该按这两个工作区进行不同的选择。

高档工作区:通常是指三、四、五档齿轮,它们在这个区的工作特点是行车利用率较高,因为它们是汽车的经济性档位。

在高档工作区的齿轮转速都比较高,因此容易产生较大的噪声,特别是增速传动,但是它们的受力却很小,强度应力值都比较低,所以强度裕量较大,即使削弱一些小齿轮的强度,齿轮匹配寿命也在适用的围。

因此,在高档工作区齿轮的主要设计要降低噪声和保证其传动平稳,而强度只是第二位的因素。

低档工作区:通常是指一、二、倒档齿轮,它们在这个区的工作特点是行车利用率低,工作时间短,而且它们的转速比较低,因此由于转速而产生的噪声比较小。

但是它们所传递的力矩却比较大,轮齿的应力值比较高。

所以低档区齿轮的主要设计要提高强度,而降低噪声却是次要的。

在高档工作区,通过选用较小的模数、较小的压力角、较大的螺旋角、较小的正角度变位系数和较大的齿顶高系数。

通过控制滑动比的噪声指标和控制摩擦力的噪声指标以及合理选用总重合度系数、合理分配端面重合度和轴向重合度,以满足现代变速箱的设计要求,达到降低噪声、传动平稳的最佳效果。

而在低档工作区,通过选用较大的模数、较大的压力角、较小的螺旋角、较大的正角度变位系数和较小的齿顶高系数,来增大低档齿轮的弯曲强度,以满足汽车变速箱低档齿轮的低速大扭矩的强度要求。

以下将具体阐述怎样合理选择这些设计参数。

8.4.2 变速箱各档齿轮基本参数的选择:1 合理选用模数:模数是齿轮的一个重要基本参数,模数越大,齿厚也就越大,齿轮的弯曲强度也越大,它的承载能力也就越大。

反之模数越小,齿厚就会变薄,齿轮的弯曲强度也就越小。

对于低速档的齿轮,由于转速低、扭矩大,齿轮的弯曲应力比较大,所以需选用较大的模数,以保证其强度要求。

而高速档齿轮,由于转速高、扭矩小,齿轮的弯曲应力比较小,所以在保证齿轮弯曲强度的前提下,一般选用较小的模数,这样就可以增加齿轮的齿数,以得到较大的重合度,从而达到降低噪声的目的。

在现代变速箱设计中,各档齿轮模数的选择是不同的。

例如,某变速箱一档齿轮到五档齿轮的模数分别是:3.5;3;2.75;2.5;2;从而改变了过去模数相同或模数拉不开的状况。

2合理选用压力角:当一个齿轮的模数和齿数确定了,齿轮的分度圆直径也就确定了,而齿轮的渐开线齿形取决于基圆的大小,基圆大小又受到压力角的影响。

对于同一分度圆的齿轮而言,若其分度圆压力角不同,基圆也就不同。

当压力角越大时,基圆直径就越小,渐开线就越弯曲,轮齿的齿根就会变厚,齿面曲率半径增大,从而可以提高轮齿的弯曲强度和接触强度。

当减小压力角时,基圆直径就会变大,齿形渐开线就会变的平直一些,齿根变薄,齿面的曲率半径变小,从而使得轮齿的弯曲强度和接触强度均会下降,但是随着压力角的减小,可增加齿轮的重合度,减小轮齿的刚度,并且可以减小进入和退出啮合时的动载荷,所有这些都有利于降低噪声。

因此,对于低速档齿轮,常采用较大的压力角,以满足其强度要求;而高速档齿轮常采用较小的压力角,以满足其降低噪声的要求。

例如:某一齿轮模数为3,齿数为30,当压力角为17.5度时基圆齿厚为5.341;当压力角为25度时,基圆齿厚为6.716;其基圆齿厚增加了25%左右,所以增大压力角可以增加其弯曲强度。

3 合理选用螺旋角:与直齿轮相比,斜齿轮具有传动平稳,重合度大,冲击小和噪声小等优点。

现在的变速箱由于带同步器,换档时不再直接移动一个齿轮与另一个齿轮啮合,而是所有的齿轮都相啮合,这样就给使用斜齿轮带来方便,因此,凡带同步器的变速箱大多都使用斜齿轮。

由于斜齿轮的特点,决定了整个齿宽不是同时全部进入啮合的,而是先由轮齿的一端进入啮合,随着轮齿的传动,沿齿宽方向逐渐进入啮合,直到全部齿宽都进入啮合,所以斜齿轮的实际啮合区域比直齿轮的大。

当齿宽一定时,斜齿轮的重合度随螺旋角增加而增加。

承载能力也就越强,平稳性也就越好。

从理论上讲,螺旋角越大越好,但螺旋角增大,会使轴向分力也增大,从而使得传递效率降低了。

在现代变速箱的设计中,为了保证齿轮传动的平稳性、低噪声和少冲击,所有齿轮都要选择较大的螺旋角,一般都在30 左右。

对于高速档齿轮由于转速较高,要求平稳,少冲击,低噪声,因此采用小模数,大螺旋角;而低速档齿轮则用较大模数,较小螺旋角。

4合理选用正角度变位:对于具有良好润滑条件的硬齿面齿轮传动,一般认为其主要危险是在循环交变应力作用下,齿根的疲劳裂纹逐渐扩造成齿根断裂而失效。

变速箱中齿轮失效正是属于这一种。

为了避免轮齿折断,应尽量提高齿根弯曲强度,而运用正变位,则可达到这个目的。

一般情况下,变位系数越大,齿形系数值就越小,轮齿上弯曲应力越小,轮齿弯曲强度就越高。

在硬齿面的齿轮传动中,齿面点蚀剥落也是失效原因之一。

增大啮合角,可降低齿面间的接触应力和最大滑动率,能大大提高抗点蚀能力。

而增大啮合角,则必须对一副齿轮都实行正变位,这样既可提高齿面的接触强度,又可提高齿根的弯曲强度,从而达到提高齿轮的承载能力效果。

但是,对于斜齿轮传动,变位系数过大,又会使轮齿总的接触线长度缩短,反而降低其承载能力。

同时,变位系数越大,由于齿顶圆要随之增大,其齿顶厚度将会变小,这会影响齿顶的强度。

因此在现代变速箱的设计中,大多数齿轮均合理采用正角度变位,以最大限度发挥其优点。

主要有以下几个设计准则:●对于低速档齿轮副来说,主动齿轮的变位系数应大于被动齿轮的变位系数,而对高速档齿轮副,其主动齿轮的变位系数应小于被动齿轮的变位系数。

●主动齿轮的变位系数随档位的升高而逐渐xiajiang。

这是因为低档区由于转速低、扭矩大,齿轮强度要求高,因此需采用较da的变位系数。

●各档齿轮的总变位系数都是正的(属于角变位修正),而且随着档位的升高而逐渐减小。

总变位系数越小,一对齿轮副的齿根总的厚度就越薄,齿根就越弱,其抗弯强度就越低,但是由于轮齿的刚度减小,易于吸收冲击振动,故可降低噪声。

而且齿形重合度会增加,这使得单齿承受最大载荷时的着力点距齿根近,使得弯曲力矩减小,相当于提高了齿根强度,这对由于齿根减薄而消弱强度的因素有所抵消。

所以总变位系数越大,则齿根强度越高,但噪声则有可能增大。

因此高速档齿轮要选择较小的总变位系数,而低速档齿轮则必须选用较大的总变位系数。

5、提高齿顶高系数:齿顶高系数在传动质量指标中,影响着重合度,在斜齿轮中主要影响端面重合度。

由端面重合度的公式可知,当齿数和啮合角一定时,齿顶圆压力角是受齿顶高系数影响的,齿顶高系数越大,齿顶圆压力角也越大,重合度也就越大,传动也就越平稳。

但是,齿顶高系数越大,齿顶厚度就会越薄,从而影响齿顶强度。

同时,从最少不根切齿数公式来看,齿顶高系数越大,最少不根切齿数就会增加,否则的话,就会产生根切。

因此,在保证不根切和齿顶强度足够的情况下,增大齿顶高系数,对于增加重合度是有意义的。

因此在现代变速箱的设计中,各档齿轮的齿顶高系数都选择较大的值,一般都大于1.0,称为细高齿,这对降低噪声,增加传动平稳性都有明显的效果。

对于低速档齿轮,为了保证其具有足够的齿根弯曲强度,一般选用较小的齿顶高系数;而高速档齿轮,为了保证其传动的平稳性和低噪声,一般选用较大的齿顶高系数。

以上是从模数、压力角、螺旋角、变位系数和齿顶高系数这五个方面去独立分析齿轮设计趋势。

实际上各个参数之间是互相影响、互相牵连的,在选择变速箱的参数时,既要考虑它们的优缺点,又要考虑它们之间的相互关系,从而以最大限度发挥其长处,避免短处,改善变速箱的使用性能。

8.4.3 变速箱齿轮啮合质量指标的控制:1 分析齿顶宽:对于正变位齿轮,随着变位系数的增大,齿顶高也增大,而齿顶会逐渐变尖。

当齿轮要求进行表面淬火处理时,过尖的齿顶会使齿顶全部淬透,从而使齿顶变脆,易于崩碎。

对于变位系数大,而齿数又少的小齿轮,尤易产生这种现象。

所以必须对齿轮进行齿顶变尖的验算。

对于汽车变速箱齿轮,一般推荐其齿顶宽不小于(0.25-0.4)m。

2 分析最小侧隙:为了保证齿轮传动的正常工作,避免因工作温度升高而引起卡死现象,保证轮齿正常润滑以及消除非工作齿面之间的撞击。

因此在非工作齿面之间必须具有最小侧隙。

如果装配好的齿轮副中的侧隙小于最小侧隙,则会带来一系列上述的问题。

特别是对于低速档齿轮,由于其处于低速重载的工作环境下,温度上升较快,所以必须留有足够的侧隙以保证润滑防止卡死。

3 分析重合度:对于斜齿轮传动的重合度来说,是指端面重合度与轴向重合度之和。

为了保证齿轮传动的连续性、传动平稳性、减少噪声以及延长齿轮寿命,各档齿轮的重合度必须大于允许值。

对于汽车变速箱齿轮来说,正逐渐趋向于高重合度化。

尤其对于高速档齿轮来说,必须选择大的重合度,以保证汽车高速行驶的平稳性以及降低噪声的要求。

而对于低速档齿轮来说,在保证传动性能的条件下,适当地减小重合度,可使齿轮的齿宽和螺旋角减小,这样就可减轻重量,降低成本。

4 分析滑动比:滑动比可用来表示轮齿齿廓各点的磨损程度。

齿廓各点的滑动比是不相同的,齿轮在节点啮合时,滑动比等于零;齿根上的滑动比大于齿顶上的滑动比;而小齿轮齿根上的滑动比又大于大齿轮齿根上的滑动比,所以在通常情况下,只需验算小齿轮齿根上的滑动比就可以了。

对于滑动比来说,越小越好。

高速档齿轮的滑动比一般比低速档齿轮的要小,这是因为高速档齿轮齿廓的磨损程度要比低速档齿轮的小,因为高速档齿轮的转速高、利用率大,所以必须保证其一定的抗磨性能以及减小噪声的要求。

5 分析压强比:压强比是用来表示轮齿齿廓各点接触应力与在节点处接触应力的比值。

其分布情况与滑动比分布情况相似,故一般也只需验算小齿轮齿根上的压强比就可以了。

对于变速箱齿轮来说,压强比一般不得大于1.4-1.7。

高速档齿轮的压强比一般比低速档齿轮的要小,这是因为在高速档齿轮传动中,为了减少振动和噪声,其齿廓上的接触应力分布应比较均匀。

8.4.4 降低变速箱齿轮噪声的设计:发动机、变速箱和排气系统是汽车的三大主要噪声源,所以,对于变速箱来说,降低它的噪声是实现汽车低噪声化的重要组成部分。

引起变速箱噪声的原因是多方面、错综复杂的,其中齿轮啮合噪声是主要方面,其次,如箱体轴轴承等也会引起噪声,从理论分析和实际经验得到,提高变速箱零部件特别是齿轮的加工精度是降低噪声的有效措施,但追求高精度会造成成本增加、生产率下降等。

因此要降低变速箱的噪声,应该从优化设计齿轮参数和提高齿轮精度等诸多途径出发,从而达到成本、安全等方面的综合平衡。

相关文档
最新文档