聚合物胶束

合集下载

载药聚合物胶束制备方法的研究进展-1

载药聚合物胶束制备方法的研究进展-1

载药聚合物胶束制备方法的研究进展中国药科大学药剂学 张振海 吕慧侠聚合物胶束是两亲性的高分子物质在水中自发形成的一种自组装结构。

与小分子表面活性剂类似,当嵌段或接枝共聚物在水中的浓度达到一定程度后,分子中的疏水段和亲水段就会发生微相分离,自动地形成疏水段向内,亲水段向外的具有典型核—壳结构的胶束,疏水性药物则依靠胶束内核间的疏水性相互作用而进入胶束内部。

聚合物胶束按照溶剂不同可分为水溶性胶束和有机溶剂胶束,按小分子表面活性剂的说法,前者为常规胶束, 后者为反向胶束。

按胶束的结构又有星型胶束(胶束的核很小而壳相对较大,见图1) 、平头胶束(胶束的核很大而壳相对较小,见图2) 等。

自组装形成的载药胶束是热力学、动力学稳定的体系,具有许多优良的性质,使得聚合物胶束成为难溶性药物理想的输送系统。

图1:星型胶束 图2:平头胶束1 聚合物胶束的理化性质聚合物胶束的形成与聚合物分子的静电、疏水、氢键作用等有关。

在体系自由能降低的驱动下,聚合物的疏水段自发聚集在一起,形成胶束内核,疏水性药物可以通过与内核间的物理协同作用或与疏水段化学结合而进入胶束内核,大大提高难溶性药物的溶解度。

聚合物的亲水段分布在疏水内核周围,与周围的水分子间形成氢键而向水中伸展,形成有一定厚度的壳层。

亲水段彼此之间的排斥作用可以保证胶束在一定的浓度范围内稳定存在。

外壳还可以有效地降低胶束表面上蛋白质的吸附和细胞的附着。

蛋白质吸附在胶束表面会引起胶束降解,导致药物从中泄露出来[1]。

此外,外壳还可以阻止胶束粒子的再次聚集,减少因此而造成的药物在生物体内分布的改变。

开始大量形成胶束时的聚合物浓度即为临界胶束浓度(CMC)。

与小分子表面活性剂相比,两亲聚合物的CMC值通常很低(约为10-6mol/L) ,当浓度大于CMC时即可形成紧密稳定的胶束[2]。

因此,聚合物胶束体系具有很高的热力学稳定性。

此外,聚合物分子内多点间的疏水性相互作用,使得该类型胶束具有高的动力学稳定性,当把胶束溶液稀释到CMC值以下时,胶束的分解速度也是很低的,这是聚合物胶束与普通小分子表面活性剂形成的胶束最显著的区别。

药物纳米载体 聚合物胶束的研究进展

药物纳米载体  聚合物胶束的研究进展

1、化学反应法
化学反应法是指通过化学反应将药物分子嵌入到聚合物链中,从而形成聚合 物胶束。该方法常用的反应包括酯化反应、酰胺化反应和醚化反应等。这些反应 可以在适当的条件下将药物分子嵌入到聚合物链中,并形成稳定的聚合物胶束。
2、界面聚合法
界面聚合法是一种在水溶液中制备聚合物胶束的方法。该方法通过将药物分 子添加到聚合物单体的水溶液中,然后在油水界面上进行聚合反应。随着聚合反 应的进行,聚合物胶束逐渐形成并从水溶液中分离出来。
的动力学行为来了解其结构和性质的 方法。该方法可以通过分析聚合物胶束在溶液中的扩散系数、布朗运动等参数来 推算出其分子量和尺寸等参数。
三、药物纳米载体——聚合物胶 束的应用前景
随着药物纳米载体——聚合物胶束的不断发展,其应用前景也越来越广泛。 未来,药物纳米载体——聚合物胶束有望在药物递送、疫苗递送、组织工程等领 域得到广泛应用。
1、光谱分析法
光谱分析法是一种通过分析光谱数据来研究聚合物胶束的方法。该方法可以 通过测量光谱吸收峰的位置和形状等参数来推算出聚合物胶束的分子量和尺寸等 参数。
2、电镜观察法
电镜观察法是一种通过观察聚合物胶束的形态和尺寸来研究其结构的方法。 该方法可以通过将聚合物胶束制成薄膜或涂层,然后在扫描电镜或透射电镜下进 行观察,从而获得聚合物胶束的形态和尺寸等信息。
3、自组装法
自组装法是一种通过分子自组装形成聚合物胶束的方法。该方法通过将药物 分子和聚合物分子在水溶液中混合,然后通过调节溶液的pH值、温度等参数,使 得药物分子和聚合物分子自组装形成聚合物胶束。
二、药物纳米载体——聚合物胶 束的研究方法
研究药物纳米载体——聚合物胶束的方法主要包括光谱分析法、电镜观察法、 动力学方法等。

靶向聚合物胶束

靶向聚合物胶束

2.胶束的制备
材料选择 制备方法
胶束的材料——理想要求
拥有合适尺寸,大小从10到100 nm; 体内及体外具有高度的稳定性; 所用的嵌段共聚物具有较低的临界胶束浓
度CMC和高度的动力学稳定性; 能够在体内存在较长时间,且最终可以生
物分解,无毒性。
胶束的材料——亲水端
与外环境直接接触 影响被包封药物分布及药代动力学参数
利用或逃避网状内皮系统( RES) 摄取的被动靶向肿瘤
通过EPR效应靶向肿瘤 肿瘤特异性靶向 通过肿瘤血管系统靶向肿瘤 其他靶向策略
逃避网状内皮系统( RES)摄取
原理:
胶束进入系 大小

表面性质
特征:
被RES摄取
逃避摄取,靶向 其他部位
1. 粒径<100nm
2. 通过接枝或嵌段共聚物的亲水区和疏水 区形成的核
聚环氧乙烷-b-聚己内酯胶束
Poly(ethylene oxide)-b-poly(ε-caprolactone) Micelles
靶向修饰基团:
arginine-glycine-aspartic acid (RGD) Peptides
作用目标:
小鼠黑素瘤细胞(实验室体外培养)
合成步骤 物性测量 细胞吸收程度 体外实验观察结果
肉豆蔻酸(C14 )

硬脂酸(C18 )
稳定性
二十四烷酸(C24 )

胶束的材料——疏水端
脂肪族类:聚丙交酯(PLLA),聚乙交酯(PGA), 聚己内酯(PCL),聚乳酸,乙醇酸酯(PLGA)
氨基酸类:聚天冬氨酸(PAsp ),聚卞基天冬氨酸( PBLA), 聚谷氨酸(PGlu)
脂肪族聚酯:易于水解,产物无毒、良好的生物兼容性; 氨基酸类: 作为核片段,易于化学修饰并且可利用物理协同

聚合物胶束-20080925

聚合物胶束-20080925

EPR效应(enhanced permeability and retention effect) 增强的渗透性和滞留效应,使高分子载体系统具有一定的被动靶向性. EPR效应是借助于实体瘤部位血管内皮渗透性的增强,以及缺乏足够的 淋巴管,导致药物无法被重新吸收入循环系统,使得药物滞留于肿瘤 部位,从而提高药物在靶部位的浓度,增强对肿瘤细胞的杀伤作用, 同时大大降低对正常组织的毒副作用。
聚合物胶束与其他药物载体的区别
与脂质体或微粒相比更小的粒径,只有胶 束内部疏水区而缺少胶束内部含水区,外 表面链段的保护作用。
聚合物胶束形成的热力学过程与小分子 表面活性剂胶束相同,自组装形成胶束 的主要策动力是系统自由能的降低,疏 水链段形成内核,从而脱离与水性环境 的接触,亲水链段形成表面与水接触。
图1.常用的形成疏水内核区段的化学结构:聚酯,聚氨基酸。
形成胶束所用的嵌段共聚物的合成方法有:阴 离子聚合,开环聚合。 改变聚合物胶束的生理特性可以通过改变不同 性质嵌段的分子大小和它们在共聚物中所占比 例来控制。 在接枝共聚物中,由大量的疏水链连接在亲水 的主链上。
micelle morphology
聚离子复合物胶束(polyion complex micelles,PIC)药物分子与疏水嵌段携带相反电 性,通过静电作用相连。
包载和转运各种荷电的小分子药物、多肽和DNA等
聚合物胶束递送系统
水难溶药物的增溶剂
现有的增溶剂: 聚氧乙稀蓖麻油(Cremophor® EL):紫杉醇和环胞素A的 增溶剂,过敏反应,高脂血症,神经毒性,P糖蛋白的逆转。 吐温80、去氧胆酸钠:用来增溶胺碘酮和两性霉素B,溶血。
C Zhang et al, Biomaterials 2008,29:1233. C Zhang et al, European Journal of Pharmaceutical Sciences 2008, 33: 415 C Zhang et al, Colloids and Surfaces B: Biointerfaces 2004,39,69. C Zhang et al, Carbohydrate Polymers 2003:54,137.

peg聚乙二醇的临界胶束浓度cmc

peg聚乙二醇的临界胶束浓度cmc

peg聚乙二醇的临界胶束浓度cmc PEG聚乙二醇的临界胶束浓度(CMC)聚乙二醇(Polyethylene Glycol,简称PEG)是一种常用的聚合物材料,具有极好的溶解性和生物相容性。

在不同应用领域中,了解PEG聚合物胶束的临界胶束浓度(Critical Micelle Concentration,简称CMC)非常重要。

本文将介绍PEG聚乙二醇的CMC及其相关研究。

一、什么是临界胶束浓度(CMC)临界胶束浓度(CMC)是指当某一表面活性剂在溶液中达到一定浓度时,分子之间发生自组装现象,形成微观胶束结构。

当浓度低于CMC 时,表面活性剂分子以单体形式存在,而在超过CMC时,表面活性剂分子则会形成胶束结构。

二、PEG聚乙二醇的临界胶束浓度(CMC)研究1. 影响CMC的因素PEG聚乙二醇的CMC受多种因素的影响,包括但不限于链长、分子量、温度、pH值和添加剂等。

较长的PEG链长度和较高的分子量可以降低CMC值。

温度的改变也会对CMC产生一定影响,通常情况下,随着温度的升高,CMC值会下降。

pH值的变化和添加剂的引入也可能改变PEG聚合物的CMC。

2. 测定CMC的方法测定PEG聚乙二醇的CMC一般采用表面张力曲线法、荧光探针法和动态光散射法等。

表面张力曲线法通过在溶液中逐渐增加PEG聚合物的浓度,测定表面张力的变化来确定CMC。

荧光探针法则通过添加一种能够在临界浓度下发生荧光强烈变化的探针,来检测CMC。

动态光散射法则通过测量溶液胶束在不同浓度下光散射的强度变化,可以得到CMC的信息。

三、PEG聚乙二醇临界胶束浓度的应用1. 药物传递系统PEG聚乙二醇的CMC在药物传递系统中具有重要意义。

药物可以通过封装在PEG胶束中来提高其生物利用度和稳定性。

PEG聚合物的低CMC值有利于药物的包埋和释放,并且可以在体内保护药物免受降解和代谢的影响。

2. 洗涤剂和表面活性剂PEG聚乙二醇的CMC也在洗涤剂和表面活性剂中得到广泛应用。

纳米胶束 和 纳米聚合物

纳米胶束 和 纳米聚合物

纳米胶束和纳米聚合物全文共四篇示例,供读者参考第一篇示例:纳米胶束和纳米聚合物是近年来备受关注的两种纳米材料,它们在药物传递、生物医学、材料科学等领域都有着重要的应用价值。

在本文中,我们将探讨纳米胶束和纳米聚合物的定义、制备方法、特性以及应用领域,以便更好地了解这两种纳米材料。

纳米胶束是由由表面活性剂分子在水中自组装形成的胶束,具有纳米级别尺寸的胶束结构。

其特点是水溶性好,载荷能力强,稳定性高,对生物体相容性好。

纳米胶束广泛应用于药物传递领域,可以提高药物的生物利用度、减少药物副作用、改善药物的靶向性能等。

纳米胶束还可以作为纳米载体材料用于催化、分离等领域。

制备纳米胶束的方法主要包括溶剂法、薄膜hydration法、破碎法等。

溶剂法是目前应用最为广泛的一种方法,通过在溶液中添加表面活性剂并经过适当的加工工艺,可以制备出具有不同结构和性质的纳米胶束。

薄膜hydration法是一种简单易行的方法,通过在溶剂中形成薄膜结构后,加入水使薄膜发生变化从而形成纳米胶束。

破碎法是将大分子聚合物分子在适当的条件下进行机械破碎,得到具有纳米级粒径的纳米胶束。

纳米聚合物是一类以聚合物为基础的纳米材料,具有独特的结构和性质。

纳米聚合物通常指的是尺寸在10-100纳米之间的聚合物颗粒或胶束。

与传统的聚合物相比,纳米聚合物具有更高的比表面积、更大的比表面积等优势。

由于其结构的特殊性,纳米聚合物在药物传递、生物医学、材料科学等领域有着广泛的应用前景。

制备纳米聚合物的方法包括微乳液聚合法、反相微乳液聚合法、自组装法等。

微乳液聚合法是通过在含有界面活性剂的溶液中形成微乳液,在聚合反应中持续加入单体,最终形成具有纳米尺寸的聚合物颗粒。

反相微乳液聚合法是在非极性溶剂中制备微乳液,然后在微乳中进行聚合反应得到纳米聚合物。

自组装法是通过调控单体和界面活性剂的比例,在溶液中自组装形成纳米聚合物。

纳米胶束和纳米聚合物是两种具有重要应用前景的纳米材料,其制备方法简单易行,具有独特的结构和性能。

聚合物胶束的稳定性及影响因素

聚合物胶束的稳定性及影响因素

Vol.48No.12(2017)ZHEJIANG CHEMICAL INDUSTRY 收稿日期:2017-03-22基金项目:国家自然科学基金(C10114240)资助。

作者简介:潘攀(1988-),男,硕士研究生,研究方向:药物输送载体在体内微环境下的稳定性研究。

*通讯作者:易喻,E-mail:490377299@ 。

聚合物胶束的稳定性及影响因素潘攀,张浩,易喻*(浙江工业大学药学院,化学工程学院,浙江杭州310014)摘要:由两亲性大分子自行组装形成的聚合物胶束被广泛地应用于抗肿瘤药物的靶向输送,但是聚合物胶束纳米载药系统面临着困境,即胶束进入人体内后其稳定性大大减弱,导致药物的提前释放从而失去了靶向作用。

因此阐明影响聚合物胶束稳定性因素是进一步设计和制备物理稳定的聚合物胶束药物输送载体的基础。

本文从热力学和动力学角度概述聚合物胶束稳定性的影响因素,并进一步探讨了其作为重要的药物输送载体在人体血液循环系统中受到血液微环境等不利因素的影响。

关键词:聚合物胶束;两亲性嵌段共聚物;药物输送载体文章编号:1006-4184(2017)12-000愿-040引言恶性肿瘤是危害我国人民健康最严重的疾病,每年有约200万人死于恶性肿瘤,并仍然呈现逐年上升的趋势。

由于大部分化疗药物的疏水性结构造成其在临床使用上具有很大弊端,因此如何克服抗癌药物在临床使用上的缺点逐渐成为当下研究热点[1]。

聚合物纳米胶束由于其亲水外壳-疏水内核的结构可以对疏水性的抗癌药物进行包封装载,一方面可以增大药物在体内的水溶性,另一方面减小药物对人体的毒副作用[2]。

目前聚合物胶束药物载体与其它纳米药物面临同样的困境,即在一定程度上可以减轻毒副作用,但是疗效较原药并没有显著的提高。

可能的原因是胶束在血液循环系统的快速解离导致了药物的提前释放从而失去了靶向性,造成胶束化药物体内疗效不高。

因此,阐明体内和体外环境下影响聚合物胶束稳定性的因素,将为进一步设计物理性质稳定的聚合物胶束进而获得高效胶束型纳米药物提供重要理论基础。

新型给药系统:聚合物胶束与泡囊

新型给药系统:聚合物胶束与泡囊

9束与泡囊
六、聚合物胶束的制备方法
聚合物胶束的制备一般分直接溶解法和透析法两种。水溶性 较好的材料(如pluronics类)可直接溶解于水(可加热溶解) ,浓度超过溶解度后即可形成透明的聚合物胶束溶液。水溶性 差的材料必须同时使用有机溶剂,先在有机溶剂(或含水的混 合溶剂)中溶解,再透析除去有机溶剂,可制得聚合物胶束。
泡囊的大小通常在几十纳米至几 十微米。由于具有较大的中空亲水区 ,对水溶性药物的包封率高,在壳层 的疏水区也可以包载疏水药物,但载 药量较小。
7束与泡囊
脂质体与聚合物泡囊均 可由“成膜”和“水化”两步形成 ,如右上图。
两者的主要区别取决于
双亲性材料的分子量,见右 下图。分子量小于100者不 能形成聚集体 (n.a.); 100~1000之间形成脂质体; 1000以上则形成聚合物泡囊 。而且,随着材料分子量增 大,聚集体的稳定性增大至 一定值,膜的流动性和透过 性降低。故聚合物泡囊的稳 定性明显高于脂质体,而膜 的透过性较低(缓释性更高 )。
万倍。近年来,聚合物胶束用作载体成为给药系统研究的热点
,可以用于提高药物稳定性,延缓释放,提高药效,降低毒性 ,和具有靶向性。如将P388白血病大鼠用阿霉素及其聚合物胶 束进行药理对照实验,阿霉素中毒剂量是30 mg/kg,而其聚合 物胶束是600 mg/kg,即胶束使其毒性大为降低。用聚乙二醇/ 磷脂酰乙醇胺聚合物胶束(低浓度时很稳定,粒径7~35 nm)
6束与泡囊
通常结构相似的表面活性剂,其烃基的碳 链增长,CMC值明显降低;非离子型表面活性 剂的CMC比离子型的小得多(约1:100),而 非离子型表面活性剂胶束的分子缔合数却大得 多(可达数千)。
药学中常用的低分子表面活性剂对难溶药 物的增溶效果较好,但其CMC值较高,不能用 作药物载体,因为经稀释的胶束不稳定(如在 静注后受血容量的影响会解缔合),故作为给 药系统的载体,必须使用两亲性聚合物作材料 。

新型给药系统聚合物胶束与泡囊

新型给药系统聚合物胶束与泡囊
右图 ,隐形脂质体膜中PEG化 的分子比例不高(约为10%)。其 余 每个双亲性嵌段聚合物均100% PEG化,则可形成泡囊膜,因为疏 水段(聚丁二烯)占一半以上,即 fPEG处于0.2~0.42。这种隐形聚合物 泡囊不仅比隐形脂质体的血循环时 间延长2倍以上,而且稳定性也高, 对脂溶性及双亲性药物的载药量也 大为提高,因为膜的疏水层厚度大 大增加。
所谓“自组装”,即在水溶 液中双亲性分子的疏水段被水分 子排斥而聚集,从而自动形成亲 水段向外的缔合结构。
4

泡囊通常由非离子型表面活性剂 形成,具有封闭的双层结构,壳层内 外均是亲水基团(右图用圆圈表示), 空的中心可容纳水性介质,夹在两层 亲水基团中间的是疏水基团,双分子 层单室泡囊示意图见右上。
6
双亲性嵌段共聚物在溶液 中可以自发形成胶束,亦可形 成共聚物泡囊,其中决定性因 素是亲水段(如POE或PEG) 在分子中所占的体积比(fOE)。
fOE<0.2时疏水段很长, 易聚集成疏水核心而成实心球 形大胶,束形,成锥fOE形>0分.5子时(亲右水图段右很 上),也形成球形胶束。
当fOE 在0.2~0.42时, (见右上图的左)可形成壳层 结构,即聚合物泡囊( 右中 图的左)。
2
由磷脂类和胆固醇的双分子层组成的脂质体,其膜具有类 似生物膜结构成为药物的优良载体。其主要特点是具有靶向性、 缓释性、细胞亲和性和组织相容性。
脂质体存在的问题主要是不太稳定,包括药物易渗漏、磷 脂易受氧化和降解等。近年发展成泡囊(niosomes,亦称囊泡
或类脂质体)及聚合物泡囊(polymer vesicles 或 polymersomes) ,它们作为药物载体与脂质体的体内外性质
载药聚合物胶束制备方法与聚合物胶束类似,有的很简单, 将材料(如表面活性剂)先在水中溶解、分散,再加入疏水性 药物的适当溶液搅拌即成。此外有以下方法。

聚合物胶束ppt课件

聚合物胶束ppt课件
乳化剂 助乳化剂 选用乳化剂的原则: (1)要考虑乳化剂使纳米乳稳定的乳化性能, (2)要考虑毒性、对微生物的稳定性和价格等。
1.天然乳化剂
• 如多糖类的阿拉伯胶、西黄蓍胶及明胶、白蛋 白和酪蛋白、大豆磷脂、卵磷脂及胆固醇等。
•优点是无毒、廉价,缺点是一般都存在批间差 异,对大量生产很不利。其产品的差异可能在生 产的当时不显著,但几个月之后就明显了,有许 多都可能受微生物的污染(包括致病菌和非致病 菌)。
脂质体与泡囊
2.合成乳化剂
离子型 非离子型
• 纳米乳常用非离子型乳化剂,如脂肪酸山梨坦 (亲油性)、聚山梨酯(亲水性)、聚氧乙烯脂 肪酸酯(亲水性)、聚氧乙烯脂肪醇醚类、聚 氧乙烯聚氧丙烯共聚物类、蔗糖脂肪酸酯类和 单硬脂酸甘油酯等。非离子型的乳化剂口服一 般没有毒性,静脉给药有一定毒性。
2.合成乳化剂
• 合成乳化剂一般都有轻微的溶血作用,其溶血 作用的顺序为:聚氧乙烯脂肪醇醚类>聚氧乙 烯脂肪酸酯类>聚山梨酯类;聚山梨酯类中, 溶血作用的顺序为:聚山梨酯20 >聚山梨酯 60>聚山梨酯40>聚山梨酯80.
3. 助乳化剂
• 助乳化剂可调节乳化剂的HLB值,并形成更小
的乳滴。助乳化剂应为药用短链醇或适宜HLB
值的非离子表面活性剂。常用的有正丁醇、乙 二醇、乙醇、丙二醇、甘油、聚甘油酯等。
三、聚合物胶束的制备
(一)形成机理 1.与表面活性剂分子缔合形成胶束的机理相似, 但是由于聚合物在水中形成胶束的临界浓度小, 且其疏水核心更稳定,故聚合物胶束可以经稀 释而不易解聚合。 2.因而可以用作药物载体。
五、亚纳米乳的制备 • 亚纳米乳常作为胃肠道给药的载体,其
特点包括:提高药物稳定性、降低毒副
作用、提高体内及经皮吸收、使药物缓

聚合物胶束多层次自组装作用机制探索

聚合物胶束多层次自组装作用机制探索

聚合物胶束多层次自组装作用机制探索
聚合物胶束多层次自组装技术是一种新型的纳米技术,利用聚合物胶束可以在低温的环境
中对现有的材料进行多层次的自组装,构建出具有高分子网络结构的纳米材料。

其原理是
利用聚合物胶束的特性,将高分子单体质量的分散体,如小分子、聚合物、分子等聚合成
一个复合纳米结构物,通过低温环境和特殊的溶剂可以形成聚合物胶束的多层次自组装结构。

采用聚合物胶束多层次自组装技术可以方便地制备出具有高分子复合结构的纳米材料,这些纳米材料具有较高的分子量、表面活性、热稳定性和结晶度,同时也具有很高的拉伸强度和耐磨性能。

聚合物胶束多层次自组装技术由于具有简易、快速、低成本等优点,在材料制备、纳米结
构构筑和新型功能材料研究等方面受到了越来越多的关注,并成功替代了传统的化学气相
沉积制备方法。

在这一过程中,从溶剂到无定型液胶到有定型液胶再到固体,可以层层次
沉积,有效地调节每层的组成成分、温度、时间和其他因素,以获得不同的组织结构和性能,从而达到自组装的作用。

聚合物胶束多层次自组装作用也可以用于生物和分子系统中,可以有效的控制每一层的复
合结构和分子活性,并在某些条件下达到调控反应的作用。

未来,聚合物胶束多层次自组
装将成为制备具有高分子复合结构的纳米材料和构筑生物和分子系统的重要技术。

纳米胶束 和 纳米聚合物

纳米胶束 和 纳米聚合物

纳米胶束和纳米聚合物
纳米胶束和纳米聚合物都是纳米材料的一种,它们在材料科学
和纳米技术领域具有重要的应用和研究价值。

首先,让我们来看一
下纳米胶束。

纳米胶束是由表面活性剂分子在溶液中自组装形成的
纳米级粒子,通常呈球形或椭圆形,其直径范围在1到100纳米之间。

纳米胶束的形成是由于表面活性剂分子在溶液中的疏水端和亲
水端之间的相互作用,使得它们聚集形成胶束结构。

纳米胶束具有
较大的比表面积和特殊的表面性质,因此在药物传递、化妆品、油墨、润滑剂等领域有着广泛的应用。

接下来,我们来看看纳米聚合物。

纳米聚合物是由聚合物链构
成的纳米级结构材料,其尺寸范围在1到100纳米之间。

纳米聚合
物的制备方法多种多样,包括纳米乳液聚合、原子转移自由基聚合、纳米凝胶聚合等。

纳米聚合物具有优异的力学性能、光学性能和热
学性能,因此在材料强化、纳米复合材料、传感器、生物医学材料
等领域具有重要应用价值。

从应用角度来看,纳米胶束主要用于载体传递系统,例如用于
药物传递系统的载体、生物成像和生物检测领域;而纳米聚合物则
更多地应用于材料强化和功能性材料的制备,例如纳米复合材料、
传感器和生物医学领域。

从制备方法来看,纳米胶束主要是通过自组装的方法得到的,而纳米聚合物则是通过特定的聚合方法制备得到的。

总的来说,纳米胶束和纳米聚合物都是纳米材料领域中非常重要的研究对象,它们都具有独特的结构和性能,在药物传递、材料强化、生物医学等领域具有广泛的应用前景。

希望这些信息能够帮助你更好地理解纳米胶束和纳米聚合物。

靶向聚合物胶束

靶向聚合物胶束


目录
靶向聚合物胶束
聚合物胶束
靶向策略
分类
制备
原理
分类
聚合物胶束
胶束分类 制备方法

胶束的分类
聚合物胶束
按溶剂
结构
水相胶束 (常规)
有机溶剂胶 束(反相)
星型胶束
平头胶束
常见聚合物胶束组成形式
两段聚合物胶束 三段聚合物胶束 接枝聚合物胶束

2.胶束的制备
材料选择 制备方法

胶束的材料——理想要求
拥有合适尺寸,大小从10到100 nm; 体内及体外具有高度的稳定性; 所用的嵌段共聚物具有较低的临界胶束浓 度CMC和高度的动力学稳定性; 能够在体内存在较长时间,且最终可以生 物分解,无毒性。

胶束的材料——亲水端
与外环境直接接触 影响被包封药物分布及药代动力学参数

稳定性
硬脂酸(C18 )
二十四烷酸(C24 )

胶束的材料——疏水端
脂肪族类:聚丙交酯(PLLA),聚乙交酯(PGA), 聚己内酯(PCL),聚乳酸,乙醇酸酯(PLGA) 氨基酸类:聚天冬氨酸(PAsp ),聚卞基天冬氨酸( PBLA), 聚谷氨酸(PGlu)
脂肪族聚酯:易于水解,产物无毒、良好的生物兼容性; 氨基酸类: 作为核片段,易于化学修饰并且可利用物理协同 作用和化学方法包封药物
靶向聚合物胶束引言现代生物技术发展日新月异新兴的研究成果大量涌现靶向聚合物药物载体靶向聚合物胶束聚合物胶束靶向策略制备原理分类分类目录聚合物胶束制备方法胶束的分类聚合物胶束按溶剂结构水相胶束常规有机溶剂胶束反相星型胶束平头胶束常见聚合物胶束组成形式接枝聚合物胶束2
靶向聚合物胶束

胶束的概念

胶束的概念

胶束的概念
胶束是由具有疏水性和亲水性特性的分子组成的结构,其中两性分子在水中形成的微型聚合物结构。

它由水溶液中的两性表面活性剂分子(或生物分子)组成,其中疏水性部分聚集在一起形成核心,亲水性部分面向水溶液。

具有定向排列和高表面积的特点,因此具有很高的稳定性和分散性。

在生物体中,胶束在脂质和其他生物分子的转运和代谢过程中起着重要作用。

在工业上,它被广泛应用于清洁剂、润滑油、护肤品、药物输送等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、亚纳米乳的制备 • 亚纳米乳常作为胃肠道给药的载体,其
特点包括:提高药物稳定性、降低毒副
作用、提高体内及经皮吸收、使药物缓
释、控释或具有靶向性。
(一)亚纳米乳的制备与影响因素
• 一般亚纳米乳要使用两步高压乳匀机将粗乳捣 碎,并滤去粗乳滴与碎片,使纳米乳的粒径控 制在比微血管(内径4μm左右)小的程度。 • 如果药物或其他成分易于氧化,则制备的各步 都在氮气下进行,如有成分对热不稳定,则采 用无菌操作。
(1)长循环脂质体或空间稳定脂质体 被神经节苷酯(GM1)、磷脂酰肌醇(PI)、聚 乙二醇(PEG)、聚丙烯酰胺(PPA)、聚乙烯 吡咯烷酮(PVP)等在脂质体表面高度修饰,交 错重叠覆盖在脂质体表面,形成致密的构象云。 这种立体保护作用取决于聚合物的柔性,位阻保 护脂质体不被血液中的调理素(opsonin)识别、 摄取,从而使脂质体清除速率减慢,血液中驻留 时间延长,使药物作用时间延长
(二)常用的附加剂
• 附加剂用于调节生理所需的pH值和张力。
pH调节剂:盐酸、氢氧化钠 等张调节剂:甘油 稳定剂:油酸及其钠盐、胆酸、脱氧胆酸及其钠盐
抗氧剂及还原剂:维生素E或抗坏血酸
六、质量评价 (一)乳滴粒径及其分布 1.电镜法:①透射电镜(TEM)法 ②扫 描电镜(SEM)法 ③ TEM冷冻碎裂 法 2.其他方法:光子相关光谱法和计算机调 控的 激光测定法等。
(2)温度敏感脂质体,又称热敏脂质体 由Tc稍高于体温的脂质组成的脂质体,其药物 的释放对温度具有敏感性。热敏脂质体的特点 是在受热时,可将包封药物释放至无内吞作用 的靶细胞,这种热释放取决于脂质体的Tc。 (3)pH敏感脂质体,又称为酸敏感脂质体 若干动物和人体肿瘤间质液的pH比正常组织 低,设想组成的脂质体能在低pH范围内释放 药物,因而设计了pH敏感脂质体。对pH敏感 的类脂有N-十六酰L-高半胱氨酸(PHC)和游离 的高半胱氨酸。
(6)其它 复乳法、冷冻干燥法、pH梯度法、前 体脂质体法等。
4. 脂质体的载药
“主动载药”,即通过脂质体内外水相的不同 离子或化合物梯度进行载药,主要有K + -Na + 梯度和H+梯度(即pH梯度)等。
传统上,人们采用最多的方法是“被动载药” 法。所谓“被动载药”,即首先将药物溶于水 相或有机相(脂溶性药物)中,然后按所选择的 脂质体制备方法制备含药脂质体。
2.合成乳化剂
离子型 非离子型
• 纳米乳常用非离子型乳化剂,如脂肪酸山梨坦 (亲油性)、聚山梨酯(亲水性)、聚氧乙烯脂 肪酸酯(亲水性)、聚氧乙烯脂肪醇醚类、聚 氧乙烯聚氧丙烯共聚物类、蔗糖脂肪酸酯类和 单硬脂酸甘油酯等。非离子型的乳化剂口服一 般没有毒性,静脉给药有一定毒性。
2.合成乳化剂
• 合成乳化剂一般都有轻微的溶血作用,其溶血 作用的顺序为:聚氧乙烯脂肪醇醚类>聚氧乙 烯脂肪酸酯类>聚山梨酯类;聚山梨酯类中, 溶血作用的顺序为:聚山梨酯20 >聚山梨酯 60>聚山梨酯40>聚山梨酯80.
2.制备纳米乳的步骤
(1)确定处方:处方中的必需成分通常是油、水、 乳化剂和助乳化剂。当油、乳化剂和助乳化剂确定 了之后,可通过三相图找出纳米乳区域,从而确定 它们的用量。
(2)配制纳米乳:由相图确定处方后,将各成分按 比例混合即可制得纳米乳,且与各成分加入的次序 无关。通常制备W/O型纳米乳比O/W型乳化药物传递系统(self-emulsifying drug delivery systems,SEDDs)自身包含 一种乳化液,在胃肠道内与体液相遇, 可自动乳化形成纳米乳(O/W)。
(三)修饰纳米乳
• 用聚乙二醇(PEG)修饰的纳米乳可增加表面的 亲水性,减少被巨噬细胞的吞噬,明显延长在血 液循环系统中滞留的时间,称为长循环纳米乳。
6. 脂质体的质量评价
1. 形态与粒径及其分布
2. 包封率与载药量的测定:
包封率=
系统中的总药量-液体介质中的总药量
系统中的总药量 3. 渗漏率的测定:
(4)光敏脂质体 光敏脂质体是将光敏物质的药物包裹在脂质体 内用来进行光学治疗。当在一定波长的光照射 时,脂质体膜与囊泡物质间或脂质体之间发生 融合作用而释放药物。制备了含胡萝卜素或全 反视黄醇的光敏脂质体,光照后可发生不可逆 光反应,从而影响膜的流动性,增加其通透性。
(5)免疫脂质体 掺入抗体形成被抗体修饰的具有免疫活性的脂质 体称为免疫脂质体 (6)糖基脂质体,又称多糖被复脂质体 在脂质体双分子层中掺入多糖或糖脂后称之为多 糖被复脂质体。糖基不同可改变脂质体的组织分 布 ;脂质体稳定化和构造强化;有利于与抗体交 联反应进行 。 糖基物质有:唾液糖蛋白、神经节苷岩藻糖,半 乳糖、甘露(聚)糖衍生物、右旋糖苷、支链淀糖、 出芽短梗孢糖(CHP)等
乳化剂 助乳化剂 选用乳化剂的原则: (1)要考虑乳化剂使纳米乳稳定的乳化性能, (2)要考虑毒性、对微生物的稳定性和价格等。
1.天然乳化剂
• 如多糖类的阿拉伯胶、西黄蓍胶及明胶、白蛋 白和酪蛋白、大豆磷脂、卵磷脂及胆固醇等。
•优点是无毒、廉价,缺点是一般都存在批间差 异,对大量生产很不利。其产品的差异可能在生 产的当时不显著,但几个月之后就明显了,有许 多都可能受微生物的污染(包括致病菌和非致病 菌)。
SUV 20-100nm
LUV 100-500nm
MLV 0.1-5m
2. 脂质体的作用特点
1) 制备工艺简单,一般药物都较容易包封在脂 质体中; 2) 水溶性及脂溶性药物都可包裹在同一脂质体 中,药物的包封率主要与药物本身的油水分 配系数及膜材的性质有关; 3) 脂质体本身对人体毒性小,并且脂质体对人 体无免疫抑制作用; 4) 在体内使药物具有定向分布的靶向性特征, 包括:被动靶向、物理和化学靶向、转移靶 向、主动靶向;
(二)药物的含量
• 纳米乳和亚纳米乳中药物含量的测定一 般采用溶剂提取法。 • 溶剂的选择原则是:应最大限度地溶解 药物,而最小限度地溶解其他材料,溶 剂本身不应干扰测定。
(三)稳定性
• 纳米乳通常是热力学稳定系统,有些纳米乳在 贮存过程中也会改变,即粒径变大,个别的甚 至也会分层。 • 亚纳米乳在热力学上仍是不稳定的,在制备过 程及贮存中乳滴都有增大的趋势。 • 亚纳米乳稳定性考察项目:是否分层、乳滴粒 径分布,也可对电导、粘度、ζ电位、pH值及 化学组成(药物含量及有关物质)进行测定。 1. 稳定性影响因素试验 2. 加速试验 3. 常温留样考察
二、常用载体材料
聚合物胶束的载体材料:
(通常用合成的线形两亲性嵌段共聚物) 亲水段材料:PEG,PEO,PVP 疏水段材料:聚丙烯,聚苯乙烯,聚氨 基酸,聚乳酸,精胺或短链磷脂等 稳定的聚合物胶束,PEG段分子量通常要求 在1000-15000之间,疏水段与此相当或稍小
二、常用载体材料
纳米乳和亚微乳的制备材料:
3. 助乳化剂
• 助乳化剂可调节乳化剂的HLB值,并形成更小
的乳滴。助乳化剂应为药用短链醇或适宜HLB
值的非离子表面活性剂。常用的有正丁醇、乙 二醇、乙醇、丙二醇、甘油、聚甘油酯等。
三、聚合物胶束的制备
(一)形成机理 1.与表面活性剂分子缔合形成胶束的机理相似, 但是由于聚合物在水中形成胶束的临界浓度小, 且其疏水核心更稳定,故聚合物胶束可以经稀 释而不易解聚合。 2.因而可以用作药物载体。
2. 脂质体的作用特点
5)药物包裹在脂质体中是非共价键结合,因此 易与载体分离,进入体内可以在指定部位完 全释放出来; 6)药物被包封于脂质体中,能够降低药物毒性, 增强药理作用。 7)脂质体制剂能够降低药物的消除速率,延长 药物作用时间,起到缓释、增加药物的体内 外稳定性的作用。
3. 脂质体的制备
脂质体与泡囊
1. 定 义
• 脂质体(liposomes)是由磷脂和胆固醇组成, 具有类似生物膜双分子层结构的封闭囊状体。
大单室脂质体
单室脂质体
(单层磷脂双分子层膜) LUVs (0.1-1μm)
小单室脂质体
SUVs (0.02-0.08μm)
多室脂质体(1-5 μm)
MLVs(多层磷脂双分子层膜)
第五节 聚合物胶束、纳米乳、 亚纳米乳的制备技术
一、定义
• 聚合物胶束(polymeric micelles)是由合成的 两亲性嵌段共聚物在水中自组装形成的一种 热力学稳定的胶体溶液。
一、定义
•纳米乳(nanoemulsion)是粒径为10~100nm的 乳滴分散在另一种液体中形成的胶体分散系 统,其乳滴多为球形,大小比较均匀,透明 或半透明,经热压灭菌或离心也不能使之分 层,通常属热力学稳定系统。 • 亚纳米乳(subnanoemulsion) 粒径在 100~500nm之间,外观不透明,呈浑浊或乳 状,稳定性也不如纳米乳,虽可加热灭菌, 但加热时间太长或数次加热,也会分层。
三、聚合物胶束的制备
(二)制备方法 1.自组装溶剂蒸发法
2.透析法
3.乳化-溶剂挥发法
4.化学结合法
四、纳米乳的制备
(一)纳米乳的形成条件与制备步骤
1.纳米乳的形成条件 (1)需要大量乳化剂:纳米乳中乳化剂的用量一 般为油量的 20%~30%,而普通乳中乳化剂多低于油 量的10%。 (2)需要加入助乳化剂:助乳化剂可插入到乳化 剂界面膜中,形成复合凝聚膜,提高膜的牢固性和 柔韧性,又可增大乳化剂的溶解度,进一步降低界 面张力,有利于纳米乳的稳定。
(4)超声波分散法 将水溶性药物在磷酸盐缓冲液 中溶解,加至磷脂、胆固醇与脂溶性药物的有机 溶液中,搅拌蒸发除去有机溶剂,残液经超声波 处理,然后分离出脂质体,再混悬于磷酸盐缓冲 液中,即得。
(5)钙融合法 磷脂酰丝氨酸等带负电荷的磷脂中, 加入Ca 2+ ,使之相互融合成蜗牛壳圆桶状,加 入络合剂EDTA,除去Ca2+,即产生单层脂质体 (LUV),此种方法的特点是形成脂质体的条 件非常温和,可用于包封DNA、RNA和酶等生 物大分子。
相关文档
最新文档