2013届南京市高三基础调研数学试卷(已校对WORD版)

合集下载

南京市、盐城市2013届高三第三次模拟考试数学参考答案及评分标准(定稿)

南京市、盐城市2013届高三第三次模拟考试数学参考答案及评分标准(定稿)

南京市、盐城市2013届高三第三次模拟考试数学参考答案及评分标准 2013.05说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题:本大题共14小题,每小题5分,共70分.1.(1,3] 2.5 3.8 4.127 5. 236.710 7.2 8.①④ 9.56210.2 11.2 12.2x +y -2=0 13.(12,17) 14.332二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤. 15.解(1)方法一:因为tan α=2,所以sin αcos α=2,即sin α=2cos α. ………………………… 2分又sin 2α+cos 2α=1,解得sin 2α=45,cos 2α=15. ………………………… 4分所以cos2α=cos 2α-sin 2α=-35. ………………………… 6分方法二:因为cos2α=cos 2α-sin 2α ………………………… 2分=cos 2α-sin 2αsin 2α+cos 2α =1-tan 2αtan 2α+1, ………………………… 4分 又tan α=2,所以cos2α=1-2222+1=-35. ………………………… 6分(2)方法一:因为α∈(0,π),且tan α=2,所以α∈(0,π2).又cos2α=-35<0,故2α∈(π2,π) ,sin2α=45. ………………………… 8分由cos β=-7210,β∈(0,π),得sin β=210,β∈(π2,π). ………………………… 10分所以sin(2α-β)=sin2αcos β-cos2αsin β=45×(-7210)-(-35)×210=-22. ………… 12分又2α-β∈(-π2,π2),所以2α-β=-π4. ………………………… 14分方法二:因为α∈(0,π),且tan α=2,所以α∈(0,π2),tan2α=2tan α1-tan 2α=-43. 从而2α∈(π2,π). ………………………… 8分由cos β=-7210,β∈(0,π),得sin β=210,β∈(π2,π),因此tan β=-17. ………………………… 10分所以tan(2α-β)=tan2α-tan β1+tan2αtan β=-43+171+(-43)×(-17)=-1. ………………………… 12分又2α-β∈(-π2,π2),所以2α-β=-π4. ………………………… 14分16.证明(1)如图,取BC 的中点G ,连结AG ,FG .因为F 为C 1B 的中点,所以FG =∥12C 1C . 在三棱柱ABC -A 1B 1C 1中,A 1A =∥C 1C ,且E 为A 1A 的中点, 所以FG =∥EA . 所以四边形AEFG 是平行四边形. 所以EF ∥AG . ………………………… 4分 因为EF ⊄平面ABC ,AG ⊂平面ABC ,所以EF ∥平面ABC . ………………………… 6分 (2)因为在正三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,BD ⊂平面ABC ,所以A 1A ⊥BD .因为D 为AC 的中点,BA =BC ,所以BD ⊥AC .因为A 1A ∩AC =A ,A 1A ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,所以BD ⊥平面A 1ACC 1. 因为C 1E ⊂平面A 1ACC 1,所以BD ⊥C 1E . ………………………… 9分(第16题)ABC D EC 1A 1B 1FG根据题意,可得EB =C 1E =62AB ,C 1B =3AB , 所以EB 2+C 1E 2=C 1B 2.从而∠C 1EB =90°,即C 1E ⊥EB .……………………… 12分 因为BD ∩EB =B ,BD ⊂平面BDE , EB ⊂平面BDE ,所以C 1E ⊥平面BDE . ………………………… 14分17.解(1)由题意知,f (x )=-2x +3+ln x ,所以f ′(x )=-2+1x =-2x +1x (x >0). ……………………… 2分由f ′(x )>0得x ∈(0,12) .所以函数f (x )的单调增区间为(0,12). ……………………… 4分(2)由f ′(x )=mx -m -2+1x,得f ′(1)=-1,所以曲线y =f (x )在点P (1,1)处的切线l 的方程为y =-x +2.…………………… 6分 由题意得,关于x 的方程f (x )=-x +2有且只有一个解, 即关于x 的方程12m (x -1)2-x +1+ln x =0有且只有一个解.令g (x )=12m (x -1)2-x +1+ln x (x >0).则g ′(x )=m (x -1)-1+1x =mx 2-(m +1)x +1x =(x -1)(mx -1)x(x >0). …………… 8分①当0<m <1时,由g ′(x )>0得0<x <1或x >1m ,由g ′(x )<0得1<x <1m ,所以函数g (x )在(0,1)为增函数,在(1,1m )上为减函数,在(1m ,+∞)上为增函数.又g (1)=0,且当x →∞时,g (x )→∞,此时曲线y =g (x )与x 轴有两个交点.故0<m <1不合题意. ……………………… 10分 ②当m =1时,g ′(x )≥0,g (x )在(0,+∞)上为增函数,且g (1)=0,故m =1符合题意. ③当m >1时,由g ′(x )>0得0<x <1m 或x >1,由g ′(x )<0得1m<x <1,所以函数g (x )在(0,1m ) 为增函数,在(1m ,1)上为减函数,在(1,+∞)上为增函数.又g (1)=0,且当x →0时,g (x )→-∞,此时曲线y =g (x )与x 轴有两个交点. 故m >1不合题意.综上,实数m 的值为m =1. ……………………… 14分18.解 如图所示,不妨设纸片为长方形ABCD ,AB =8cm ,AD =6cm ,其中点A 在面积为S 1的部分内.折痕有下列三种情形:①折痕的端点M ,N 分别在边AB ,AD 上; ②折痕的端点M ,N 分别在边AB ,CD 上; ③折痕的端点M ,N 分别在边AD ,BC 上.(1)在情形②、③中MN ≥6,故当l =4时,折痕必定是情形①.设AM =x cm ,AN =y cm ,则x 2+y 2=16. ……………………… 2分 因为x 2+y 2≥2xy ,当且仅当x =y 时取等号, 所以S 1=12xy ≤4,当且仅当x =y =22时取等号.即S 1的最大值为4. ……………………… 5分 (2)由题意知,长方形的面积为S =6×8=48.因为S 1∶S 2=1∶2,S 1≤S 2,所以S 1=16,S 2=32.当折痕是情形①时,设AM =x cm ,AN =y cm ,则12xy =16,即y =32x.由⎩⎪⎨⎪⎧0≤x ≤8,0≤32x ≤6,得163≤x ≤8.所以l =x 2+y 2=x 2+322x 2,163≤x ≤8. ……………………… 8分设f (x )=x 2+322x 2,x >0,则f ′(x )=2x -2×322x 3=2(x 2+32)(x +42)(x -42)x 3,x >0.故所以f (x )的取值范围为[64,80],从而l 的范围是[8,45]; ……………… 11分 当折痕是情形②时,设AM =x cm ,DN =y cm ,则12(x +y )×6=16,即y =163-x .由⎩⎪⎨⎪⎧0≤x ≤8,0≤163-x ≤8,得0≤x ≤163.ABCD (情形①)MNABCD (情形②)MNABCD (情形③)MN所以l =62+(x -y )2=62+4(x -83)2,0≤x ≤163.所以l 的范围为[6,21453]; ……………………… 13分当折痕是情形③时,设BN =x cm ,AM =y cm ,则12(x +y )×8=16,即y =4-x .由⎩⎨⎧0≤x ≤6,0≤4-x ≤6,得0≤x ≤4. 所以l =82+(x -y )2=82+4(x -2)2,0≤x ≤4. 所以l 的取值范围为[8,45].综上,l 的取值范围为[6,45]. ……………………… 16分19.解(1)由题意得,m >8-m >0,解得4<m <8.即实数m 的取值范围是(4,8). ……………………… 2分 (2)因为m =6,所以椭圆C 的方程为x 26+y 22=1.①设点P 坐标为(x ,y ),则x 26+y 22=1.因为点M 的坐标为(1,0),所以PM 2=(x -1)2+y 2=x 2-2x +1+2-x 23=2x 23-2x +3=23(x -32)2+32,x ∈[-6,6]. ……………………… 4分 所以当x =32时,PM 的最小值为62,此时对应的点P 坐标为(32,±52).……………………… 6分②由a 2=6,b 2=2,得c 2=4,即c =2,从而椭圆C 的右焦点F 的坐标为(2,0),右准线方程为x =3,离心率e =63. 设A (x 1,y 1),B (x 2,y 2),AB 的中点H (x 0,y 0),则x 126+y 122=1,x 226+y 222=1, 所以x 12-x 226+y 12-y 222=0,即k AB =y 1-y 2x 1-x 2=-x 03y 0. ……………………… 9分令k =k AB ,则线段AB 的垂直平分线l 的方程为y -y 0=-1k (x -x 0).令y =0,则x N =ky 0+x 0=23x 0.因为F (2,0),所以FN =|x N -2|=23|x 0-3|. ……………………… 12分因为AB =AF +BF =e (3-x 1)+e (3-x 2)=263|x 0-3|.故AB FN =263×32=6. 即ABFN为定值6. ……………………… 16分20.解(1)设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d ,从而S nn =a 1+n -12d . 所以当n ≥2时,S n n -S n -1n -1=(a 1+n -12d )-(a 1+n -22d )=d2.即数列{S nn }是等差数列. ……………………… 2分(2)因为对任意正整数n ,k (n >k ),都有S n +k +S n -k =2S n 成立,所以S n +1+S n -1=2S n ,即数列{S n }是等差数列. ……………………… 4分 设数列{S n }的公差为d 1,则S n =S 1+(n -1)d 1=1+(n -1)d 1, 所以S n =[1+(n -1)d 1]2,所以当n ≥2时,a n =S n -S n -1=[1+(n -1)d 1]2-[1+(n -2)d 1]2=2d 21n -3d 21+2d 1,因为{a n }是等差数列,所以a 2-a 1=a 3-a 2,即(4d 21-3d 21+2d 1)-1=(6d 21-3d 21+2d 1)-(4d 21-3d 21+2d 1),所以d 1=1,即a n =2n -1.又当a n =2n -1时,S n =n 2,S n +k +S n -k =2S n 对任意正整数n ,k (n >k )都成立, 因此a n =2n -1. ……………………… 7分 (3)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d ,b n =a a n ,所以b n b n -1=a a n -a n -1=a d ,即数列{b n }是公比大于0,首项大于0的等比数列. ……………………… 9分 记公比为q (q >0).以下证明:b 1+b n ≥b p +b k ,其中p ,k 为正整数,且p +k =1+n . 因为(b 1+b n )-(b p +b k )=b 1+b 1q n -1-b 1q p -1-b 1q k -1=b 1(q p -1-1)( q k -1-1).当q >1时,因为y =q x 为增函数,p -1≥0,k -1≥0, 所以q p -1-1≥0,q k -1-1≥0,所以b 1+b n ≥b p +b k .当q =1时,b 1+b n =b p +b k .当0<q <1时,因为y =q x 为减函数,p -1≥0,k -1≥0, 所以q p -1-1≤0,q k -1-1≤0,所以b 1+b n ≥b p +b k .综上,b 1+b n ≥b p +b k ,其中p ,k 为正整数,且p +k =1+n .………………… 14分 所以n (b 1+b n )=(b 1+b n )+(b 1+b n )+…+(b 1+b n )≥(b 1+b n )+(b 2+b n -1)+(b 3+b n -2)+…+(b n +b 1)=(b 1+b 2+…+b n )+(b n +b n -1+…+b 1), 即b 1+b 2+…+b n n ≤b 1+b n2. …………………… 16分南京市、盐城市2013届高三第三次模拟考试数学附加题参考答案及评分标准 2013.0521.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分. A .选修4—1:几何证明选讲证明 如图,延长PO 交⊙O 于D ,连结AO ,BO .AB 交OP 于点E .因为P A 与⊙O 相切, 所以P A 2=PC ·PD .设⊙O 的半径为R ,因为P A =12,PC =6,所以122=6(2R +6),解得R =9. …………………… 4分 因为P A ,PB 与⊙O 均相切,所以P A =PB .又OA =OB ,所以OP 是线段AB 的垂直平分线. …………………… 7分 即AB ⊥OP ,且AB =2AE . 在Rt △OAP 中,AE =OA ·P A OP =365.所以AB =725. …………………… 10分B .选修4—2:矩阵与变换 解 (1)由题知,⎣⎢⎡⎦⎥⎤1 a b 1 ⎣⎡⎦⎤11=⎣⎡⎦⎤02,即⎩⎨⎧1+a =0,b +1=2,解得⎩⎨⎧a =-1,b =1.…………………… 4分(2)设P' (x ,y )是曲线C'上任意一点,P' 由曲线C 上的点P (x 0,y 0) 经矩阵M 所表示的变换得到,所以⎣⎢⎡⎦⎥⎤1 -11 1 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎨⎧x 0-y 0=x ,x 0+y 0=y ,解得⎩⎨⎧x 0=y +x2,y 0=y -x 2.…………………… 7分 ABOC (第21题A )DE因为x 0y 0=1,所以y +x 2·y -x 2=1,即y 24-x 24=1.即曲线C' 的方程为y 24-x 24=1. …………………… 10分C .选修4—4:坐标系与参数方程解 以极点为原点,极轴为x 轴正半轴建立平面直角坐标系,则圆C 的直角坐标方程为(x -3)2+(y -1)2=4,点M 的直角坐标为(33,3). …………………… 3分当直线l 的斜率不存在时,不合题意. 设直线l 的方程为y -3=k (x -33),由圆心C (3,1)到直线l 的距离等于半径2.故|23k -2|k 2+1=2. …………………… 6分解得k =0或k =3.所以所求的直线l 的直角坐标方程为y =3或3x -y -6=0. ………………… 8分所以所求直线l 的极坐标方程为ρsin θ=3或ρsin(π3-θ)=3. …………………… 10分D .选修4—5:不等式选讲解 原不等式等价于 ⎩⎨⎧x ≥4,x 2-4x -3<0,或⎩⎨⎧x <4,-x 2+4x -3<0. …………………… 5分解得⎩⎨⎧x ≥4,2-7<x <2+7,或⎩⎨⎧x <4,x <1或x >3.即4≤x <2+7或3<x <4或x <1.综上,原不等式的解集为{x | x <1或3<x <2+7}. …………………… 10分【必做题】第22题、第23题,每题10分,共20分.22.解(1)如图,取AC 的中点F ,连接BF ,则BF ⊥AC .以A 为坐标原点,过A 且与FB 平行的直线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系. 则A (0,0,0),B (3,1,0), C (0,2,0),P (0,0,2),E (0,1,1),从而→PB =(3,1,-2), →AE =(0,1,1). 设直线AE 与PB 所成角为θ, 则cos θ=|→PB ·→AE|→PB |×|→AE ||=14.(第22题)即直线AE 与PB 所成角的余弦值为14 . …………………… 4分(2)设P A 的长为a ,则P (0,0,a ),从而→PB =(3,1,-a ),→PC =(0,2,-a ).设平面PBC 的法向量为n 1=(x ,y ,z ),则n 1·→PB =0,n 1·→PC =0, 所以3x +y -az =0,2y -az =0. 令z =2,则y =a ,x =33a . 所以n 1=(33a ,a ,2)是平面PBC 的一个法向量. 因为D ,E 分别为PB ,PC 中点,所以D (32,12,a 2),E (0,1,a2), 则→AD =(32,12,a 2),→AE =(0,1,a2). 设平面ADE 的法向量为n 2=(x ,y ,z ),则n 2·→AD =0,n 2·→AE =0. 所以32x +12y +a 2z =0,y +a2z =0. 令z =2,则y =-a ,x =-33a . 所以n 2=(-33a ,-a ,2)是平面ADE 的一个法向量. …………………… 8分 因为面ADE ⊥面PBC , 所以n 1⊥n 2,即n 1·n 2=(33a ,a ,2)·(- 33a ,-a ,2)=-13a 2-a 2+4=0, 解得a =3,即P A 的长为3. …………………… 10分 23.解(1)p 1=23,p 2=23×23+13×(1-23)=59. …………………… 2分(2)因为移了n 次后棋子落在上底面顶点的概率为p n ,故落在下底面顶点的概率为1-p n .于是移了n +1次后棋子落在上底面顶点的概率为p n +1=23p n +13(1-p n )=13p n +13.…………………… 4分从而p n +1-12=13(p n -12).所以数列{p n -12}是等比数列,其首项为16,公比为13.所以p n -12=16×(13)n -1.即p n =12+12×13n . …………………… 6分用数学归纳法证明:①当n =1时,左式=14×23-1=35,右式=12,因为35>12,所以不等式成立.当n =2时,左式=14×23-1+14×59-1=7855,右式=43,因为7855>43,所以不等式成立.②假设n =k (k ≥2)时,不等式成立,即i =1∑k14P i -1>k 2k +1.则n =k +1时,左式=i =1∑k14P i -1+14P k +1-1>k 2k +1+14(12+12×13k +1)-1=k 2k +1+3k +13k +1+2.要证k 2k +1+3k +13k +1+2≥(k +1)2k +2,只要证3k +1 3k +1+2≥(k +1)2k +2-k 2k +1.只要证3k +13k +1+2≥k 2+3k +1 k 2+3k +2.只要证2 3k +1≤1k 2+3k +1.只要证3k +1≥2k 2+6k +2. 因为k ≥2,所以3k +1=3(1+2)k ≥3(1+2k +4C 2k )=6k 2+3=2k 2+6k +2+2k (2k -3)+1>2k 2+6k +2,所以k 2k +1+3k +1 3k +1+2≥(k +1)2k +2.即n =k +1时,不等式也成立.由①②可知,不等式i =1∑n14P i -1>n 2n +1对任意的n ∈N *都成立. ……………………10分。

江苏省南京市2013届高三3月第二次模拟考试数学试卷(南京、淮安)

江苏省南京市2013届高三3月第二次模拟考试数学试卷(南京、淮安)

南京市2013届高三第二次模拟考试 数学2013.3参考公式:锥体的体积公式为13V Sh =,其中S 是锥体的底面面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上. 1.已知集合A={2a ,3},B={2,3}.若AB={1,2,3},则实数a 的值为____.2.函数()sin cos f x x x =的最小正周期是__________. 3.若复数12miz i-=+(i 是虚数单位)是纯虚数,则实数m 的值为____. 4.盒子中有大小相同的3只白球、2只黑球,若从中随机地摸出两只球,则两只球颜色相同的概率是______. 5.根据2012年初我国发布的《环境空气质量指数AQI 技术规定(试行)》,AQI 共分为六级:(0,50]为优,(50,100]为良,(100,150]为轻度污染,(150,200]为中度污染,(200,300]为重度污染,300以上为严重污染.2012年12月1日出版的《A 市早报》对A 市2012年11月份中30天的AQI 进行了统计,频率分布直方图如图所示,根据频率分布直方图,可以看出A 市该月环境空气质量优、良的总天数为____.6.右图是一个算法流程图,其输出的n 的值是_____.7.已知圆锥的侧面展开图是一个半径为3cm ,圆心角为23π的扇形,则此圆锥的高为___cm .8.在平面直角坐标系xOy 中,设过原点的直线l 与圆C :22(3)(1)4x y -+-=交于M 、N 两点,若MN ≥l 的斜率k 的取值范围是______. 9.设数列{n a }是公差不为0的等差数列,Sn为其前n 项和,若22221234a a a a +=+,55S =,则7a 的值为_____.10.若函数()f x 为定义在R 上的奇函数,当0x >时,1()23x f x -=-,则不等式()1f x >的解集为______________.11.在ABC ∆中,已知AB=2,BC=3,60ABC ∠=︒,BD ⊥AC ,D 为垂足,则BD BC ⋅的值为____.12.关于x 的不等式(21)ln 0ax x -≥对任意(0,)x ∈+∞恒成立,则实数a 的值为_____.13.在平面直角坐标系xOy 中,已知双曲线C :22143x y -=.设过点M(0,1)的直线l 与双曲线C 交于A 、B 两点,若2AM MB =,则直线l 的斜率为_____.14.已知数列{n a }的通项公式为72n a n =+,数列{n b }的通项公式为2n b n =.若将数列{n a },{n b }中相同的项按从小到大的顺序排列后看作数列{n c },则9c 的值为_____. 二、解答题:本大题共6小题,共90分.15.(本小题满分14分)在ABC ∆中,已知角A ,B ,C 所对的边分别为,,a b c ,且cos 2cos C a cB b-=, (1)求B ; (2)若tan()74A π+=,求cos C 的值.16,(本小题满分14分)如图,在四棱锥P-ABCD 中,底面ABCD 是直角梯形,AD//BC ,PB ⊥平面ABCD ,CD ⊥BD ,PB=AB=AD=1,点E 在线段PA 上,且满足PE=2EA .(1)求三棱锥E-BAD 的体积; (2)求证:PC//平面BDE .17.(本小题满分16分)如图,某广场中间有一块扇形绿地OAB ,其中O 为扇形所在圆的圆心,60AOB ∠=︒,广场管理部门欲在绿地上修建观光小路:在AB 上选一点C ,过C 修建与OB 平行的小路CD ,与OA 平行的小路CE ,问C 应选在何处,才能使得修建的道路CD 与CE 的总长最大,并说明理由.18.(本小题满分16分)已知数列{}n a 的各项都为正数,且对任意*n N ∈,都有212n n n a a a k ++=+(k 为常数).(1)若221()k a a =-,求证:123,,a a a 成等差数列;(2)若k=0,且245,,a a a 成等差数列,求21a a 的值; (3)已知12,a a ab ==(,a b 为常数),是否存在常数λ,使得21n n n a a a λ+++=对任意*n N ∈都成立?若存在.求出λ;若不存在,说明理由.19.(本小题满分16分)在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>过点(,),22a aA B .(1)求椭圆C 的方程;(2)已知点00(,)P x y 在椭圆C 上,F 为椭圆的左焦点,直线l 的方程为00360x x y y +-=.①求证:直线l 与椭圆C 有唯一的公共点;②若点F 关于直线l 的对称点为Q ,求证:当点P 在椭圆C 上运动时,直线PQ 恒过定点,并求出此定点的坐标.20.(本小题满分16分)设函数2()(2)ln f x x a x a x =---.(1)求函数()f x 的单调区间;(2)若函数有两个零点,求满足条件的最小正整数a 的值; (3)若方程()f x c =有两个不相等的实数根12,x x ,求证:12()02x x f +'>.。

2013届南京高三期初学情调研卷全WORD解析版(数学)

2013届南京高三期初学情调研卷全WORD解析版(数学)
2013届南京高三学情调研卷全解析版
数学2012.09
注意事项:
1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.
2.答题前,请务必将自己的姓名、学校、班级、学号写在答卷纸的密封线内.试题的答案写在答卷纸上对应题目的答案空格内.考试结束后,交回答卷纸.
(1)求椭圆C的方程;
(2)若=,判断点 是否在以PM为直径的圆上,并说明理由;
(3)连结PB并延长交椭圆C于点N,若直线MN垂直于x轴,求点M的坐标.
解:(1)由解得所以b2=3.
所以椭圆方程为+=1.…………………4分
(2)因为=,所以xM=1,代入椭圆得yM=,即M(1,),
所以直线AM为:y=(x+2),得P(4,3),
因为k>0,v>3,所以当v(3,4.5)时,E<0,当v(4.5,+)时,E>0.
故E=在(3,4.5)上单调递减,在(4.5,+)上单调递增.…………13分
所以,当v=4.5时,E取得最小值.
即v=4.5km/h时,鲑鱼消耗的能量最小.…………………14分
18.(本小题满分16分)
在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的左、右顶点分别为A,B,离心率为,右准线为l:x=4.M为椭圆上不同于A,B的一点,直线AM与直线l交于点P.
(3)有一条平行于x轴的直线l恰好与函数y=f(x)的图象有两个不同的交点C,D,若四边形ABCD为菱形,求t的值.
解:(1)f′(x)=3x2-2tx=x(3x-2t)>0,因为t>0,所以当x>或x<0时,f′(x)>0,
所以(-∞,0)和(,+∞)为函数f(x)的单调增区间;
当0<x<时,f′(x)<0,所以(0,)为函数f(x)的单调减区间.………………4分

2013年江苏省5月海安、南外、金陵中学高三调研测试数学试题及答案

2013年江苏省5月海安、南外、金陵中学高三调研测试数学试题及答案

江苏省海安高级中学2013届 南京外国语学校 高三调研测试南京市金陵中学一、填空题:本大题共14小题,每小题5分,共70分. 1. 命题“1x ∀>,x 2≥3”的否定是 ▲ .2. 设复数1a +=-i z i(i 是虚数单位,a ∈R ).若z 的虚部为3,则a 的值为 ▲ . 3.右图是小王所做的六套数学附加题的得分的茎叶图(满分40分),则其平均得 分为 ▲ . 4.设集合{A x y ==,{}(0)m B y y x m x A x ==+>∈R ð,,若B ,则m 取值范围是 ▲ . 5.右图是一个算法的伪代码,输出结果是 ▲ .6.在区间[0,1]间随机取出2个数(可以相同),它们的差的绝对值 大于12的概率为 ▲ .7.在平面直角坐标系xOy 中,过点M (1,0)的直线x +y -c =0与 圆225x y +=交于A ,B 两点,则AM MB= ▲ .8.常用的复印纸的型号有A1,A2,A3等,它们的长⨯宽(单位:mm )理想设计尺寸分别为840594⨯,594420⨯,420297⨯,据此可推得,A4型号的复印纸的理想设计尺寸应为 ▲ . 9.已知0πy x <<<,且tan tan 2x y =,1sin sin 3x y =,则x y -= ▲ .10.设函数()2f x x c =+,()x g x ae =的图象的一个公共点为()2,P t ,且曲线()y f x =,()y g x =在点P 处有相同的切线,函数()()f x g x -的负零点在区间(),1k k +()k ∈Z ,则k = ▲ . 11.设数列{}n a满足1a ,当0n a ≠时,11n n a a +⎧⎫=⎨⎬⎩⎭;当0n a =时,10n a +=.则2013a = ▲ .(注:[x ]为不超过实数x 的最大整数,记{x }=x -[x ].)12.已知直角三角形ABC 的三个顶点都在抛物线212y x =上,且斜边AB // x 轴,则斜边上的高等于 ▲ .1 82 83 0 2 84 0(第3题)S ←0a ←1For I From 1 to 3 a ←2×a S ←S +a End For Print S(第5题)13.已知平面向量a,b,c满足++=0a b c,且a与b的夹角余弦为15,b与c的夹角余弦为13-,1=b,则⋅a c的值为▲ .14.设t∈R,对任意的n∈*N,不等式ln20ln ln20lnnt n t nt t n++≥,则t的取值范围是▲ .二、解答题:本大题共6小题,共90分.15.(本小题满分14分)在△ABC中,Aπ∠=,BC=3,点D在BC边上.(1)若AD为A∠的平分线,且BD=1,求△ABC的面积;(2)若AD为△ABC的中线,且AD=,求证:△ABC为等边三角形.16.(本小题满分14分)如图,在三棱锥P ABC-中,除棱PC外,其余棱均等长,M为棱AB的中点,O为线段MC上靠近点M的三等分点.(1)若PO MC⊥,求证:PO⊥平面ABC;(2)试在平面PAB上确定一点Q,使得//OQ平面PAC,且//OQ平面PBC,并给出证明.(第16题)17.(本小题满分14分)如图所示,直立在地面上的两根钢管AB 和CD,AB =,CD =,现用钢丝绳对这两根钢管进行加固,有两种方法:(1)如图(1)设两根钢管相距1m ,在AB 上取一点E ,以C 为支点将钢丝绳拉直并固定在地面的F 处,形成一个直线型的加固(图中虚线所示).则BE 多长时钢丝绳最短?(2)如图(2)设两根钢管相距m ,在AB 上取一点E ,以C 为支点将钢丝绳拉直并固定在地面的F 处,再将钢丝绳依次固定在D 处、B 处和E 处,形成一个三角形型的加固(图中虚线所示). 则BE 多长时钢丝绳最短?A ED CA ED C B F图1图218.(本小题满分16分)定义:如果两个椭圆,它们的离心率相同,那么称这两个椭圆相似,它们的长轴之比(大于1)叫做这两个椭圆的相似比.(1)设,m n*∈N,试判断椭圆221:11x yCm m+=+和椭圆222:11x yCm n m+=++能否相似?相似时求出它们的相似比;(2)如图,在平面直角坐标系xOy中,设椭圆1C:22221(0)yx a ba b+=>>和椭圆2C:221122111(0)yx a ba b+=>>相似,过椭圆1C的右焦点F且不垂直于x轴的直线l与这两个椭圆自上而下依次交于点A,B,C,D,射线OB,OC与椭圆2C分别交于点M,N,连MN.求证:①MN ∥l;②△ABM和△CDN的面积相等.(第18题)19.(本小题满分16分)已知各项均为正数的两个无穷数列{}n a 、{}n b 满足1112(N )n n n n n a b a b na n *++++=∈. (1)当数列{}n a 是常数列(各项都相等的数列),且112b =时,求数列{}n b 的通项公式;(2)设{}n a 、{}n b 都是公差不为..0.的等差数列,求证:数列{}n a 有无穷多个,而数列{}n b 惟一确定; (3)设2121n n n n a a a a ++=+()n *∈N ,21nn i i S b ==∑,求证:226n S n <<.20.(本小题满分16分)设函数()1|||1|x xf x e a e =-+-,其中a ,x ∈R ,e 是自然对数的底数, 2.71828e =⋅⋅⋅ . (1)当a =0时,解不等式()2f x <; (2)求函数()f x 的单调增区间;(3)设43a ≥,讨论关于x 的方程()()14f f x =的解的个数.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲 (本小题满分10分)如图,在△ABC 中,90BAC ∠= ,延长BA 到D ,使得AD =12AB ,E ,F 分别为BC ,AC 的中点,求证:DF =BE .B .选修4—2:矩阵与变换 (本小题满分10分)已知曲线1C :221x y +=,对它先作矩阵1002A ⎡⎤=⎢⎥⎣⎦对应的变换,再作矩阵010m B ⎡⎤=⎢⎥⎣⎦对应的变 换,得到曲线2C :221x y +=,求实数m 的值.C .选修4—4:坐标系与参数方程 (本小题满分10分)已知圆C的参数方程为12cos 2sin x y θθ=+⎧⎪⎨=⎪⎩,, (θ为参数),直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩, , (t 为参数,0 ααπ<<π≠2,且),若圆C 被直线l,求α的值.D .选修4—5:不等式选讲 (本小题满分10分)(第21—A 题)BECFDA对任给的实数a 0a ≠()和b ,不等式()12a b a b a x x ++-⋅-+-≥恒成立,求实数x 的取值【必做题】第22、23题,每小题10分,共计20分. 22.(本小题满分10分)如图,在直三棱柱ABC -A 1B 1C 1中,A A 1=AB =AC =1,AB ⊥AC ,M ,N 分别是棱CC 1,BC 的 中点,点P 在直线A 1B 1上.(1)求直线PN 与平面ABC 所成的角最大时,线段1A P 的长度; (2)试确定点P 的位置,使平面PMN 与平面ABC 所成的二面 角为6π,并说明理由.23.(本小题满分10分)设函数()sin cos n n n f θθθ=+,n ∈*N ,且()1f a θ=,其中常数a 为区间(0,1)内的有理数. (1)求()n f θ的表达式(用a 和n 表示); (2)求证:对任意的正整数n ,()n f θ为有理数.A 1C 1B 1MCN BAP(第22题)数学Ⅰ 参考答案及评分标准一、填空题:1. 1x ∃>,23x <2. 5 3. 31 4. 1<m <9 5. 14 6. 14 7. 2或128. 297×210 9. 10. 11. 12. 2 13.- 14. [4,5] 15. (1)在△ABD 中,,在△ACD 中,,相除得:AC =2AB ………………………………………3分 在△ABC 中,,∴AB =,AC =2………………………………………6分 ∴………………………………………7分 (2)∵,∴∴………………………………………9分 又,相减得………………11分 ∴∴即∶AB =AC ,又∠C =60°∴三角形ABC 为等边三角形.………………14分 16.由题意得:为△ABC 的中心,则CM ⊥AB ,∵为棱的中点,P A =PB ,∴PM ⊥AB ,…………………………2分 又PM ∩CM =M ∴AB ⊥平面PMC ,………………………………………4分 又PO 平面PMC ∴AB ⊥PO 又PO ⊥MCMC ∩AB =M∴平面………………………………………7分(2)Q 为线段MP 上靠近M 点的三等分点.………………………………………9分∵∴OQ //PC ,又平面PAC ,平面P AC ,∴OQ //平面P AC ………………………………………12分同理可证:OQ //平面PBC .………………………………………14分 17.k (1)设钢丝绳长为y m ,,则(其中,)………………………………3分当时,即时,………………………………………6分(2)设钢丝绳长为y m,,则(其中,)………………9分令得当时,即时………………………………………12分答:按方法(1),米时,钢丝绳最短;按方法(2),米时,钢丝绳最短。

江苏省2013届高三最新数学(精选试题26套)分类汇编2:函数 Word版含答案.pdf

江苏省2013届高三最新数学(精选试题26套)分类汇编2:函数 Word版含答案.pdf

江苏省2013届高三最新数学(精选试题26套)分类汇编2:函数 一、填空题 .(江苏省2013届高三高考模拟卷(二)(数学) )定义在R上的奇函数f(x),当x∈(-∞,0)时,f(x)=x2+2x-1,则不等式f(x)<-1的解集是______. 【答案】(-2,0)∪(1+,+∞) .(南京师大附中2013届高三模拟考试5月卷)设函数f(x)的定义域为D,如果(x∈D,(y∈D,使=C(C为常数)成立,则称函数f(x)在D上的“均值”为C. 已知四个函数:①y=x3 (x∈R);②y=()x (x∈R);③y=lnx (x∈(0,+∞));④y=2sinx+1 (x∈R). 上述四个函数中,满足所在定义域上“均值”为1的函数是_____.(填满足要求的所有的函数的序号) 【答案】①③④ .(江苏省常州市西夏墅中学2013年高考冲刺模拟试卷)某同学为研究函数的性质,构造了如右图所示的两个边长为1的正方形和,点是边上的一个动点,设,则. 请你参考这些信息,推知函数的零点的个数是_______. 【答案】2个 .(江苏省大港中学2013届高三教学情况调研测试)定义在 上的函数 ;当若;则的大小关系为______________. 【答案】 .(江苏省2013届高三高考压轴数学试题)(),如果 (),那么的值是______. 【答案】 . .(江苏省启东中学2013届高三综合训练(1))若方程仅有一个实根,那么的取值范围是____ 【答案】或; .(江苏省启东中学2013届高三综合训练(2))已知为奇函数,_____ 【答案】 .(江苏省扬州中学2013届高三最后一次模拟考试数学试题)已知奇函数的图像关于直线对称,当时,,则=________._ 【答案】 .(江苏省扬州中学2013届高三最后一次模拟考试数学试题)已知函数,若在任意长度为2的闭区间上总存在两点,使得成立,则的最小值为_____________. 【答案】 .(武进区湟里高中2013高三数学模拟试卷)给出四个函数:①;②;③;④,则下列甲、乙、丙、丁四个函数图象对应上述四个函数分别是_____________(只需填序号). 甲 乙 丙 丁 【答案】解析:④,①,②,③ .(江苏省启东中学2013届高三综合训练(3))设且若定义在区间内的函数是奇函数,则的取值范围是_______. 【答案】 .(江苏省常州市金坛市第一中学2013年高考冲刺模拟试卷)设函数,则方程的实数解的个数为_________. 【答案】 3 .(江苏省启东中学2013届高三综合训练(2))设定义域为R的函数若关于的方程有8个不同的实数根,则实数b的取值范围是_______.【答案】 .(江苏省扬州市2013届高三下学期5月考前适应性考试数学(理)试题)从轴上一点A分别向函数与函数引不是水平方向的切线和,两切线、分别与轴相交于点B和点C,O为坐标原点,记△OAB的面积为,△OAC的面积为,则+的最小值为______. 【答案】8 提示:,设两切点分别为,,(,),:,即,令,得;令,得.:,即,令,得;令,得.依题意, ,得, +===,=,可得当时,有最小值8..(江苏省南通市通州区姜灶中学2013届高三5月高考模拟数学试题 )函数的单调减区间是________. 【答案】 .(江苏省常州市横山桥中学2013年高考数学冲刺模拟试卷doc)已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数.若f(1)<f(lnx),则x的取值范围是_____. 【答案】(0, )∪(e, +∞) .(江苏省常州市金坛四中2013年高考数学冲刺模拟试卷doc)设实数,若仅有一个常数c使得对于任意的,都有满足方程,这时,实数的取值的集合为_________ 【答案】 .(江苏省大港中学2013届高三教学情况调研测试)设函数是定义在上的奇函数,且对任意都有,当 时,,则的值为______________. 【答案】 .(江苏省常州市第五中学2013年高考数学文科)冲刺模拟试卷)已知函数,若,则的取值范围是____. 【答案】 .(江苏省常州市武进高级中学2013年高考数学文科)冲刺模拟试卷doc)对任意两个实数,定义若,,则的最小值为____. 【答案】-1 .(江苏省常州市西夏墅中学2013年高考冲刺模拟试卷)若关于x的方程2-|x|-x2+a=0有两个不相等的实数解,则实数a的取值范围是_______【答案】 .(江苏省大港中学2013届高三教学情况调研测试)已知函数(其中,为常数),若的图象如右图所示,则函数在区间[-1,1]上的最大值是__________. 【答案】 .(江苏省大港中学2013届高三教学情况调研测试)设是定义在R上的偶函数,对任意,都有,且当时,,若在区间内关于的方程恰有三个不同的实数根,则的取值范围为______________. 【答案】 .(江苏省2013届高三高考模拟卷(二)(数学) )定义在R上的函数f(x)满足f(x)=则f(2013)=________. 【答案】- .(江苏省启东中学2013届高三综合训练(1))函数对于任意实数满足条件,若,则______. 【答案】.; .(江苏省常州市第五中学2013年高考数学文科)冲刺模拟试卷)函数的定义域为,若满足①在内是单调函数,②存在,使在上的值域为,那么叫做对称函数,现有是对称函数, 那么的取值范围是_____________. 【答案】 .(南京师大附中2013届高三模拟考试5月卷)设实数a,x,y,满足则xy的取值范围是_____. 【答案】[-,+] .(武进区湟里高中2013高三数学模拟试卷)已知,,,若为偶函数,则的零点为________. 【答案】解析:根据函数的图像,有,所以或(舍去),所以的零点为. .(江苏省大港中学2013届高三教学情况调研测试)设的奇函数,则使的X的取值范围是______________. 【答案】(一1. 0) .(江苏省常州市第二中学2013年高考数学(文科)冲刺模拟试卷doc)已知函数若函数有3个零点,则实数m的取值范围是_____________. 【答案】 (0,1) .(江苏省启东中学2013届高三综合训练(1))已知函数f(x)=是R上的增函数,则实数k的取值范围是_______. 【答案】[,1); .(2013年江苏省高考数学押题试卷 )函数f(x)=lg(x2ax1)在区间(1,+∞)上单调增函数,则a的取值范围是________. 【答案】填(-∞,0]. g(x)=x2ax1的对称轴x=≤1,且 g(1)=a≥0, 所以a≤0. 二、解答题 .(江苏省常州市第五中学2013年高考数学文科)冲刺模拟试卷)某公司有价值万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,从而提高产品附加值,改造需要投入,假设附加值万元与技术改造投入万元之间的关系满足:①与和的乘积成正比;②时,; ③,其中t为常数,且. 求:(1)设,求表达式,并求的定义域;(2)求出附加值的最大值,并求出此时的技术改造投入.【答案】解:(1)设,当时,,可得:,∴ ∴定义域为,为常数,且 (2) 当时,即,时,当,即,在上为增函数∴当时, ∴当,投入时,附加值y最大,为万元;当,投入时,附加值y最大,为万元14分 .(江苏省常州市奔牛高级中学2013年高考数学冲刺模拟试卷)某市环保研究所对市中心每天环境污染情况进行调查研究后,发现一天中环境综合污染指数f(x)与时间x(小时)的关系为,其中a为与气象有关的参数,且,若用每天f(x)的最大值为当天的综合污染指数,并记作M(a).(1)令,求t的取值范围.(2)求函数M(a)的表达式;(3)市政府规定,每天的综合污染指数不得超过2,试问目前市中心的完全污染指数是多少?是否超标?【答案】 .(江苏省大港中学2013届高三教学情况调研测试)设函数是定义域为的奇函数. (1)求值; (2)若,试判断函数单调性并求使不等式恒成立的的取值范围; (3)若,且,在上的最小值为,求的值. 【答案】解:(1)∵f(x)是定义域为R的奇函数,∴f(0)=0, ∴1-(k-1)=0,∴k=2, (2) 单调递减,单调递增,故f(x)在R上单调递减. 不等式化为恒成立, ,解得 (3)∵f(1)=,,即 ∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2. 令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x为增函数,∵x≥1,∴t≥f(1)=, 令h(t)=t2-2mt+2=(t-m)2+2-m2 (t≥) 若m≥,当t=m时,h(t)min=2-m2=-2,∴m=2 若m,舍去综上可知m=2. .(江苏省徐州市2013届高三考前模拟数学试题)某人年底花万元买了一套住房,其中首付万元,万元采用商业贷款.贷款的月利率为‰,按复利计算,每月等额还贷一次,年还清,并从贷款后的次月开始还贷. ⑴这个人每月应还贷多少元? ⑵为了抑制高房价,国家出台“国五条”,要求卖房时按照差额的20%缴税.如果这个人现在将住房万元卖出,并且差额税由卖房人承担,问:卖房人将获利约多少元? (参考数据:) 【答案】⑴设每月应还贷元,共付款次,则有 , 所以(元) 答:每月应还贷元 ⑵卖房人共付给银行元, 利息(元), 缴纳差额税(元), (元). 答:卖房人将获利约元 .(江苏省大港中学2013届高三教学情况调研测试)已知函数. (1)若,求不等式的解集;(2)当方程恰有两个实数根时,求的值;(3)若对于一切,不等式恒成立,求的取值范围. 【答案】解:(1)由得当时,恒成立 ∴ 当时,得或又 ∴ 所以不等式的解集为 (2)由得 令由函数图象知两函数图象在y轴右边只有一个交点时满足题意,即由得由图知时方程恰有两个实数根(3) 当时,,,, 所以 当时 ①当时,,即,令 时,,所以 时,,所以, 所以 ②当时,,即 所以, 综上,的取值范围是 .(江苏省大港中学2013届高三教学情况调研测试)已知函数()在区间上有最大值和最小值.设.(1)求、的值;(2)若不等式在上有解,求实数的取值范围;【答案】解:(1),因为,所以在区间上是增函数,故,解得. (2)由已知可得,所以可化为,化为,令,则,因,故,记,因为,故, 所以的取值范围是. .(武进区湟里高中2013高三数学模拟试卷)省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时)的关系为,其中是与气象有关的参数,且,若用每天的最大值为当天的综合放射性污染指数,并记作. (1)令,,求t的取值范围; (2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性 污染指数是否超标?【答案】解析:(1)当时,t=0; 当时,(当时取等号),∴,即t的取值范围是. (2)当时,记,则,∵在上单调递减,在上单调递增,且.故. ∴当且仅当时,. 故当时不超标,当时超标. y x 0 y x 0 y x 0 y x 0。

数学-2013届南师附中、金陵中学调研试卷 (详细解答)2013.3

数学-2013届南师附中、金陵中学调研试卷 (详细解答)2013.3

2013届南师附中、金陵中学 高三数学调研试卷 2013年3月一、填空题:本大题共14题,每小题5分,共70 分。

1.若集合2{|90}A x x x =-<,⎭⎬⎫⎩⎨⎧∈∈=*Z y Z y y B 4|且,则集合A B 的元素个数为 2.已知a b ∈R 、,i 是虚数单位,若(2)a i i b i +=+,则a +b 的值是 3.式子22log sinlog cos1212ππ+的值为4.正方体的内切球与其外接球的体积之比为____________.5.在等比数列{n a }中,若271086=a a a ,则=8a _____. 6.如果实数x ,y 满足x 2+y 2=1,则(1+xy )(1-xy )的最小值为7.已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f ____________8.泰州实验中学有学生3000人,其中高三学生600人.为了解学生的身体素质情况, 采用按年级分层抽样的方法,从学生中抽取一个300人的样本. 则样本中高三学生的人数为 .9.函数x x x f ln )(-=的单调减区间为____________________.10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 . 11.在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,. 如果()P x y ,是ABC △围成的区域(含边界)上的点,那么当w xy =取到最大值时, 点P 的坐标是 .12.如图所示,在△OAB 中,OA >OB ,OC =OB ,设OA →=a ,OB →=b ,若AC →=λ·AB →,则实数λ的值为 (用向量a ,b 表示 )注意事项:考生答题前请认真阅读本注意事项及各题答题要求1、 本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题~第20题)两部份。

江苏省南京、盐城市2013届高三第三次模拟考试数学试题 Word版含答案.pdf

江苏省南京、盐城市2013届高三第三次模拟考试数学试题 Word版含答案.pdf

南京市2013届高三第次模拟考试 数学:1..参考公式: 样本数据x1,x2,…,xn的方差s2=(xi-)2,其中=xi. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上. 函数f(x)=的定义域为A,函数g(x)=lg(x-1)的定义域为B,则A∩B=2.已知复数z满足(z+)i=+= 4.右图是7位评委给某作品打出的分数的茎叶图,那么 这组数据的方差是 ▲ . 5.已知函数f (x)=ωx+()((>0)的部分图象如图所示,则ω==(3,1),=(0,).若·=0,=λ,则λ的为 8.已知m,n是直线,α,β是 ①若mα,m⊥β,则α⊥β;②若m(α,α∩β=n,α⊥β,则m⊥n; ③若mα,nβ,α∥β则m∥n;④若m∥α,m(β,α∩β=n,则m∥n. 中为真命题的是. °,D是BC边上一点,AD=5, AC=7,DC=3,则AB的长为 ▲ . 10.记定义函数=f′(x).如果x0[a,b],使得-f′(x0)(b-)成立,则称x0为函数区间上的中值点.=x-在区间-上中值点为 11.双曲线-=1(a>b>0)的焦点过作一条渐近线的垂线,垂足为,延长与另一条渐近线交于点若=,则双曲线的离心率为12.已知圆x2+y2-(-2m)x-my+m2-m=0直线l点(,0)直线l圆截得的弦长为定,则直线l的方程为 13.bn=2n-cn=若在数列{cn}中,c8>cn(n∈N*,n≠8),则实数p的取值范围是 ▲ . 14.设点P是曲线y=x2上的一个动点,曲线y=x2在点P处的切线为l,过点P且与直线l垂直的直线与曲线y=x2的另一交点为Q,则PQ的最小值为 ▲ . 二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) α,β(0,π),α=2,cosβ=-求α的值求α-β的值.16.(本小题满分14分) -AC,D,E,F分别为线段AC,A1A,C1B的中点. (1)F∥平面A; ⊥平面BDE. 17.(本小题满分1分) m(x-)2-++∈R. (1)当m=0时,求函数f(x)的单调增区间; (2)当m>0时,若曲线y=(1,1)处的切线l与曲线y=18.(本小题满分1分) 19.(本小题满分16分) 椭圆+=1. 若椭圆x轴上,求实数m的取值范围; 若是椭圆上点的坐标为的A,B两点,线段AB的垂直平分线l交x轴于点N,证明: 是定值,并求出这个定值. 20.(本小题满分16分) an}的前n项和为Sn. (1)求证:数列{}是等差数列; (2)若a1=1,且对任意正整数n,k(n>k),都有+=2成立,求数列{an}的通项公式; (3)记bn=a (a>0),求证:≤. 南京市2013届高三第次模拟考试 数学附加题: ... 21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. A.选修4—1:几何证明选讲 如图,PA,PB是⊙O的切线,切点分别为A,B,线段OP交⊙O于点C.若PA=12,PC=6,求AB的长. C.选修4—4:坐标系与参数方程 已知圆C的极坐标方程为ρ=cos(θ-),点M的极坐标为(6,),直线l过点M,且与圆C相切,求l的极坐标方程. D.选修4—5:不等式选讲 解不等式x|x-4|-3<0. 答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分) 如图,三棱锥P-ABC中,已知PA⊥面ABC,△ABC正三角形,DE分别为PBPC中点. 若PA=2,求直线A与B所成角的弦值;若ADE⊥平面PBC,求PA的长. 23.(本小题满分10分) 如图,一颗棋子从三棱柱的一个顶点沿棱移到相邻的另一个顶点的概率均为,刚开始时,棋子在上底面点A处,若移了n次后,棋子落在上底面顶点的概率记为pn. (1)求p1,p2的值; (2)求证:>. 南京市2013届高三第次模拟考试 数学参考及评分标准2013.05 说明: 1.本解答给出的解法供参考如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则. 对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 只给整数分数,填空题不给中间分数.、填空题:本大题共14小题,每小题5分,共70分. 1.(1,3 2.5 3. 4. 5. 6. 7. 8.①④ 9. 10.11. 12.+-= 13. 14. 二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤. 15.α=2,所以=2,即sinα=2cosα.………………………… 2分α+cos2α=1,解得sin2α=,cos2α=. ………………………… 4分α=cos2α-sin2α=-.………………………… 6分α=cos2α-sin2α………………………… 2分 =, ………………………… 4分α=2,所以cos2α==-.………………………… 6分α(0,π),α=2,所以α(0,). 又cos2α=-α(,π) ,sin2α=. ………………………… 8分β=-β(0,π),β=,β(,π). ………………………… 10分α-β)=sin2αcosβ-αsinβ=×(-)-(-)×-………… 12分α-β(-),所以2α-β=-. ………………………… 14分α(0,π),α=2,所以α(0,),tan2α==-. 从而2α(,π). ………………………… 8分β=-β(0,π),β=,β(,π), 因此tanβ=-………………………… 10分α-β)===-………………………… 12分α-β(-),所以2α-β=-. ………………………… 14分16.C1C. 在三棱柱ABC-C1C,且E为A1A的中点, 所以FGEA. 所以四边形AEFG是平行四边形. 所以EF∥AG. ………………………… 4分 因为EF(平面ABC,AG(平面ABC, 所以EF∥平面A………………………… 6分 (2)因为在正三棱柱ABC-⊥平面ABC,BD(平面ABC, 所以A1A⊥BD. 因为D为AC的中点,⊥AC. 因为A1A∩AC=A,A1A(平面A1ACC1,AC(平面A1ACC1,所以BD⊥平面A1ACC1. 因为C1E(平面A1ACC1,所以BD⊥C1E. ………………………… 9分 根据题意,可得EB=C1E=AB,C1B=AB, 所以C1E⊥平面BDE. ………………………… 14分 17.解-++′(x)=-+=……………………… 2分 由f′(x)>0得x∈(0,) . 所以函数f(x)的单调增区间为(0,). ……………………… 4分 (2)由f′(x)=--+′(1)=-=(1,1)处的切线l的方程为y=-+…………………… 6分 由题意得,关于x的方程f(x)=-+m(x-)2-++=g(x)=(x-)2-++(x>0). 则g′(x)=(x-)-+==(). …………… 8分 ①当0<<′(x)>0得0<<,由g′(x)<<<g(x)在(0,1)为增函数,在(1,)上为减函数,在(,+)上为增函数. 又g(1)=→∞时,g(x)→∞,此时曲线y=g(x)<<……………………… 10分 ②当m=′(x)≥0,g(x)在(0,+)上为增函数,且g(1)==③当m>1时,由g′(x)>0得0<<′(x)<<<g(x)在(0,) 为增函数,在(,1)上为减函数,在(1,+)上为增函数. 又g(1)=→0时,g(x)→-∞=g(x)=……………………… 14分 18.解③中MN≥6,故当l=4时,折痕必定是情形①. 设AM=xcm,AN=ycm,则x2+y=……………………… 2分 因为x2+y≥2xy,当且仅当x=y时取等号, 所以S1=xy≤4,当且仅当x=y=2时取等号. 即S1的最大值为4. ……………………… 5分 (2)由题意知,长方形的面积为S=6×8=48. 因为S1∶S2=1∶2,S1≤S2,所以S1=16,S2=32. 当折痕是情形①时,设AM=xcm,AN=ycm,则xy==得≤x≤8. 所以l==≤x≤8. ……………………… 8分 设f(x)=x+f ′(x)=x-,x>0.故 x(,4)4(4,8)8f ′(x)-0+f(x)646480所以f(x)的取值范围为[64,80],从而l的范围是[8,4];……………… 11分 当折痕是情形②时,设AM=xcm,DN=ycm,则(x+==得0≤x≤. 所以l==. 所以l的范围为[6,]; ……………………… 13分 当折痕是情形③时,设BN=xcm,AM=ycm,则(x+==得0≤x≤4. 所以l==]. 综上,l的取值范围为[6,4]. ……………………… 16分 19.解……………………… 2分 (2)因为m=6,所以椭圆C+=1. ①设点P坐标为(x,y),则+=1. 因为点M的坐标为x-1)2+y2=x2-2x+1+2-=-2x+3 =(x-)2+,x∈[-,]. ……………………… 4分 所以当x=时,PM的最小值为,此时对应的点P坐标为(,±). ……………………… 6分 ②由a2=6,b2=2,得c2=4,即c=2, 从而椭圆C的右焦点F的坐标为(2,0),右准线方程为x=3,离心率e=. 设A(x1,y1),B(x2,y2),AB的中点H(x0,y0),则 +=1,+=1, 所以+=0,即kAB==-. ……………………… 9分 令k=kAB,则线段AB的垂直平分线l的方程为y-y0=-(x-x0). 令y=0,则xN=ky0+x0=x0. 因为F(2,0),所以FN=|xN-|x0-3|. ……………………… 12分 因为AB=+=x1)+e(3-x2)=|x0-3|. 故=×=.……………………… 2分 (2)因为对任意正整数n,k(n>k),都有+=2成立, 所以+=2,即数列{}是等差数列. ……………………… 4分 设数列{}的公差为d1,则=+(n-)d1=+(-)d1, 所以Sn=+(-)d1]2,所以当n≥2时, an=-+(-)d1]2-+(-)d1]2=n-+an}是等差数列,所以a2-=-(4d-+)-=(-+)-(-+), 所以d1=an=-an=-+=2对任意正整数n,k(n>k)都成立, 因此an=-……………………… 7分 (3)设等差数列{an}的公差为d,则an=+(-)d,bn=a, 所以=a-=ad, 即数列{bn}是公比大于0,首项大于0的等比数列. ……………………… 9分 记公比为q(q>0). 以下证明:b1+n≥bp+bk,其中p,k为正整数,且p+k=1+n. 因为(b1+n)-(bp+bk)=b1+b1qn-1-b1qp-1-b1qk-1=b1(qp-1-)( qk-1-). 当q>1时,因为y=----+n≥bp+bk. 当q=1时,b1+n=bp+bk. 当0<<=----+n≥bp+bk. 综上,b1+n≥bp+bk,其中p,k为正整数,且p+k=1+n.………………… 14分 所以n(b1+n)=(+n)+(+n)++(+n) ≥(b1+n)+(+n-1)+(+n-2)++(+) =(+++n)+(+-++), 即≤. …………………… 16分 南京市2013届高三第次模拟考试 数学参考及评分标准2013.05 21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分. A.选修4—1:几何证明选讲 证明 如图,延长PO交⊙O于D,连结AO,BO.AB交OP于点E. 因为PA与⊙O 相切, 所以PA2=PC·PD. 设⊙O的半径为R,因为PA=12,PC=6, 所以122=6(2R+6),解得R=9. …………………… 4分 因为PA,PB与⊙O均相切,所以PA=PB. 又OA=OB,所以OP是线段AB的垂直平分线. …………………… 7分 即AB⊥OP,且AB=2AE. 在Rt△OAP中,AE==. 所以AB=. …………………… 10分 B.选修4—2:矩阵与变换 解 (1) =,即 解得 …………………… 4分 (2)设P' (x,y)是曲线C'上任意一点,P' 由曲线C上的点P (x0,y0) 经矩阵M所表示的变换得到, 所以 = ,即解得 …………………… 7分 因为x0y0=1,所以·=1,即-=1. 即曲线C' 的方程为-=1. …………………… 10分 C.选修4—4:坐标系与参数方程 解则圆C的直角坐标方程为x-)2+y-2=,3). …………………… 3分 当直线l的斜率不存在时,不合题意. 设l的方程为y-3=k(x-3),1)到直线l的距离等于半径2. 故=.. 解得或 即4≤x<2+或3<x<4或x<1. 综上,原不等式的解集为{x| x<1或3<x<2+}. …………………… 10分 【必做题】第22题、第23题,每题10分,共20分. 22.解则A(0,0,0),B(,1,0),C(0,2,0),P(0,0,),(0,,), =(,1,-), =(0,,). 设直线A与B所成角为θ,则θ=|=. 直线A与B所成角的弦值. (2)设PA的长为a,则P(0,0,),=(,1,-),=(0,2,-). 设平面PBC的法向量为n1=(x,y,z),则n1·=0,n1·=0, 所以x+y-z=0,2y-z=0. 令z=,则y=,x=. 所以n1=(,,)是平面PBC的一个法向量. 因为DE分别为PBPC中点,所以D(,,),E(0,1,), 则=(,,),=(0,1,)设平面ADE的法向量为n2=(x,y,z),则n2·=0,n2·=0. 所以x+y+z=0,y+z=0. 令z=2,则y=-,x=-. 所以n2=(-,-,2)是平面ADE的一个法向量. 因为面ADE⊥面PBC所以n1⊥n2,n1·n2=(,,)·(- ,-,2)a2-a2+4=0,,即PA的长.…………………… 10分 23.解, p2=×+×(1-. …………………… 2分 (2)因为移了n次后棋子落在上底面顶点的概率为pn,故落在下底面顶点的概率为1-pn. 于是移了n+1次后棋子落在上底面顶点的概率为pn+1=pn+(1-pn)=pn+. …………………… 4分 从而pn+1-=(pn-). pn-,公比为. 所以pn-=×()n-1pn=×. …………………… 6分 用数学归纳法证明: ①当n=1时,左式==,右式=,因为>,所以不等式成立. 当n=2时,左式=+=,右式=,因为>,所以不等式成立. ②假设n=k(k≥2)时,不等式成立,即>. 则n=k+1时,+>+=+. 要证+≥, 只要证≥-. 只要证≥. 只要证≤. 只要证3k+1≥2k2+k+2 因为≥2, 所以3k+1=3(1+2)k≥3(1+2k+4C)=6k2+2k2+k+22k(2k-+1>2k2+k+2+≥. 即n=k+1时,不等式也成立. 由①②可知,不等式>对任意的n∈N*都成立. ……………………10分 A (第16题) F B1 A1 C1 (第9题) C D B A (第5题) -2 - y O x (第4题) 8 8 9 9 9 0 1 1 2 (第题) Read x If x≤0 Then ←x+2 Else y←log2x End If Print y P O C (第21题A) A BB CB EB DB PB (第22题) A B C D E F (第23题) (第16题) A B C D G A B C D (情形②) M N A B C D (情形③) M N A B C D (情形①) M N A B P O C (第21题A) D E A BB CB EB DB PB (第22题) y x z F。

江苏省南京市江宁高中2013届高三迎市统测模拟考试数学试题

江苏省南京市江宁高中2013届高三迎市统测模拟考试数学试题

2012-2013年南京市江宁高级中学迎市统测高三模拟试卷2012-12-16姓名 班级 成绩 一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.已知ni i+=-112,其中R n ∈,i 是虚数单位,则n = 1 . 2.命题p :∀x ∈R ,2x 2+1>0的否定是____∃x ∈R ,2x 2+1≤0 __________.3.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中奇数共有 36 个.(用数字作答)4.若根据5名儿童的年龄x (岁)和体重y (kg)的数据,用最小二乘法得到用年龄预报体重的线性回归方程是ˆ27yx =+,已知这5名儿童的年龄分别是3,4,5,6,7,则这5名儿童的平均体重是 17 kg .5.定义n x M =x(x+1)(x+2)…(x+n-1),其中x ∈R ,n ∈N *,例如 4-4M =(-4)(-3)(-2)(-1)=24,则函数f(x)= 2007x-1003M 的奇偶性为____奇函数__________.6.曲线y=x x 62+-,则过坐标原点且与此曲线相切的直线方程为 x y 6= .7.已知复数(,)z x yi x y R =+∈,且|2|z -=,则yx8.用反证法证明命题:“如果,a b N ∈,ab 可被3整除,那么,a b 中至少有一个能被3整除”时,假设的内容应为 假设,a b 都不能被3整除 . 9.给出下面类比推理命题(其中R 为实数集,C 为复数集):①“若,,a b R ∈则0a b a b -=⇒=”类比推出“若,,a b C ∈则0a b a b -=⇒=”; ②“若,,a b R ∈则0ab =0a ⇒=或0b =”类比推出“若,,a b C ∈则0ab =0a ⇒= 或0b =”;③“若,,a b R ∈则0a b a b ->⇒>” 类比推出“若,,a b C ∈则0a b a b ->⇒>”; ④“若,,a b R ∈则220a b +≥”类比推出“若,,a b C ∈则220a b +≥”所有命题中类比结论正确的序号是 ①② .10.对于R 上的可导函数()f x ,若满足(2)'()0x f x -≥,则(0)(3)f f +与2(2)f 的大小关系为 不小于 .(填“大于”、“小于”、“不大于”、“不小于”)11.从装有1n +个球(其中n 个白球,1个黑球)的口袋中取出m 个球(0,,,m n m n <≤)N *∈,共有1m n C +种取法。

2013届南京高三数学一模试卷

2013届南京高三数学一模试卷

2013年南京市高三数学第一次调研考试一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在相应的位置上)1.已知复数i z -=,则z i-1的虚部为2.设集合(){}1,22=+y x y x ,(){}x y y x ln ,=,则A ∩B 的子集的个数是3.已知点A 和点B 分别为椭圆C:)0(1222>=+a ay x 的左顶点和上顶点,若直线AB 的倾斜④.若m,n 是两条异面直线,且m,n 都平行于平面α和平面β,则α和β相互平行; ⑤.若在平面α内有不共线的四点到平面β的距离相等,则α∥β; 其中所有真命题的序号是10.已知AB 、MN 为圆C :()9222=+-y x 的两条相互垂直的弦,垂足为R ()a ,3,若四边形ABMN 的面积的最大值为14,则a=11.O 是△ABC 外接圆的圆心,AB=1,AC=2,且()0,84≠∈-+=→→→x R x AC x AB x AO 且,则△ABC 的边长BC=12.设a,b 是正实数,记⎪⎪⎩⎪⎪⎨⎧+≥++≤=33233332249,4949,ab a b a ab a b ab a b a a G ,则G 的最大值是13.若有20παβγ<<<<,则()22tan 3tan )sin(tan cos cos 4tan γαβααβαα-+-+的最小值是14.数15.f ((E ((17.(本小题满分14分)已知某品牌汽车的市场需求量1y (万辆),市场供应量2y (万辆),与市场价格x (万元∕辆)之间分别近似地满足下列的关系:)324(log 21021--=x y 和 1222-=x y ;当21y y =时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量。

(1)求平衡价格和平衡需求量;(2)科学研究表明,汽车尾气的排放不但污染环境,加速全球变暖,而且过多的私家车增加了城市交通的压力,加大了能源的消耗;某政府为倡导低碳型生活方式,决定对该品牌18.),((求(l19.(本小题满分16分)已知函数cxe bx ax x xf ⋅+++=)3()(23,其中R c b a ∈、、。

南京市、盐城市2013届高三第三次模拟考试数学参考答案及评分标准(定稿)

南京市、盐城市2013届高三第三次模拟考试数学参考答案及评分标准(定稿)

南京市、盐城市2013 届高三第三次模拟考试数学参考答案及评分标准2013.05说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数. 一、填空题:本大题共14 小题,每小题 5 分,共 70 分.1221. (1, 3]2. 53. 84. 75. 375 66. 107. 28.①④9. 210. 23 311. 212. 2x +y - 2= 0 13. (12, 17) 14. 2二、解答题:本大题共 6 小题,共 90 分.解答时应写出文字说明、证明过程或演算步骤.15. 解( 1)方法一:因为 tan α= 2,所以sin α⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分= 2,即 sin α= 2cos α.cos α又 sin 2α+ cos 2α=1,解得 sin 2α=4,cos 2α=1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分55所以 cos2α= cos 22α=- 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分α- sin 5方法二:22α⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分因为 cos2α= cos α- sincos 2α-sin 2 α 1-tan 2α4 分= sin 2α+cos 2 α=tan 2α+1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 又 tan α=2,所以 cos2α= 12-22=- 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分2 +15( 2)方法一:因为 α∈ (0, π),且 tan α=2,所以 α∈π(0, ).2又 cos2α=- 3<0,故 2α∈(π⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分,π) ,sin2α= 4.5257 22π由 cos β=-10 , β∈ (0, π),得 sin β= 10 ,β∈ (2, π).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分4 7 2 3 2 2. ⋯⋯⋯⋯ 12 分所以 sin(2α-β)=sin2αcos β-cos2αsin β=×(-10)-(- ) × =- 255 10又 2α- β∈π ππ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 分(- , ),所以 2α- β=- .224方法二:因为 α∈ (0, π),且 tan α=2,所以 α∈π2tan α4 .(0, ),tan2α=2 =-321- tan απ从而 2α∈(2, π).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分由 cos β=- 7 2 , π),得 sin β= 2 π, β∈ (0 10 ,β∈ (2 , π),10因此 tan β=- 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分7-4+1所以 tan(2α-β)= tan2α-tan β=37=- 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分1+tan2αtan β411+(- 3)× (- 7)π ππ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 分又 2α- β∈ (- , ),所以 2α- β=-.2 2 416. 证明 ( 1)如图,取 BC 的中点 G ,连结 AG , FG .C 1A 1因为 F 为 C 1B 的中点,所以 FG∥ 1C 1C .B 1= 2在三棱柱 ABC - A 1B 1C 1 中, A 1A ∥= C 1C ,且 E 为 A 1A 的中点,EF所以 FG =∥EA .所以四边形 AEFG 是平行四边形.所以 EF ∥ AG . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分DCAGB(第 16 题)因为 EF 平面 ABC , AG 平面 ABC ,所以 EF ∥平面 ABC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分 ( 2)因为在正三棱柱 ABC -A 1B 1C 1 中, A 1A ⊥平面 ABC , BD平面 ABC ,所以 A 1A ⊥ BD .因为 D 为 AC 的中点, BA = BC ,所以 BD ⊥ AC .因为 A 1A ∩AC =A , A 1 A 平面 A 1ACC 1 ,AC 平面 A 1ACC 1,所以 BD ⊥平面 A 1ACC 1.因为 C 1E 平面 A 1ACC 1,所以 BD ⊥C 1E .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分根据题意,可得 EB =C 1E = 62 AB , C 1B = 3AB ,所以 EB 2+C 1E 2=C 1B 2.从而∠ C 1EB = 90°,即 C 1E ⊥ EB .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分因为 BD ∩EB = B ,BD 平面 BDE , EB 平面 BDE ,所以 C 1E ⊥平面 BDE .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14 分17. 解( 1)由题意知, f(x)=- 2x + 3+ lnx ,- 2x + 1 (x > 0).2 分所以 f ′(x)=- 2+ 1=x ⋯⋯⋯⋯⋯⋯⋯⋯⋯x由 f ′(x)> 0 得 x ∈ (0,1) .2所以函数 f( x)的单调增区间为1⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(0, ).2( 2)由 f ′(x)= mx - m - 2+ 1,得 f ′(1)=- 1,x所以曲线 y = f(x)在点 P(1, 1)处的切线 l 的方程为 y =- x + 2.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分由题意得,关于 x 的方程 f(x)=- x + 2 有且只有一个解, 即关于 x 的方程1 2 - x + 1+ln x =0 有且只有一个解.m(x - 1)2令 g(x)=12m(x - 1)2-x + 1+ lnx(x > 0).2 -(m + 1)x + 1(x > 0). ⋯⋯⋯⋯⋯8 分则 g ′(x) =m(x - 1)- 1+ 1= mx= (x - 1)(mx - 1)xxx①当 0< m <1 时,由 g ′(x)> 0 得 0< x < 1 或 x >1,由 g ′(x)< 0 得 1< x < 1,mm 所以函数 g(x)在 (0, 1)为增函数,在 (1, 1)上为减函数,在 ( 1,+∞ )上为增函数.mm又 g(1)= 0,且当 x →∞时, g(x)→∞,此时曲线 y = g(x)与 x 轴有两个交点.故 0<m < 1 不合题意.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分②当 m = 1 时, g ′(x)≥ 0, g(x)在 (0,+∞ )上为增函数,且 g(1) = 0,故 m = 1 符合题意.③当 m > 1 时,由 g ′(x)> 0 得 0<x < 1 或 x > 1,由 g ′(x)< 0 得 1<x < 1,mm所以函数 g(x)在 (0, 1) 为增函数,在 ( 1,1) 上为减函数,在 (1,+∞ )上为增函数.m m又 g(1)= 0,且当 x → 0 时, g(x)→-∞,此时曲线 y = g(x)与 x 轴有两个交点.故 m > 1 不合题意.综上,实数 m 的值为 m =1.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14 分18.解如图所示,不妨设纸片为长方形ABCD , AB= 8cm, AD = 6cm,其中点A在面积为S1的部分内.折痕有下列三种情形:①折痕的端点M,N 分别在边AB, AD 上;②折痕的端点M,N 分别在边AB, CD 上;③折痕的端点M,N 分别在边AD , BC 上.D C D N C D CN MNA MB A M B A B(情形①)(情形②)(情形③)( 1)在情形②、③中MN ≥6,故当 l= 4 时,折痕必定是情形①.设 AM= xcm, AN= ycm,则 x2+ y2= 16.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分因为 x2+ y2≥ 2xy,当且仅当x= y 时取等号,1所以 S1=2xy≤ 4,当且仅当x=y= 22时取等号.即 S1的最大值为4.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分( 2)由题意知,长方形的面积为S=6× 8= 48.因为 S1∶S2=1∶ 2, S1≤S2,所以 S1= 16, S2= 32.当折痕是情形①时,设AM= xcm, AN= ycm,则132.xy=16,即 y=x20≤x≤ 8,16由0≤32x≤6,得3≤x≤8.所以 l=22232216⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分x+ y =x+ 2 ,≤x≤ 8.x3322222)(x- 4 2) 22× 322(x + 32)(x+ 4设 f(x)=x+x2 ,x>0,则f′(x)=2x-x3=x3,x>0.故x16162)4 2( 4 2, 8)83(3,4f ′(x)-0+f(x)4↘64↗80 649所以 f(x)的取值范围为 [64, 80],从而 l 的范围是 [8 ,45];⋯⋯⋯⋯⋯⋯ 11 分当折痕是情形②时,设AM= xcm, DN= ycm,则1(x+y)× 6= 16,即 y=16- x.230≤x≤ 8,得 0≤x≤16.由16所以 l =2228 2 16 6 + (x - y)= 6 + 4(x - ) , 0≤x ≤.33所以 l 的范围为 [6,2145 ]; ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 13 分31当折痕是情形③时,设BN =xcm ,AM = ycm ,则 2(x + y)× 8=16,即 y = 4- x .由 0≤ x ≤ 6,得 0≤ x ≤4.0≤4- x ≤ 6,所以 l = 82+ (x - y)2= 82+ 4(x -2) 2, 0≤ x ≤4. 所以 l 的取值范围为 [8, 4 5].综上, l 的取值范围为 [6, 4 5].⋯⋯⋯⋯⋯⋯⋯⋯⋯ 16 分19. 解( 1)由题意得, m > 8- m > 0,解得 4< m < 8.即实数 m 的取值范围是 (4, 8).⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分22( 2)因为 m = 6,所以椭圆 C 的方程为 x +y= 1.6 2x2y2①设点 P 坐标为( x , y ),则 6+2 = 1.因为点 M 的坐标为( 1, 0),所以PM 2=( x -1)2+ y 2=x 2- 2x + 1+ 2-x 2=2x 2-2x + 33323 2 3, x ∈ [- 6, 6].⋯⋯⋯⋯⋯⋯⋯⋯⋯=(x - ) +3 2 2363 5所以当 x = 2时, PM 的最小值为2 ,此时对应的点 P 坐标为( 2,±2 ).⋯⋯⋯⋯⋯⋯⋯⋯⋯②由 a 2= 6,b 2= 2,得 c 2= 4,即 c = 2,从而椭圆 C 的右焦点 F 的坐标为 (2, 0),右准线方程为x = 3,离心率 e = 6.3设 A ( x 1, y 1), B (x 2 ,y 2 ), AB 的中点 H ( x 0, y 0),则22 22x 1 + y 1 =1, x 2 + y 2 =1,62622222所以 x 1 - x 2 + y 1-y2= 0,即 k AB =y 1-y2=- x 0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯62x 1- x 2 3y 0令 k = k AB ,则线段 AB 的垂直平分线 l 的方程为 y - y 0=- 1k (x - x 0).4 分6 分9 分令 y =0,则 x N = ky 0+ x 0=2x 0.322 6因为 AB = AF + BF = e(3-x 1)+ e(3- x 2)= 3 | x 0- 3| .故 AB = 2 6× 3= 6.FN 32即 AB 为定值6.⋯⋯⋯⋯⋯⋯⋯⋯⋯16 分FN20. 解( 1)设等差数列 { a n } 的公差为 d ,则 S n = na 1+n(n - 1)nn - 1 d .2d ,从而 S= a 1+2n≥n S n -1n - 1n -2dS -= (a ++n 2 2 d)=n - 11d)- (a 12即数列 {S n⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分n } 是等差数列.( 2)因为对任意正整数n ,k(n >k),都有S n + k + S n - k = 2 S n 成立,所以 S n + 1+ S n - 1= 2 S n ,即数列 { S n } 是等差数列.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分设数列 { S n } 的公差为 d 1,则 S n = S 1+ (n - 1)d 1= 1+ (n -1)d 1,所以 S n =[1 +(n - 1)d 1] 2,所以当 n ≥2 时,a n = S n - S n - 1= [1 +( n - 1)d 1] 2- [1+ (n -2)d 1] 2= 2d 21n - 3d 21+ 2d 1,因为 { a n } 是等差数列,所以 a 2- a 1= a 3-a 2,即(4d 21- 3d 21+ 2d 1)- 1= (6d 21- 3d 21+ 2d 1)-(4d 21- 3d 21+ 2d 1),所以 d 1=1,即 a n = 2n - 1.又当 a n =2n - 1 时, S n = n 2, S n + k + S n - k = 2 S n 对任意正整数 n , k(n > k)都成立, 因此 a n =2n - 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分( 3)设等差数列 { a n } 的公差为 d ,则 a n = a 1+ (n - 1)d , b n = a a n,所以b na n -a n - 1db n-1 = a= a ,即数列 { b n } 是公比大于 0,首项大于 0 的等比数列. ⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分记公比为 q(q > 0).以下证明: b 1+ b n ≥b p + b k ,其中 p , k 为正整数,且 p + k = 1+ n .因为 (b 1+ b n )- (b p + b k )= b 1+b 1q n - 1- b 1q p - 1-b 1q k - 1=b 1( qp -1- 1)( q k - 1- 1).当 q >1 时,因为 y = q x为增函数, p -1≥ 0,k - 1≥ 0,所以 qp -1- 1≥0, qk -1- 1≥ 0,所以 b 1+ b n ≥ b p + b k .当 q =1 时, b 1+ b n = b p + b k .当 0<q < 1 时,因为 y = q x为减函数, p - 1≥0, k - 1≥0, p 1k 1综上, b 1+ b n ≥ b p + b k ,其中 p , k 为正整数,且 p + k = 1+ n .⋯⋯⋯⋯⋯⋯⋯14 分所以 n(b 1+ b n )= (b 1+ b n )+ (b 1+ b n )+⋯+ (b 1+ b n )≥(b 1+ b n )+ (b 2+ b n- 1)+ (b 3+ b n - 2)+⋯+ (b n + b 1)= ( b 1 + b 2 +⋯+ b n )+ (b n + b n - 1+⋯+ b 1),b 1+ b 2+⋯+ b nb 1+ b n⋯⋯⋯⋯⋯⋯⋯⋯ 16 分即≤.n2南京市、盐城市2013 届高三第三次模拟考试数学附加题参考答案及评分标准2013.0521.【选做题】在 A 、 B 、 C 、 D 四小题中只能选做 2 题,每小题 10 分,共 20 分.A .选修 4— 1:几何证明选讲证明 如图,延长 PO 交⊙ O 于 D ,连结 AO , BO . AB 交 OP 于点 E .A因为 PA 与⊙ O 相切, DOE C P 所以 PA 2= PC · PD .B设⊙ O 的半径为 R ,因为 PA = 12, PC = 6,(第 21 题 A )所以 122=6(2R + 6),解得 R =9. ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分因为 PA ,PB 与⊙ O 均相切,所以PA = PB .又 OA = OB ,所以 OP 是线段 AB 的垂直平分线. ⋯⋯⋯⋯⋯⋯⋯⋯7 分即 AB ⊥ OP ,且 AB = 2AE .在 Rt △ OAP 中, AE =OA · PA = 36.OP 5所以 AB =72.⋯⋯⋯⋯⋯⋯⋯⋯10 分5B .选修 4— 2:矩阵与变换1 a 1,即 1+ a =0,解 ( 1)由题知,11=b 2b + 1=2,解得 a =- 1,⋯⋯⋯⋯⋯⋯⋯⋯4 分b = 1.( 2)设 P' (x , y)是曲线 C'上任意一点, P' 由曲线 C 上的点 P (x 0 , y 0) 经矩阵 M 所表示的变换得到,1 - 1x 0 x x 0- y 0=x ,x 0= y + x,解得2所以y 0=,即 x 0+ y 0=y ,y - x ⋯⋯⋯⋯⋯⋯⋯⋯ 7 分11yy 0=.2因为 x0y0= 1,所以y+x·y-x= 1,即y2- x2= 1.2244即曲线 C' 的方程为y2- x2= 1.⋯⋯⋯⋯⋯⋯⋯⋯ 10 分44C.选修 4— 4:坐标系与参数方程解以极点为原点,极轴为 x 轴正半轴建立平面直角坐标系,则圆 C 的直角坐标方程为 (x- 3)2+ ( y-1) 2= 4,点 M 的直角坐标为 (3 3,3).⋯⋯⋯⋯⋯⋯⋯⋯ 3 分当直线 l 的斜率不存在时,不合题意.设直线 l 的方程为 y-3= k(x- 3 3),由圆心 C( 3, 1)到直线 l 的距离等于半径2.故 |2 3k- 2|=2.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分k2+1解得 k= 0 或 k= 3.所以所求的直线 l 的直角坐标方程为y=3或3x- y- 6=0.⋯⋯⋯⋯⋯⋯⋯8 分π所以所求直线l 的极坐标方程为ρsinθ=3或ρsin(-θ)=3.⋯⋯⋯⋯⋯⋯⋯⋯10 分3D.选修 4— 5:不等式选讲x≥ 4,x< 4,解原不等式等价于x 2- 4x- 3<0,或- x2+ 4x- 3< 0.x≥ 4,或 x< 4,解得2- 7< x< 2+ 7,x< 1或x> 3.即4≤x< 2+ 7或 3< x< 4 或 x<1.综上,原不等式的解集为 { x| x< 1 或 3< x< 2+ 7} .【必做题】第22 题、第 23 题,每题10 分,共 20 分.⋯⋯⋯⋯⋯⋯⋯⋯ 5 分⋯⋯⋯⋯⋯⋯⋯⋯10 分22.解( 1)如图,取AC 的中点 F ,连接 BF ,则 BF ⊥ AC.以 A 为坐标原点,过 A 且与 FB 平行的直线为x 轴, AC 为 y 轴, AP 为 z 轴,建立空间直角坐标系.则A(0,0, 0), B( 3, 1,0),z PC(0, 2, 0), P(0, 0, 2), E(0, 1, 1),ED →→从而 PB = (3, 1,- 2), AE= (0, 1, 1).设直线 AE 与 PB 所成角为θ,A FC y→ →1x B则 cosθ=|PB· AE→ →|=.4(第 22 题)|PB|× |AE|即直线 AE 与 PB 所成角的余弦值为1⋯⋯⋯⋯⋯⋯⋯⋯ 4 分4.→→ ( 2)设 PA 的长为 a ,则 P(0, 0, a),从而 PB = ( 3, 1,- a),PC =(0 ,2,- a).→→设平面 PBC 的法向量为 n =( x , y , z) ,则 n ·1·11 PB = 0, n PC = 0,所以 3x + y -az = 0, 2y -az = 0.令 z = 2,则 y = a , x =33 a .3所以 n 1=( 3 a ,a , 2)是平面 PBC 的一个法向量.因为 D , E 分别为 PB ,PC 中点,所以 3 1 a aD( , 2, ),E(0, 1, ) ,2 2 2 →3 1 a → a ).则 AD = ( 2 , , ), AE = (0,1, 22 2 设平面 ADE 的法向量为 n =( x ,y , z),则 n→→··22 AD =0, n 2 AE = 0.所以31aa2 x + 2y + 2z = 0, y + 2z =0.3令 z = 2,则 y =- a , x =- 3 a .所以 n 2=(-3 a ,- a , 2)是平面 ADE 的一个法向量. ⋯⋯⋯⋯⋯⋯⋯⋯8 分3因为面 ADE ⊥面 PBC ,所以 n ⊥n ,即 n ·= (32) ·31 2- a 2+ 4= 0,121 n 23 a , a ,(- 3 a ,- a , 2)=- 3a解得 a = 3,即 PA 的长为 3.⋯⋯⋯⋯⋯⋯⋯⋯ 10 分223. 解( 1)p 1= ,p 2= 2× 2+ 1× ( 1-2 ) =5.33 3 3 9( 2)因为移了 n 次后棋子落在上底面顶点的概率为于是移了 n + 1 次后棋子落在上底面顶点的概率为从而 p n+1-1= 1 (p n -1).2 3 2⋯⋯⋯⋯⋯⋯⋯⋯2 分p n ,故落在下底面顶点的概率为1- p n .pn+12 1 11.= p n + (1-p n )= p n +333 3⋯⋯⋯⋯⋯⋯⋯⋯4 分所以数列 { p n -1} 是等比数列,其首项为1,公比为 1.26 311 ×( 1 ) n -1 1 11 ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分所以 p n - =3.即 p n =+ ×n .262 23用数学归纳法证明:①当 n = 1 时,左式=1=3,右式= 1,因为3>1,所以不等式成立.4× 2- 1 525 23当 n =2 时,左式=1+ 1=78,右式= 4,因为 78>4,所以不等式成立.4× 2- 1 4× 5- 155355 339②假设 n = k(k ≥ 2)时,不等式成立,即k1 >k2∑.i =14P i - 1 k + 1k112123 k+1则 n =k + 1 时,左式= ∑+>k+= k+.i - k+1 - 11 11k+1 i =114Pk + 1k + 13 + 24P+ × k+1)- 14( 22 3要证 k23k+12+ ≥ (k + 1) ,k +13 k +1+ 2k + 2k+122只要证3≥(k +1) - k.3k+1+2k + 2 k + 13k+1k 2+3k + 1只要证 3k+1+2≥ k 2+ 3k + 2.2 1 只要证 3k+1≤k 2+ 3k +1.只要证 3k+1≥ 2k 2+ 6k +2.因为 k ≥2,所以 3k+1= 3(1+ 2)k ≥ 3(1+ 2k + 4C 2k )= 6k 2+ 3= 2k 2 +6k + 2+ 2k(2k -3)+ 1> 2k 2+ 6k + 2,k23k+1(k + 1)2所以 k +1 +3k+1+ 2≥k + 2.即 n =k + 1 时,不等式也成立.n1 > n2由①②可知,不等式 ∑对任意的 n ∈ N * 都成立. ⋯⋯⋯⋯⋯⋯⋯⋯ 10 分i =14P i -1 n + 1。

南京市、盐城市2013届高三第三次模拟考试数学参考答案及评分标准(定稿)

南京市、盐城市2013届高三第三次模拟考试数学参考答案及评分标准(定稿)

南京市、盐城市2013届高三第三次模拟考试数学参考答案及评分标准 2013.05说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题:本大题共14小题,每小题5分,共70分.1.(1,3] 2.5 3.8 4.127 5. 236.710 7.2 8.①④ 9.56210.2 11.2 12.2x +y -2=0 13.(12,17) 14.332二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤. 15.解(1)方法一:因为tan α=2,所以sin αcos α=2,即sin α=2cos α. ………………………… 2分又sin 2α+cos 2α=1,解得sin 2α=45,cos 2α=15. ………………………… 4分所以cos2α=cos 2α-sin 2α=-35. ………………………… 6分方法二:因为cos2α=cos 2α-sin 2α ………………………… 2分=cos 2α-sin 2αsin 2α+cos 2α =1-tan 2αtan 2α+1, ………………………… 4分 又tan α=2,所以cos2α=1-2222+1=-35. ………………………… 6分(2)方法一:因为α∈(0,π),且tan α=2,所以α∈(0,π2).又cos2α=-35<0,故2α∈(π2,π) ,sin2α=45. ………………………… 8分由cos β=-7210,β∈(0,π),得sin β=210,β∈(π2,π). ………………………… 10分所以sin(2α-β)=sin2αcos β-cos2αsin β=45×(-7210)-(-35)×210=-22. ………… 12分又2α-β∈(-π2,π2),所以2α-β=-π4. ………………………… 14分方法二:因为α∈(0,π),且tan α=2,所以α∈(0,π2),tan2α=2tan α1-tan 2α=-43.从而2α∈(π2,π). ………………………… 8分由cos β=-7210,β∈(0,π),得sin β=210,β∈(π2,π),因此tan β=-17. ………………………… 10分所以tan(2α-β)=tan2α-tan β1+tan2αtan β=-43+171+(-43)×(-17)=-1. ………………………… 12分又2α-β∈(-π2,π2),所以2α-β=-π4. ………………………… 14分16.证明(1)如图,取BC 的中点G ,连结AG ,FG .因为F 为C 1B 的中点,所以FG =∥12C 1C . 在三棱柱ABC -A 1B 1C 1中,A 1A =∥C 1C ,且E 为A 1A 的中点, 所以FG =∥EA . 所以四边形AEFG 是平行四边形. 所以EF ∥AG . ………………………… 4分 因为EF ⊄平面ABC ,AG ⊂平面ABC ,所以EF ∥平面ABC . ………………………… 6分 (2)因为在正三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,BD ⊂平面ABC ,所以A 1A ⊥BD .因为D 为AC 的中点,BA =BC ,所以BD ⊥AC .因为A 1A ∩AC =A ,A 1A ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,所以BD ⊥平面A 1ACC 1. 因为C 1E ⊂平面A 1ACC 1,所以BD ⊥C 1E . ………………………… 9分根据题意,可得EB =C 1E =62AB ,C 1B =3AB , 所以EB 2+C 1E 2=C 1B 2.从而∠C 1EB =90°,即C 1E ⊥EB .……………………… 12分 因为BD ∩EB =B ,BD ⊂平面BDE , EB ⊂平面BDE ,(第16题)ABC D EC 1A 1B 1FG所以C 1E ⊥平面BDE . ………………………… 14分17.解(1)由题意知,f (x )=-2x +3+ln x ,所以f ′(x )=-2+1x =-2x +1x (x >0). ……………………… 2分由f ′(x )>0得x ∈(0,12) .所以函数f (x )的单调增区间为(0,12). ……………………… 4分(2)由f ′(x )=mx -m -2+1x,得f ′(1)=-1,所以曲线y =f (x )在点P (1,1)处的切线l 的方程为y =-x +2.…………………… 6分 由题意得,关于x 的方程f (x )=-x +2有且只有一个解, 即关于x 的方程12m (x -1)2-x +1+ln x =0有且只有一个解.令g (x )=12m (x -1)2-x +1+ln x (x >0).则g ′(x )=m (x -1)-1+1x =mx 2-(m +1)x +1x =(x -1)(mx -1)x(x >0). …………… 8分①当0<m <1时,由g ′(x )>0得0<x <1或x >1m ,由g ′(x )<0得1<x <1m ,所以函数g (x )在(0,1)为增函数,在(1,1m )上为减函数,在(1m ,+∞)上为增函数.又g (1)=0,且当x →∞时,g (x )→∞,此时曲线y =g (x )与x 轴有两个交点.故0<m <1不合题意. ……………………… 10分 ②当m =1时,g ′(x )≥0,g (x )在(0,+∞)上为增函数,且g (1)=0,故m =1符合题意. ③当m >1时,由g ′(x )>0得0<x <1m 或x >1,由g ′(x )<0得1m<x <1,所以函数g (x )在(0,1m ) 为增函数,在(1m ,1)上为减函数,在(1,+∞)上为增函数.又g (1)=0,且当x →0时,g (x )→-∞,此时曲线y =g (x )与x 轴有两个交点. 故m >1不合题意.综上,实数m 的值为m =1. ……………………… 14分18.解 如图所示,不妨设纸片为长方形ABCD ,AB =8cm ,AD =6cm ,其中点A 在面积为S 1的部分内.折痕有下列三种情形:①折痕的端点M ,N 分别在边AB ,AD 上; ②折痕的端点M ,N 分别在边AB ,CD 上;③折痕的端点M ,N 分别在边AD ,BC 上.(1)在情形②、③中MN ≥6,故当l =4时,折痕必定是情形①.设AM =x cm ,AN =y cm ,则x 2+y 2=16. ……………………… 2分 因为x 2+y 2≥2xy ,当且仅当x =y 时取等号, 所以S 1=12xy ≤4,当且仅当x =y =22时取等号.即S 1的最大值为4. ……………………… 5分 (2)由题意知,长方形的面积为S =6×8=48.因为S 1∶S 2=1∶2,S 1≤S 2,所以S 1=16,S 2=32.当折痕是情形①时,设AM =x cm ,AN =y cm ,则12xy =16,即y =32x.由⎩⎪⎨⎪⎧0≤x ≤8,0≤32x ≤6,得163≤x ≤8.所以l =x 2+y 2=x 2+322x 2,163≤x ≤8. ……………………… 8分设f (x )=x 2+322x 2,x >0,则f ′(x )=2x -2×322x 3=2(x 2+32)(x +42)(x -42)x 3,x >0.故所以f (x )的取值范围为[64,80],从而l 的范围是[8,45]; ……………… 11分 当折痕是情形②时,设AM =x cm ,DN =y cm ,则12(x +y )×6=16,即y =163-x .由⎩⎪⎨⎪⎧0≤x ≤8,0≤163-x ≤8,得0≤x ≤163.所以l =62+(x -y )2=62+4(x -83)2,0≤x ≤163.所以l 的范围为[6,21453]; ……………………… 13分当折痕是情形③时,设BN =x cm ,AM =y cm ,则12(x +y )×8=16,即y =4-x .ABCD (情形①)MNABCD (情形②)MNABCD (情形③)MN由⎩⎨⎧0≤x ≤6,0≤4-x ≤6,得0≤x ≤4. 所以l =82+(x -y )2=82+4(x -2)2,0≤x ≤4. 所以l 的取值范围为[8,45].综上,l 的取值范围为[6,45]. ……………………… 16分19.解(1)由题意得,m >8-m >0,解得4<m <8.即实数m 的取值范围是(4,8). ……………………… 2分 (2)因为m =6,所以椭圆C 的方程为x 26+y 22=1.①设点P 坐标为(x ,y ),则x 26+y 22=1.因为点M 的坐标为(1,0),所以PM 2=(x -1)2+y 2=x 2-2x +1+2-x 23=2x 23-2x +3=23(x -32)2+32,x ∈[-6,6]. ……………………… 4分 所以当x =32时,PM 的最小值为62,此时对应的点P 坐标为(32,±52).……………………… 6分②由a 2=6,b 2=2,得c 2=4,即c =2,从而椭圆C 的右焦点F 的坐标为(2,0),右准线方程为x =3,离心率e =63. 设A (x 1,y 1),B (x 2,y 2),AB 的中点H (x 0,y 0),则x 126+y 122=1,x 226+y 222=1, 所以x 12-x 226+y 12-y 222=0,即k AB =y 1-y 2x 1-x 2=-x 03y 0. ……………………… 9分令k =k AB ,则线段AB 的垂直平分线l 的方程为y -y 0=-1k (x -x 0).令y =0,则x N =ky 0+x 0=23x 0.因为F (2,0),所以FN =|x N -2|=23|x 0-3|. ……………………… 12分因为AB =AF +BF =e (3-x 1)+e (3-x 2)=263|x 0-3|.故AB FN =263×32=6. 即ABFN为定值6. ……………………… 16分20.解(1)设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d ,从而S nn =a 1+n -12d . 所以当n ≥2时,S n n -S n -1n -1=(a 1+n -12d )-(a 1+n -22d )=d2.即数列{S nn }是等差数列. ……………………… 2分(2)因为对任意正整数n ,k (n >k ),都有S n +k +S n -k =2S n 成立,所以S n +1+S n -1=2S n ,即数列{S n }是等差数列. ……………………… 4分 设数列{S n }的公差为d 1,则S n =S 1+(n -1)d 1=1+(n -1)d 1, 所以S n =[1+(n -1)d 1]2,所以当n ≥2时,a n =S n -S n -1=[1+(n -1)d 1]2-[1+(n -2)d 1]2=2d 21n -3d 21+2d 1,因为{a n }是等差数列,所以a 2-a 1=a 3-a 2,即(4d 21-3d 21+2d 1)-1=(6d 21-3d 21+2d 1)-(4d 21-3d 21+2d 1),所以d 1=1,即a n =2n -1.又当a n =2n -1时,S n =n 2,S n +k +S n -k =2S n 对任意正整数n ,k (n >k )都成立, 因此a n =2n -1. ……………………… 7分 (3)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d ,b n =a a n ,所以b n b n -1=a a n -a n -1=a d ,即数列{b n }是公比大于0,首项大于0的等比数列. ……………………… 9分 记公比为q (q >0).以下证明:b 1+b n ≥b p +b k ,其中p ,k 为正整数,且p +k =1+n . 因为(b 1+b n )-(b p +b k )=b 1+b 1q n -1-b 1q p -1-b 1q k -1=b 1(q p -1-1)( q k -1-1).当q >1时,因为y =q x 为增函数,p -1≥0,k -1≥0, 所以q p -1-1≥0,q k -1-1≥0,所以b 1+b n ≥b p +b k .当q =1时,b 1+b n =b p +b k .当0<q <1时,因为y =q x 为减函数,p -1≥0,k -1≥0, 所以q p -1-1≤0,q k -1-1≤0,所以b 1+b n ≥b p +b k .综上,b 1+b n ≥b p +b k ,其中p ,k 为正整数,且p +k =1+n .………………… 14分 所以n (b 1+b n )=(b 1+b n )+(b 1+b n )+…+(b 1+b n )≥(b 1+b n )+(b 2+b n -1)+(b 3+b n -2)+…+(b n +b 1)=(b 1+b 2+…+b n )+(b n +b n -1+…+b 1), 即b 1+b 2+…+b n n ≤b 1+b n2. …………………… 16分南京市、盐城市2013届高三第三次模拟考试数学附加题参考答案及评分标准 2013.0521.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分. A .选修4—1:几何证明选讲证明 如图,延长PO 交⊙O 于D ,连结AO ,BO .AB 交OP 于点E .因为P A 与⊙O 相切, 所以P A 2=PC ·PD .设⊙O 的半径为R ,因为P A =12,PC =6,所以122=6(2R +6),解得R =9. …………………… 4分 因为P A ,PB 与⊙O 均相切,所以P A =PB .又OA =OB ,所以OP 是线段AB 的垂直平分线. …………………… 7分 即AB ⊥OP ,且AB =2AE . 在Rt △OAP 中,AE =OA ·P A OP =365.所以AB =725. …………………… 10分B .选修4—2:矩阵与变换解 (1)由题知,⎣⎢⎡⎦⎥⎤1 a b 1 ⎣⎡⎦⎤11=⎣⎡⎦⎤02,即⎩⎨⎧1+a =0,b +1=2, 解得⎩⎨⎧a =-1,b =1.…………………… 4分(2)设P' (x ,y )是曲线C'上任意一点,P' 由曲线C 上的点P (x 0,y 0) 经矩阵M 所表示的变换得到,所以⎣⎢⎡⎦⎥⎤1 -11 1 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎨⎧x 0-y 0=x ,x 0+y 0=y ,解得⎩⎨⎧x 0=y +x 2,y 0=y -x 2.…………………… 7分 因为x 0y 0=1,所以y +x 2·y -x 2=1,即y 24-x 24=1.即曲线C' 的方程为y 24-x 24=1. …………………… 10分C .选修4—4:坐标系与参数方程解 以极点为原点,极轴为x 轴正半轴建立平面直角坐标系,则圆C 的直角坐标方程为(x -3)2+(y -1)2=4,点M 的直角坐标为(33,3). …………………… 3分ABOC (第21题A )DE当直线l 的斜率不存在时,不合题意. 设直线l 的方程为y -3=k (x -33),由圆心C (3,1)到直线l 的距离等于半径2.故|23k -2|k 2+1=2. …………………… 6分解得k =0或k =3.所以所求的直线l 的直角坐标方程为y =3或3x -y -6=0. ………………… 8分所以所求直线l 的极坐标方程为ρsin θ=3或ρsin(π3-θ)=3. …………………… 10分D .选修4—5:不等式选讲解 原不等式等价于 ⎩⎨⎧x ≥4,x 2-4x -3<0,或⎩⎨⎧x <4,-x 2+4x -3<0. …………………… 5分解得⎩⎨⎧x ≥4,2-7<x <2+7,或⎩⎨⎧x <4,x <1或x >3.即4≤x <2+7或3<x <4或x <1.综上,原不等式的解集为{x | x <1或3<x <2+7}. …………………… 10分【必做题】第22题、第23题,每题10分,共20分.22.解(1)如图,取AC 的中点F ,连接BF ,则BF ⊥AC .以A 为坐标原点,过A 且与FB 平行的直线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系. 则A (0,0,0),B (3,1,0), C (0,2,0),P (0,0,2),E (0,1,1),从而→PB =(3,1,-2), →AE =(0,1,1). 设直线AE 与PB 所成角为θ, 则cos θ=|→PB ·→AE|→PB |×|→AE ||=14.即直线AE 与PB 所成角的余弦值为14 . …………………… 4分(2)设P A 的长为a ,则P (0,0,a ),从而→PB =(3,1,-a ),→PC =(0,2,-a ).设平面PBC 的法向量为n 1=(x ,y ,z ),则n 1·→PB =0,n 1·→PC =0, 所以3x +y -az =0,2y -az =0. 令z =2,则y =a ,x =33a . 所以n 1=(33a ,a ,2)是平面PBC 的一个法向量.(第22题)因为D ,E 分别为PB ,PC 中点,所以D (32,12,a 2),E (0,1,a2), 则→AD =(32,12,a 2),→AE =(0,1,a2). 设平面ADE 的法向量为n 2=(x ,y ,z ),则n 2·→AD =0,n 2·→AE =0. 所以32x +12y +a 2z =0,y +a2z =0. 令z =2,则y =-a ,x =-33a . 所以n 2=(-33a ,-a ,2)是平面ADE 的一个法向量. …………………… 8分 因为面ADE ⊥面PBC , 所以n 1⊥n 2,即n 1·n 2=(33a ,a ,2)·(- 33a ,-a ,2)=-13a 2-a 2+4=0, 解得a =3,即P A 的长为3. …………………… 10分 23.解(1)p 1=23,p 2=23×23+13×(1-23)=59. …………………… 2分(2)因为移了n 次后棋子落在上底面顶点的概率为p n ,故落在下底面顶点的概率为1-p n .于是移了n +1次后棋子落在上底面顶点的概率为p n +1=23p n +13(1-p n )=13p n +13.…………………… 4分从而p n +1-12=13(p n -12).所以数列{p n -12}是等比数列,其首项为16,公比为13.所以p n -12=16×(13)n -1.即p n =12+12×13n . …………………… 6分用数学归纳法证明:①当n =1时,左式=14×23-1=35,右式=12,因为35>12,所以不等式成立.当n =2时,左式=14×23-1+14×59-1=7855,右式=43,因为7855>43,所以不等式成立.②假设n =k (k ≥2)时,不等式成立,即i =1∑k14P i -1>k 2k +1.则n =k +1时,左式=i =1∑k14P i -1+14P k +1-1>k 2k +1+14(12+12×13k +1)-1=k 2k +1+3k +13k +1+2.要证k 2k +1+3k +13k +1+2≥(k +1)2k +2,只要证3k +1 3k +1+2≥(k +1)2k +2-k 2k +1.只要证3k +13k +1+2≥k 2+3k +1 k 2+3k +2.只要证2 3k +1≤1k 2+3k +1.只要证3k +1≥2k 2+6k +2. 因为k ≥2,所以3k +1=3(1+2)k ≥3(1+2k +4C 2k )=6k 2+3=2k 2+6k +2+2k (2k -3)+1>2k 2+6k +2,所以k 2k +1+3k +1 3k +1+2≥(k +1)2k +2.即n =k +1时,不等式也成立.由①②可知,不等式i =1∑n14P i -1>n 2n +1对任意的n ∈N *都成立. ……………………10分。

江苏省13大市2013年高三历次考试数学试题分类汇编:圆锥曲线

江苏省13大市2013年高三历次考试数学试题分类汇编:圆锥曲线

江苏省13大市2013年高三历次考试数学试题分类汇编:圆锥曲线一、填空题1.(扬州市2012-2013学年度第一学期期末检测高三数学试题)已知椭圆22221(0) x ya ba b+=>>的离心率e=,A、B是椭圆的左、右顶点,P是椭圆上不同于A、B的一点,直线PA、PB斜倾角分别为α、β,则cos()cos()αβαβ-+=____.【答案】352 .(苏州市2012-2013学年度第一学期高三期末考试数学试卷)在平面直角坐标系xOy中,双曲线2222:1(0,0)x yE a ba b-=>>的左顶点为A,过双曲线E的右焦点F作与实轴垂直的直线交双曲线E于B,C两点,若ABC∆为直角三角形,则双曲线E的离心率为_________.【答案】23 .(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)设双曲线22145x y-=的左、右焦点分别为1F,2F,点P为双曲线上位于第一象限内一点,且12PF F的面积为6,则点P的坐标为___________【答案】⎪⎪⎭⎫⎝⎛2,5564 .(镇江市2013届高三上学期期末考试数学试题)圆心在抛物线22x y=上,并且和抛物线的准线及y轴都相切的圆的标准方程为______.【答案】()121122=⎪⎭⎫⎝⎛-+±yx;5 .(江苏省泰州、南通、扬州、宿迁、淮安五市2013届高三第三次调研测试数学试卷)在平面直角坐标系xOy中,抛物线22(0)x py p=>上纵坐标为1的一点到焦点的距离为3,则焦点到准线的距离为______.【答案】46 .(南京市、盐城市2013届高三第三次模拟考试数学试卷)设点P是曲线y=x2上的一个动点,曲线y=x2在点P处的切线为l,过点P且与直线l垂直的直线与曲线y=x2的另一交点为Q,则PQ的最小值为________.【答案】3327 .(江苏省盐城市2013届高三年级第二次模拟考试数学试卷)椭圆12222=+by a x (0>>b a )的左焦点为F,直线m x =与椭圆相交于A,B 两点,若FAB ∆的周长最大时,FAB ∆的面积为ab ,则椭圆的离心率为________.【答案】28 .(南通市2013届高三第一次调研测试数学试卷)已知双曲线22221y x a b-=的一个焦点与圆x 2+y 2-10x =0的圆心重合,,则该双曲线的标准方程为________.【答案】答案:221520y x -=. 本题考查双曲线的标准方程、简单性质与圆的有关知识.对双曲线的讲评不宜过分引申9 .(苏北三市(徐州、淮安、宿迁)2013届高三第二次调研考试数学试卷)已知双曲线)0,0(12222>>=-b a b y a x 的右焦点为,F 若以F 为圆心的圆05622=+-+x y x 与此双曲线的渐近线相切,则该双曲线的离心率为_____.【答案】510.(扬州、南通、泰州、宿迁四市2013届高三第二次调研测试数学试卷)在平面直角坐标系xOy 中,设椭圆与双曲线2233y x -=共焦点,且经过点)2,则该椭圆的离心率为____.【答案】11.(南京市、淮安市2013届高三第二次模拟考试数学试卷)在平面直角坐标系xOy 中,已知双曲线C:22143x y -=.设过点M(0,1)的直线与双曲线C 交于A 、B 两点,若2AM MB =,则直线的斜率为_____.【答案】12±12.(南京市、盐城市2013届高三第三次模拟考试数学试卷)在平面直角坐标系xOy 中,点F 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,过F 作双曲线C 的一条渐近线的垂线,垂足为A ,延长FA 与另一条渐近线交于点B .若FB →=2FA →,则双曲线的离心率为________.【答案】213.(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)方程22115x y k k =-++表示双曲线的充要条件是k ∈____.【答案】(1,5)-;14.(南京市、盐城市2013届高三年级第一次模拟考试数学试题)已知1F 、2F 分别是椭圆14822=+y x 的左、右焦点, 点P 是椭圆上的任意一点, 则121||PF PF PF -的取值范围是 .【答案】[0,222]+15.(连云港市2012-2013学年度第一学期高三期末考试数学试卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2= 4x 的准线交于A 、B 两点,AB =3,则C 的实轴长为______. 【答案】1;16.(2012-2013学年度苏锡常镇四市高三教学情况调研(二)数学试题)若双曲线221(0)yx a a-=>的一个焦点到一条渐近线的距离等于3,则此双曲线方程为______.【答案】2213y x -= 17.(扬州市2012-2013学年度第一学期期末检测高三数学试题)已知圆C 的圆心为抛物线x y42-=的焦点,又直线4360x y --=与圆C 相切,则圆C 的标准方程为____.【答案】22(1)4x y ++=;18.(常州市2013届高三教学期末调研测试数学试题)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线经过点(1,2),则该双曲线的离心率的值为______.【答案】519.(江苏省无锡市2013届高三上学期期末考试数学试卷)如图,过抛物线y 2=2px(p>0)的焦点F 的直线L交抛物线于点A 、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为_____________.【答案】23y x =20.(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)已知1F ,2F 是双曲线的两个焦点,以线段12F F 为边作正12MF F ∆,若边1MF 的中点在此双曲线上,则此双曲线的离心率为__________.【答案】31+21.(镇江市2013届高三上学期期末考试数学试题)设双曲线22221x y a b-=的左、右焦点分别为12,F F ,点P在双曲线的右支上,且124PF PF =,则此双曲线离心率的最大值为______.【答案】35; 二、解答题22.(江苏省盐城市2013届高三年级第二次模拟考试数学试卷)如图,圆O 与离心率为23的椭圆T:12222=+by a x (0>>b a )相切于点M )1,0(. ⑴求椭圆T 与圆O 的方程;⑵过点M 引两条互相垂直的两直线1l 、2l 与两曲线分别交于点A 、C 与点B 、D(均不重合). ①若P 为椭圆上任一点,记点P 到两直线的距离分别为1d 、2d ,求2221d d +的最大值; ②若MD MB MC MA ⋅=⋅43,求1l 与2l 的方程.【答案】解: (1)由题意知:222,1,23a b c b a c =+==解得3,1,2===c b a 可知: 椭圆C 的方程为1422=+y x 与圆O 的方程122=+y x (2)设),(00y x P 因为1l ⊥2l ,则202022221)1(++==+y x PM d d 因为142020=+y x 所以316)31(3)1(442020202221++-=++-=+y y y d d ,因为110≤≤-y 所以当310-=y 时2221d d +取得最大值为316,此时点)31,324(-±P (3)设1l 的方程为1+=kx y ,由⎩⎨⎧=++=1122y x kx y 解得)11,12(222k k k k A +-+-; 由⎪⎩⎪⎨⎧=++=14122y x kx y 解得)4141,148(222k k k k C +-+- 把C A ,中的k 置换成k 1-可得)11,12(222+-+k k k k B ,)44,48(222+-+k k k k D 12分 所以)12,12(222k k k k +-+-=,)418,148(222kk k k +-+- )12,12(22+-+=k k k ,)48,48(22+-+=k k k由34MA MC MB MD ⋅=⋅得44413222+=+k k k 解得2±=k 15分所以1l 的方程为12+=x y ,2l 的方程为122+-=x y 或1l 的方程为12+-=x y ,2l 的方程为122+=x y 16分 的情形:过定椭圆内的定点作两条斜率和为定值的动弦,则两动弦的中点所在直线过定值.此结论在抛物线中也成立.另外,也可以求过两中点所在直线的斜率的最值.近几年江苏高考解析几何大题的命题趋势:多考一点“算”,少考一点“想”.式方程为22200x x y y +-=)(3)设直线MA 的斜率为k ,()11,A x y ,()22,B x y ,由题直线MA 与MB 的斜率互为相反数,直线MB 的斜率为k -.联立直线MA 与椭圆方程:221364y kx x y ⎧=+-⎪⎨+=⎪⎩ ,整理得()()2229113162108180k x k x k k ++-+--=,得1x =-,所以2x =-,整理得21x x -=,21x x +=又()()212221y y kx kx k x x -=-++-+-=-++=3210891k k -+=+所以212113ABy y k x x -===-为定值方程为:220x y Dx Ey F ++++=,则圆心为(,22D E --),PQ 中点M (2,m m -), PQ 的垂直平分线的方程为:m x y 232--=,圆心(2,2E D --)满足m x y 232--=,所以322E D m -=-○2, 圆过定点(2,0),所以420D F ++=○3,圆过1122(,),(,)P x y Q x y , 则2211112222220,0,x y Dx Ey F x y Dx Ey F ++++=++++=⎧⎨⎩ 两式相加得: 22221212121220,x x y y Dx Dx Ey Ey F ++++++++=222212121212(1)(1)()()2044x x x x D x x E y y F ++-+-+++++=,12y y m +=, 5220mD mE F -++=∴○4因为动直线12y x m =+与椭圆C 交与P,Q (均不与A 点重合)所以1-≠m ,由○2○3○4解得:3(1)3335,,,42222m D E m F m -==+=--代入圆的方程为:223(1)3335()042222m x y x m y m -++++--=, 整理得:22335333()()0422422x y x y m x y +-+-++-=,所以:223350,4223330,422x y x y x y ⎧+-+-=⎪⎪⎨⎪+-=⎪⎩ 解得:0,1,x y =⎧⎨=⎩或2,0x y =⎧⎨=⎩(舍).所以圆过定点(0,1)(法二) 设圆的一般方程为:220x y Dx Ey F ++++=,将m x y +=21代入的圆的方程: 024522=+++⎪⎭⎫⎝⎛+++F mE m x E D m x ○5 方程○1与方程○5为同解方程.22122(1)542E m mE Fm D m m ++-+=+=,圆过定点(2,0),所以024=++F D ,因为动直线m x y +=21与椭圆C 交与P,Q(均不与A 点重合)所以1-≠m . 解得: 3(1)3335,,42222m D E m F m -==+=--, (以下相同) 【说明】本题考查圆锥曲线的基本量间关系、直线与圆锥曲线的位置关系;考查定点定值问题;考查运算求解能力和推理论证能力.23.(镇江市2013届高三上学期期末考试数学试题)斜率为1的直线与抛物线22y x =交于不同两点,A B ,求线段AB 中点M 的轨迹方程. .【答案】解:设直线方程:m x y +=,()()()y x M y x B y x A ,,,,,2211将m x y +=代入22y x =,得()02222=+-+m x m x ,所以()22122122240,22,,m m x x m x x m ⎧∆=-->⎪⎪+=-⎨⎪=⎪⎩∴21<m ,1,211221=+=>-=+=m x y m x x x , 线段AB 中点M 的轨迹方程为:⎪⎭⎫ ⎝⎛>=211x y24.(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)直角坐标系xOy 中,已知椭圆:C【答案】(1)P (53a ,54b ), 22B A K ·K OP =-1,∴4b 2=3a 2=4(a 2-c 2), ∴a 2=4c 2, ∴e=21① (2)MN=7214=22112b a +,∴1272222=+b a b a ②由①②得,a 2=4,b 2=3, ∴13422=+y x RQRF RQ RF ··11RQRF RQ RF ··22∴22000002200000)1(),)(,1()1(),)(,1(y x y t x y x y x y t x y x +-----=++-----化简得: ∴t =-31y 0 ∵0<y 0<3,t∈(-33,0) 25.(扬州市2012-2013学年度第一学期期末检测高三数学试题)如图,已知椭圆1E 方程为22221(0)x y a b a b+=>>,圆2E 方程为222x y a +=,过椭圆的左顶点A 作斜率为1k 直线1l 与椭圆1E 和圆2E 分别相交于B 、C.(Ⅰ)若11k =时,B 恰好为线段AC 的中点,试求椭圆1E 的离心率e ; (Ⅱ)若椭圆1E 的离心率e =12,2F 为椭圆的右焦点,当2||||2BA BF a +=时,求1k 的值; (Ⅲ)设D 为圆2E 上不同于A 的一点,直线AD 的斜率为2k ,当2122k b k a=时,试问直线BD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】解:(Ⅰ)当11k =时,点C 在y 轴上,且(0,)C a ,则(,)22a aB -,由点B 在椭圆上,得2222()()221a a a b -+=, ∴2213b a =,22222213c b e a a==-=,∴e =(Ⅱ)设椭圆的左焦点为1F ,由椭圆定义知,12||||2BF BF a +=, ∴1||||BF BA =,则点B 在线段1AF 的中垂线上,∴2B a cx +=-, 又12c e a ==,∴12c a =,b =,∴34B a x =-, 代入椭圆方程得B y==,∴1B B y k x a=+= (Ⅲ)法一:由12222(),1,y k x a x y ab =+⎧⎪⎨+=⎪⎩得2222122()0k x a x a a b +-+=, ∴x a =-,或22212221()a b k a x b a k -=+, ∵B x a ≠-,∴22212221()B a b k a x b a k -=+,则21122212()B B ab k y k x a b a k =+=+由2222(),,y k x a x y a =+⎧⎨+=⎩得22222()0x a k x a -++=, 得x a =-,或2222(1)1a k x k -=+,同理,得2222(1)1D a k x k -=+,22221D ak y k =+,当2122k b k a =时,422222222422222222()()B b a b k a a b k a x b a b k b k a--==++,2222222B ab k y a b k =+, 22222222222222222222222211()(1)1BDab k ak a b k k k k a a b k a k a b k k -++==----++,∴ BD⊥AD,∵2E 为圆, ∴ ∠ADB 所对圆2E 的弦为直径,从而直线BD 过定点(a ,0) 法二:直线BD 过定点(,0)a , 证明如下:设(,0)P a ,(,)B B B x y ,则:22221(0)B B x y a b a b +=>>22222212222222()1B B B AD PBPB B B B y y y a a a a b k k k k b b x a x a b x a b a ==⋅⋅=⋅=-=-+--, 所以PB AD ⊥,又PD AD ⊥所以三点,,P B D 共线,即直线BD 过定点(,0)P a26.(南通市2013届高三第一次调研测试数学试卷)解答时应写出文字说明、证明过程或演算步骤.如图,已知定点R (0,-3),动点P ,Q 分别在x 轴和y 轴上移动,延长PQ 至点M ,使12PQ QM =,且0PR PM ⋅=.(1)求动点M 的轨迹C 1;(2)圆C 2: 22(1)1x y +-=,过点(0,1)的直线l 依次交C 1于A ,D 两点(从左到右),交C 2于B ,C 两点(从左到右),求证:AB CD ⋅为定值.【答案】解:(1)法一:设M (x ,y ),P (x 1,0),Q (0,y 2),则由10,2PR PM PQ QM ⋅==及R (0,-3),得(第22题)11122()(3)0,1,211.22x x x y x x y y y ⎧⎪--+-=⎪⎪-=⎨⎪⎪=-⎪⎩化简,得24x y = 所以,动点M 的轨迹C 1是顶点在原点,开口向上的抛物线 法二:设M (x ,y ).由12PQ QM =,得 (,0),(0,)23x yP Q -.所以,3(,3),(,)22x xPR PM y =-=.由0PR PM =,得 3(,3)(,)022x x y -⋅=,即23304x y -=.化简得 24x y =所以,动点M 的轨迹C 1是顶点在原点,开口向上的抛物线(2)证明:由题意,得 AB CD AB CD ⋅=⋅,⊙C 2的圆心即为抛物线C 1的焦点F . 设11(,)A x y ,22(,)D x y ,则1111AB FA FB y y =-=+-= 同理 2CD y =.设直线的方程为 (1)x k y =-.由2(1),1,4x k y y x =-⎧⎪⎨=⎪⎩得221(1)4y k y =-,即2222(24)0k y k y k --+=.所以,121AB CD AB CD y y ⋅=⋅==27.(2012-2013学年度苏锡常镇四市高三教学情况调研(二)数学试题)已知抛物线21:1C y x =+和抛物线22:C y x a =--在交点处的两条切线互相垂直,求实数a 的值.【答案】28.(常州市2013届高三教学期末调研测试数学试题)如图,在平面直角坐标系xoy 中,已知12,F F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,A ,B 分别是椭圆E 的左、右顶点,且2250AF BF +=.(1)求椭圆E 的离心率;(2)已知点()1,0D 为线段2OF 的中点,M 为椭圆E 上的动点(异于点A 、B ),连接1MF 并延长交椭圆E 于点N ,连接MD 、ND 并分别延长交椭圆E 于点P 、Q ,连接PQ ,设直线MN 、PQ 的斜率存在且分别为1k 、2k ,试问是否存在常数λ,使得120k k λ+=恒成立?若存在,求出λ的值;若不存在,说明理由.【答案】解:(1)2250AF BF +=,225AF F B ∴=.()5a c a c ∴+=-,化简得23a c =,故椭圆E 的离心率为23.(2)存在满足条件的常数λ,47=-.点()1,0D 为线段2OF 的中点,2c ∴=,从而3a =,b =,左焦点()12,0F -,椭圆E 的方程为22195x y +=.设()11,M x y ,()22,N x y ,()33,P x y ,()44,Q x y ,则直线MD的方程为1111x x y y -=+,代入椭圆方程22195x y +=,整理得,2112115140x x y y y y --+-=.()1113115y x y y x -+=-,13145y y x ∴=-.从而131595x x x -=-,故点1111594,55x y P x x ⎛⎫- ⎪--⎝⎭.同理,点2222594,55x y Q x x ⎛⎫- ⎪--⎝⎭.三点M 、1F 、N 共线,121222y y x x ∴=++,从而()1221122x y x y y y -=-.从而()()()()121221121234121212341212124457557595944455y y x y x y y y y y y y x x k k x x x x x x x x x x --+-----=====--------.故21407kk -=,从而存在满足条件的常数λ,47=-.29.(苏州市2012-2013学年度第一学期高三期末考试数学试卷)如图,在平面直角坐标系xOy 中,已知点F 是椭圆2222:1(0)x y E a b a b+=>>的左焦点,A ,B ,C 分别为椭圆E 的右、下、上顶点,满足5FC BA =,椭圆的离心率为12. (1)求椭圆的方程;(2)若P 为线段FC (包括端点)上任意一点,当PA PB 取得最小值时,求点P 的坐标;(3)设点M 为线段BC (包括端点)上的一个动点,射线MF 交椭圆于点N ,若NF FM λ=,求实数【答案】30.(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)如图,在平面直角坐标系xOy 中,已知椭圆E :22221(0)x y a b a b+=>>的离心率3e =,12,A A 分别是椭圆E 的左、右两个顶点,圆2A 的半径为a ,过点1A 作圆2A 的切线,切点为P ,在x 轴的上方交椭圆E 于点Q . ⑴求直线OP 的方程;⑵求1PQ QA 的值;⑶设a 为常数.过点O 作两条互相垂直的直线,分别交椭圆E 于点,B C ,分别交圆2A 于点,M N ,记OBC △和OMN △的面积分别为1S ,2S ,求12S S ⋅的最大值.【答案】⑴连结2A P ,则21A P A P ⊥,且2A P a =,又122A A a =,所以1260A A P ∠=.所以260POA ∠=,所以直线OP的方程为y = ⑵由⑴知,直线2A P的方程为)y x a =-,1A P的方程为)y x a =+, 联立解得2P a x =因为e ,即c a =所以2234c a =,2214b a =,故椭圆E 的方程为222241x y a a =+.由2222),41,y x a x y a a ⎧=+⎪⎪⎨⎪=⎪⎩+解得7Q a x =-, 所以1()3274()7a aPQ a QA a --==--- ⑶不妨设OM 的方程为(0)y kx k =>,联立方程组2222,41,y kx x y a a =⎧⎪⎨=⎪⎩+解得B ,所以OB =用1k-代替上面的k ,得OC =.同理可得,OM =,ON =(第18题图)所以41214S S OB OC OM ON a ⋅=⋅⋅⋅⋅=15=,当且仅当1k =时等号成立,所以12S S ⋅的最大值为45a31.(江苏省泰州、南通、扬州、宿迁、淮安五市2013届高三第三次调研测试数学试卷)如图,在平面直角坐标系xOy 中,椭圆22221(0)y x a b a b+=>>的右焦点为(1 0)F ,,离心率为.分别过O ,F 的两条弦AB ,CD 相交于点E (异于A ,C 两点),且OE EF =.(1)求椭圆的方程;(2)求证:直线AC ,BD 的斜率之和为定值.【答案】(1)解:由题意,得1c =,c e a ==,故a =从而2221b a c =-=,所以椭圆的方程为2212x y +=. ① (2)证明:设直线AB 的方程为y kx =, ②直线CD 的方程为(1)y k x =--, ③ 由①②得,点A ,B的横坐标为由①③得,点C ,D记11( )A x kx ,,22( )B x kx ,,33( (1))C x k x -,,44( (1))D x k x -,, 则直线AC ,BD 的斜率之和为 13241324(1)(1)kx k x kx k x x x x x ----+-- 132413241324(1)()()(1)()()x x x x x x x x k x x x x +--+-+-=⋅--(第18题)1234123413242()()()()()x x x x x x x x k x x x x --+++=⋅--2222213242(1)2420212121()()k k k k k k x x x x -⎛⎫---+ ⎪+++⎝⎭=⋅-- 0=32.(2012-2013学年度苏锡常镇四市高三教学情况调研(二)数学试题)如图,设A ,B 分别为椭圆2222:1(0)x y E a b a b+=>>的右顶点和上顶点,过原点O 作直线交线段AB 于点M (异于点A ,B ),交椭圆于C ,D 两点(点C 在第一象限内),ABC ∆和ABD ∆的面积分别为1S 与2S . (1)若M 是线段AB 的中点,直线OM 的方程为13y x =,求椭圆的离心率; (2)当点M 在线段AB 上运动时,求12S S 的最大值.【答案】(注:可编辑下载,若有不当之处,请指正,谢谢!)。

江苏省南京市2013届高三数学上学期期中联考试题苏教版

江苏省南京市2013届高三数学上学期期中联考试题苏教版

2012-2013学年度第一学期期中考试高三数学试卷注意事项:1.本试卷由填空题和解答题两部分组成.满分160分,考试时间为120分钟. 2.答题前请您务必将自己的学校,姓名,考试号用书写黑色字迹的0.5毫米签字笔填写在答题卡上规定的地方. 3.答题时必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的规定位置,在其他位置做大一律无效.第I 卷(填空题)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1. 已知i 是虚数单位,复数z =12i34i+-,则 | z | = .2. 若函数()f x =a 的值为 ________.3. 已知集合{}m P ,1-=,⎭⎬⎫⎩⎨⎧<<-=431x x Q ,若∅≠Q P ,则整数=m .4. 已知向量a 的模为2,向量e 为单位向量,)(e a e -⊥,则向量a 与e 的夹角大小为 .5. 若命题“R x ∈∀,02≥+-a ax x ”为真命题,则实数a 的取值范围是 . 6. 已知三角形的一边长为5,所对角为60,则另两边长之和的取值范围是________.7. 已知数列{a n }为等差数列,若561a a <-,则数列{|a n |}的最小项是第_____项. 8. 已知θ是第二象限角,且4sin 5θ=,则tan()24θπ-的值为________. 9. 已知函数()y f x =在点(2,(2))f 处的切线为由y =2x -1,则函数2()()g x x f x =+在点(2,(2))g 处的切线方程为 .10. 等差数列{}n a 中,已知158≥a ,139≤a ,则12a 的取值范围是 .11. 在锐角△ABC 中,tan A = t + 1,tan B = t - 1,则t 的取值范围是 . 12. 在平面直角坐标系xOy 中,点P 是第一象限内曲线y =x 3 1上的一个动点,以点P 为切点作切线与两个坐标轴交于A ,B 两点,则△AOB 的面积的最小值为 .13. 已知等差数列{},{}n n a b 的前n 项和分别为n S 和n T ,若7453n n S n T n +=+,且2n nab 是整数,则n 的值为 .14. 若关于x 的方程3x e x kx -=有四个实数根,则实数k 的取值范围是 .第II 卷(解答题)二、解答题:本大题共6小题,共90分.请在答题卡指定的区域内作答,解答时应写出文字说明、求证过程或演算步骤. 15. (本小题满分14分)已知π2sin()410A +=,ππ(,)42A ∈. (Ⅰ)求cos A 的值;(Ⅱ)求函数5()cos 2sin sin 2f x x A x =+的值域.16. (本小题满分14分)设(,1)a x =,(2,1)b =-,(,1)c x m m =--(,x m ∈∈R R ). (Ⅰ)若a 与b 的夹角为钝角,求x 的取值范围; (Ⅱ)解关于x 的不等式a c a c +<-.17. (本小题满分15分)随着机构改革开作的深入进行,各单位要减员增效,有一家公司现有职员2a 人(140<2a <420,且a 为偶数),每人每年可创利b 万元. 据评估,在经营条件不变的前提下,每裁员...1人,则留岗职员每人每年....多创利0.01b 万元,但公司需付下岗职员每人每年0.4b 万元的生活费,并且该公司正常运转所需人数不得小于现有职员的43,为获得最大的经济效益,该公司应裁员多少人?18. (本小题满分15分) 已知函数()ln f x x x =.(I )求函数()f x 的单调递减区间;(II )若2()6f x x ax ≥-+-在(0,)+∞上恒成立,求实数a 的取值范围; (III )过点2(,0)A e --作函数()y f x =图像的切线,求切线方程.19. (本小题满分16分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .20. (本小题满分16分)已知函数2()(1)xf x e x ax =++.(Ⅰ)若曲线()y f x =在点(2(2))f ,处的切线与x 轴平行,求a 的值; (Ⅱ)求函数()f x 的极值.2012-2013学年度第一学期期中考试高三数学附加卷21. (本小题满分10分)已知a 为整数,a 2是偶数,求证:a 也是偶数.22. (本小题满分10分)已知曲线()21ln 2222x y x x =++++在点A 处的切线与曲线()sin 2,22y x ππϕϕ⎛⎫=+-<< ⎪⎝⎭在点B 处的切线相同,求ϕ的值.23. (本小题满分10分)数列{}n a 的前n 项和为n S ,存在常数A ,B ,C ,使得2n n a S An Bn C +=++对任意正整数n 都成立.若数列{}n a 为等差数列,求证:3A -B +C =0.24. (本小题满分10分)已知函数x x x x x f 2)1ln()1(2)(2--++=,[)+∞∈,0x ,求)(x f 的最大值.2012-2013学年度第一学期期中考试 高三数学附加答题纸(理科类)21、 22、学校: 班级 姓名 考试号 座位号23.24、参考答案1. 5 ;2.2 ;3. 0 ;4.3π; 5.[0,4]; 6.(]10,5 ; 7.6 ; 8.31; 9. 6x -y -5=0 ; 10.(]7,∞- ; 11.()+∞,2 ; 12.4233 ;13. 15 ; 14.()0,3e - ;15. 解:(Ⅰ)因为ππ42A <<,且πsin()410A +=,所以ππ3π244A <+<,πcos()410A +=-.因为ππππππcos cos[()]cos()cos sin()sin 444444A A A A =+-=+++31021025=-⋅+⋅=.所以3cos 5A =. …………6 (Ⅱ)由(Ⅰ)可得4sin 5A =. 所以5()cos 2sin sin 2f x x A x =+212sin 2sin x x =-+2132(sin )22x =--+,x ∈R . 因为sin [1,1]x ∈-,所以,当1sin 2x =时,()f x 取最大值32;当sin 1x =-时,()f x 取最小值3-.所以函数()f x 的值域为3[3,]2-. ……………………14分16. (1)由题知:210a b x ⋅=-<,解得12x <;又当2x =-时,a 与b 的夹角为π,所以当a 与b 的夹角为钝角时, x的取值范围为1(,2)(2,)2-∞-⋃-.…………………6分(2)由a c a c +<-知,0a c ⋅<,即(1)[(1)]0x x m ---<;……………………8分当2m <时,解集为{11}x m x -<<;………………………………10分 当2m =时,解集为空集;………………………………12分当2m >时,解集为{11}x x m <<-.………………………………14分17. 解答:设裁员x 人,可获得的经济效益为y 万元,则ab x a x bbx bx b x a y 2])70(2[1004.0)01.0)(2(2+---=-+-= ……7分 依题意 .21070,4202140.202432<<<<≤<∴⋅≥-a a ax a x a 又 (1)当y a x a aa ,70,14070,2700-=≤<≤-<时即取到最大值; (2)当y ax a a a ,2,210140,270=<<>-时即取到最大值;……………13分答:当70<a<140,公司应裁员为a 70,经济效益取到最大值当140a 210,公司应裁员为a,2经济效益取到最大值……………14分18. 解答:(Ⅰ)'()ln 1f x x =+'()0f x ∴<得ln 1x <-2分10x e ∴<<∴函数()f x 的单调递减区间是1(0,)e;4分(Ⅱ)2()6f x x ax ≥-+-即6ln a x x x≤++设6()ln g x x x x=++则2226(3)(2)'()x x x x g x x x +-+-==7分当(0,2)x ∈时'()0g x <,函数()g x 单调递减; 当(2,)x ∈+∞时'()0g x >,函数()g x 单调递增;∴()g x 最小值(2)5ln 2g =+∴实数a 的取值范围是(,5ln 2]-∞+;10分(Ⅲ)设切点00(,)T x y 则0'()AT k f x =∴00002ln ln 11x x x x e=++即200ln 10e x x ++= 设2()ln 1h x e x x =++,当0x >时'()0h x >∴()h x 是单调递增函数13分∴()0h x =最多只有一个根,又2222111()ln 10h e e e e =⨯++=∴021x e = 由0'()1f x =-得切线方程是210x y e++=. 15分19. 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………3分解得⎩⎨⎧==231d a , …………………………………………5分1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………7分 (Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………8分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………10分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅= . ……………………………16分20. 解析:(1)22()(12)[(2)1]xxf x e x ax x a e x a x a '=++++=++++.因为曲线()y f x =在点(2,(2))f 处的切线与x 轴平行,所以 (2)0f '=,即2(2)[42(2)1]0f e a a '=++++= 所以 3a =-. ……………4分(2)()(1)(1)xf x e x a x '=+++,令()0f x '=,则1--=a x 或1-=x ……5分①当11a +=,即0a =时,2()(1)0x f x e x '=+≥,函数()y f x =在()-∞+∞,上为增函数,函数无极值点; …………7分②当(1)1a -+<-,即0a >时.所以 当1x a =--时,函数有极大值是1(2)a e a --+,当1x =-时,函数有极小值是2ae-; ………11分 ③当(1)1a -+>-,即0a <时.所以 当1x =-时,函数有极大值是e,当1x a =--时,函数有极小值是1(2)a ea --+. ………15分综上所述,当0a =时函数无极值;当0a >时,当1x a =--时,函数有极大值是1(2)a e a --+,当1x =-时,函数有极小值是2a e -;当0a <时,当1x =-时,函数有极大值是2ae-,当1x a =--时,函数有极小值是1(2)a e a --+. ………16分21.假设a 是奇数,设a=2k+1(k ∈Z),则a 2=4k 2+4k+1,………………6分∵k ∈Z ,∴4k 2为偶数,4k 为偶数,∴4k 2+4k+1为奇数, ……8分从而a 2为奇数,这与a 2为偶数矛盾,∴假设不成立. ……………10分22.k 切=y ’=2221≥+++x x ,当且仅当x+2=1x+2,即x+2=1,x=-1时,取等号…2分 又k 切=y ’=2)2cos(2≤+ϕx ,∴k 切=2,此时切点A(-1,-1),切线l :y=2x+1…5分由)2cos(2ϕ+x =2得)2cos(ϕ+x =1,∴)2sin(ϕ+x =0,从而B(21-,0) …7分∴)1sin(ϕ+-=0, ϕ+-1=k π,Z k ∈,∴ϕ=k π+1,Z k ∈ …………………9分 又22πϕπ<<-,∴ϕ= 123. 因为{}n a 为等差数列,设公差为d ,由2n n a S An Bn C +=++,得2111(1)(1)2a n d na n n d An Bn C +-++-=++,…………2分即2111()()()022dd A n a B n a d C -++-+--=对任意正整数n 都成立.…4分所以1110,210,20,d A a d B a d C ⎧-=⎪⎪⎪+-=⎨⎪--=⎪⎪⎩所以30A B C -+=. …………10分24. 证明:由2()2(1)ln(1)2f x x x x x =++--得()2ln(1)2f x x x '=+-,………2分 令()2ln(1)2g x x x =+-,则22()211x g x x x -'=-=++, 当10x -<<时,()0g x '>,()g x 在(1 0)-,上为增函数; 当x >0时,()0g x '<,()g x 在(0)+∞,上为减函数, 所以()g x 在x=0处取得极大值,且(0)0g =, ………6分 故()0f x '≤(当且仅当0x =时取等号),所以函数()f x 为[)0+∞,上的减函数, ………8分则()(0)0f x f =≤,即()f x 的最大值为0. ………10分。

江苏省南京市江宁高中2013届高三迎市统测模拟考试数学试题(含详解)

江苏省南京市江宁高中2013届高三迎市统测模拟考试数学试题(含详解)

2012-2013年南京市江宁高级中学迎市统测高三模拟试卷2012-12-16姓名 班级 成绩 一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.已知ni i+=-112,其中R n ∈,i 是虚数单位,则n = 1 . 2.命题p :∀x ∈R ,2x 2+1>0的否定是____∃x ∈R ,2x 2+1≤0 __________.3.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中奇数共有 36 个.(用数字作答)4.若根据5名儿童的年龄x (岁)和体重y (kg)的数据,用最小二乘法得到用年龄预报体重的线性回归方程是ˆ27yx =+,已知这5名儿童的年龄分别是3,4,5,6,7,则这5名儿童的平均体重是 17 kg .5.定义nx M =x(x+1)(x+2)…(x+n-1),其中x ∈R ,n ∈N *,例如 4-4M =(-4)(-3)(-2)(-1)=24,则函数f(x)= 2007x-1003M 的奇偶性为____奇函数__________.6.曲线y=x x 62+-,则过坐标原点且与此曲线相切的直线方程为 x y 6= .7.已知复数(,)z x yi x y R =+∈,且|2|z -=,则yx8.用反证法证明命题:“如果,a b N ∈,ab 可被3整除,那么,a b 中至少有一个能被3整除”时,假设的内容应为 假设,a b 都不能被3整除 . 9.给出下面类比推理命题(其中R 为实数集,C 为复数集):①“若,,a b R ∈则0a b a b -=⇒=”类比推出“若,,a b C ∈则0a b a b -=⇒=”; ②“若,,a b R ∈则0ab =0a ⇒=或0b =”类比推出“若,,a b C ∈则0ab =0a ⇒= 或0b =”;③“若,,a b R ∈则0a b a b ->⇒>” 类比推出“若,,a b C ∈则0a b a b ->⇒>”; ④“若,,a b R ∈则220a b +≥”类比推出“若,,a b C ∈则220a b +≥” 所有命题中类比结论正确的序号是 ①② .10.对于R 上的可导函数()f x ,若满足(2)'()0x f x -≥,则(0)(3)f f +与2(2)f 的大小关系为 不小于 .(填“大于”、“小于”、“不大于”、“不小于”)11.从装有1n +个球(其中n 个白球,1个黑球)的口袋中取出m 个球(0,,,m n m n <≤)N *∈,共有1m n C +种取法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 S4 8.已知等比数列{an}的公比 q=- ,Sn 为其前 n 项和,则 = 2 a4
9.在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a=1,A=60° ,c= 则△ABC 的面积为 10.已知函数 f ( x) ▲ .
e x , x 0 (2 k ) x k , x 0
开始 k←1 S←0 k←k+2
3.为了调查城市 PM2.5 的值,按地域把 36 个城市分成甲、乙、丙三组,对应的城市 数分别为 6,12,18.若用分层抽样的方法抽取 12 个城市,则乙组中应抽取的城市数 为 ▲ .
4.有 3 个兴趣小组,甲、乙两位同学各参加其中一个小组,且他们参加各个兴趣小组 是等可能的,则甲、乙两位同学参加同一个兴趣小组的概率为 5.右图是一个算法的流程图,最后输出的 k= ▲ . ▲ .
D.选修 4—5:不等式选讲
·5·
HLLYBQ 整理
供“高中试卷网() ”
1 已知 a,b 是正数,求证:a2+4b2+ — ≥4. ab
【必做题】第 22 题、第 23 题,每题 10 分,共计 20 分.请在答 卷 纸 指定区域内 作答.解答应写出 . . . ..... 文字说明、证明过程或演算步骤. 22.如图,PA⊥平面 ABCD,AD//BC,∠ABC=90° ,AB=BC=PA=1,AD=3,E 是 PB 的中点. (1)求证:AE⊥平面 PBC; (2)求二面角 B-PC-D 的余弦值.
14.已知函数 f(x)=2x2+m 的图象与函数 g(x)=ln|x|的图象有四个交点,则实数 m 的取值范围 为 ▲ .
二、解答题:本大题共 6 小题,共计 90 分.请在答卷纸指定区域内 作答,解答时应写出文字说明、 ........ 证明过程或演算步骤. 15. (本小题满分 14 分) 已知平面向量 a=(1,2sinθ),b=(5cosθ,3). (1)若 a∥b,求 sin2θ 的值; π (2)若 a⊥b,求 tan(θ+ )的值. 4
x
(第 18 题)
·3·
HLLYBQ 整理
供“高中试卷网() ”
19. (本小题满分 16 分) 设 t>0,已知函数 f (x)=x2(x-t)的图象与 x 轴交于 A、B 两点. (1)求函数 f (x)的单调区间; 1 (2)设函数 y=f(x)在点 P(x0,y0)处的切线的斜率为 k,当 x0∈(0,1]时,k≥- 恒成立,求 t 的 2 最大值; (3) 有一条平行于 x 轴的直线 l 恰好 与函数 y=f(x)的图象有两个不同的交点 C, D, 若四边形 ABCD .. 为菱形,求 t 的值.
12.在平面直角坐标系 xOy 中,已知圆 C 的圆心在第一象限,圆 C 与 x 轴交于 A(1,0),B(3,0)两 点,且与直线 x-y+1=0 相切,则圆 C 的半径为 ▲ .
π 13.已知直线 x=a(0<a< )与函数 f(x)=sinx 和函数 g(x)=cosx 的图象分别交于 M,N 两点,若 2 1 MN= ,则线段 MN 的中点纵坐标为 5 ▲ .
16. (本小题满分 14 分) 如图,已知斜三棱柱 ABC-A1B1C1 中,AB=AC,D 为 BC 的中点. (1)若平面 ABC⊥平面 BCC1B1,求证:AD⊥DC1; (2)求证:A1B//平面 ADC1.
A1 B1
C1
A B (第 16 题)
C D
·2·
HLLYBQ 整理
供“高中试卷网() ”
供“高中试卷网() ”
2013 届高三学情调研卷
数学参考答案及评分标准
说明: 1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分 标准制订相应的评分细则. 2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度, 可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有 较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数. 一、填空题:本大题共 14 小题,每小题 5 分,共 70 分. 1.4 7 7. 2 11.②③④ 2.-6 8.-5 12. 2 13. 3.4 9. 7 10 3 6 1 4. 3 10.[1,2) 1 14.(-∞,- -ln2) 2 5.7 6.1
·4·
HLLYBQ 整理
供“高中试卷网() ”
2013 届高三学情调研卷 数学附加题
注意事项: 1.附加题供选修物理的考生使用. 2.本试卷共 40 分,考试时间 30 分钟. 3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写 在答 题 纸 上对应题目的答案空格内.考试结束后,交回答题纸. . . . 21. 【选做题】在 A、B、C、D 四小题中只能选做 2 题,每小题 10 分,共计 20 分.请在答 卷 纸 指 . . . . 定区域内 作答.解答应写出文字说明、证明过程或演算步骤. .... A.选修 4—1:几何证明选讲 如图,CP 是圆 O 的切线,P 为切点,直线 CO 交圆 O 于 A,B 两点,AD⊥CP,垂足为 D. 求证:∠DAP=∠BAP.

18. (本小题满分 16 分) x2 y2 在平面直角坐标系 xOy 中,椭圆 C: 2+ 2=1(a>b>0)的左、右顶点分别为 A,B,离心率为 a b 1 ,右准线为 l:x=4.M 为椭圆上不同于 A,B 的一点,直线 AM 与直线 l 交于点 P. 2 (1)求椭圆 C 的方程; (2)若AM=MP,判断点 B 是否在以 PM 为直径的圆上,并说明理由; (3)连结 PB 并延长交椭圆 C 于点 N,若直线 MN 垂直于 x 轴,求点 M 的坐标. y M A O N B P
P
E A C (第 22 题) D
B
23.在一个盒子中有大小一样的 7 个球,球上分别标有数字 1,1,2,2,2,3,3.现从盒子中同 时摸出 3 个球,设随机变量 X 为摸出的 3 个球上的数字和. (1)求概率 P(X≥7); (2)求 X 的概率分布列,并求其数学期望 E(X).
·6·
HLLYBQ 整理
HLLYBQ 整理
供“高中试卷网() ”
2013 届高三学情调研卷 数 学
注意事项:
2012.09
1.本试卷共 4 页,包括填空题(第 1 题~第 14 题) 、解答题(第 15 题~第 20 题)两部分.本试 卷满分为 160 分,考试时间为 120 分钟. 2.答题前,请务必将自己的姓名、学校、班级、学号写在答卷纸的密封线内.试题的答案写在 答卷纸 上对应题目的答案空格内.考试结束后,交回答卷纸. ... 一、填空题:本大题共 14 小题,每小题 5 分,共 70 分.请把答案填写在答 卷纸 相应位置 上. . .. .... 1.已知集合 A={x|x2<3x+4,x∈R},则 A∩Z 中元素的个数为 ▲ 2+3i 2.已知 =a+bi(a,b∈R,i 为虚数单位),则 ab= i ▲ . .
20. (本小题满分 16 分)
2 2 已知数列{an}的首项 a1=a,Sn 是数列{an}的前 n 项和,且满足:S2 n=3n an+Sn-1,an≠0,n≥2,
n∈N*. (1)若数列{an}是等差数列,求 a 的值; (2)确定 a 的取值集合 M,使 a∈M 时,数列{an}是递增数列.
S←S+k S<8 N 输出 k 结束 (第 5 题) Y
6.已知非零向量 a,b 满足|a|=|a+b|=1,a 与 b 夹角为 120° ,则向量 b 的模为


7.在平面直角坐标系 xOy 中,已知焦点为 F 的抛物线 y2=2x 上的点 P 到坐标原点 O 的距离为 15, 则线段 PF 的长为 ▲ . ▲ . 3 , 3
是 R 上的增函数,则实数 k 的取值范围是


·1·
HLLYBQ 整理
供“高中试卷网() ”
11.已知 α,β 为平面,m,n 为直线,下列命题: ①若 m∥n,n α,则 m∥α; ②若 m⊥α,m⊥β,则 α∥β;
③若 α∩β=n,m∥α, m∥β,则 m∥n; ④若 α⊥β,m⊥α,n⊥β,则 m⊥n. 其中是真命题的有 ▲ .(填写所有正确命题的序号)
17. (本小题满分 14 分) 经观察,人们发现鲑鱼在河中逆流匀速行进时所消耗的能量为 E=kv3t,其中 v 为鲑鱼在静水中 的速度,t 为行进的时间(单位:h),k 为大于零的常数.如果水流的速度为 3 km/h,鲑鱼在河中逆流 行进 100 km. (1)将鲑鱼消耗的能量 E 表示为 v 的函数; (2)v 为何值时,鲑鱼消耗的能量最少?
2012.09
二、解答题:本大题共 6 小题,共计 90 分.解答时应写出文字说明、证明过程或演算步骤. 15. (本小题满分 14 分) 解: (1)因为 a∥b,所以 1×3-2sinθ×5cosθ=0, „„„„„„„3 分 3 即 5sin2θ-3=0,所以 sin2θ= . „„„„„„„6 分 5 (2)因为 a⊥b,所以 1×5cosθ+2sinθ×3=0. „„„„„„„8 分 5 所以 tanθ=- . „„„„„„„10 分 6 π tanθ+tan 4 1 π 所以 tan(θ+ )= = . „„„„„„„14 分 4 π 11 1-tanθtan 4 16. (本小题满分 14 分) 证明: (1)因为 AB=AC,D 为 BC 的中点,所以 AD⊥BC. 因为平面 ABC⊥平面 BCC1B1,平面 ABC∩平面 BCC1B1=BC,AD平面 ABC, 所以 AD⊥平面 BCC1B1. „„„„„„„5 分 因为 DC1平面 BCC1B1,所以 AD⊥DC1. „„„„„„„7 分 (2)(证法一) 连结 A1C,交 AC1 于点 O,连结 OD, 则 O 为 A1C 的中点. 因为 D 为 BC 的中点,所以 OD//A1B. „„„„„„„11 分 因为 OD平面 ADC1,A1B / 平面 ADC1, 所以 A1B//平面 ADC1.
相关文档
最新文档