【40套试卷合集】吉林大学附属中学2019-2020学年数学高一上期中模拟试卷含答案
【20套精选试卷合集】吉林大学附属中学2019-2020学年高考数学模拟试卷含答案
【40套试卷合集】吉林省普通中学2019-2020学年数学高一上期中模拟试卷含答案
2019-2020学年高一上数学期中模拟试卷含答案考试时间:90分钟 试卷总分:100分一、选择题:(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{1,3,5,7}B {2,4,6},A ,6,7},{1,2,3,4,5U ===,则)(B C A U = ( )A.{2,4,6}B.{1,3,5}C.{2,4,5}D.{2,5}2.已知集合A 到B 的映射:21f x y x →=+,那么集合A 中元素2在B 中的象是( )A.2B.5C.6D.8 3.下列函数中,与函数xy 1=有相同定义域的是( )A.x x f ln )(=B.xx f 1)(=C.3)(x x f =D.xe xf =)( 4.已知2(1)f x x -=,则()f x 的解析式为( )A .2()21f x x x =--B .2()21f x x x =-+ C .2()21f x x x =+- D .2()21f x x x =++5.给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间(0,1)上单调递减的函数序号是( )A.①②B.②③C.③④D.①④6.已知函数14)(2---=x x x x f ,在下列区间中,函数)(x f 不.存在零点的是( ) A .]0,1[- B .]1,0[ C . ]5,4[ D .]3,2[ 7.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .()()()312f f f -<-<B .()()()132f f f -<-<C .()()()231f f f <-<D .()()()321f f f -<<8.函数)6(log 26.0x x y -+=的单调增区间是 ( )A .⎥⎦⎤ ⎝⎛∞-21,B .⎪⎭⎫⎢⎣⎡+∞,21C .⎥⎦⎤ ⎝⎛-21,2D .⎪⎭⎫⎢⎣⎡3,219.已知⎩⎨⎧<+≥=4)(x )1()4(2)(x f x x f x ,则)3(log 2f 的值为( )A .24 B. 3 C. 6 D. 1210. 对于实数a 和b ,定义运算“*”:22,*,a ab a b a b b ab a b⎧-≤⎪=⎨->⎪⎩ ,设()(21)*(1)f x x x =--,且关于x 的方程()()f x a a R =∈恰有三个互不相等的实数根,则实数a 的取值范围是( )A.1[0,]4B.1[0,]16C.1(0,](1,)4+∞U D.1(0,)4二、填空题:(本大题共4小题,每小题3分,共12分) 11.幂函数2212)22()(m m xm m x f +--=在),0(+∞是减函数,则m =12.已知函数1221+-=x xy 的定义域为13.把243251,5,51-⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛这三个数按从小到大的顺序用不等号连接起来是14.已知函数||)(a x e x f -=(a 为常数)。
吉林省实验中学19年-20年学年高一上学期期中考试数学试题 Word版含答案
x y O3 `-332`1 吉林省实验中学高一年级数学期中考试试题第Ⅰ卷一、选择题:(本大题共10小题,每小题6分)(1)已知集合A ={x | 2≤x <4},B ={x | 3x -7≥8-2x },则A ∪B =A .{x | 3≤x <4}B .{x | x ≥2}C .{x | 2≤x <4}D .{x | 2≤x ≤3}(2)已知集合A ={x ∈Z | x 2+x -2<0},则集合A 的一个真子集为A .{x | -2<x <0}B .{x | 0<x <2}C .{0}D .{Ø}(3)下列各组函数中,f (x )与g (x )是相同函数的是(e 为自然对数的底数) A .f (x )=x 2,g (x )=(x )2B .f (x )=x 2x ,g (x )=xC .f (x )=ln x 2,g (x )=2ln xD .f (x )=11e e x x -+⋅,g (x )=e 2x(4)下列函数中,在(0,+∞)上是增函数的是A .f (x )=1xB .f (x )=lg(x -1)C .f (x )=2x 2-1D .f (x )=x +1x(5)已知函数f (x )的定义域为[0,1],则函数f (2x -1)的定义域为A .[-1,1]B .[12,1]C .[0,1]D .[-12,1](6)已知定义在[-3,3]上的函数y =f (x ),其图象如图所示. 则只有唯一的x 值与之对应的y 的取值范围是 A .(3,+∞) B .[0,2)∪[3,+∞)C .(0,+∞)D .[0,1)∪(3,+∞)(7)已知函数f (x +1)=x 2+2x ,则f (x )的解析式为 A .f (x )=x 2+1 B .f (x )=x 2+2x -1C .f (x )=x 2-1D .f (x )=x 2+2x +1(8)三个数20.3,0.32,log 0.32的大小顺序是 A .0.32<log 0.32<20.3 B .0.32<20.3<log 0.32C .log 0.32<20.3<0.32D .log 0.32<0.32<20.3(9)函数f (x )=e x -1e x +1(e 为自然对数的底数)的值域为A .(-1,1)B .(-1,+∞)C .(-∞,1)D .(-1,0)∪(0,1)(10)函数f (x )=12⎛ ⎪⎝⎭的单调减区间为 A .(-∞,2]B .[1,2]C .[2,+∞)D .[2,3]第Ⅱ卷二、填空题:(本大题共4小题,每小题5分.)(11)函数y =log a (x -1)+1(a >0,且a ≠1)恒过定点 . (12)函数f (x )=3-x lg(x -1)的定义域为 .(13)定义域为R 的函数f (x ),对任意实数x 均有f (-x )=-f (x ),f (2-x )=f (2+x )成立,若当2<x <4时,f (x )=2x -3+log 2(x -1),则f (-1)= .(14)已知函数f (x )=lg(x +ax -2),若对任意x ∈[2,+∞),不等式f (x )>0恒成立,则a 的取值范围是 .三、解答题:(本大题共6小题,其中15小题10分,16~20小题每小题12分;解答应写出文字说明,证明过程或演算步骤.) (15)(本小题10分)已知集合A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1}. (Ⅰ)当m =-3时,求(A R)∩B ;(Ⅱ)当A ∩B =B 时,求实数m 的取值范围.(16)(本小题12分) 计算下列各式的值:(Ⅰ)115352943-⎛⎫⎛⎫⨯-+ ⎪ ⎪⎝⎭⎝⎭(Ⅱ)33log 43log lg 253lg 4+-+.(17)(本小题12分)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-x+1.(Ⅰ)求f(0)的值;(Ⅱ)求f(x)在R上的解析式.(18)(本小题12分)解关于x的不等式:x2-(a+1a)x+1≤0 (a∈R,且a≠0)(19)(本小题12分)已知函数f(x)的定义域是R,对任意实数x,y,均有f(x+y)=f(x)+f(y),且当0x 时,f(x)>0.(Ⅰ)证明:f(x)在R上是增函数;(Ⅱ)判断f(x)的奇偶性,并证明;(Ⅲ)若f(-1)=-2,求不等式f(a2+a-4)<4的解集.(20)(本小题12分)已知定义在R上的奇函数f(x)=ka x-a-xa2-1(a>0,且a≠1).(Ⅰ)求k的值;(Ⅱ)当m∈[0,1],n∈[-1,0]时,不等式f(2n2-m+t)+f(2n-mn2)>0恒成立,求t的取值范围.高一年级数学学科期中考试参考答案第 Ⅰ 卷 (选择题 共60分)一、选择题:(本大题共10小题,每小题6分) 1-5.BCDCB 6-10.DCDAB第 Ⅱ 卷 (非选择题 共90分)二、填空题:(本大题共4小题,每小题5分.)(11)(2,1);(12)(1,2)∪(2,3];(13)-2; (14)(2,+∞).三、解答题:(解答应写出必要的文字说明,证明过程或演算步骤.)(15)(本小题满分10分) 解:(Ⅰ)当m =-3时,={x |x <-3或x >4},B ={x |-7≤x ≤-2}, …………2分 ∴()∩B ={x |-7≤x <-3}. …………4分(Ⅱ)由A ∩B =B 可知,B ⊆A . …………5分 当2m -1>m +1时,即m >2时,B =Ø,满足B ⊆A ; …………7分 当2m -1≤m +1时,即m ≤2时,B ≠Ø,若B ⊆A , 则m +1≤4,2m -1≥-3,解得-1≤m ≤3,又m ≤2,∴-1≤m ≤2. …………9分综上所述,m 的取值范围是[-1,+∞). …………10分(16)(本小题满分12分)解:(Ⅰ)原式=; …………6分(Ⅱ)原式=. …………12分(17)(本小题满分12分)解:(Ⅰ)∵f (x )是奇函数,∴f (-x )=-f (x ).令x =0,得:f (-0)=-f (0),即f (0)=0 …………4分 (Ⅱ)当x <0时,-x >0,f (x )=-f (-x )=-[(-x )2-(-x )+1]=-x 2-x -1. …………10分∵当x >0时,f (x )=x 2-x +1,且f (0)=0,∴f (x )在R 上的解析式为f (x )= x2-x +1,x >00,x =0…………12分 (18)(本小题满分12分)解:不等式可化为:(x -a )(x -a 1)≤0.令(x -a )(x -a 1)=0,可得:x =a 或x =a 1.…………2分①当a >a 1,即-1<a <0或a >1时,不等式的解集为[a 1,a ]; …………5分 ②当a <a 1,即a <-1或0<a <1时,不等式的解集为[a ,a 1]; …………8分 ③当a =a 1,即a =-1或a =1时, (i )若a =-1,则不等式的解集为{-1};(ii )若a =1,则不等式的解集为{1}. …………11分 综上,当-1<a <0或a >1时,不等式的解集为[a 1,a ]; 当a <-1或0<a <1时,不等式的解集为[a ,a 1]; 当a =-1时,不等式的解集为{-1};当a =1时,不等式的解集为{1};…………12分(19)(本小题满分12分)解:(Ⅰ)证明:设x 1<x 2,则x 2-x 1>0,∵当x >0时,f (x )>0,∴f (x 2-x 1)>0, ∵f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1), ∴f (x 2)-f (x 1)=f (x 2-x 1)>0,即f (x 1)<f (x 2), ∴f (x )在R 上是增函数.…………4分(Ⅱ)解:在条件中,令y =-x ,得f (0)=f (x )+f (-x ), 再令x =y =0,则f (0)=2f (0),∴f (0)=0,故f (-x )=-f (x ), 即f (x )为奇函数. …………8分(Ⅲ)解:∵f (x )为奇函数,∴f (1)=-f (-1)=2,∴f (2)=f (1)+f (1)=4, ∴不等式可化为f (a 2+a -4)<f (2), 又∵f (x )为R 上的增函数,∴a 2+a -4<2,即a ∈(-3,2). …………12分(20)(本小题满分12分)解:(Ⅰ)由f (x )+f (-x )=0,得a2-1kax -a -x +a2-1ka -x -ax=0,即a2-1kax -a -x +ka -x -ax =0,即a2-1ax +a -x=0,所以k =1. …………4分(Ⅱ)由(Ⅰ)知:f (x )=a2-1ax -a -x.①当a >1时,a 2-1>0,y =a x 与y =-a -x 在R 上都是增函数, 所以函数f (x )在R 上是增函数;②当0<a <1时,a 2-1<0,y =a x 与y =-a -x 在R 上都是减函数, 所以函数f (x )在R 上是增函数. 综上,f (x )在R 上是增函数.(此结论也可以利用单调性的定义证明) …………8分不等式f (2n 2-m +t )+f (2n -mn 2)>0可化为f (2n 2-m +t )>-f (2n -mn 2), ∵函数f (x )是奇函数,∴不等式可化为f (2n 2-m +t )>f (-2n +mn 2); 又∵f (x )在R 上是增函数. ∴2n 2-m +t >-2n +mn 2…………10分即t >(n 2+1)m -2n 2-2n ,对于m ∈[0,1]恒成立. 设g (m )=(n 2+1)m -2n 2-2n ,m ∈[0,1]. 则t >g (m )max =g (1)=-n 2-2n +1所以t >-n 2-2n +1,对于n ∈[-1,0]恒成立. …………11分 设h (n )=-n 2-2n +1,n ∈[-1,0]. 则t >h (n )max =h (-1)=2.所以t 的取值范围是(2,+∞). …………12分。
2019学年吉林省高一上学期期中数学试卷【含答案及解析】
2019学年吉林省高一上学期期中数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知集合,,则(A)(B)(C)(D)2. 函数的定义域为(A)(B)(C)(D)3. 函数的值域为(A)(B)(C)(D)4. 下列函数与是相同函数的是(A);(B);(C);(D);5. 给出下列四个函数:① ;② ;③ ;④ .其中在上是增函数的有(A)0个(B)1个(C)2个(D)3个6. 若是定义在上的偶函数,则(A)(B)(C)(D)7. 三个数,,的大小顺序是(A)___________________________________(B)(C)_________________________________(D)8. 已知函数与的图象如图所示,则函数的图象可能是9. 已知函数与函数的图象关于直线对称,函数的图象与的图象关于轴对称,若,则实数的值为(A)(B)(C)(D)10. 若函数的图象经过第二、三、四象限,则有(A)(B)(C)(D)11. 设函数定义在实数集上,,且当时,,则有(A)(B)(C)(D)12. 已知函数.若不等式对于任意恒成立,则实数的取值范围是(A)________(B)(C)________(D)二、填空题13. 函数的定义域为________________________ .14. 已知函数是奇函数.当时,,则当时,________________________ .15. 函数的单调递减区间为________________________ .16. 已知函数,则函数的图象与轴有______________ 个交点.三、解答题17. (本小题10分)已知,.(Ⅰ)若,求的取值范围;(Ⅱ)若,求的取值范围.18. (本小题12分)化简求值:(Ⅰ);(Ⅱ).19. (本小题12分)已知函数.(Ⅰ)判断的奇偶性,并证明;(Ⅱ)求使的的取值范围.20. (本小题12分)已知函数,.(Ⅰ)求函数g(x)的值域;(Ⅱ)解方程:.21. (本小题12分)已知函数的定义域是 R,对任意实数 x , y ,均有,且当时,.(Ⅰ)证明:在 R 上是增函数;(Ⅱ)判断的奇偶性,并证明;(Ⅲ)若,求不等式的解集.22. (本小题12分)已知函数,函数的最小值为.(Ⅰ)求;(Ⅱ)是否存在实数,,同时满足以下条件:① ;② 当的定义域为时,值域为.若存在,求出,的值;若不存在,说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。
2019-2020学年吉林省长春市东北师大附中高一(上)期中数学试卷 (含答案解析)
2019-2020学年吉林省长春市东北师大附中高一(上)期中数学试卷一、选择题(本大题共12小题,共48.0分)1. 设集合A ={x|x 2≤2x},B ={x|1<x ≤4},则A ∪B =( )A. (−∞,4)B. [0,4]C. (1,2]D. (1,+∞)2. 下列四组函数中,表示同一函数的是( )A. f(x)=x 2−1x−1,g(x)=x +1 B. f(x)=x ,g(x)=x 2xC. f(x)=x ,g(x)=√x 2D. f(x)=|x|,g(x)=√x 23. 函数f(x)=2√x−2+log 3(8−2x)的定义域为( )A. RB. (2,4]C. (−∞,−2)∪(2,4)D. (2,4) 4. 函数y =2−x2+2x的单调递减区间为( )A. (−∞,1]B. [1,+∞)C. [0,2]D. [−1,+∞)5. 函数f(x)=(3−x 2)⋅ln|x|的大致图象为( )A.B.C.D.6. 设a =ln 13,b =20.3,c =(13)2,则( )A. a <c <bB. c <a <bC. a <b <cD. b <a <c7. 已知1弧度的圆心角所对的弧长为2,则这个圆心角所对的扇形的面积为______ .A. 1B. 2C. 3D. 4E. 5F. 68. 若x 0是函数f(x)=log 2x −1x 的零点,则( )A. −1<x 0<0B. 0<x 0<1C. 1<x 0<2D. 2<x 0<49. 已知函数f(x)=x 3+ax 2+bx +c 是定义在[2b −5,2b −3]上的奇函数,则f(12)的值为( )A. 13B. 98C. 1D. 无法确定10. 已知f(x)={log a (x +a −1),(x >1)(2a −1)x −a,(x ≤1)满足对于任意的实数x 1≠x 2,都有f(x 1)−f(x 2)x 1−x2>0成立,则实数a 的取值范围是( )A. (1,+∞)B. (1,2)C. (1,2]D. (2,+∞)11. 函数f( x)=( x >0)的反函数f −1( x)=( ).A. (x >0)B. (x ≠0)C. 2 x −1(x ∈R)D. 2 x −1(x >0)12. 已知函数f(x)={1x+1−1 x ∈(−1,0]2x−1x ∈(0,1],且g(x)=f(x)−mx +2m 在(−1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A. (−1,−14] B. (−∞,−1]∪(−14,+∞) C. [−1,−14)D. (−∞,−1)∪[−14,+∞)二、填空题(本大题共5小题,共26.0分)13. 已知函数f(x)={x 2−3x +4,x ≥1log 2(1−x),x <1,则f(f(−1))等于______.14. 已知函数f(x)=22x −52⋅2x+1−6(x ∈[0,3])的值域为______ .15. 若x 2−2ax +a +2≥0对任意x ∈[0,2]恒成立,则实数a 的取值范围为______. 16. 已知函数f(x)=2x −12x +1+1,若f(2m −1)+f(4−m 2)>2,则实数m 的取值范围是__________. 17. 设函数f(x)={|x −1|(0<x <2)2−|x −1|(x ≤0或x ≥2)则函数y =f(x)与y =12的交点个数是______ .三、解答题(本大题共5小题,共46.0分) 18. 计算下列各式的值:(1)0.064 −13−(−78)0+160.75+0.01 12; (2)2log 32−log 3329+log 38−25log 53.19. 已知集合A ={x|x 2−(a −1)x −a <0,a ∈R},集合B ={x|2x+12−x<0}.(1)当a =3时,求A ∩B ;(2)若A ∪B =R ,求实数a 的取值范围.20.某公司将进一批单价为7元的商品,若按10元/个销售,每天可卖出100个;若销售价每上涨1元/个,每天的销售量就减少10个.(1)设商品的销售价上涨x元/个(0≤x≤10,x∈N),每天的利润为y元,试表示函数y=f(x);(2)求销售价为13元/个时每天的销售利润;(3)当销售价上涨多少元/个时,利润最多,为多少元?21.已知函数f(x)是定义在(0,+∞)上的增函数,且对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)−1,已知f(4)=5.(Ⅰ)求f(2)的值;(Ⅱ)解不等式f(m−2)≤2.22.已知定义域为R的函数f(x)=−2x+a是奇函数.2x+1(1)求实数a的值;(2)判断并用定义证明该函数在定义域R上的单调性;(3)若方程f(4x−b)+f(−2x+1)=0在(−3,log23)内有解,求实数b的取值范围.-------- 答案与解析 --------1.答案:B解析:解:∵集合A ={x|x 2≤2x}={x|0≤x ≤2}, B ={x|1<x ≤4},∴A ∪B ={x|0≤x <4}=[0,4]. 故选:B .先分别求出集合A ,B ,由此能求出A ∪B .本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.答案:D解析: 【分析】由题意,判断定义域与对应关系是否相同即可. 【解答】解:选项A :不同,定义域,f(x)的是{x|x ≠1},g(x)的是R ;选项B :不同,定义域,f(x)的是R ,g(x)的是{x|x ≠0};选项C :不同,对应关系,f(x)=x ,g(x)=|x|; 选项D :定义域与对应关系都相同,故相同; 故选D .本题考查了函数相等,判断定义域与对应关系是否相同即可.3.答案:D解析: 【分析】本题主要考查函数的定义域的求解. 【解答】解:要使函数f(x)=2√x−2log 3(8−2x)有意义,只需{x −2>08−2x >0,解得2<x <4,则函数的定义域为(2,4). 故选D .4.答案:B解析:【分析】确定指数对应函数的单调性,再利用指数函数的单调性,即可求得结论.本题考查复合函数的单调性,正确运用指数函数,二次函数的单调性是关键.【解答】解:令t=−x2+2x=−(x−1)2+1,∴函数在(−∞,1]上单调递增,在[1,+∞)上单调递减又y=2t在R上为增函数∴函数y=2−x2+2x的单调递减区间为[1,+∞)故选B.5.答案:C解析:【分析】本题主要考查函数的奇偶性及函数图象.【解答】解:函数f(x)=(3−x2)⋅ln|x|是偶函数,排除A,D选项,令(3−x2)⋅ln|x|=0,则当x>0时,解得x=1,或x=√3,所以x=1和x=√3是函数f(x)=(3−x2)⋅ln|x|在x>0时的两个零点,当x=1e (0<1e<1)时,f(1e)=[3−(1e)2]⋅ln|1e|=1e2−3<0,可得选项B错误,故选C.6.答案:A解析:【分析】本题考查三个数的大小的比较,考查指数函数、对数函数的性质等基础知识,考查运算求解能力,是基础题.利用指数函数、对数函数的性质直接求解. 【解答】解:∵a =ln 13<ln1=0, b =20.3>20=1, 0<c =(13)2<(13)0=1, ∴a <c <b . 故选:A .7.答案:B解析:解:由弧度定义得α=lr , 所以r =2,所以S =12lr =12·2·2=2. 故答案为:B .本题考查扇形的弧长公式和面积公式,由弧度的定义可求得扇形的半径,再由扇形的面积公式求解即可.8.答案:C解析: 【分析】利用函数的连续性,结合零点判定定理推出结果即可. 本题考查函数的零点判定定理的应用,是基本知识的考查. 【解答】解:f(x)=log 2x −1x ,函数在x >0时,是增函数, 可得:f(1)=−1<0,f(2)=1−12>0, 所以f(1)f(2)<0,∴函数的零点所在区间为:(1,2). 故选:C .9.答案:B解析: 【分析】本题考查的是函数的奇偶性,属于基础题.根据奇函数的定义域关于原点对称,从而得到b =2,则f(x)为定义在[−1,1]上的奇函数,f (0)=c =0,且f (−1)=−f (1),便可得出a =0,从而得出f (x )=x 3+2x ,再计算f(12)的值即可. 【解答】解:∵奇函数的定义域关于原点对称, ∴2b −5=−(2b −3),解得b =2, ∴f(x)为定义在[−1,1]上的奇函数, ∴f (0)=c =0,∴f (−1)=−f (1),即−1+a −2=−(1+a +2),解得a =0, ∴f (x )=x 3+2x , ∴f(12)=18+1=98.故选B .10.答案:C解析:解:∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0成立,∴函数f(x)在定义域上为增函数, 则满足{a >12a −1>02a −1−a ≤log a (1+a −1),解得1<a ≤2, 故选:C .由任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2>0成立,得函数为增函数,根据分段函数单调性的性质建立不等式关系即可.本题主要考查分段函数单调性的应用,根据条件判断函数的单调性是解决本题的关键.11.答案:A解析: 【分析】本题考查反函数的求法,考查对数运算,属基础题. 依题意,1+1x =2y ,x =12y −1( y >0),从而求得反函数. 【解答】解:由题意知1+1x =2y , x =12y −1( y >0),因此f −1( x)=12x −1( x >0).故选A.12.答案:C解析:【分析】本题主要考查函数零点的应用,利用数形结合是解决此类问题的基本方法,属于中档题.g(x)=f(x)−mx+2m在(−1,1]内有且仅有两个不同的零点,即函数f(x)和ℎ(x)=m(x−2)的图象在(−1,1]内有两个交点,作出两个函数的图象,利用数形结合即可得到结论.【解答】解:由题意,函数f(x)={1x+1−1 x∈(−1,0]2x−1x∈(0,1],g(x)=f(x)−mx+2m在(−1,1]内有且仅有两个不同的零点,即函数f(x)和ℎ(x)=m(x−2)的图象在(−1,1]内有两个交点,分别作出函数f(x)和ℎ(x)=m(x−2)的图象,如图所示:由图象可知f(1)=1,ℎ(x)表示过定点P(2,0)的直线,当ℎ(x)过(1,1)时,m=−1,此时两个函数有两个交点,当ℎ(x)=m(x−2)经过B(0,12)时,有1个交点,此时m=−14,所以要使函数f(x)和ℎ(x)=m(x−2)的图象在(−1,1]内有两个交点,则m∈[−1,−14),故选:C.13.答案:2解析:解:∵函数f(x)={x 2−3x +4,x ≥1log 2(1−x),x <1,∴f(−1)=log 2(1+1)=1, f(f(−1))=f(1)=1−3+4=2. 故答案为:2.利用分段函数的性质先求出f(−1)的值,再计算f(f(−1)).本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.14.答案:[−494,18]解析: 【分析】本题考查了二次函数在区间上的值域,考查了换元法思想,属于基础题.利用换元法,将原函数转化为一元二次函数在区间上的值域,利用二次函数的图象求出函数的值域,得到本题结论. 【解答】解:设2x =t ,t ∈[1,8], 则g(t)=t 2−5t −6=(t −52)2−494,∴g(52)≤g(t)≤g(8). 即g(t)∈[−494,18].∴函数f(x)=22x −52⋅2x+1−6(x ∈[0,3])的值域为[−494,18].故答案为[−494,18].15.答案:[−2,2]解析: 【分析】本题考查了二次函数在区间上的恒成立问题,涉及到分类讨论思想、转化思想,属于中档题. 由题意可得,函数f(x)=x 2−2ax +a +2的最小值对任意x ∈[0,2]恒大于等于0,按二次函数的对称轴分类求出最值即可. 【解答】解:若命题“任意x ∈[0,2],x 2−2ax +a +2≥0”恒成立,则函数f(x)=x 2−2ax +a +2在x ∈[0,2]时的最小值恒大于等于0,二次函数f(x)=x 2−2ax +a +2的对称轴为x =a , 当a ≥2时,函数f(x)在[0,2]上递减,f(x)min =f(2)=6−3a ≥0⇒a ≤2,故a =2; 当a ≤0时,函数f(x)在[0,2]上递增,f(x)min =f(0)=2+a ≥0⇒−2≤a ≤0;当0<a <2时,函数f(x)在[0,a]上递减,在[a,2]上递增,f(x)min =f(a)=−a 2+a +2≥0⇒−1≤a ≤2,故0<a <2.综上,实数a 的取值范围为:[−2,2]故答案为:[−2,2].16.答案:(−1,3)解析:【分析】本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.构造函数g(x)=f(x)−1,然后根据函数奇偶性和单调性之间的关系,即可得到结论.【解答】解:∵f(x)=2x −12x +1+1, 令g(x)=f(x)−1=2x −12x +1, 则g(−x)=2−x −12−x +1=1−2x1+2x =−g(x),故g(x)为奇函数,∵g(x)=2x −12x +1=1−22x +1在R 上单调递增,∵f(2m −1)+f(4−m 2)>2,∴g(2m −1)+1+g(4−m 2)+1>2,∴g(2m −1)+g(4−m 2)>0,g(2m −1)>−g(4−m 2)=g(−4+m 2),∴2m −1>−4+m 2,解可得,−1<m <3则实数m 的取值范围是(−1,3).故答案为:(−1,3) 17.答案:4解析:解:在同一坐标系中作出函数y =f(x)={|x −1|(0<x <2)x +1(x ≤0)3−x(x ≥2)的图象与函数y =12的图象,如下图所示,由图知两函数y =f(x)与y =12的交点个数是4.故答案为:4.在同一坐标系中,作出函数y=f(x)={|x−1|(0<x<2)2−|x−1|(x≤0或x≥2)={|x−1|(0<x<2)x+1(x≤0)3−x(x≥2)与y=12x的图象,数形结合即可知二曲线交点的个数.本题考查根的存在性及根的个数判断,考查作图与识图能力,属于中档题.18.答案:解:(1)原式=(0.43)−13−1+1634+110=52−1+8+110=485;-----------(6分)(2)原式=log34−log3329+log38−25log259=log3(4×932×8)−9=log39−9=2−9=−7.----(6分)解析:(1)自己利用指数的运算法则,求出表达式的值即可.(2)利用对数的运算法则求解即可.本题考查有理指数幂的运算法则,对数的运算法则,考查计算能力.19.答案:解:(1)当a=3时,A={x|x2−2x−3<0}={x|−1<x<3},B={x|2x+12−x<0}={x|x>2或x<−12}.则A∩B={x|−1<x<−12或2<x<3}.(2)A={x|x2−(a−1)x−a<0}={x|(x+1)(x−a)<0},B={x|x>2或x<−12}.若A∪B=R,则a≥2,即实数a的取值范围是[2,+∞).解析:(1)结合不等式的解法,求出集合的等价条件,结合集合交集的定义进行求解即可.(2)结合A∪B=R,建立不等式关系进行求解即可.本题主要考查集合的基本运算,结合不等式的解法求出集合的等价条件是解决本题的关键.20.答案:解:(1)销售价上涨x元,则销售量为100−10x,利润为y=(x+10−7)(100−10x),即y=10(x+3)(10−x)=−10x2+70x+300,0≤x≤10,x∈N;(2)销售价为13时,x=3,y=420;(3)y=−10x2+70x+300,0≤x≤10,x∈N,对称轴为x=3.5当销售价上涨3元/个或上涨4元/个,销售利润最大,最大为y=420元.解析:本题考查函数模型的选择与应用,考查学生分析解决问题的能力,属于中档题.(1)销售价上涨x元,则销售量为100−10x,可得利润函数;(2)由题意得,x=3,y=420;(3)x=3或者x=4时,10(x+3)(10−x)=420,即可得出结论.21.答案:解:(Ⅰ)∵对任意的x ,y ∈(0,+∞),都有f(x +y)=f(x)+f(y)−1,∴令x =y =2,则f(4)=2f(2)−1,∵f(4)=5,∴f(2)=3;(Ⅱ)令x =y =1,则f(2)=2f(1)−1,∴f(1)=2,不等式f(m −2)≤2即为f(m −2)≤f(1),∵函数f(x)是定义在(0,+∞)上的增函数,∴m −2>0,且m −2≤1,∴2<m ≤3.∴不等式的解集为(2,3].解析:本题考查抽象函数及应用,考查函数的单调性及运用,考查解决抽象函数的常用方法:赋值法,属于基础题.(Ⅰ)由条件令x =y =2,由f(4)=5,即可得到f(2);(Ⅱ)不等式f(m −2)≤2即为f(m −2)≤f(1),由函数的单调性即可得到m −2>0,且m −2≤1,解出即可.22.答案:解:(1)根据题意,定义域为R 的函数f(x)=−2x +a 2x +1是奇函数, 则有f(0)=−1+a 2=0,解可得a =1,此时f(x)=−2x −12x +1,有f(−x)=2x −12x +1=−f(x),为奇函数,符合题意,故a =1; (2)f(x)在R 上为减函数,证明如下:设x 1<x 2,则f(x 1)−f(x 2)=(−2x 1−12x 1+1)−(−2x 2−12x 2+1)=2(2x 1−2x 2)(2x 1+1)(2x 2+1),又由x 1<x 2,则(2x 1−2x 2)<0,(2x 1+1)>0,(2x 2+1)>0,则f(x)在R 上为减函数,(3)根据题意,f(x)为奇函数,若方程f(4x −b)+f(−2x+1)=0,则有f(4x −b)=−f(−2x+1),即f(4x −b)=f(2x+1), 又由函数f(x)为单调递减函数,则有4x −b =2x+1,变形可得b =4x −2x+1,设g(x)=4x −2x+1,x ∈(−3,log 23),则有g(x)=4x −2×2x =(2x −1)2−1,,3),则有−1≤g(x)<3,又由x∈(−3,log23),则2x∈(18若b=4x−2x+1,则b的取值范围为[−1,3).=0,解可得a=1,将a=1代入f(x)的解析解析:(1)根据题意,由奇函数的性质可得f(0)=−1+a2式,验证其奇偶性即可得答案;(2)根据题意,设x1<x2,由作差法分析可得结论;(3)根据题意,由函数的奇偶性与单调性分析可得若方程f(4x−b)+f(−2x+1)=0,则有4x−b= 2x+1,变形可得b=4x−2x+1,设g(x)=4x−2x+1,x∈(−3,log23),求出函数g(x)的值域,分析可得答案.本题考查函数的奇偶性与单调性的判断以及应用,涉及函数与方程的关系,属于综合题.。
【20套试卷合集】吉林省吉林市普通中学2019-2020学年数学高一上期中模拟试卷含答案
2019-2020学年高一上数学期中模拟试卷含答案考试时间:120分钟 满分:150分一、选择题:本大题共12个小题,每小题5分,共60分,每小题只有一个正确选项. 1.在①{}10,1,2⊆;②{}{}10,1,2∈;③{}{}0,1,20,1,2⊆; ④∅{}0上述四个关系中,错误..的个数是( ) A .1个 B .2个C .3个D .4个2.函数1()lg(1)1f x x x=++-的定义域是( ) A .(),1-∞- B .()1,+∞C .()()1,11,-+∞ D .(),-∞+∞3.若372log πlog 6log 0.8a b c ===,,,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>4.函数212log (231)y x x =-+的递减区间为( )A .()1,+∞B .3,4⎛⎤-∞ ⎥⎝⎦C .3,4⎛⎫+∞⎪⎝⎭D .1,2⎛⎫-∞ ⎪⎝⎭5.下列等式中一定正确的是( )A 23x y =+ B .82710log 9log 329⋅=C .=D .log log aa x =6.已知()f x 是定义在R 上的奇函数,当0x >时,()23xf x =-,那么(2)f -的值是( )A .1-B .114C .1D .114-7.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭8.设函数⎩⎨⎧+∞∈-∞∈=),2(,log ]2,(,2)(2x x x x f x ,则满足4)(=x f 的x 的值是( )A .2B .16C .2或16D .-2或169.已知函数()()()f x x a x b =--(其中a b >)的图象如下面右图所示,则函数()x g x a b =+的图象是( )A .B .C .D .10.当]2,0[∈x 时,函数3)1(4)(2--+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是( )A .),21[+∞-B .),0[+∞C .),1[+∞D .),32[+∞11.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()2xxf xg x a a -+=-+(0a >,且1a ≠).若(2)g a =,则(2)f =( )A .2B .154C .174D .2a12.对实数a 和b ,定义运算“⊗”:,1.1a ab a b b a b -≤⎧⊗=⎨->⎩设函数()()22()2,f x x x x x R =-⊗-∈,若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(]3,21,2⎛⎫-∞-- ⎪⎝⎭B .(]3,21,4⎛⎫-∞--- ⎪⎝⎭C .111,,44⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--+∞ ⎪⎪⎢⎝⎭⎣⎭二、填空题:本大题共4个小题,每小题5分,共20分. 13.已知x x f a log )(3=,且1)8(=f ,则=a ________14.函数232(01)y x x x =-+≤≤的值域为___________________ 15.函数 )10(31≠>+=-a a ay x 且的图象必过定点P , P 点的坐标为_________.16.关于函数22log (23)y x x =-+有以下4个结论其中正确的有___________① 定义域为(,3](1,);-∞-⋃+∞ ② 递增区间为[1,);+∞ ③ 最小值为1;④ 图象恒在x 轴的上方三、解答题:本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知集合}06|{2<--=x x x A ,2{|280}B x x x =+-≥(1)求A B ;(2)求R A C B .18.(满分12分)(1)化简:11lg9lg 240212361lg 27lg 35+-+-+ (2)已知:lg(1)lg(2)lg 2x x -+-=,求x 的值19.(12分) 2()1xf x x =+是定义在()1,1-上的函数 (1)用定义证明()f x 在()1,1-上是增函数; (2)解不等式(1)()0f t f t -+<.20.(12分)已知110,0x y ≤≤>,且1002=xy ,求22)(lg )(lg y x +的最大值和最小值.21.(12分)已知22(log )24f x x x =-+,]4,2[∈x(1)求)(x f 的解析式及定义域;(2)若方程a x f =)(有实数根,求实数a 的取值范围22.(12分)已知函数aa x f x+-=241)((0>a 且1≠a )是定义在),(+∞-∞上的奇函数. (1)求a 的值;(2)当]1,0(∈x 时,22)(-≥⋅x x f t 恒成立,求实数t 的取值范围.2019-2020学年高一上数学期中模拟试卷含答案一.选择题.(每小题4分,共10小题,共40分,每小题只有一个正确答案)1.设全集}{,集合9,8,7,6,5,4,3,2,1,0=U }{8,5,3,1,0A =,集合}{8,6,5,4,2B =,则=⋂B C A U U C ( )A .}{8,5B .}{9,7 C.}{3,1,0 D.}{6,4,2 2.设)(22112R t b a t ∈==--,则b a 与的大小关系是( )A.b a ≥ B.b a ≤ C.b a < D.b a > 3.设3log 2=a ,7.0log 2=b ,1log 5=c ,则c b a 、、的大小关系是( ) A.c b a << B.c a b << C.b c a << D.a c b << 4.已知函数3log )(2-=x x f ,则函数定义域是( )A.[)+∞,3 B.()+∞,3 C.[)+∞,8 D.()+∞,8 5.函数⎩⎨⎧<+≥-=6)2(65)(x x f x x x f ,则=)3(f ( )A.5 B.4 C.3 D.26.设)(x f 是定义在R上的偶函数,当=--+=≥)1(,122)(0f x x f x x则时,( ) A.3 B.25-C.25 D.-37.函数)32(log )(22-+=x x x f 的单调减区间为( )A.()3,-∞- B.()1,-∞- C.()+∞-,1 D.()1,3-- 8.已知偶函数)(x f 在]2,(--∞上是增函数,则下列关系式中成立的是( )A.)4()3()27(f f f <-<- B.)4()27()3(f f f <-<-C.)27()3()4(-<-<f f f D.)3()27()4(-<-<f f f9.函数12)(2+-=x mx x f 的定义域为R,则实数m的取值范围是( )A.)1,0( B.()+∞,1 C.),1[+∞ D.),0[+∞10.设函数3)1(2)(2++++=m x m mx x f 仅有一个负零点,则m 的取值范围为( ) A.{}03≤≤-m m B.{}03<<-m m C.{}03<≤-m m D.{}031≤≤-=m m m 或11.函数1)21()(-=x x f 的定义域是 . 12.已知41log ,)21(,258.02.1===-c b a ,则c b a 、、由小到大的顺序是 . 13.函数)(x f 为定义在R上的奇函数,当0)(,)(02<+=≥x x f x x x f x 在则时,上的解析式为)(x f = .14.某种商品进货价每件50元,据市场调查,当销售价格(每件x元)在8050≤≤x 时,每天售出的件数2)40(100000-=x P ,当销售价格定为 元时所获利润最多. 三.解答题(共4小题,共40分)15.(每小题4分共8分)计算:(1)9log 22log 25log 532⋅⋅ (2)5.021225.04122532-⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫⎝⎛--16.( 本小题10分) 已知[)3,0),32(log )(,32)(222且两函数定义域均为+-=+-=x x x g x x x f ,(1).画函数)(x f 在定义域内的图像,并求)(x f 值域;(5分) (2).求函数g(x)的值域.(5分)17.( 本小题10分)设定义在[]2,2-上的奇函数b x x x f ++=35)((1).求b值;(4分)(2).若)(x f 在[]2,0上单调递增,且0)1()(>-+m f m f ,求实数m的取值范围.(6分) 18.( 本小题12分)设函数)(x f y =的定义域为R,并且满足1)2(),()()(=-=-f y f x f y x f 且, 当.0)(0>>x f x 时, (1).求)0(f 的值;(3分)(2).判断函数)(x f 的奇偶性;(3分)(3).如果x x f x f 求,2)2()(<++的取值范围.(6分)数学试题答案二.选择题.(每小题4分,共10小题,共40分,每小题只有一个正确答案)BBDCD, AADCD二.填空题(每小题5分,共4小题,共20分)11.{}0≤x x 12.c<b<a 13.x x +-214.60 三.解答题(共4小题,共40分)15.(每小题4分共8分)计算: (1)6 (2)3216.( 本小题10分)解(1).图略。
2019-2020学年吉林省高一上学期期中数学
2019-2020学年吉林省实验中学高一上学期期中数学(文)试题一、单选题1.已知集合{}{}20,1M x x x N x x =->=≥,则M N =( )A .{}1x x ≥B .{}1x x >C .ΦD .{|1x x >或}0x <【答案】B【解析】化简集合M ,根据集合交集运算即可求解. 【详解】因为{}{}2010M x x x x x x =->=><或,{}1N x x =≥ 所以M N ={}1x x >,故选:B 【点睛】本题主要考查了集合的交集运算,属于容易题. 2.函数log (2)1a y x =++的图象过定点 ( ) A .(1,2) B .(2,1)C .(-2,1)D .(-1,1)【答案】D【解析】试题分析:因为函数()log 0,1a y x a a =>≠必过点()1,0,所以当21,1x x 即+==-时,有011y =+=,所以函数log (2)1a y x =++必过点()1,1-.【考点】对数函数的图像和性质.3.已知幂函数()af x x =的图象经过点(,则()4f 的值为 ( )A .12B .1C .2D .8【答案】C【解析】根据幂函数过点可求出幂函数解析式,即可计算求值. 【详解】因为幂函数()af x x =的图象经过点(,2a =,解得12a =, 所以()12f x x =,()12442f ==,故选:C 【点睛】本题主要考查了幂函数的解析式,属于容易题. 4.函数()ln(1)f x x =+的定义域为 ( )A .(1,0)(0,2]-⋃B .(0,2]C .(1,2)-D .(1,2]-【答案】A【解析】根据函数解析式,只需解析式有意义即可求出. 【详解】要使函数有意义,则需满足:201011x x x -≥⎧⎪+>⎨⎪+≠⎩,解得120x x -<≤≠且 所以定义域为(1,0)(0,2]-⋃, 故选:A 【点睛】本题主要考查了给出函数解析式的函数定义域问题,属于中档题.5.三个数0.760.76,0.7,log 6的大小顺序是( ) A .60.70.70.76log 6<<B .60.70.70.7log 66<<C .0.760.7log 660.7<<D .60.70.7log 60.76<<【答案】D【解析】由指数函数和对数函数的图象与性质得0.760.761,00.71,log 60><<<,即可求解. 【详解】由指数函数和对数函数的图象与性质可知:0.760.761,00.71,log 60><<<,所以60.70.7log 60.76<<,故选D .【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答中熟记指数函数与对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题. 6.已知()()42ln log log 0x =,那么12x -=( )A .4B .4-C .14D .14-【答案】C【解析】根据对数的性质及指数幂的运算法则求解即可. 【详解】因为()()42ln log log 0x =, 所以()42log log 1x =, 即2log 4x =, 所以4216x ==,11221164x--==, 故选:C 【点睛】本题主要考查了对数的运算性质及指数幂的运算,属于中档题. 7.函数(0,1)x y a a a a =->≠的图象可能是 ( )A .B .C .D .【答案】C 【解析】【详解】采用特殊值验证法. 函数(0,1)xy a a a a =->≠恒过(1,0),()0,a -,只有C 选项符合.[点评]函数大致图象问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.8.已知函数(32)61,1(),1xa x a x f x a x -+-<⎧=⎨≥⎩在(,)-∞+∞上单调递减,则实数a 的取值范围是( ) A .(0,1) B .2(0,)3C .32[,)83D .3[,1)8【答案】C【解析】由题函数()()3261,1,1xa x a x f x a x ⎧-+-<=⎨≥⎩在(),-∞+∞上单调递减,则()13200132161a a a a a ⎧-<⎪<<⎨⎪-⨯+-≥⎩解之得3283a ≤< 故选C9.已知函数1()log (0x a f x a x a -=+>且1)a ≠在区间[1,3]上的最小值为21a -,则a的值为( ) A .13BC .13D .13或2 【答案】A【解析】分1a >和01a <<两种情况讨论,利用函数的单调性即可写出最小值,从而求解a . 【详解】当1a >时,1()log x a f x a x -=+在区间[1,3]上是增函数, 所以02min ()(1)log 111a f x f a a ==+==-,解得a =a =, 当01a <<时,1()log x a f x a x -=+在区间[1,3]上是减函数, 所以22min ()(3)log 31a f x f a a ==+=-,解得13a =, 综上a的值为a =13a =.故选:A 【点睛】本题主要考查了指数函数与对数函数的增减性,分类讨论的思想,属于中档题.10.已知函数()f x 为奇函数,且当0x >时, ()210f x x x=+>,则()1f -= ( ) A .-2 B .0 C .1D .2【答案】A【解析】因为()f x 是奇函数,所以(1)(1)(11)2f f -=-=-+=-,故选A. 11.设函数f(x)=log a |x|(a>0且a≠1)在(-∞,0)上单调递增,则f(a +1)与f(2)的大小关系为( )A .f(a +1)=f(2)B .f(a +1)>f(2)C .f(a +1)<f(2)D .不确定【答案】B【解析】当0x <时,()()log a f x x =-单调递增,则01a <<,则112a <+<, 又()log a f x x =为偶函数,则()f x 在()0,∞+单调递减, 则()()12f a f +>,故选B 。
吉林省吉林市2019-2020学年高一上学期数学期中考试试卷(II)卷
吉林省吉林市2019-2020学年高一上学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)设全集则图中阴影部分表示的集合为()A . (-1,0)B . (-3,-1)C . [-1,0)D .2. (2分)满足{1,2}⊊A⊆{1,2,3,4,5,6}的集合A的个数有()个.A . 13B . 14C . 15D . 163. (2分)(2016·青海) 已知函数f(x)=lg(1-x)的定义域为M,函数的定义域为N,则M∩N=()A . {x|x<1且x≠0}B . {x|x≤1且x≠0}C . {x|x>1}D . {x|x≤1}4. (2分) (2019高三上·铁岭月考) 已知函数在区间上有零点,则()A . 1B . 2C . 3D . 45. (2分) (2016高一上·芒市期中) 已知,那么的值是()A .B .C .D . -6. (2分) (2016高一下·淮北开学考) 已知函数f(x)=ax2﹣2ax+c满足f(2017)<f(﹣2016),则满足f(m)≤f(0)的实数m的取值范围是()A . (﹣∞,0]B . [0,2]C . (﹣∞,0]∪[2,+∞)D . [2,+∞)7. (2分) (2018高二上·会宁月考) 已知定义在上的函数是奇函数且满足,,数列满足(其中为的前项和),则()A .B .C .D .8. (2分) (2016高一上·大名期中) 函数f(x)= +lg(3x+1)的定义域为()A . [﹣,1)B . (﹣,1)C . (﹣,+∞)D . (﹣∞,1)9. (2分)下列运算正确的是()A .B .C .D .10. (2分) (2018高二下·石嘴山期末) 若函数的定义域为,则的取值范围为()A .B .C .D .二、填空题 (共4题;共4分)11. (1分) (2016高一上·浦东期中) 集合A={x|x≤1},B={x|x≥a},A∪B=R,则a的取值范围是________12. (1分)设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2 ,若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则实数a的取值范围是________13. (1分)=________14. (1分) (2016高一上·佛山期末) 计算() +lg ﹣lg25=________.三、解答题 (共4题;共40分)15. (10分) (2019高一上·拉萨期中) 已知函数的图象过点(1)求与的值;(2)当时,求的值域.16. (5分)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1(1)求函数f(x)的解析式;(2)求函数y=f(x2﹣2)的值域.17. (10分) (2016高一上·尼勒克期中) 已知函数g(x)=1+ .(1)判断函数g(x)的奇偶性(2)用定义证明函数g(x)在(﹣∞,0)上为减函数.18. (15分) (2017高一上·襄阳期末) 已知函数f(x)=lg(x+1),g(x)=lg(1﹣x).(Ⅰ)求函数f(x)+g(x)的定义域;(Ⅱ)判断函数f(x)+g(x)的奇偶性,并说明理由;(Ⅲ)判断函数f(x)+g(x)在区间(0,1)上的单调性,并加以证明.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共4题;共40分)15-1、15-2、16-1、16-2、17-1、17-2、18-1、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。