几种递推关系的通项

合集下载

由递推公式求通项公式的三种方法

由递推公式求通项公式的三种方法

由递推公式求通项公式的三种方法递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接,下面介绍由递推公式求通项公式的几种方法.1.累加法[典例1] 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11 [解析] 由已知得b n =2n -8,a n +1-a n =2n -8,所以a 2-a 1=-6,a 3-a 2=-4,…,a 8-a 7=6,由累加法得a 8-a 1=-6+(-4)+(-2)+0+2+4+6=0,所以a 8=a 1=3.[答案] B[题后悟道]对形如a n +1=a n +f (n )(f (n )是可以求和的)的递推公式求通项公式时,常用累加法,巧妙求出a n -a 1与n 的关系式.2.累乘法[典例2] 已知数列{a n }中,a 1=1,前n 项和S n =n +23a n . (1)求a 2,a 3;(2)求{a n }的通项公式.[解] (1)由S 2=43a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 2=31a 1,a 3=42a 2,…,a n -1=n n -2a n -2,a n =n +1n -1a n -1. 将以上n -1个等式中等号两端分别相乘,整理得a n =n n +1 2. 综上可知,{a n }的通项公式a n =n n +1 2.[题后悟道]对形如a n +1=a n f (n )(f (n )是可以求积的)的递推公式求通项公式时,常用累乘法,巧妙求出a n a 1与n 的关系式.3.构造新数列[典例3] 已知数列{a n }满足a 1=1,a n +1=3a n +2;则a n =________.[解析] ∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.[答案] 2×3n -1-1[题后悟道]对于形如“a n +1=Aa n +B (A ≠0且A ≠1)”的递推公式求通项公式,可用迭代法或构造等比数列法.上面是三种常见的由递推公式求通项公式的题型和对应解法,从这些题型及解法中可以发现,很多题型及方法都是相通的,如果能够真正理解其内在的联系及区别,也就真正做到了举一反三、触类旁通,使自己的学习游刃有余,真正成为学习的主人.。

数列递推公式的九种方法

数列递推公式的九种方法

求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。

递推公式求通项公式的几种方

递推公式求通项公式的几种方

由递推公式求通项公式的常用方法由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。

对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。

方法一:累加法形如a n +1-a n =f (n )(n =2,3,4,…),且f (1)+f (2)+…+f (n -1)可求,则用累加法求a n 。

有时若不能直接用,可变形成这种形式,然后利用这种方法求解。

例1:(07年北京理工农医类)已知数列{a n }中,a 1=2,a n +1=a n +cn (c 是常数,n =1,2,3,…)且a 1,a 2,a 3成公比不为1的等比数列(1)求c 的值(2)求{a n }的通项公式解:(1)a1,a2,a3成公比不为1的等比数列(2)由(1)知n a a n a a n n n n 2,211=-+=++即,将n =1,2, …,n -1,分别代入 将上面n -1个式子相加得a n -a 1=2(1+2+3+…+n -1)=n 2-n又a 1=2,a n =n 2-n +2方法二:累乘法形如a n +1a n=g (n )(n =2,3,4…),且f (1)f(2)…f (n -1)可求,则用累乘法求a n .有时若不能直接用,可变形成这种形式,然后用这种方法求解。

例2:设{a n }是首项为1的正项数列,且(n +1)a n +12-na n 2+a n +1a n =0(n =1,2,3…),求它的通项公式。

解:由题意知a 1=1,a n >0(n =1,2,3…)由(n +1)a n +12-na n 2+a n +1a n =0得(a n +1+a n )[(n +1)a n +1-na n ]=0因为a n >0,则a n +1+a n ≠0,所以a n +1a n = n n +1,将n =1,2, …,n -1,分别代入得 a 2a 1 = 12a 3a 2 = 23……a n a n -1= n -1n 将上面n -1个式子相乘得,a n a 1 =12×23×…×n -1n又a 1=1,则a n =1n点评:本题先由已知求出递推公式,化成了a n +1a n=g (n )的类型,再利用累乘法求通项公式。

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。

是一类考查思维能力的好题。

要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。

类型一:1()n na a f n +=+(()f n 可以求和)−−−−→解决方法累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。

解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。

【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。

2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。

3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。

5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。

)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。

解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。

2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。

类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。

i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。

例2已知a11,anan1n,求an。

解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。

方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。

类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。

anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法要求根据递推关系求解数列的通项公式,其实是要求找到一个能将数列的每一项都表示为n(项数)的函数的公式。

在数学中,有几种方法可以求解这类问题。

一、代数方法:对于一些简单的递推关系,可以尝试使用代数方法来求解数列的通项公式。

这种方法通过观察数列中的模式,尝试将递推关系转化为代数方程,然后解方程得到通项公式。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设通项公式为Fn=k1a^n+k2b^n,其中k1、k2为常数,a、b为待定数。

k1a^n+k2b^n=k1a^(n-1)+k2b^(n-1)+k1a^(n-2)+k2b^(n-2)整理得:k1a^2-k1a-k2=0。

解这个方程,可以得到a和b的值,然后将a和b的值代入通项公式中,即可求解斐波那契数列的通项公式。

二、特征根法:特征根法是求解一阶线性递推关系(如Fn=aFn-1+b)的通项公式的常用方法。

该方法的基本思想是,将递推关系转化为一个一阶线性常微分方程,然后解方程得到通项公式。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列满足的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1将递推关系转化为一阶线性常微分方程得到:y''-y'-y=0其中y=Fn。

解这个方程得到的特征根为α1=(1+√5)/2,α2=(1-√5)/2通项公式可以表示为:Fn=k1(α1)^n+k2(α2)^n其中k1、k2为常数。

利用初始条件F1=1,F2=1,可以求解出k1和k2的值,进而求解出斐波那契数列的通项公式。

三、母函数法:母函数法是一种求解递推关系的高效方法,尤其适用于求解求和问题。

该方法的基本思想是,将数列视为一个幂级数的系数列,通过构造母函数来解决递推关系。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设母函数为F(x)=F0+F1x+F2x^2+F3x^3+...F(x)=x(F(x)-F0)+x^2F(x)整理得:F(x)=F0+xF(x)+x^2F(x)移项得:F(x)=F0/(1-x-x^2)。

递推数列求通项

递推数列求通项

方法: 方法:引入参数 λ ,使得 a n + 1
则数列 {a n − λ }为等比数列
q − λ = p ( a n − λ ),其中 λ = 1− p
四:倒数法
求形如 a n + 1
1 2 1 练习:若数列 {a n }中 a1 = , a n + 1 = a n + , 求数列通项 a n 练习: 3 3 3
由递推公式求数列通项的 几种常见的方法
一:累加法
的通项, { 求形如an +1 = an + f ( n)的通项,其中 f ( n)}的前n项和可求
年全国高考试题文) 例1:(2003年全国高考试题文 年全国高考试题文
已知数列满足 a 1 = 1, a n = 3 n −1 + a n −1 ( n ≥ 2 ) 3n − 1 ( 2)证 a n = 2
2 n
它的通项公式
an =
Hale Waihona Puke 利用“累乘法”求其通 项,即通过作恒等变形 利用“累乘法” a n a n −1 a2 an = ⋅ ⋅ K ⋅ a 1 , 累乘求积得通项 a n −1 a n − 2 a1
三:待定系数法
的通项, 求形如 a n + 1 = pa n + q的通项,其中 pq ≠ 0, p ≠ 1.
适用于 a n + 1
Aa n , 其中 A , B , C 为常数且 A ⋅ B ⋅ C ≠ 0 = Ba n + A ( C )
s1 n = 1 五:利用 a n = sn − sn −1 n ≥ 2
若给出 sn和a n的递推关系, 我们常利用上述公式求 其通项
年春季安徽理) 例5(2004年春季安徽理) ( 年春季安徽理 已知正项数列 { b n }的前 n 项和 1 B n = ( b n + 1 ) 2 求 { b n }的通项公式 4

由递推公式求通项公式五类型

由递推公式求通项公式五类型

由递推公式求通项公式类型一 累加相消法(“)(1n f a a n n +=+型”)例1.设数列{}n a 满足),3,2,1(12,111 =++==+n n a a a n n 求{}n a 的通项公式 解:由(1)),3,2,1(121 =+=-+n n a a n n 可知,;11212+⨯=-a a ;12223+⨯=-a a ;1)1(2;1+-⨯=--n a a n n上述等式累加可得,21)1())1(21(2n a n n a a n n =⇒-+-+++⨯=-类型二 累乘相消法(“)(1n f a a n n ⋅=+型”)例2.设数列{}n a 满足),3,2,1(2,111 =⋅==+n a a a n n n ,求{}n a 的通项公式 解:由(2)),3,2,1(21 =⋅=+n a a n n n 可知,212=a a ;2232=a a ;3342=a a112--=n n n a a 上述等式累乘可得,2)1(132122222--=⇒⋅⋅=n n n n n a a a类型三 倒数法 CBa Aa a n nn +=型数列(C B A ,,为非零常数)例3.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a a n nn 求{}n a 的通项公式 解:211211+=+=+nn n n a a a a ∴⎭⎬⎫⎩⎨⎧n a 1是以35为首项,公差为2的等差数列,即351=n a +2(n -1)=316-n ∴a n =163-n 类型四 构建新数列( 待定系数法) (1)q a p a n n +⋅=+1型例4.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a n n ,求{}n a 的通项公式 解 :设)(21x a x a n n +=++,即x a a n n +=+21与递推式比较,可得1=x ,所以递推式转化为)1(211+=++n n a a 则可构造新数列,令1+=n n a b ,有⎩⎨⎧===+=+),3,2,1(221111 n b b a b n n ),3,2,1(122 =-=⇒=⇒n a b n n n n (2)a n +1 = p a n + f (n )型例5.已知数列{a n }中,a 1=1,且a n =a n -1+3n -1,求{a n }的通项公式.解:设a n +p ·3n =a n -1+p ·3n -1则a n =a n -1-2p ·3n -1,与a n =a n -1+3n -1比较可知p =-21. 所以⎭⎬⎫⎩⎨⎧-23n n a 是常数列,且a 1-23=-21.所以23n n a -=-21,即a n =213-n .(3) 11-++=n n n qa pa a 型(其中p ,q 为常数)例6. 已知数列{}n a 满足06512=+-++n n n a a a ,且5,121==a a ,且满足,求n a .解:令)(112n n n n xa a y xa a -=-+++,即0)(12=++-++n n n xya a y x a ,与已知06512=+-++n n n a a a 比较,则有⎩⎨⎧==+65xy y x ,故⎩⎨⎧==32y x 或⎩⎨⎧==23y x 下面我们取其中一组⎩⎨⎧==32y x 来运算,即有)2(32112n n n n a a a a -=-+++,则数列{}n n a a 21-+是以3212=-a a 为首项,3为公比的等比数列,故n n n n a a 333211=⋅=--+,即n n n a a 321+=+,利用类型(2)的方法,可得n n n a 23-=.类型五 取对数 r n n pa a =+1(其中p ,r 为常数)型例6. 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式. 解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n an b ,则12-=n n b b ,{}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n,12log12-=-n a n ,∴1212--=n n a。

由递推关系式求通项公式类型大全

由递推关系式求通项公式类型大全

由递推关系式求通项公式类型大全
递推关系式是用来描述一组数列的递推规律的方程,通常形如an=f(an-1)。

求通项公式是指对于这组数列,求出所有项的公式。

下面是一些常见的递推关系式及其对应的通项公式:
1.an=an-1+c,其中c为常数。

通项公式为:
a1+c(n-1)
2.an=an-1*r,其中r为常数。

通项公式为:
ar^(n-1)
3.an=an-1+an-2,通项公式为:
a1*((1+√5)/2)^(n-1)-a2*((1-√5)/2)^(n-1)
4.an=an-1*an-2,通项公式为:
a1^(n-1)*a2^(n-2)
5.an=an-1+n,通项公式为:
n(n+1)/2
6.an=an-1*n,通项公式为:
n!
7.an=an-1+2^n,通项公式为:
2^n-1
8.an=an-1*(-1)^n,通项公式为:
(-1)^n
注意:上述通项公式均是在满足递推关系式的条件下得出的。

如果递推关系式不合法或者不存在,则无法得出通项公式。

利用递推关系式求通项公式

利用递推关系式求通项公式

解析:令 an+2+α·an+1=β(an+1+α·an),

β-α=3, α·β=-2

α=-1, β=2,

α=-2, β=1
(选其中一种即
可).
∴an+2-an+1=2(an+1-an). ∴数列{an+1-an}是等比数列,∴an+1-an=2n-1. ∴an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+ a1=2n-2+2n-3+2n-4+…+2+1+1=2n-1.
利用几类经典的递推 关系式求通项公式
数列通项的常用方法
(1)利用观察法求数列的通项.
(2)利用公式法求数列的通项:①等差、等比数列{an}的通项
公式;②an=SS1n-Sn-1
n=1, n≥2.
(3)应用迭加(迭乘、迭代)法求数列的通项:①an+1=an+f(n);
②an+1=anf(n).
(4)构造等差、等比数列求通项:
①an+1=pan+q;②an+1=pan+qn;③an+1=pan+f(n);
④an+2=p·an+1+q·an.
形如 an+1=kaan+n 1(k≠0),a1 已知型,求数列的通项公式
【例】 在数列{an}中,a1=1,an+1=12aan+n 1(n∈N*),求 an. 解:∵an+1=12aan+n 1取倒数得: an1+1=12aan+n 1=a1n+12,即an1+1-a1n=12. ∴{a1n}是以 1 为首项,12为公差的等差数列. ∴a1n=1+12(n-1)=n+2 1,∴an=n+2 1.
考点1 递推关系形如“an+1=pan+q ”的数列求通项 例1:已知数列{an}中,a1=1,an+1=2an+3,求数列{an} 的通项公式.

常见递推数列通项公式的求法

常见递推数列通项公式的求法

(5)累乘法:
an1 an

f (n) ( f (1) f (2)
i 1
f (n)可求)
(6)构造法 an1 kan b
(7)作商法( a1a2 an cn 型);
(8)数学归纳法.
类型1 an1 an f (n)
类型1 an1 an f (n)
求法:累加法
类型3 an1 pan q( p 0, p 1)
求法 : 待定系数法.令an1 p(an ), 其中为待定系数,化为等比数列 {an }求通项.
例3 已知数列{an }中,若a1 1, an1 2an 3(n 1),求数列{an }的通项公式.
为首项, 公比为
(1)n1. 2
1 2
的等比数列.

an

1 2
an1

1,
an 2 21n.
【1】设数列{an}的前 n 项和为 Sn , 已知 a1 5 ,且 nSn1 2n(n 1) (n 1)Sn (n N ) , 则数列 an 的通项公式 是( A)
1 3 (an1 2an2 )(n 3,4, ) (1)求证 : 数列{an1 an }是等比数列; (2)求数列{an }的通项公式an .
【1】已知数列 {an} 中,
a1=1,
an+1=
1 2
an+1 (nN*),
则an =___2___2__1_n____.
Q
an1
类型6
an1

pan qan
r
(
p, q,
r均不为零)
类型6
an1

八种通项公式求解方法

八种通项公式求解方法

求数列通项公式的八种方法总述:一.利用递推关系式求数列通项的8种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、二.等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:----------这是广义的等差数列累加法是最基本的二个方法之一。

2.若,则两边分别相加得例1已知数列满足,求数列的通项公式。

解:由得则所以数列的通项公式为。

例2已知数列满足,求数列的通项公式。

解法一:由得则所以解法二:两边除以,得,则,故因此,则评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。

例3.已知数列中,且,求数列的通项公式.解:由已知得,化简有,由类型(1)有,又得,所以,又,,则二、累乘法1.适用于:----------这是广义的等比数列累乘法是最基本的二个方法之二。

2.若,则两边分别相乘得,∏=+=nk n k f a a 111)(例4已知数列满足,求数列的通项公式。

解:因为,所以,则,故所以数列的通项公式为例5.设是首项为1的正项数列,且(=1,2,3,…),则它的通项公式是=________.解:已知等式可化为:()(n+1),即时,==.评注:本题是关于和的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到与的更为明显的关系式,从而求出.三、待定系数法适用于基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

由递推关系求数列通项定律的几种方法

由递推关系求数列通项定律的几种方法

).
2 递推相减(或相除)
求数列an的通项公式.
1.已知数列an中,a1 1,an1 an ( 2 n N *),求数列an的通项公式
2.已知数列an中, a1
1, an1
an (n 1 2an
N
*),求an .
3.已知数列an中,a1 1,an1 2an 1,求:an
4.已知数列an 中, a1
+ an an1 n 1
得 n2 n 1
(n 2)
2
1 2 a1
an a1 1 2 3 (n 1)
an
n(n 1) 2
1 2
n2
n 2
1
(当n 1时也适合)
an
n(n 1) 2
1 2
n2
n 1 2
(n N*)
5 .形如an1 f(n) an 迭乘法
已知数列an 中,a1
解:a2 2
1,an1 an
n
n
1
,
求:an
a1 1
a3 3
×
an an1
a2 2 a4 4 a3 3
n
(n n 1
2)
an 2 3 4 n 1 n a1 1 2 3 n 2 n 1
an n (当n 1时也适合)
an n (n N*)
6 归纳法
已知数列an 中,a1
2,an1
2
1(n an
令2 3n1中n 1得2 3n1 2 a1
1
an
2
3n1
(n 1) (n 2)
2.数 列an 的 前 项 和 为Sn, 且Sn
1
2 3
an (n
N * ),求an .

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法
根据递推关系数列通项公式的几种求法
一、定义法 例 1、已知数列an 的递推公式,求an
1)a1 3, an1 an 2
1 2)a1 2, an 1 an 3
等差数列
等比数列
二、累加相消法(累加法)
形如:a1 a, an1 an f n
当所给数列每依次相邻两项之间的差 组成等差或等比数列时,就可用累加 法进行消元。
p 1 , 求a n ?
构造等比数列an , 使an 1 p(an ),
an 2 1
n
则q (p 1 ) ,
q 即 p1
4)a1 2, an1 2an 3
an 2
n1
an1 3 2(an 3)
2 an 5 4n
例6、已知数列an 的递推关系为: an 1 a ,a1 3,求an
2 n
两边同取常用对数
an 3
2 n1
当一个数列每依次相邻两项之商构成 一个等比数列或其它数列时,就可用 累乘法进行消元。
例3、已知数列an 的递推公式,求an
1)a1 2, an1 3 an
n
an 2 3
n n 1 2
n 2)a1 1, an 1 an n 1
1 an n
四、换元法
通过“换元”,构造一个等差或等比的 新数列,利用等差或等比的知识解决 问题。
3
1 5)a1 1, an 1 an 6 2
1 an 1 4 (an 4) 2
1 an 5 2
n 1
4
例5、已知数列an 的递推关系为: an 1 an 2an 1an,a1 2,an 0, 求an

递推式求数列通项公式常见类型及解法

递推式求数列通项公式常见类型及解法

递推式求数列通项公式常见类型及解法递推数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列给 予解决,由于递推数列的多变性,这里介绍总结一些常见类型及解法。

一、公式法(涉及前n 项的和) 已知)(n f s n =⎩⎨⎧≥----=-----=⇒-)2()1(11n S S n S a n n n 注意:已知数列的前n 项和,求通项公式时常常会出现忘记讨论1=n 的情形而致错。

例1.已知数列}a {n 前n 项和1322-+=n n S n ,求数列}a {n 的通项公式。

解:当n=1时,411==s a ,当2≥n 时,14]1)1(3)1(2[)132(221+=--+---+=-=-n n n n n s s a n n n ,15114a ≠=+⨯⎩⎨⎧≥+==∴)2(,14)1(,4n n n a n练习:已知数列}a {n 前n 项和12+=n n S ,求数列}a {n 的通项公式。

答案:⎩⎨⎧≥==-)2(,2)1(,31n n a n n 二、作商法(涉及前n 项的积)已知)(......321n f a a a a n =⨯⨯⨯⎪⎩⎪⎨⎧≥----=----=⇒)2()1()()1().1(n n f n f n f a n例2.已知数列}a {n 中的值试求时53232,2,11a a n a a a n a n +=⋅⋅⋅⋅⋅⋅⋅≥=。

解:当2≥n 时,由2321n a a a a n =⋅⋅⋅⋅⋅⋅⋅⋅,可得21321)1(-=⋅⋅⋅⋅⋅⋅⋅⋅-n a a a a n则22)1(-=n na n16614523222253=+=+∴a a三、累加法(涉及相邻两项的差)已知)(1n f a a n n =-+112211)......()()(a a a a a a a a n n n n n +-+-+-=⇒--- 例3.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

八种求数列通项的方法已知递推公式求通项公式

八种求数列通项的方法已知递推公式求通项公式

求数列通项公式方法归纳一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

例3、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故n a n 14-=.例4 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则 所以3 1.n n a n =+-例5、已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
"
其中: ’ 为任意常数。 证明: 先证式 (!) 确定的{!" } 满足式 (%) 。 ( ") ( " )& # ( ") [’ % # !" % $
" *%
" (&%
[’ %
] ( ) )% $ ( " )& # # )&% ( ) # ) #
( )&% "
( () $
" *%
!" % % & ’ %
" [ ( , %) ’! ( , % (! ’ , - ( & ( % (! "
"(&
!,%
[%] 对式 (.) 有如下结论 : 若{’! } 满足式 (.) , 则
{,’! } 也满足式 ( .) ; 若又有数列{(! } 满足式 ( .) , 且 ’! 与 (! 不恒为常数, 即与 ! 有关 (称 ’! , (! 线 的 数 列 的 通 项 为 , % ’! ’ 性无关) , 则满足式 ( .) , - (! 。 证明: 要证命题 -, 只要验证数列
*#& !" # ! $ !" % !" # # $ !" $ ! % ($ &" # ! &" ! ’%"
" $!
!
" $!
( ’ # !) "$ () )’ # ! &’ # !
则其通解 *" ( ," ’ & ’ ! -# 。
-(#
"
! ( ’ # !) "$ ( $ () )’ # ! &’ # ! # &" # ! &" ! ’%"
! &%
!! $
( "" ) 的证明: 设 ( ( &, 因 ) ) ) * %, 取 使 " + &, 记 ! ( ) ) ) ’", 对这样的 ", 由 !"# * ) ) ) ’" * %,
!! $
( !) 可找到 + + &, 当 ! + + 时, ( !) ( ) 知, )* , )) * 又) * ( !) ( !) )#) * , ) ) ’ ) ) ) *" ’ ) ) ) (! * %, ",
" " "
( ) )% !" * % & ’ # #
)&%
($ ( () ( )) ) " ##
(&% ) & (% %
故可得
"
其中: ’ % 为任意常数。 故可得 +" % % & !" % % * ’" % % &
"
( ) ) % - ’ - !" ’# #
)&% " "

"
[ ’ * ’% %
"
" !" % % & ’ ! %
* ( () $ ! " (&%
" (
!" % % &[ ’ %
" (&%
( ) ) (!) ] # " # )&% ( )) ##
)&%
( () $
"
其中: ’ 为任意常数。 例: 已知 !" / !" # % 0 ( , 求 !" 。 ! " # %) ! % / !, 解: 递推关系式可写为 !" % % & !" % ! " 由推论知
6 &-
推论 - 得证。
6 6 &% " # &
(& "
]
-
’ ! ’ % ( 0 !’ ! ’ 1 !’ ! , %的通解
命题 !
(3) 证明: 递推关系式 (2) 的线性无关解的求法见 文献 [%] 。显然, 若{’! } 满足式 ( 0) , 则式 ( 0) 的通 项如式 (1) 。故只要证明 ’ & ! ( (!4! ’ ,!5! 满足式 (0) 即可。具体步骤如下:
几种递推关系的通项
李立清, 陈少白
(武汉科技大学理学院, 湖北 武汉, *+""$%) 摘要: 给出了几种递推关系的通项表达式。利用这些结论, 可使一些递推关系的解法非常简洁。同时, 还讨论 了一些问题的收敛性。 关键词: 递推关系; 通解; 收敛性 中图分类号: ,%&%-! 文献标识码: . 文章编号: (!""!) %""% # *’$& "+ # "+!! # "+
)&%
(1) 若 213 $ ( " )/ ", ( ") 则有 5# 5 %! 6 %,
"$ 4
213 !" / "; ( 11) 若 213 $ ( ") ( " )/ , , / +, 213 # 5 , 5 6 %,
"$ 4 "$ 4
+ 则有 213 !" / 。 %# , "$ 4 的证明, 由命题 % 知 证明: ( 1)
"
即{!" } 满足式 (%) 。 设{+" } 也满足式 (%) , 即 ( ") ( ") +" 0 % / # +" 0 $ 从而有 ( ") [ !" * +" ] !" % % * +" % % & # 令 !" # +" / ’" , 即有 ( ") ’" % % & # ’" ( )) ] ’" % % &[# # ’%
由 7892: 定理知
.-. ( " )$ $ % % ! ( ) # " ! ! ( ! )$ $ % % ! % ! &% ( ( ) !"# &( ) ! !! $ ! ! ! % ( !) !"# % # & % &! !! $ 从而可得 !"# ’! ’ % ( &
!! $ " # % !
!! $
.
’ ! ’ % ( 0’ ! ’ 3’ ! , % ’ ) ! 的解
命题 " 给 定 数 列{)! } , 数列 0 % &, 3 % &, ’! . % # 0’! . 3’! & % . )! (0) (1) (2)
" # + .%
"
( " )$ !! & " $ %
{’! } 由递推关系式 所确定, 则满足式 (0) 的数列的通项为 ’! # ((! . ,,! . ’ & ! 其中: {(! } , {,! } 为递推关系式 ’! . % # 0’! . 3’! & % 的两个线性无关解; (, , 为任意常数。 ’& ! # ( !4 ! . , !5 !
{
(! . % # 0(! . 3(! & % ,! . % # 0,! . 3,! & %
(%&)
知 由式 (3)
{
& % " (! " ( & %) $ 1( ( " " &% - # % "#%
! %
[
"
]}
! ( 4! . % & 4! #( & 3 ) 7 (! . % (! )
! ! &% ( ( 4! . - & 4! & % #( & 3 ) 7 (! . % (! ).( & 3 ) 7 ( !( ! & % )
!( " (&%
( " % %) & ’ % "
( " * %) !" & ’ % " 所以 由 ! % / ! 知, ’ / !, ( " * %) !" & ! % " 推论 " 条件同命题 !。
"$ 4
" (&%
] ( ) )& !" % % # # )&% ( ) # ) #
( )&%
( () $
!"# "
满足式 (.) 即可。这是容易验证的。
[
)] #
例 -: 设{2! } 满 足 递 推 关 系 2! ’ % ( !2! ’ 且 2% ( &, 求 2! 。 !2! , % , 2- ( %, 解: 易知 (! ( ! !满足递推关系, 由命题 - 得 满足递推关系式的通项为 % " ( & %) 2! # ! ! " ( " . %) ! "#% % 设{2! } 满 足 2! ’ % ( ( 例 .: - 2! ’ ( ! ’ %) , 求 2! 的通项。 2! , % ) % 满足递推关系, 由命题 - 知 !! 满足递推关系式的通项为 解: 易知 (! ( 2! # % % " ( & %) , . ,-" !! % " .% "#%
相关文档
最新文档