高三数学基础突破复习检测

合集下载

上海市2022届高三数学理一轮复习专题突破训练数列

上海市2022届高三数学理一轮复习专题突破训练数列

上海市2022届高三数学理一轮复习专题突破训练数列数列一、填空、选择题2221、(2022年上海高考)记方程①:某+a1某+1=0,方程②:某+a2某+2=0,方程③:某+a3某+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根2、(2022年上海高考)设无穷等比数列an的公比为q,若a1lima3a4an,则nq3、(2022年上海高考)设非零常数d是等差数列某1,某2,某3,,某19的公差,随机变量等可能地取值某1,某2,某3,,某19,则方差D_______4、(静安、青浦、宝山区2022届高三二模)设等差数列an的前n项和为An,等比数列bn的前n项和为Bn,若a3b3,a4b4,且A5A3aa7,则53B4B2b5b35、(闵行区2022届高三二模)已知数列{an}满足an11(nN),则使不等式a20222022成立的所有正整数a1的集合为6、(浦东新区2022届高三二模)已知数列an的前n项和Snn2n,则该数列的通项公式an2n.7、(徐汇、松江、金山区2022届高三二模)已知函数f(某)某in 某,各项均不相等的数列某n2满足某i2F(n)(某1某2某n)f(某1)f(某2)f(某n)(nN某).给出下列三个命题:n(i1,2,3,,n).令(1)存在不少于3项的数列某n,使得F(n)0;1某(2)若数列某n的通项公式为某nnN某,则F(2k)0对kN恒成立;2某(3)若数列某n是等差数列,则F(n)0对nN恒成立.其中真命题的序号是()(A)(1)(2)(B)(1)(3)(C)(2)(3)(D)(1)(2)(3)8、(长宁、嘉定区2022届高三二模)设等差数列an满足a511,a123,an的前n项和Sn的最大值为M,则lgM=__________9、(虹口区2022届高三上期末)设等比数列an的公比为q,前n项和为Sn,若Sn1,Sn,Sn2成等差数列,则q10、(金山区2022届高三上期末)等差数列{an}中,a2=8,S10=185,则数列{an}的通项公式an(nN某).11、(静安区2022届高三上期末)已知数列an的通项公式an22n2n1(其中nN某),则该数列的前n项和Sn12、(青浦区2022届高三上期末)设Sn是等差数列{an}的前n项和,若S742,则a413、(徐汇区2022届高三上期末)设数列an的前n项和为Sn,若a11,Sn则an的通项公式为14、(黄浦区2022届高三4月模拟考试(二模))在等差数列an中,若a83,a101,am9,则正整数m15、()把正整数排列成如图a的三角形数阵,然后擦去第偶数行中的所有奇数、第奇数行中的所有偶数,可得到如图b的三角形数阵,现将图b中的正整数按从小到大的顺序构成一个数列an10(nN某),2an,若ak2022,则k__________.11234245678957910111213141516101214161718192021222324251719212 3252627282930313233343536262830323436ab二、解答题某1、(2022年上海高考)已知数列{an}与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N.(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;(2)设{an}的第n0项是最大项,即an某≥an(n∈N),求证:数列{bn}的第n0项是最大项;某(3)设a1=λ<0,bn=λ(n∈N),求λ的取值范围,使得{an}有最大值M与最小值m,且∈(﹣2,2).2、(2022年上海高考)已知数列an满足anan13an,nN,a11.某13(1)若a22,a3某,a49,求某的取值范围;(2)设an是公比为q的等比数列,Sna1a2an.若取值范围;(3)若a1,a2,,ak成等差数列,且a1a2ak1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,,ak的公差.3、(2022年上海高考)给定常数c0,定义函数f(某)2|某c4||某c|,数列a1,a2,a3,满足an1f(an),nN某.(1)若a1c2,求a2及a3;(2)求证:对任意nN某,an1anc,;(3)是否存在a1,使得a1,a2,an,成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.4、(静安、青浦、宝山区2022届高三二模)设an是公比为q(q意两项之积仍是该数列中的项,那么称an是封闭数列.(1)若a1SnSn13Sn,nN某,求q的31)的等比数列,若an中任2,q3,判断an是否为封闭数列,并说明理由;1,使a1qm(2)证明an为封闭数列的充要条件是:存在整数m(3)记n是数列an的前n项之积,bn;log2n,若首项为正整数,公比q2,试问:11111,若存在,求an的通项公式;是否存在这样的封闭数列an,使limnbbn91b2若不存在,说明理由.5、(闵行区2022届高三二模)各项均为正数的数列bn的前n项和为Sn,且对任意正整数n,都有2Snbn(bn1).(1)求数列bn的通项公式;(2)如果等比数列an共有m(m2,mN)项,其首项与公比均为2,在数列an的每相邻两项ai与ai1之间插入i个(1)ibi(iN某)后,得到一个新的数列cn.求数列cn中所有项的和;(3)如果存在nN,使不等式bn 11成立,求实数的范围.(n1)bn1bnbn16、(浦东新区2022届高三二模)记无穷数列an的前n项a1,a2,,an的最大项为An,第n项之后的各项an1,an2,的最小项为Bn,令bnAnBn.(1)若数列an的通项公式为an2n27n6,写出b1、b2,并求数列bn 的通项公式;(2)若数列bn的通项公式为bn12n,判断an1an是否等差数列,若是,求出公差;若不是,请说明理由;(3)若bn为公差大于零的等差数列,求证:an1an是等差数列.7、(普陀区2022届高三二模)已知数列an的前n项和为Sn,且an0,anSnnN某4n(1)若bn1log2Snan,求数列bn的前n项和Tn;(2)若0n2,2nantann,求证:数列n为等比数列,并求出其通项公式;(3)记cna1取值范围.1111a2a3an,若对任意的nN某,cnm恒成立,求实数m的22228、(长宁、嘉定区2022届高三二模)已知数列{an}中,a13,a25,{an}的前n项和为Sn,且满足SnSn22Sn12n1(n3).(1)试求数列{an}的通项公式;12n1(2)令bn,Tn是数列{bn}的前n项和,证明:Tn;6anan1(3)证明:对任意给定的m0,,均存在n0N,使得当nn0时,(2)中的Tnm6恒成立.9、(宝山区2022高三上期末)设数列an的首项a1为常数,且an13n2an(nN某).3n(1)证明:an是等比数列;5(2)若a13,an中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由.2(3)若an是递增数列,求a1的取值范围.10、(崇明县2022高三上期末)已知等差数列an满足a37,a5a726.(1)求an的通项公式;n1,1,2an(2)若mn2,数列bn满足关系式bn,求数列bn的通项公式;bm,n2,2n1(3)设(2)中的数列bn的前n项和Sn,对任意的正整数n,1nSnn2np2n12恒成立,求实数p的取值范围.11、(奉贤区2022高三上期末)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车。

空间点、直线、平面之间的位置关系5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测

空间点、直线、平面之间的位置关系5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测

专题32空间点、直线、平面之间的位置关系5题型分类1.基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行.2.“三个”推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间中直线与直线的位置关系异面直线:不同在任何一个平面内,没有公共点.4.空间中直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交a ∩α=A 1个平行a ∥α0个在平面内a ⊂α无数个平面与平面平行α∥β0个相交α∩β=l 无数个5.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.6.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 分别作直线a ′∥a ,b ′∥b ,我们把直线a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2),π2.常用结论1.过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.2.分别在两个平行平面内的直线平行或异面.(一)共面、共线、共点问题的证明(1)共面:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)共线:先由两点确定一条直线,再证其他各点都在这条直线上.(3)共点:先证其中两条直线交于一点,再证其他直线经过该点(1)E ,F ,G ,H 四点共面;(1)证明E ,F ,G ,H 四点共面;(2)证明GE ,FH ,1BB 相交于一点.1-3.(2024高三·全国·专题练习)如图所示,在正方体(1)求证:1CE D F DA ,,三线交于点(2)在(1)的结论中,G 是D (二)(1)点、直线、平面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体为模型.(2)求异面直线所成角的方法方法解读平移法将异面直线中的某一条平移,使其与另一条相交,一般采用图中已有的平行线或者作平行线,形成三角形求解补形法在该几何体的某侧补接上同样一个几何体,在这两个几何体中找异面直线相应的位置,形成三角形求解题型2:空间位置关系的判断都相交,则直线A .2GH EF=C .直线EF ,GH 是异面直线2-3.【多选】(2024·湖北荆门A .若l αβ= ,A α∈B .若A ,B ,C 是平面C .若A α∈且B α∈,则直线D .若直线a α⊂,直线2-4.(2024·上海长宁·二模)如图,已知正方体则下列命题中假命题为(A .存在点P ,使得PQ ⊥B .存在点P ,使得//PQ AC .直线PQ 始终与直线CC(1)直线AF 与直线DE 相交;(2)直线CH 与直线DE 平行;(3)直线BG 与直线DE 是异面直线;(4)直线CH 与直线BG 成3-2.(2024高三·全国·课后作业)已知正四面体小为.3-3.(2024高三·河北·学业考试)如图直线1A E 与BF 所成角的大小为3-4.(2024高一下·北京·期末)如图,等腰梯形112BC CD DA AB ====,则直线3-5.(2024高三·全国·对口高考)线段AB 的两端分别在直二面角CD αβ--的两个面αβ、内,且与这两个面都成30︒角,则直线AB 与CD 所成的角等于.(三)空间几何体的切割(截面)问题(1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线.(2)作交线的方法有如下两种:①利用基本事实3作交线;②利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线.A .177B .134-2.(2024·河南·模拟预测)在正方体确的个数为()①//MN 平面11AAC C ;②MN①异面直线1D D与AF所成角可以为②当G为中点时,存在点③当E,F为中点时,平面④存在点G,使点C与点则上述结论正确的是(A.①③B.②④4-5.(2024·新疆·二模)已知在直三棱柱BC=,432AC=,如图所示,若过的面积为()(四)等角定理的应用空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.一、单选题-如图所示,则直线PC()1.(2024高三·北京·学业考试)四棱锥P ABCDA.与直线AD平行B.与直线AD相交C .与直线BD 平行D .与直线BD 是异面直线2.(2024·广东)若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是A .l 与1l ,2l 都相交B .l 与1l ,2l 都不相交C .l 至少与1l ,2l 中的一条相交D .l 至多与1l ,2l 中的一条相交3.(2024高一·全国·课后作业)若直线l 在平面α外,则l 与平面α的公共点个数为()A .0B .0或1C .1D .24.(2024·上海·模拟预测)如图,正方体1111ABCD A B C D -中,P Q R S 、、、分别为棱1AB BC BB CD 、、、的中点,连接11A S B D 、,对空间任意两点M N 、,若线段MN 与线段11A S B D 、都不相交,则称M N 、两点可视,下列选项中与点1D 可视的为()A .点PB .点QC .点RD .点B5.(2024高二上·四川乐山·期末)若直线l 与平面α有两个公共点,则l 与α的位置关系是()A .l ⊂αB .//l αC .l 与α相交D .l α∈6.(2024高二上·上海静安·阶段练习)设A B C D 、、、是某长方体四条棱的中点,则直线AB 和直线CD 的位置关系是().A .相交B .平行C .异面D .无法确定7.(2024高三·全国·专题练习)如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线()A.12对B.24对C.36对D.48对8.(2024高三·全国·专题练习)三棱柱各面所在平面将空间分成不同部分的个数为()A.18B.21C.24D.279.(2024高一·全国·课后作业)平面α上有三个不共线点到平面β距离相等,则平面α与平面β的位置关系是()A.相交B.平行C.垂直D.相交或平行10.(2024高一·全国·课前预习)下列命题中正确的是()A.一个平面内三条直线都平行于另一平面,那么这两个平面平行B.如果一个平面内所有直线都平行于另一个平面,那么这两个平面平行C.平行于同一直线的两个平面一定相互平行D.如果一个平面内有几条直线都平行于另一平面,那么这两个平面平行G N M H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或11.(2024高三·全国·专题练习)如图中,,,,GH MN是异面直线的图形有()所在棱的中点,则表示直线,A.①③B.②③C.②④D.②③④12.(2024高三上·内蒙古赤峰·阶段练习)已知直线l和平面α,若lα∥,Pα∈,则过点P且平行于l的直线().A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,一定在平面α内D.有无数条,不一定在平面α内13.(2024高三·全国·专题练习)将图(1)中的等腰直角三角形ABC沿斜边BC的中线AD折起得到空间四面体ABCD,如图(2),则在空间四面体ABCD中,AD与BC的位置关系是()A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直14.(2024高三上·吉林长春·期末)如图,在底面为正方形的棱台1111ABCD A B C D -中,E 、F 、G 、H 分别为棱1CC ,1BB ,CF ,AF 的中点,对空间任意两点M 、N ,若线段MN 与线段AE 、1BD 都不相交,则称点M 与点N 可视,下列选项中与点D 可视的为()A .1B B .FC .HD .G15.(2024·全国)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π616.(上海市曹杨中学2023-2024学年高二上学期期中数学试题)如图,在正方体1111ABCD A B C D -中,点P 是线段11A C 上的动点,下列与BP 始终异面的是()A .1DDB .AC C .1AD D .1B C17.(2024·福建福州·三模)在底面半径为1的圆柱1OO 中,过旋转轴1OO 作圆柱的轴截面ABCD ,其中母线AB =2,E 是弧BC 的中点,F 是AB 的中点,则()A .AE =CF ,AC 与EF 是共面直线B .AE CF ≠,AC 与EF 是共面直线C .AE =CF ,AC 与EF 是异面直线D .AE CF ≠,AC 与EF 是异面直线18.(2024高二下·广西桂林·期中)已知直线m ⊂平面α,则“平面α∥平面β”是“m ∥β”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件19.(2024·新疆阿克苏·一模)已知M ,N ,P 是正方体1111ABCD A B C D -的棱AB ,1AA ,1CC 的中点,则平面MNP 截正方体1111ABCD A B C D -所得的截面是()A .三角形B .四边形C .五边形D .六边形20.(2023届上海春季高考练习)如图,P 是正方体1111ABCD A B C D -边11AC 上的动点,下列哪条边与边BP 始终异面()A .1DDB .AC C .1AD D .1B C21.(2024高二上·浙江杭州·期末)已知空间三条直线,,l m n ,若l 与m 异面,且l 与n 异面,则()A .m 与n 异面B .m 与n 相交C .m 与n 平行D .m 与n 异面、相交、平行均有可能22.(2024高三·全国·专题练习)下列命题中正确的个数为()①若ABC ∆在平面α外,它的三条边所在的直线分别交α于P Q R 、、,则P Q R 、、三点共线.②若三条直线a b c 、、互相平行且分别交直线l 于、、A B C 三点,则这四条直线共面;③空间中不共面五个点一定能确定10个平面.A .0B .1C .2D .323.(2024高三·全国·专题练习)下列结论正确的是()A .两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.B .两两相交的三条直线最多可以确定三个平面.C .如果两个平面有三个公共点,则这两个平面重合.D .若直线a 不平行于平面α,且a ⊄α,则α内的所有直线与a 异面.24.(2024高三·全国·专题练习)给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是()A .①B .①④C .②③D .③④25.(2024·上海浦东新·一模)已知直线l 与平面α相交,则下列命题中,正确的个数为()①平面α内的所有直线均与直线l 异面;②平面α内存在与直线l 垂直的直线;③平面α内不存在直线与直线l 平行;④平面α内所有直线均与直线l 相交.A .1B .2C .3D .426.(2024高一·全国·课后作业)直线l 是平面α外的一条直线,下列条件中可推出//l α的是A .l 与α内的一条直线不相交B .l 与α内的两条直线不相交C .l 与αD .l 与α内的任意一条直线不相交27.(2024高三下·上海·阶段练习)如图所示,正三棱柱111ABC A B C -的所有棱长均为1,点P 、M 、N 分别为棱1AA 、AB 、11A B 的中点,点Q 为线段MN 上的动点.当点Q 由点N 出发向点M 运动的过程中,以下结论中正确的是()A .直线1C Q 与直线CP 可能相交B .直线1C Q 与直线CP 始终异面C .直线1C Q 与直线CP 可能垂直D .直线1C Q 与直线BP 不可能垂直28.(2024高三下·上海浦东新·阶段练习)已知正方体1111ABCD A B C D -中,M ,N ,P 分别是棱11A D ,11D C ,AB 的中点,Q 是线段MN 上的动点,则下列直线中,始终与直线PQ 异面的是()A .1AB B .1BC C .1CAD .1DD 29.(2024高一上·全国·专题练习)M ∈l ,N ∈l ,N ∉α,M ∈α,则有A .l ∥αB .l ⊂αC .l 与α相交D .以上都有可能30.(2024高三上·重庆沙坪坝·期中)在棱长为3的正方体1111ABCD A B C D -中,点Р是侧面11ADD A 上的点,且点Р到棱1AA 与到棱AD 的距离均为1,用过点Р且与1BD 垂直的平面去截该正方体,则截面在正方体底面ABCD 的投影多边形的面积是()A .92B .5C .132D .831.(2024高三下·上海闵行·阶段练习)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为AB ,BC 的中点,对于如下命题:①异面直线1DD 与1B F ②点P 为正方形1111D C B A 内一点,当//DP 平面1B EF 时,DP 的最小值为322;③过点1D ,E ,F 的平面截正方体1111ABCD A B C D -所得的截面周长为1B BEF -的所有顶点都在球O 的表面上时,球O .则正确的命题个数为()A .1B .2C .3D .432.(2024高三·全国·对口高考)如图,正方体1111ABCD A B C D -的棱长为P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP x =,则当[]1,5x ∈时,函数()y f x =的值域为()A .36,66⎡⎤⎣⎦B .6,26⎡⎣C .(6D .(0,36二、多选题33.(2024高一下·辽宁营口·阶段练习)有下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题是()A .①B .②C .③D .④34.(2024高一下·江苏苏州·阶段练习)下列命题中错误的是()A .空间三点可以确定一个平面B .三角形一定是平面图形C .若A ,B ,C ,D 既在平面α内,又在平面β内,则平面α和平面β重合D .四条边都相等的四边形是平面图形35.(2024·河北廊坊·模拟预测)我们知道,平面几何中有些正确的结论在空间中不一定成立.下面给出的平面几何中的四个真命题,在空间中仍然成立的有()A .平行于同一条直线的两条直线必平行B .垂直于同一条直线的两条直线必平行C .一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补D .一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补36.(2024高一下·陕西西安·期中)如图所示,在正方体1111ABCD A B C D -中,M ,N 分别为棱11C D ,1C C 的中点,则下列四个结论正确的是()A .直线AM 与1CC 是相交直线B .直线AM 与BN 是平行直线C .直线BN 与1MB 是异面直线D .直线AM 与1DD 是异面直线37.(2024高一·全国·课后作业)下列结论中正确的是()A .若两个平面有一个公共点,则它们有无数个公共点B .若已知四个点不共面,则其中任意三点不共线C .若点A 既在平面α内,又在平面β内,则α与β相交于b ,且点A 在b 上D .任意两条直线不能确定一个平面38.(2024高三·全国·专题练习)如图,已知正方体1111ABCD A B C D -的棱长为2,设P ,Q 分别为11A B ,1DD 的中点,则过点P ,Q 的平面α截正方体所得截面的形状可能为()A .三角形B .四边形C .五边形D .六边形39.(2024高一下·湖北武汉·期末)当三个平面都平行时,三个平面可将空间分成4个部分,那么三个平面还可将空间分成()部分.A .5B .6C .7D .840.(2024高三下·山东日照·阶段练习)如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中正确的是()A .线段11B D 上存在点E 、F 使得//AE BF B .//EF 平面ABCDC .AEF △的面积与BEF △的面积相等D .三棱锥A -BEF 的体积为定值三、填空题41.(2024高三·全国·专题练习)给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a 与平面β内的一条直线b 相交,则α与β相交;③若一条直线和两条平行线都相交,则这三条直线共面;④若三条直线两两相交,则这三条直线共面.其中真命题的序号是.42.(2024高一下·全国·课后作业)已知直线MN ⊥平面α于N ,直线NP MN ⊥,则NP 与平面α的关系是.43.(2024高一·全国·课后作业)如图,把下列图形的点、线、面的关系,用集合的语言表述:(1);(2);(3).44.(2024高一下·黑龙江齐齐哈尔·期末)已知空间中两个角α,β,且角α与角β的两边分别平行,若70α=︒,则β=.45.(2024高二下·上海虹口·期末)在空间,如果两个不同平面有一个公共点,那么它们的位置关系为.46.(2024高三下·重庆渝中·阶段练习)空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是.47.(2024高二上·上海徐汇·阶段练习)如图,在长方体ABCD -A 1B 1C 1D 1中,(1)直线A 1B 与直线D 1C 的位置关系是;(2)直线A 1B 与直线B 1C 的位置关系是;(3)直线D 1D 与直线D 1C 的位置关系是;(4)直线AB 与直线B 1C 的位置关系是.48.(2024高二上·上海徐汇·阶段练习)设A ∠和B ∠的两边分别平行,若45A ∠=︒,则B ∠的大小为.49.(2024高一·全国·课后作业)“直线l 与平面α没有公共点”是“l α∥”的条件.50.(2024高一下·全国·课后作业)在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有组互相平行的面,与其中一个侧面相交的面共有个.52.(2024高一·全国·单元测试)若直线a 与平面α内无数条直线平行,则a 与α的位置关系是.53.(2024高二上·上海奉贤·阶段练习)如图,将正方体沿交于一顶点的三条棱的中点截去一小块,八个顶“阿基米德多面体”,则异面直线AB 与CD 所成角的大小是四、解答题54.(2024高一·全国·课后作业)已知:l ⊂α,D α∈,∈A l ,B l ∈,C l ∈,D l ∉.求证:直线,,AD BD CD 共面于α.55.(2024高一·全国·课后作业)如图,ABCD 为空间四边形,点E ,F 分别是AB ,BC 的中点,点G ,H 分别在CD ,AD 上,且13DH AD =,13DG CD =.(1)求证:E ,F ,G ,H 四点共面;(2)求证:EH ,FG 必相交且交点在直线BD 上.56.(2024高一下·北京·期末)如图,在正方体1111ABCD A B C D -中,E 是棱1CC 上一点,且1:1:2CE EC =.(1)试画出过1,,D A E 三点的平面截正方体1111ABCD A B C D -所得截面α;(2)证明:平面1D AE 与平面ABCD 相交,并指出它们的交线.57.(2024高一·全国·课后作业)如图所示是一个三棱锥,欲过点P 作一个截面,使得截面与底面平行,该怎样在侧面上画出截线?58.(2024高一·全国·课后作业)59.(2024高一下·全国·课后作业)在直三棱柱ABC -A 1B 1C 1中,E ,F 分别为A 1B 1,B 1C 1的中点.求证:平面ACC 1A 1与平面BEF 相交.60.(2024高一上·安徽亳州·期末)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E ,C ,D 1,F 四点共面;(2)CE ,D 1F ,DA 三线共点.61.(2024高三·全国·专题练习)如图,在空间四边形ABCD 中,,,,E F G H 分别在,,,AB AD BC CD 上,EG 与FH 交于点P ,求证:,,P A C 三点共线.62.(2024高二·全国·课后作业)如图所示,在正方体1111ABCD A B C D -中,,E F 分别是AB 和1AA 的中点,求证:四边形1FECD 为平面图形.63.(2024高一·全国·专题练习)如图所示,在空间四边形ABCD 中,E ,F 分别为AB ,AD 的中点,G ,H 分别在BC ,CD 上,且::1:2BG GC DH HC ==.求证:(1)E 、F 、G 、H 四点共面;(2)EG 与HF 的交点在直线AC 上.64.(2024高二·上海·专题练习)如图所示,在正方体1111ABCD A B C D -中.画出平面11ACC A 与平面1BC D 及平面1ACD 与平面1BDC 的交线.65.(2024高一·全国·专题练习)如图,直升机上一点P 在地面α上的正射影是点A (即PA ⊥α),从点P 看地平面上一物体B (不同于A ),直线PB 垂直于飞机玻璃窗所在的平面β.求证:平面β必与平面α相交.66.(2024高一·全国·专题练习)如图,已知平面,αβ,且l αβ= ,设在梯形ABCD 中,AD BC ∕∕,且,AB CD αβ⊂⊂.求证:,,AB CD l 共点.67.(2024高一下·河南信阳·期中)如图,在正方体1111ABCD A B C D -中,E ,F 分别是1,AB AA 上的点,且12,2A F FA BE AE ==.(1)证明:1,,,E C D F 四点共面;(2)设1D F CE O ⋂=,证明:A ,O ,D 三点共线.68.(2024高一下·陕西西安·期中)(1)已知直线a b ∥,直线l 与a ,b 都相交,求证:过a ,b ,l 有且只有一个平面;(2)如图,在空间四边形ABCD 中,H ,G 分别是AD ,CD 的中点,E ,F 分别是边AB ,BC 上的点,且13CF AE FB EB ==.求证:直线EH ,BD ,FG 相交于一点.。

高三数学基础测试卷

高三数学基础测试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 已知函数$f(x) = 2x^2 - 3x + 1$,则该函数的对称轴为:A. $x = \frac{3}{4}$B. $x = 1$C. $x = \frac{1}{2}$D. $x = -\frac{3}{4}$2. 在直角坐标系中,点A(2, 3)关于直线$y = x$的对称点为:A. (2, 3)B. (3, 2)C. (3, -2)D. (-2, 3)3. 若$a > 0$,则下列不等式中正确的是:A. $a^2 > a$B. $a^3 > a$C. $a^4 > a$D. $a^5 > a$4. 已知向量$\vec{a} = (2, 3)$,向量$\vec{b} = (4, 6)$,则$\vec{a}$与$\vec{b}$的夹角余弦值为:A. $\frac{1}{2}$B. $\frac{1}{3}$C. $\frac{2}{3}$D.$\frac{3}{2}$5. 下列函数中,是奇函数的是:A. $f(x) = x^2 + 1$B. $f(x) = x^3 - x$C. $f(x) = \sqrt{x^2 +1}$ D. $f(x) = \frac{1}{x}$6. 已知数列$\{a_n\}$的前$n$项和为$S_n$,且$S_n = 3^n - 1$,则$a_1$的值为:A. 2B. 3C. 4D. 57. 若等差数列$\{a_n\}$的首项为$a_1$,公差为$d$,则$a_1 + a_2 + a_3 +\ldots + a_{10}$的值为:A. $10a_1 + 45d$B. $10a_1 + 50d$C. $10a_1 + 55d$D. $10a_1 +60d$8. 若复数$z$满足$|z - 1| = |z + 1|$,则$z$的取值范围是:A. $x \leq 0$B. $x \geq 0$C. $y \leq 0$D. $y \geq 0$9. 已知函数$f(x) = x^3 - 3x^2 + 4x - 1$,则$f(x)$的极小值为:A. -1B. 0C. 1D. 210. 若等比数列$\{a_n\}$的首项为$a_1$,公比为$q$,则$a_1 + a_2 + a_3 + \ldots + a_{10}$的值为:A. $a_1 \frac{1 - q^{10}}{1 - q}$B. $a_1 \frac{1 - q^{10}}{q - 1}$C. $a_1 \frac{q^{10} - 1}{q - 1}$D. $a_1 \frac{q^{10} - 1}{1 - q}$二、填空题(每题5分,共50分)1. 若函数$f(x) = ax^2 + bx + c$的图像开口向上,且顶点坐标为$(1, 2)$,则$a$,$b$,$c$的关系为______。

高三数学一轮复习立体几何知识点突破训练含答案解析

高三数学一轮复习立体几何知识点突破训练含答案解析

精品基础教育教学资料,仅供参考,需要可下载使用!第八章⎪⎪⎪立 体 几 何第一节空间几何体的三视图、直观图、表面积与体积突破点(一) 空间几何体的三视图和直观图基础联通 抓主干知识的“源”与“流” 1.空间几何体的结构特征 (1)多面体的结构特征 多面体 结构特征棱柱 有两个面平行,其余各面都是四边形且每相邻两个面的交线都平行且相等棱锥 有一个面是多边形,而其余各面都是有一个公共顶点的三角形 棱台棱锥被平行于底面的平面所截,截面和底面之间的部分叫做棱台几何体 旋转图形 旋转轴圆柱 矩形 矩形任一边所在的直线 圆锥 直角三角形 一条直角边所在的直线圆台 直角梯形或等腰梯形直角腰所在的直线或等腰梯形上下底中点的连线球半圆或圆直径所在的直线(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.考点贯通抓高考命题的“形”与“神”空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点[解析](1)截面是任意的且都是圆面,则该几何体为球体.(2)A错,如图(1);B正确,如图(2),其中底面ABCD是矩形,PD⊥平面ABCD,可证明∠PAB,∠PCB,∠PDA,∠PDC都是直角,这样四个侧面都是直角三角形;C错,如图(3);D错,由棱台的定义知,其侧棱的延长线必相交于同一点.[答案](1)C(2)B[方法技巧]解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1(2)中的A,C两项易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.画三视图的规则长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()[解析](1)正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.[答案](1)B(2)B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向;注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A能力练通抓应用体验的“得”与“失”1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:选B由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形时,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二](2017·南昌模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A 根据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1.突破点(二) 空间几何体的表面积与体积基础联通 抓主干知识的“源”与“流” 1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)l圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式名称 几何体表面积 体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底V =Sh 锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3考点贯通 抓高考命题的“形”与“神”空间几何体的表面积[例1] (1)(2017·安徽江南十校联考)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )A .4π+16+4 3B .5π+16+4 3C .4π+16+2 3D .5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2[解析] (1)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(2)根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+3.[答案] (1)D (2)B[方法技巧]求空间几何体表面积的常见类型及思路(1)求多面体的表面积,只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积.(2)求旋转体的表面积,可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系.(3)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积.空间几何体的体积柱体、锥体、台体体积间的关系[例2] (1)(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3D.5π2[解析] (1)通过三视图可还原几何体为如图所示的三棱锥P -ABC ,通过侧视图得高h =1,通过俯视图得底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16.(2)由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=13π6.[答案] (1)A (2)B [方法技巧]求空间几何体体积的常见类型及思路(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.能力练通 抓应用体验的“得”与“失”1.[考点二](2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π.故选C. 2.[考点二]已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3 C.7π3cm 3 D .3π cm 3解析:选C 该几何体为一个圆柱挖去半个球得到的几何体,其体积V =π×12×3-12×4π×133=7π3(cm 3).3.[考点一]某几何体的三视图如图所示,则它的表面积为( )A .125+20B .242+20C .44D .12 5解析:选A 由三视图得,这是一个正四棱台,且上、下底面的边长分别为2,4,则侧面梯形的高h = 22+⎝⎛⎭⎫4-222=5,所以该正四棱台的表面积S =(2+4)×52×4+22+42=125+20.4.[考点一]某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x )×3×1+π·⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.考点贯通 抓高考命题的“形”与“神”多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] 设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14, 即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26, 则S 1S 2=3a 2π6a 2=63π. [答案] 63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)(2017·抚顺模拟)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.[解析] (1)如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.(2)如图所示,设球半径为R ,底面中心为O ′且球心为O , ∵正四棱锥P -ABCD 中AB =2, ∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(3)依题意可知,新的几何体的外接球也就是原正方体的外接球,球的直径就是正方体的体对角线,∴2R =23(R 为球的半径),∴R =3, ∴球的体积V =43πR 3=43π.[答案] (1)C (2)A (3)43π [方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.能力练通 抓应用体验的“得”与“失”1.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.2.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 3.[考点二](2016·太原模拟)如图,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′-BCD 的顶点在同一个球面上,则该球的表面积为( )A .3πB.32π C .4π D.34π 解析:选A 由图示可得BD =A ′C =2,BC =3,△DBC 与△A ′BC 都是以BC 为斜边的直角三角形,由此可得BC 中点到四个点A ′,B ,C ,D 的距离相等,即该三棱锥的外接球的直径为3,所以该外接球的表面积S =4π×⎝⎛⎭⎫322=3π. 4.[考点二]设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( )A.2πB.6πC.π6D.π2解析:选D 设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR 26×⎝⎛⎭⎫233R 2=π2.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得,l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(2016·全国丙卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2C .6πD.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 3.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16 D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D. 4.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大,为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.6.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V=14×13π·r 2·5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B. 7.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C 原毛坯的体积V =(π×32)×6=54π(cm 3),由三视图可知该零件为两个圆柱的组合体,其体积V ′=V 1+V 2=(π×22)×4+(π×32)×2=34π(cm 3),故所求比值为1-V ′V =1027.8.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8π B.8+8πC.16+16π D.8+16π解析:选A根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π,故选A.9.(2012·新课标全国卷)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26 B.36 C.23 D.22解析:选A由于三棱锥S-ABC与三棱锥O-ABC底面都是△ABC,O是SC的中点,因此三棱锥S-ABC的高是三棱锥O-ABC高的2倍,所以三棱锥S-ABC的体积也是三棱锥O-ABC体积的2倍.在三棱锥O-ABC中,其棱长都是1,如图所示,S△ABC=34×AB2=34,高OD=12-⎝⎛⎭⎫332=63,所以V S-ABC=2V O-ABC=2×13×34×63=26.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A错误,如图①是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B 错误,如图②,若△ABC 不是直角三角形,或△ABC 是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C 错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3B.62π3C.83π3D.104π3解析:选D 由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3. 3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 2解析:选C 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S =2×2+22×2=4+42,故选C.5.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 3[练常考题点——检验高考能力]一、选择题1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a2 B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 3.一个几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.152D.132解析:选D 该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.4.已知正四面体的棱长为2,则其外接球的表面积为( ) A .8π B .12π C.32π D .3π 解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝⎛⎭⎫233-R 2+⎝⎛⎭⎫632,解得R =32,所以外接球的表面积S =4πR 2=3π. 5.(2017·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:选C 还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高分别为22,22,4的长方体,则该长方体外接球的半径r =(22)2+(22)2+422=22,则所求外接球的表面积为4πr 2=32π.6.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD 的四个侧面中面积的最大值是( )A .6B .8C .2 5D .3解析:选A 四棱锥如图所示,作PN ⊥平面ABCD ,交DC 于点N ,PC =PD =3,DN =2,则PN =32-22=5,AB =4,BC =2,BC ⊥CD ,故BC ⊥平面PDC ,即BC ⊥PC ,同理AD ⊥PD .设M 为AB 的中点,连接PM ,MN ,则PM =3,S △PDC =12×4×5=25,S △PBC =S△PAD=12×2×3=3,S △PAB =12×4×3=6,所以四棱锥P -ABCD 的四个侧面中面积的最大值是6.二、填空题7.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M -PBC 的体积为________.解析:∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即三棱锥P -MBC 的高h =D 1C 13=1.M 为线段B 1C 1上的点, ∴S △MBC =12×3×3=92,∴V M -PBC =V P -MBC =13×92×1=32. 答案:328.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.。

高三数学基础训练试卷

高三数学基础训练试卷

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √252. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴是()A. x = 2B. x = 1C. x = 3D. x = 03. 若log2(3x - 1) = 3,则x的值为()A. 2B. 3C. 4D. 54. 下列函数中,单调递增的函数是()A. y = 2x - 1B. y = -x^2 + 1C. y = x^3D. y = 1/x5. 在三角形ABC中,若a=3,b=4,c=5,则sinA的值为()A. 3/5B. 4/5C. 5/3D. 5/46. 已知复数z = 1 + i,则|z|^2的值为()A. 2B. 3C. 4D. 57. 下列方程中,无解的是()A. x + 2 = 0B. x^2 - 4 = 0C. x^2 + 4 = 0D. x^2 - 1 = 08. 若等差数列{an}的前n项和为Sn,且a1=1,S5=15,则公差d的值为()A. 2B. 3C. 4D. 59. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (-2,-3)D. (-3,-2)10. 已知等比数列{an}的前n项和为Sn,且a1=1,S4=15,则公比q的值为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 已知函数f(x) = 2x - 3,则f(-1)的值为______。

12. 在等差数列{an}中,若a1=2,公差d=3,则第10项an的值为______。

13. 已知复数z = 3 - 4i,则|z|^2的值为______。

14. 在三角形ABC中,若∠A=60°,a=5,b=8,则c的值为______。

15. 若等比数列{an}的前n项和为Sn,且a1=1,S5=31,则公比q的值为______。

两条直线的位置关系9题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测(解析版)

两条直线的位置关系9题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测(解析版)

专题39两条直线的位置关系9题型分类1.两条直线的位置关系直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 3:A 1x +B 1y +C 1=0,l 4:A 2x +B 2y +C 2=0(其中l 1与l 3是同一条直线,l 2与l 4是同一条直线)的位置关系如下表:位置关系l 1,l 2满足的条件l 3,l 4满足的条件平行k 1=k 2且b 1≠b 2A 1B 2-A 2B 1=0且A 1C 2-A 2C 1≠0垂直k 1·k 2=-1A 1A 2+B 1B 2=0相交k 1≠k 2A 1B 2-A 2B 1≠02.三种距离公式(1)两点间的距离公式①条件:点P 1(x 1,y 1),P 2(x 2,y 2).②结论:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.③特例:点P (x ,y )到原点O (0,0)的距离|OP |=x 2+y 2.(2)点到直线的距离点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行直线间的距离两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0间的距离d=|C1-C2| A2+B2.常用结论1.直线系方程(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+n=0(n∈R).(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.2.五种常用对称关系(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).(2)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).(4)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).(5)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).(一)判断两条直线位置关系的注意点(1)斜率不存在的特殊情况.(2)可直接利用直线方程系数间的关系得出结论.,根据两直线平行和垂直时,其斜率间的关系得出方程组,解之可求得点(二)利用距离公式应注意的点(1)点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|.(2)两条平行线间的距离公式要把两条直线方程中x,y的系数化为相等.∴PB l 的倾斜角为π6,PA l 的倾斜角为∴直线l 的倾斜角的取值范围是故选:D作B 关于直线:3l x y --则直线AB '和直线l 的交点即为设D 为l 上异于P 的一点,则故DA DB DA DB -=-故||||||PA PB -最大,即此时设(,)B a b ',则432b a a b -⎧=⎪⎪⎨⎪⨯-⎪⎩作C 关于直线:3l x y --则直线AC '和直线l 的交点即为设E 为l 上异于P 的一点,则故EC EA EC EC +=+故||||+PA PC 最小,即此时设(,)C m n ',则43332n m m -⎧=⎪⎪-⎨+⎪⨯⎪⎩故直线AC '方程为19x +即即1126(,)77P ;5-4.(2024高三下·江西2430x y -+=上一动点,则A .5B 【答案】B【分析】求点()0,2A -关于直线论两点之间线段最短可求5-5.(2024高二下·上海浦东新且1PQ l ⊥,点()3,3A --,【答案】310322+【分析】作出图象,易知l 然后在l 上,直线1l ,2l 之间找点由此求解.【详解】易知12l l //,作出图象如下,过直线:3l y x =-,过P 作直线//PC QB ,与直线l 交于点C ,易知四边形PCBQ 为平行四边形,故PC QB =,且B 到直线2l 的距离等于C 到1l 的距离,设(,3)C t t -,则3230122t t +-++-=,解得32t =或12t =-(舍),所以33,22C ⎛⎫- ⎪⎝⎭,而AP PQ QB AP PQ PC ++=++,且2(1)332222PQ --===(定值),故只需求出||||AP PC +的最小值即可,显然223331033222AP PC AC ⎛⎫⎛⎫+≥=--+-+= ⎪ ⎪⎝⎭⎝⎭,故AP PQ QB ++的最小值为310322+.故答案为:310322+.5-6.(2024高三下·河南·阶段练习)已知函数()()()ln 11f x a x a =++∈R 的图象恒过定点A ,圆22:4O x y +=上的两点()11,P x y ,()22,Q x y 满足()PA AQ λλ=∈R,则11222727x y x y +++++的最小值为()A .25B .75+C .155-D .3025-【答案】C 【分析】设直线l 为270x y ++=.取圆O 的弦PQ 的中点为E ,求出其轨迹方程,求出E 到直线l 距离的最小值.过P 、E 、Q 分别作直线l 的垂线,垂足分别为M 、R 、N ,将11222727x y x y +++++转化为25ER ,即可求其最小值.【详解】由题可知A 为(0,1),且P 、A 、Q 三点共线,设弦PQ 的中点为E (x ,y ),连接OE ,则OE ⊥PQ ,即OE ⊥AE ,∴0OE AE ⋅=,由此可得E 的轨迹方程为2+−122=14,【点睛】本题需充分利用数形结合思想进行简答,直线的距离公式联系在一起,数形结合求解最值5-7.(2024高三下·上海宝山·开学考试)如图,平面上两点2MN=,且使PM MN++【答案】99, 44骣÷ç÷ç÷ç桫【点睛】本小题主要考查两点间距离公式的应用,考查对称性,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题(三)对称问题的求解策略(1)解决对称问题的思路是利用待定系数法将几何关系转化为代数关系求解.(2)中心对称问题可以利用中点坐标公式解题,两点轴对称问题可以利用垂直和中点两个条件列方程组解题.求直线l关于直线0l对称的直线'lCA.35B.【答案】C【分析】求点A关于y轴的对称点6-3.(2024高二上·四川遂宁A .(1,4)-C .(3,4)--【答案】C 【分析】因点A 与点B 关于直线对称,则【详解】设(),A x y ,因点A 垂直,则212022112x y y x ++⎧++=⎪⎧⎪⇒⎨⎨-⎩⎪=⎪-⎩即点A 坐标为(3,4)--.则直线的对称点为(四)一、单选题1.(2024高二上·浙江·期中)已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a 等于()AB.2C1D1+【答案】C【分析】根据点到直线得距离公式即可得出答案.1=.解得1a =-1a =-0a >,1a ∴=-故选:C.2.(2024高二上·黑龙江哈尔滨·期末)已知两条直线1:3460l x y -+=,2:3440l x y --=,则这两条直线之间的距离为()A .2B .3C .5D .10【答案】A【分析】由两平行线距离公式求解即可.【详解】这两条直线之间的距离为2d ==.故选:A3.(2024高二·全国·课后作业)求直线x +2y -1=0关于直线x +2y +1=0对称的直线方程()A .x +2y -3=0B .x +2y +3=0C .x +2y -2=0D .x +2y +2=0【答案】B【分析】结合两平行线间的距离公式求得正确选项.【详解】设对称直线方程为20x yc ++=,=,解得3c =或1c =-(舍去).所以所求直线方程为230x y ++=.故选:B4.(2024高二·全国·课后作业)直线0ax by c ++=关于直线0x y -=对称的直线为()A .0ax by c -+=B .0bx ay c -+=C .0bx ay c ++=D .0bx ay c +-=【答案】C【分析】根据两直线关于对称直线对称的概念即可求解【详解】解:设所求直线上的任意一点为(,)M x y 则M 关于直线0x y -=对称点为(,)N y x 点N 在直线0ax by c ++=上∴(,)N y x 满足直线方程,即0ay bx c ++=∴直线0ax by c ++=关于直线0x y -=对称的直线为0bx ay c ++=故选:C5.(2024·浙江温州·三模)已知直线12:0,:10l x y l ax by +=++=,若12l l ⊥,则a b +=()A .1-B .0C .1D .2【答案】B【分析】根据给定的条件,利用两直线的垂直关系列式计算作答.【详解】因为直线12:0,:10l x y l ax by +=++=,且12l l ⊥,则110a b ⋅+⋅=,所以0a b +=.故选:B6.(2024·安徽蚌埠·三模)已知直线1l :210ax y ++=,2l :()30a x y a --+=,则条件“1a =”是“12l l ⊥”的()A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不必要也不充分条件【答案】B 【分析】根据两直线垂直的性质,可得()312a a ⎛⎫-⨯-=- ⎪⎝⎭,求出a 的值,即可判断.【详解】若12l l ⊥,则()312a a ⎛⎫-⨯-=- ⎪⎝⎭,解得1a =或2a =.故1a =是12l l ⊥的充分不必要条件.故选:B7.(2024高二上·全国·课后作业)直线220x y ++=与420ax y +-=互相垂直,则这两条直线的交点坐标为()A .()1,4-B .()0,2-C .()1,0-D .0,12⎛⎫ ⎪⎝⎭【答案】C【分析】由两直线垂直可得2a =-,联立解方程组可得交点坐标.【详解】易知直线220x y ++=的斜率为2-,由两直线垂直条件得直线420ax y +-=的斜率142a -=,解得2a =-;联立2202420x y x y ++=⎧⎨-+-=⎩,解得10x y =-⎧⎨=⎩;即交点为()1,0-故选:C.8.(2024高二下·四川广元·期中)若直线2mx ny +=过点()2,2A ,其中m ,n 是正实数,则12m n+的最小值是()A .3B .3+C .92D .5【答案】B 【分析】由点A 在直线上可知1m n +=【详解】因为直线2mx ny +=过点(2,2)A ,所以222m n +=,由m 和n 都是正实数,所以1m n +=,0m >,0n >.所以()12122123n m m n m n m n m n⎛⎫+=++=+++≥+ ⎪⎝⎭当2n m m n =时取等号,即1m =,2n =-所以12m n+的最小值是3+故选:B .9.(2024高二上·全国·课后作业)若直线230x y --=与420x y a -+=,则a 的值为()A .4B 6C .4或16-D .8或16-【答案】C【分析】将直线230x y --=化为4260x y --=,再根据两平行直线的距离公式列出方程,求解即可.【详解】将直线230x y --=化为4260x y --=,则直线230x y --=与直线420x y a -+=之间的距离d ==,即|6|10a +=,解得4a =或16a =-,所以a 的值为4a =或16a =-.故选:C10.(2024高二上·全国·课后作业)抛物线214y x =的焦点关于直线10x y --=的对称点的坐标是()A .(2,1)-B .(1,1)-C .11,44⎛⎫- ⎪⎝⎭D .11,1616⎛⎫- ⎪⎝⎭【答案】A【分析】求出抛物线214y x =焦点坐标为(0,1)F ,设(0,1)F 关于直线10x y --=的对称点的坐标是(,)F m n ',列出关于,m n 的方程组求解即可.【详解】抛物线214y x =即24x y =,其焦点坐标为(0,1)F ,设(0,1)F 关于直线10x y --=的对称点的坐标是(,)F m n ',则1110011022n m m n -⎧⨯=-⎪⎪-⎨++⎪--=⎪⎩,解得21m n =⎧⎨=-⎩,则(2,1)F '-,故选:A .11.(2024·四川)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A.B.C.D.【答案】B【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()124πθ≤+≤PA PB ≤+≤选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换.12.(2024·全国)点(0,﹣1)到直线()1y k x =+距离的最大值为()A .1B CD .2【答案】B【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果.【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.13.(2024·北京东城·二模)已知三条直线1:220l x y -+=,2:20l x -=,3:0+=l x ky 将平面分为六个部分,则满足条件的k 的值共有()A .1个B .2个C .3个D .无数个【答案】C【分析】考虑三条直线交于一点或3l 与1l 或2l 平行时,满足条件,求出答案.【详解】当三条直线交于一点时,可将平面分为六个部分,联立1:220l x y -+=与2:20l x -=,解得22x y =⎧⎨=⎩,则将22x y =⎧⎨=⎩代入3:0+=l x ky 中,220k +=,解得1k =-,当3:0+=l x ky 与1:220l x y -+=平行时,满足要求,此时2k =-,当3:0+=l x ky 与2:20l x -=平行时,满足要求,此时0k =,综上,满足条件的k 的值共有3个.故选:C14.(2024高二上·辽宁沈阳·阶段练习)两直线方程为1:3260l x y --=,22:0x y l --=,则1l 关于2l 对称的直线方程为()A .3240x y --=B .2360x y +-=C .2340x y --=D .3260x y --=【答案】C【分析】根据题意,设所求直线上任一点M (x ,y )且M 关于直线22:0x y l --=的对称点1(M x ',1)y ,利用轴对称的性质列出方程组解出用x 、y 表示1x 、1y 的式子,再由点M '在直线3260x y --=上代入,化简即得所求对称直线方程;【详解】设所求直线上任一点(,)M x y ,M 关于直线20x y --=的对称点1(M x ',1)y ,则111112022y y x x x x y y -⎧=-⎪-⎪⎨++⎪--=⎪⎩,解出112(*)2x y y x =+⎧⎨=-⎩ 点M '在直线3260x y --=上,∴将(*)式代入,得3(2)2(2)60y x +---=,化简得2340x y --=,即为1l 关于2l 对称的直线方程.故选:C15.(2024高一下·海南·期末)设,,a b c 分别是ABC V 中,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ⋅++=与sin sin 0bx B y C -⋅+=的位置关系是()A .平行B .重合C .垂直D .相交但不垂直【答案】C【分析】根据直线方程确定斜率,利用三角形边角关系及直线垂直的判定判断两直线的位置关系即可.【详解】由题设,sin 0A x ay c ⋅++=的斜率为sin Aa-,sin sin 0bx B y C -⋅+=的斜率为sin b B ,又sin sin b aB A =,则1sin sin b BA a ⋅=--,即两直线垂直.故选:C16.(2024高三下·江西·开学考试)费马点是指三角形内到三角形三个顶点距离之和最小的点.当三角形三个内角均小于120°时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等且均为120°.根据以上性质,.则(,)F x y =的最小值为()A .4B.2+C.3+D.4+【答案】B【分析】根据题意作出图形,证明出三角形ABC 为等腰直角三角形,作出辅助线,找到费马点,求出最小值.【详解】由题意得:(,)F x y 的几何意义为点E 到点()(),1,1,0,2A B C 的距离之和的最小值,因为AB =CB =4AC ==,所以222AB CB AC +=,故三角形ABC 为等腰直角三角形,,取AC 的中点D ,连接BD ,与AO 交于点E ,连接CE ,故122BD AC ==,AE CE =,因为3CO AO =,所以30CAO ∠=︒,故120AEC ∠=︒,则120BEC AEB ∠=∠=︒,故点E 到三角形三个顶点距离之和最小,即(,)F x y 取得最小值,因为122AD CD AC ===,所以cos 303AD AE ==︒,同理得:3CE =,3DE =,2BE BD DE =-=-,故(,)F x y 的最小值为22333AE CE BE ++=++-=+故选:B17.(2024·贵州毕节·模拟预测)直线()()1:11l x a y a a R ++=-∈,直线21:2l y x =-,下列说法正确的是()A .R a ∃∈,使得12l l ∥B .R a ∃∈,使得12l l ⊥C .R a ∀∈,1l 与2l 都相交D .R a ∃∈,使得原点到1l 的距离为3【答案】B 【分析】对A ,要使12l l ∥,则12k k ∥,所以1112a -=-+,解之再验证即可判断;对B ,要使12l l ⊥,121k k ×=-,1112a -=-+,解之再验证即可判断;对C ,当1a =时,1l 与2l 重合,即可判断;对D ,根据点到直线距离列方程即可判断.【详解】对A ,要使12l l ∥,则12k k ∥,所以1112a -=-+,解之得1a =,此时1l 与2l 重合,选项A 错误;对B ,要使12l l ⊥,121k k ×=-,11112a ⎛⎫⎛⎫-⋅-=- ⎪ ⎪+⎝⎭⎝⎭,解之得32a =-,所以B 正确;对C ,()1:11l x a y a ++=-过定点()2,1-,该定点在2l 上,但是当1a =时,1l 与2l 重合,所以C 错误;对D ,3d ==,化简得2820170a a -+=,此方程0∆<,a 无实数解,所以D错误.故选:B.18.(2024·全国)如果直线2y ax =+与直线3y x b =-关于直线y x =对称,那么()A .1,63a b ==B .1,63a b ==-C .3,2a b ==-D .3,6a b ==【答案】A【分析】由题意在2y ax =+上任取一点(0,2),其关于直线y x =的对称点在3y x b =-上,代入可求出b ,然后在3y x b =-上任取一点,其关于直线y x =的对称点在2y ax =+上,代入可求出a .【详解】在2y ax =+上取一点(0,2),则由题意可得其关于直线y x =的对称点(2,0)在3y x b =-上,所以06b =-,得6b =,在36y x =-上取一点(0,6)-,则其关于直线y x =的对称点(6,0)-在2y ax =+上,所以062a =-+,得13a =,综上1,63a b ==,故选:A19.(2024高一·全国·课后作业)已知ΔA 的顶点()2,1B ,()6,3C -,其垂心为()3,2H -,则其顶点A 的坐标为A .()19,62--B .()19,62-C .()19,62-D .()19,62【答案】A【分析】由垂心的定义可知AH BC ⊥,BH AC ⊥;根据垂直时斜率乘积为1-可知4AH k =,5AC k =,利用两点连线斜率公式可构造出方程组求得结果.【详解】H 为ΔA 的垂心AH BC ∴⊥,BH AC⊥又311624BC k -==---,211325BH k -==---∴直线,AH AC 斜率存在且4AH k =,5AC k =设(),A x y ,则243356AH AC y k x y k x -⎧==⎪⎪+⎨-⎪==⎪+⎩,解得:1962x y =-⎧⎨=-⎩()19,62A ∴--本题正确选项:A【点睛】本题考查根据直线与直线垂直的位置关系求解参数的问题;关键是能够利用垂心的性质得到直线与直线的垂直关系.20.(2024高三·全国·课后作业)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为()A .B .C .D .【答案】A【解析】先求出点M 所在直线的方程为l :x +y +m =0,再求出m 的值和原点到直线l 的距离即得解.【详解】依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,所以|m +7|=|m +5|,所以m =-6,即l :x +y -6=0.根据点到直线的距离公式得M=.故选:A.【点睛】本题主要考查平行线间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平.21.(2024高二上·湖北·阶段练习)在等腰直角三角形ABC 中,3AB AC ==,点P 是边AB 上异于A B 、的一点,光线从点P 出发,经BC CA 、反射后又回到点P ,如图,若光线QR 经过ABC V 的重心,则AP =()A .32B .34C .1D .2【答案】C【分析】根据题意,建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,2RP四点共线可得直线的方程,由于过ABC V 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值,即可得答案.【详解】根据题意,建立如图所示的坐标系,可得(3,0)B ,(0,3)C ,故直线BC 的方程为3x y +=,又由(0,0)A ,(3,0)B ,(0,3)C ,则ABC V 的重心为(1,1),设(,0)P a ,其中0<<3a ,点P 关于直线BC 的对称点1(,)P x y ,则有03220(1)1a x y y x a++⎧+=⎪⎪⎨-⎪⨯-=-⎪-⎩,解得33x y a =⎧⎨=-⎩,即1(3,3)P a -,易得P 关于y 轴的对称点2(,0)P a -,由光的反射原理可知1P ,Q ,R ,2P 四点共成直线QR 的斜率33ak a-=+,故直线QR 的方程为3()3ay x a a-=++,由于直线QR 过ABC V 的重心(1,1),代入化简可得20a a -=,解得:1a =或0(a =舍),即(1,0)P ,故1AP =,故选:C .22.(2024高一上·湖南长沙·开学考试)如下图,一次函数4y x =+的图象与x 轴,y 轴分别交于点A ,B ,点(2,0)C -是x 轴上一点,点E ,F 分别为直线4y x =+和y 轴上的两个动点,当CEF △周长最小时,点E ,F 的坐标分别为()A .53,22E ⎛⎫- ⎪⎝⎭,(0,2)F B .(2,2)E -,(0,2)F C .53,22E ⎛⎫- ⎪⎝⎭,20,3F ⎛⎫ ⎪⎝⎭D .(2,2)E -,20,3F ⎛⎫⎪⎝⎭【答案】C【分析】作C 关于y 轴的对称点G ,作C 关于4y x =+的对称点D ,连接DG 交y 轴于F ,交AB 于E ,有++=++=EC FC EF ED FG EF DG ,即此时CEF △周长最小,求出D 点坐标,可得直线DG 方程,与4y x =+联立求出E 点坐标,令0x =可得F 点坐标.【详解】作(2,0)C -关于y 轴的对称点(2,0)G ,作(2,0)C -关于4y x =+的对称点(,)D a b ,连接DG 交y 轴于F ,交AB 于E ,所以,==FG FC EC ED ,此时CEF △周长最小,即++=++=EC FC EF ED FG EF DG ,由(2,0)C -,直线AB 方程为4y x =+,所以122422ba b a ⎧=-⎪⎪+⎨-⎪=+⎪⎩,解得42a b =-⎧⎨=⎩,所以(4,2)D -,可得直线DG 方程为022042--=---y x ,即1233y x =-+,由41233y x y x =+⎧⎪⎨=-+⎪⎩,解得5232x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以53,22E ⎛⎫- ⎪⎝⎭,令0x =可23y =,所以20,3F ⎛⎫⎪⎝⎭.故选:C.23.(2024高二上·广东深圳·期中)过定点A 的动直线0x ky +=和过定点B 的动直线210kx y k --+=交于点M ,则MA MB +的最大值是()A.B .3CD【答案】C【分析】求出A ,B 的坐标,并判断两直线垂直,推出点M 在以AB为直径的圆上,求得||AB =,即225MA MB +=,结合基本不等式即可求得答案.【详解】由题意知0x ky +=过定点(0,0)A ,动直线210kx y k --+=即(2)10k x y --+=过定点(2,1)B ,对于直线0x ky +=和动直线210kx y k --+=满足1(1)0k k ⨯+⨯-=,故两直线垂直,因此点M 在以AB为直径的圆上,||AB ==则225MA MB +=,所以22222()22()10MA MB MA MB MA MB MA MB +++=+≤=,当且仅当MA MB ==故MA MB +,故选:C24.(2024高二下·陕西西安·期末)设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是()AB C .5D .10【答案】C【分析】先求出两条直线经过的定点,然后根据两条直线的位置关系可判断它们垂直,从而PA PB ⊥,在利用勾股定理和基本不等式求解.【详解】显然0x my +=过定点(0,0)A 30mx y m --+=可化成(1)3y m x =-+,则经过定点()1,3B ,根据两条直线垂直的一般式方程的条件,1(1)0m m ⨯+⨯-=,于是直线0x my +=和直线30mx y m --+=垂直,又P 为两条直线的交点,则PA PB ⊥,又AB =222102PA PB AB PA PB +==≥⋅,则5PA PB ⋅≤,当PA PB ==PA PB ⋅的最大值是5.故选:C25.(河北省张家口市2023-2024学年高二上学期期末数学试题)已知0x y +=,则)AB .CD .【答案】C【分析】设点(,)P x y 为直线0x y +=上的动点,题意可转化成求(,)P x y 与()1,1的距离和(,)P x y 与()2,0的距离之和的最小值,求出1(1)M ,关于直线0x y +=的对称点)1(1M '--,,故PM PN PM PN M N''+=+≥=,即可求出答案【详解】设点(,)P x y 为直线0x y +=上的动点,可看作(,)P x y 与()1,1的距离和(,)P x y 与()2,0的距离之和,设点()()1,12,0M N ,,则点()1,1M '--为点1(1)M ,关于直线0x y +=的对称点,故PM PM '=,且M N ==',所以P M PN =+PM PN M N ''=+≥=,当且仅当,,P M N '三点共线时,取等号,.故选:C26.(2024·贵州·模拟预测)已知,x y +∈R ,满足22x y +=,则x 的最小值为()A .45B .85C .1D 【答案】B【分析】先求出点O 关于线段22x y +=的对称点C C PO P ==.根据几何意义,结合图象,即可得出取最小值时,点P 的位置,进而得出答案.【详解】如图,过点O 作点O 关于线段22x y +=的对称点C ,则PO PC =.设()00,C x y ,则有()0000212222y x x y ⎧⨯-=-⎪⎪⎨⎪⨯+=⎪⎩,解得008545x y ⎧=⎪⎪⎨⎪=⎪⎩,所以84,55C ⎛⎫⎪⎝⎭.设(),P x y,则PO =C PO P ==,又,x y +∈R ,所以点P 到y 轴的距离为x ,所以,x 可视为线段22x y +=上的点(),P x y 到y 轴的距离和到84,55C ⎛⎫⎪⎝⎭的距离之和.过P 作PD x ⊥轴,过点C 作CH x ⊥轴,显然有PD PC CH +≥,当且仅当,,C P H 三点共线时,和有最小值.则CH 即为最小值,CH 与线段AB 的交点1P ,即为最小值时P 的位置.因为85CH =,所以x 的最小值为85.故选:B .27.(2024·上海静安·二模)设直线1:220l x y --=与2l 关于直线:240l x y --=对称,则直线2l 的方程是()A .112220x y +-=B .11220x y ++=C .5110x y +-=D .10220x y +-=【答案】A【分析】根据三条直线交于一点,再利用点关于直线的对称点公式,求直线2l 上一点,即可求解.【详解】联立220240x y x y --=⎧⎨--=⎩,得20x y =⎧⎨=⎩,取直线1:220l x y --=上一点()0,1-,设点()0,1-关于直线:240l x y --=的对称点为(),a b ,则112124022b a a b +⎧=-⎪⎪⎨-⎪⨯--=⎪⎩,解得:1211,55a b ==-,直线2l 的斜率112k =-,所以直线2l 的方程为()1122y x =--,整理为:112220x y +-=.故选:A28.(2024高三·北京·+的最小值所属区间为()A .[10,11]B .(11,12]C .(12,13]D .前三个答案都不对【答案】C【分析】利用代数式的几何意义可求最小值.【详解】如图,设(,0),(0,),(9,2),(3,3)P x Q y A B --.根据题意,设题中代数式为M,则||||||||13M AP PQ QB AB =++≥==,等号当P ,Q 分别为直线AB 与x 轴,y 轴交点时取得.因此所求最小值为13.故选:C.29.(2024·北京)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .4【答案】C【分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +.【详解】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.【点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.二、多选题30.(2024高二下·江苏南京·期末)已知动点,A B 分别在直线1:3460l x y -+=与2:34100l x y -+=上移动,则线段AB 的中点P 到坐标原点O 的距离可能为()A B .75C D 【答案】CD【分析】根据直线平行可得P 在直线:3480l x y -+=上运动,即可根据点到直线的距离公式即可求解.【详解】解: 动点,A B 分别在直线13460l x y -+=:与234100l x y -+=:上移动,又线段AB 的中点为P ,21//l l ,P ∴在直线:3480l x y -+=上运动,O ∴到直线l 的距离85d ==.P ∴到坐标原点O 的距离大于等于85.故选:CD .31.(24-25高二上·全国·单元测试)已知两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +-=,下列结论正确的是()A .若12//l l ,则6a =B .若12//l l ,则两条平行直线之间的距离为74C .若12l l ⊥,则323a =D .若6a ≠,则直线1l ,2l 一定相交【答案】AD【分析】根据两直线平行求出a 的值,可判断A 选项;利用平行线间的距离公式可判断B 选项;根据两直线垂直求出a 的值,可判断C 选项;根据两直线相交求出a 的范围,可判断D 选项.【详解】两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +-=,它们不重合,若12//l l ,则438a =⨯,得6a =,检验符合,故A 选项正确;若12//l l ,由A 选项可知,2l :68110x y +-=,直线1l 的方程可化为68240x y ++=,72=,故B 选项不正确;若12l l ⊥,则3480a +⨯=,得323a =-,故C 选项不正确;由A 选项知,当6a =时,12//l l ,所以若6a ≠,则直线1l ,2l 一定相交,故D 选项正确.故选:AD.32.(24-25高二上·全国·课后作业)已知直线l10y -+=,则下列结论正确的是()A .直线l的一个法向量为)B .若直线m:10x +=,则l m ⊥C.点)到直线l 的距离是2D.过()2与直线l40y --=【答案】CD【分析】对于A :根据直线方向向量与斜率之间的关系分析判断;对于B :根据直线垂直分析判断;对于C :根据点到直线的距离公式运算求解;对于D :根据直线平行分析求解.【详解】对于A ,因为直线l10y -+=的斜率k =11=≠-,可知)不为直线l 的一个法向量,故A 错误;对于B ,因为直线m:10x +=的斜率3k '=,且11kk '=≠-,所以直线l 与直线m 不垂直,故B 对于C,点)到直线l 的距离2d =,故C 正确;对于D ,过()2与直线l平行的直线方程是2y x -=-40y --=,故D 正确.故选:CD.33.(2024高二下·江西南昌·阶段练习)已知曲线e 2xy =和直线:240l x y --=,则()A .曲线上与直线l 平行的切线的切点为e 1,2⎛⎫⎪⎝⎭B .曲线上与直线l 平行的切线的切点为10,2⎛⎫⎪⎝⎭C .曲线上的点到直线l D.曲线上的点到直线l 的最短距离为(3e 5+【答案】BC【分析】根据导数得出切线斜率求切点判断A,B,再结合点到直线距离求出最短距离判断C,D.【详解】设与直线122y x =-平行的直线和e 2xy =相切,则斜率为12k =.因为e 2x y =,所以e 2x y '=,令e 122x k ==,可得切点为10,2⎛⎫ ⎪⎝⎭,故A 错误,B 正确;则点10,2⎛⎫ ⎪⎝⎭到直线240x y --=的距离就是曲线e 2xy =上的点到直线240x y --=的最短距离,C 正确,D 错误.故选:BC.34.(福建省莆田第三中学,励志学校2023-2024学年高二上学期期中联考数学试卷)以下四个命题叙述正确的是()A .直线210x y -+=在x 轴上的截距是1B .直线0x ky +=和2380x y ++=的交点为P ,且P 在直线10x y --=上,则k 的值是12-C .设点(,)M x y 是直线20x y +-=上的动点,O 为原点,则OM 的最小值是2D .直线()12:310:2110L ax y L x a y ++=+++=,,若12//L L ,则3a =-或2【答案】BC【分析】求出直线的横截距判断k 判断B ;求出点到直线的距离判断C ;验证判断D.【详解】对于A ,直线210x y -+=在x 轴上的截距是12-,A 错误;对于B ,由238010x y x y ++=⎧⎨--=⎩解得12x y =-⎧⎨=-⎩,即(1,2)P --,则120k --=,解得12k =-,B 正确;对于C,依题意,min OM =C 正确;对于D ,当2a =时,直线12:2310,:2310L x y L x y ++=++=重合,D 错误.故选:BC三、填空题35.(2024高二·全国·课后作业)已知(),6A a ,()2,B b -,点()2,3P 是线段AB 的中点,则a b +=.【答案】6【分析】利用中点坐标公式可求得,a b ,由此可得结果.【详解】由中点坐标公式知:222a -=,632b +=,解得:6a =,0b =,6a b ∴+=.故答案为:6.36.(2024高二·江苏·假期作业)已知点(),4M x -与点()2,3N 间的距离为x =.【答案】9或5-【分析】根据两点间的距离公式列方程求解即可.【详解】由MN =得MN ==即24450x x --=,解得9x =或5-.故答案为:9或5-.37.(2024高三上·河北廊坊·阶段练习)与直线:2310l x y -+=关于点()4,5对称的直线的方程为.【答案】23130x y -+=【分析】根据直线关于点对称方程的特点可设直线方程,在利用点到两条直线的距离相等即可求解直线方程.【详解】解:直线:2310l x y -+=关于点()4,5对称的直线的方程可设为230x y m -+=,其中1m ≠又()4,5点到直线:2310l x y -+=与到直线230x y m -+=的距离相等76m -=,所以13m =或1m =(舍).故所求直线方程为:23130x y -+=.故答案为:23130x y -+=.38.(2024高一·全国·课后作业)已知直线l 与直线1:1l y =及直线2:70l x y +-=分别交于点P ,Q .若PQ 的中点为点()1,1M -,则直线l 的斜率为.【答案】23-【分析】由点,P Q 关于点M 对称,运算可得解.【详解】解:设(),1P a ,则()2,3Q a --.由点Q 在直线2l 上,得2370a -+-=,2a =-.故()2,1P -.所以直线l 的斜率为()1121k --=--,所以23k =-故答案为23-【点睛】本题考查了点关于点对称问题,属基础题.39.(2024高二上·辽宁大连·阶段练习)设点A 在x 轴上,点B 在y 轴上,AB 的中点是1(2)P -,,则AB 等于【答案】【解析】根据点A 在x 轴上,点B 在y 轴上,且AB 的中点是1(2)P -,,利用中点坐标公式得到A ,B 的坐标,再利用两点间的距离公式求解.【详解】因为点A 在x 轴上,点B 在y 轴上,且AB 的中点是1(2)P -,,所以(40),(02),,-A B ,所以=AB 故答案为:【点睛】本题主要考查两点间的距离公式和中点坐标公式的应用,属于基础题.40.(2024高三上·黑龙江哈尔滨·期中)点()0,1-到直线()2y k x =+的距离的最大值是.【分析】直线()2y k x =+恒过点()2,0A -,根据几何关系可得,点()0,1B -到直线()1y k x =+的距离的最大值为||AB .【详解】因为直线()2y k x =+恒过点()2,0A -,记()0,1B -,直线()2y k x =+为直线l ,则当AB l ⊥时,此时点()0,1B -到直线()1y k x =+的距离最大,∴点()0,1-到直线()1y k x =+距离的最大值为:AB =.41.(2024高二上·江苏南通·期中)已知点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标为()2,1-,则线段AB 的长度为.【答案】25【分析】利用直角三角形的几何性质得出2AB OM =,利用两点间的距离公式可求得结果.【详解】在平面直角坐标系中,AO BO ⊥,则ABO 为直角三角形,且AB 为斜边,故()22222125AB OM ==+-=.故答案为:542.(2024高二·全国·课堂例题)已知点()2,1A ,()3,4B ,()2,1C --,则ABC V 的面积为.【答案】5【分析】利用两点间距离公式求出一边长,再根据两点式求出该边所在直线的方程,利用点到直线的距离公式求高,进而求得三角形面积.【详解】设AB 边上的高为h ,则h 就是点C 到AB 所在直线的距离.易知()()22324110AB -+-.由两点式可得AB 边所在直线的方程为124132y x --=--,即350x y --=.点()2,1C --到直线350x y --=的距离()()()2232151031h ⨯----==+-所以ABC V 的面积为111010522ABC S AB h =⨯⨯=⨯△.故答案为:543.(2024·云南保山·一模)已知坐标原点为O ,过点()P 2,6作直线()2mx 4m n y 2n 0(m,-++=n 不同时为零)的垂线,垂足为M ,则OM 的取值范围是.【答案】5⎡+⎣【分析】根据题意,将直线变形为()()2420m x y n y ---=,分析可得该直线恒过点()4,2,设()4,2Q ,进而分析可得点M 的轨迹是以PQ 为直径的圆,其方程为()()22345x y -+-=,据此分析可得答案.【详解】根据题意,直线()2420mx m n y n -++=,即()()2420m x y n y ---=,则有2402x y y -=⎧⎨=⎩,解可得42x y =⎧⎨=⎩,则直线l 恒过点()4,2.设()4,2Q ,又由MP 与直线垂直,且M 为垂足,则点M 的轨迹是以PQ 为直径的圆,其方程为()()22345x y -+-=,所以55OM -≤+;即OM 的取值范围是5⎡+⎣;故答案为5⎡+⎣.【点睛】此类问题为“隐形圆问题”,常规的处理办法是找出动点所在的轨迹(通常为圆),常见的“隐形圆”有:(1)如果,A B 为定点,且动点M 满足()1MA MB λλ=≠,则动点M 的轨迹为圆;(2)如果ΔA 中,BC 为定长,A 为定值,则动点A 的轨迹为一段圆弧.特别地,当2A π=,则A 的轨迹为圆(除去,B C );(3)如果,A B 为定点,且动点M 满足22MA MB λ+=(λ为正常数),则动点M 的轨迹为圆;44.(2024高二上·全国·课后作业)已知点(),2P a 、()2,3A --、()1,1B ,且PA PB =,则a =.【答案】92-【分析】利用平面内两点间的距离公式可得出关于a 的等式,解之即可.【详解】已知点(),2P a 、()2,3A --、()1,1B ,且PA PB =,92a =-.故答案为:92-.45.(2024高二上·安徽六安·期中)已知两直线1110a x b y +-=和2210a x b y +-=的交点为(1,2)P ,则过111(,),Q a b 222(,)Q a b 两点的直线方程为.【答案】210x y +-=【分析】根据两直线1110a x b y +-=和2210a x b y +-=的交点列方程,对比后求得直线12Q Q 的方程.【详解】依题意两直线1110a x b y +-=和2210a x b y +-=的交点为(1,2)P ,所以112212210,210,a b a b Q Q +-=+-=,在直线210x y +-=上,所以过111(,),Q a b 222(,)Q a b 两点所在直线方程为210x y +-=.故答案为:210x y +-=46.(2024高三上·上海青浦·阶段练习)在平面直角坐标系xOy 中,若动点(,)P a b 到两直线1:l y x =和2:2l y x =-+,则22a b +的最大值为.【答案】8【分析】由已知可知两直线12l l ⊥,取P 在12,l l 的右侧时,分别过P 作两直线的垂线,结合几何性质确定P 点轨迹,即可求得22a b +的最大值,其他位置同理可得.【详解】若动点(),P a b 到两直线1:l y x =和2:2l y x =-+12,l l 交点为()121,1,,T l l 的斜率分别为1,1-,则12l l ⊥,P 在12,l l 的右侧时,过P 分别向12,l l 引垂线,垂足分别为Q R 、,那么PQ PR +过P 作y 轴的平行线,与12,l l 交点为C B 、如图,则,PQ TR PR RB ==,所以TR RB +其它位置同理,那么点P 轨迹为正方形ABCD ,当P 在()2,2C 时,PO 取得最大值222||a b PO +=取得最大值8.故答案为:8.。

高三数学基础突破复习检测3

高三数学基础突破复习检测3

1.在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t -1ty =t +1t (t 为参数),l 与C 相交于A ,B 两点,则|AB |=________.答案 2 5解析 因为ρ(sin θ-3cos θ)=0,所以ρsin θ-3ρcos θ=0,所以y-3x =0,即y =3x .由⎩⎪⎨⎪⎧x =t -1t ,y =t +1t ,消去t 得y 2-x 2=4.由⎩⎨⎧y =3x ,y 2-x 2=4,解得⎩⎨⎧x =22,y =322,或⎩⎨⎧x =-22,y =-322,不妨令A ⎝ ⎛⎭⎪⎫22,322,B ⎝⎛⎭⎪⎫-22,-322,由两点间的距离公式得 |AB |=⎝ ⎛⎭⎪⎫22+222+⎝ ⎛⎭⎪⎫322+3222=2 5. 2.已知曲线C 1的参数方程是⎩⎨⎧x =ty =3t 3(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,则C 1与C 2交点的直角坐标为________.答案 (3,1)解析由⎩⎪⎨⎪⎧x =t ,y =3t3,消去t ,得y =33x (x ≥0),即曲线C 1的普通方程是y =33x (x ≥0);由ρ=2,得ρ2=4,得x 2+y 2=4,即曲线C 2的直角坐标方程是x 2+y 2=4.联立⎩⎪⎨⎪⎧y =33x (x ≥0),x 2+y 2=4,解得⎩⎨⎧x =3,y =1.故曲线C 1,C 2交点的直角坐标为(3,1).3.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α,(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解 (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎨⎧x =0,y =0,或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3.当α=5π6时,|AB |取得最大值,最大值为4.4.已知直线l :⎩⎨⎧x =5+32ty =3+12t(t 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值.解 (1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将⎩⎨⎧x =5+32t ,y =3+12t ,代入②,得t 2+53t +18=0,设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知,|MA |·|MB |=|t 1t 2|=18.5.在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t ,(t为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.解 (1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3.(2)设P ⎝⎛⎭⎪⎫3+12t ,32t ,又C (0,3),则|PC |=⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32=t 2+12,故当t =0时,|PC |取得最小值, 此时,P 点的直角坐标为(3,0).6.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =1+3cos ty =-2+3sin t(t 为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m (m ∈R ).(1)求圆C 的普通方程及直线l 的直角坐标方程; (2)设圆心C 到直线l 的距离等于2,求m 的值.解 (1)消去参数t ,得到圆C 的普通方程为(x -1)2+(y +2)2=9. 由2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m ,得ρsin θ-ρcos θ-m =0.所以直线l 的直角坐标方程为x -y +m =0. (2)依题意,圆心C 到直线l 的距离等于2, 即|1-(-2)+m |2=2,解得m =-3±2 2.7.已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解(1)曲线C 的参数方程为⎩⎨⎧x =2cos θy =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|.则|P A |=d sin30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255, 当sin(θ+α)=1时,|P A |取得最小值,最小值为255.8.在直角坐标系xOy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解 (1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1)可得C 的参数方程为⎩⎨⎧x =1+cos ty =sin t(t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以C (1,0)为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线CD 与l 的斜率相同,∴sin t cos t =tan t =3,∴t =π3,故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.9.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22ty =2+22t(t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解 将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t ,代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,解之得t 1=0,t 2=-8 2.所以AB =|t 1-t 2|=8 2.沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。

辽宁省抚顺市2024高三冲刺(高考数学)人教版质量检测(自测卷)完整试卷

辽宁省抚顺市2024高三冲刺(高考数学)人教版质量检测(自测卷)完整试卷

辽宁省抚顺市2024高三冲刺(高考数学)人教版质量检测(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题函数在区间上有3个极值点,则m的取值范围为()A.B.C.D.第(2)题设集合的真子集个数为()A.16B.8C.7D.4第(3)题若,满足,则的最大值为A.0B.3C.4D.5第(4)题已知,其中为虚数单位,则()A.5B.C.2D.第(5)题设是公差为3的等差数列,且,若,则()A.21B.25C.27D.31第(6)题已知,则()A.B.C.D.第(7)题在极坐标系中,圆的垂直于极轴的两条切线方程分别为A.B.C.D.第(8)题甲盒子装有3个红球,1个黄球,乙盒中装有1个红球,3个黄球,同时从甲乙两盒中取出个球交换,分别记甲乙两个盒子中红球个数的数学期望为,则以下结论错误的是A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题2021年8月8日,第32届夏季奥林匹克运动会闭幕,中国代表团共夺得38枚金牌、32枚银牌、18枚铜牌.下表是本届奥运会夺得金牌数前10名的代表团获得的金牌数、银牌数、铜牌数和奖牌总数,则对这10个代表团来说,以下结论中正确的是()排名代表团金牌数银牌数铜牌数奖牌总数1美国3941331132中国383218883日本271417584英国222122655俄罗斯奥委会202823716澳大利亚17722467荷兰101214368法国101211339德国1011163710意大利10102040A.金牌数的众数是10B.银牌数的中位数是12C.铜牌数的平均数是19D.奖牌总数的极差是80第(2)题已知为圆锥底面圆的直径(为顶点,为圆心),点为圆上异于的动点,,研究发现:平面和直线所成的角为,该圆锥侧面与平面的交线为曲线.当时,曲线为圆;当时,曲线为椭圆;当时,曲线为抛物线;当时,曲线为双曲线.则下列结论正确的为()A.过该圆锥顶点的平面截此圆锥所得截面面积的最大值为2B.的取值范围为C.若为线段上的动点,则D.若,则曲线必为双曲线的一部分第(3)题已知非零复数在复平面内对应的点分别为为坐标原点,则()A.当时,B.当时,C.若,则存在实数,使得D.若,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在平行四边形中,点,,.若与的交点为,则的中点的坐标为__________,第(2)题如图,在四棱锥中,,,过AB的平面分别交PD,PC于点E,F,且,记四棱锥的体积为,几何体ABCDEF的体积为,则___________.第(3)题函数为偶函数,且图象关于直线对称,,则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知在△ABC中,以B为坐标原点,角A,B,C所对应的边分别为a,b,c,且a=4,若.(1)求A点的轨迹方程C;(2)已知坐标原点为O,若过点的两条直线与C分别交于M,N两点,设,,两直线斜率分别为,且,连接M,N交x轴于点Q,△OMQ,△OMN面积分别为,,求的最大值.第(2)题已知数列中,,设数列满足:(1)求证:数列是等差数列,并求数列的通项公式;(2)求数列的通项公式(3)若数列满足,求数列的前项和;第(3)题已知在上任意一点处的切线为,若过右焦点的直线交椭圆于两点,已知在点处切线相交于.(1)求点的轨迹方程;(2)①若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于两点,证明为定值.②四边形的面积是否有最小值,若有请求出最小值;若没有请说明理由.第(4)题已知,,均为正数,且.(1)是否存在,,,使得,说明理由;(2)证明:.第(5)题已知等比数列的首项为,公比为整数,且.(1)求的通项公式;(2)设数列的前项和为,比较与的大小关系,并说明理由.。

河北省廊坊市2024高三冲刺(高考数学)人教版质量检测(拓展卷)完整试卷

河北省廊坊市2024高三冲刺(高考数学)人教版质量检测(拓展卷)完整试卷

河北省廊坊市2024高三冲刺(高考数学)人教版质量检测(拓展卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知双曲线C的顶点为,,虚轴的一个端点为B,且是一个等边三角形,则双曲线C的离心率为()A.2B.C.3D.第(2)题已知集合,,则()A.B.C.D.第(3)题已知集合,则()A.B.C.D.第(4)题2019年12月,国家统计局发布社会消费品零售总额1~11月相关数据,如下图所示,下面分析正确的是()2019年11月份社会消费品零售总额主要数据指标11月1~11绝对量(亿元)同比增长(%)绝对量(亿元)同比增长(%)社会消费品零售总额380948.03728728.0其中:除汽车以外的消费品零售额346299.13379519.0其中:限额以上单位消费品零售额13965 4.4132639 3.9其中:实物商品往上零售额——7603219.7按经营地分城镇323457.93186147.9乡村57489.1542599.0A.2019年1~11月中,6月是社会消费品零售总额最高的月份B.2019年11月,社会消费品总额乡村增长率高于城市增长率,所以乡村对拉动社会消费品总额总增长率的作用大于城镇C.2019年前3季度中,第一季度平均同比增长率最高D.2019年1~11月份,社会消费品零售总额372872亿元,其中汽车消费品零售总额34921亿元第(5)题《孙子算经》是中国古代重要的数学著作,据书中记载,中国古代诸侯的等级从低到高分为五级:男、子、伯、侯、公.现有每个级别的诸侯各一人,共5人,要把80个橘子分完且每人都要分到橘子,级别每高一级就多分个(为正整数),若按这种方法分橘子,“子”恰好分得13个橘子的概率是()A.B.C.D.第(6)题若全集,集合,,则()A.B.C.D.第(7)题用随机试验的方式估算圆周率,可以向图中的正方形中随机撒100粒沙粒,统计得到正方形内切圆中有81粒沙粒,则可据此试验结果估算圆周率约为()A.2.03B.3.05C.3.14D.3.24第(8)题的展开式中的系数为()A.B.C.30D.60二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题设集合,,若,则的值可以为()A.1B.0C.D.第(2)题已知抛物线的焦点为F,顶点为O,过点F的直线与抛物线交于A,B两点,A在第一象限,若,则下列结论正确的是()A.直线的斜率为B.线段AB的长度为C.D.以AF为直径的圆与y轴相切第(3)题已知随机性离散变量的分布列如下,则的值可以是()012A.B.C.D.1三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题从抛物线上一点引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则的面积为_______.第(2)题将一个圆形纸片裁成两个扇形,再分别卷成甲、乙两个圆锥的侧面,甲、乙两个圆锥的侧面积分别为和,体积分别为和.若,则__________.第(3)题过平面内一点作曲线两条互相垂直的切线,,切点为,(,不重合),设直线,分别与轴交于点,,则__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,m为的最小值.(1)求m的植,(2)已知实数n,p,q满足,,且,证明:.第(2)题已知函数().(1)若恒成立,求a的取值范围;(2)若,证明:在有唯一的极值点x,且.第(3)题一个盒子中装有4个编号依次为1、2、3、4的球,这4个球除号码外完全相同,先从盒子中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为.(Ⅰ)列出所有可能结果;(Ⅱ)求事件“取出球的号码之和小于4”及事件 “编号”的概率.第(4)题如图,正方形对角线的交点为,四边形为矩形,平面平面为的中点,为的中点.(1)证明:平面.(2)若,求二面角的余弦值.第(5)题已知数列满足,且.(1)设,求证是等比数列;(2)求数列的前项和.。

江苏省宿迁市2024高三冲刺(高考数学)人教版质量检测(拓展卷)完整试卷

江苏省宿迁市2024高三冲刺(高考数学)人教版质量检测(拓展卷)完整试卷

江苏省宿迁市2024高三冲刺(高考数学)人教版质量检测(拓展卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若,则复数在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限第(2)题已知集合,,则( )A .B .C .D .第(3)题已知复数满足,其中是虚数单位,则复数的虚部为( )A .B .C .1D .第(4)题函数的定义域是( )A .B .C .D .第(5)题如图,球的半径为,球面上的三个点,,的外接圆为圆,且,则三棱锥的体积最大值是( )A.B .C .D .第(6)题已知复数满足(其中为虚数单位),则( )A .B .C .D .第(7)题如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,是上底面上其余的八个点,则的取值的个数为A .1B .2C .4D .8第(8)题世界大学生运动会(简称大运会)由国际大学生体育联合会主办,每两年举办一届,是规模仅次于奥运会的世界综合性运动会,第31届大运会将于2023年7月28日至8月8日在成都召开.为办好本届大运会,组委会精心招募了一批志愿者,现准备将甲、乙等6名志愿者安排进“东安湖体育公园”,“凤凰山体育公园”,“四川省体育馆”工作,每个地方安排两人且每人只能在一个场馆工作.若每位志愿者被分到各个场馆的可能性相同,则甲,乙两人被安排在同一个场馆的概率为( )A.B .C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,则下列结论正确的有( )A .的最大值为B .的最小值为C.的最小值为3D.第(2)题高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德,牛顿并列为世界三大数学家,用表示不超过x的最大整数,则称为高斯函数,例如,.则下列说法正确的是()A.函数在区间上单调递增B .若函数,则的值域为C.若函数,则的值域为D.,第(3)题关于函数,下列说法正确的有()A.的定义域为B.的函数图象关于y轴对称C.的函数图象关于原点对称D.在上单调递增三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若对于任意实数,有,则的值为__________.第(2)题已知是夹角为的两个单位向量,,若,则实数_______.第(3)题矩形ABCD中,,现将沿对角线AC折起,得到四面体,若异面直线与所成角为,则______;若二面角的大小为,则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知集合,若集合,且对任意的,存在,,使得(其中),则称集合为集合的一个元基底.(1)分别判断下列集合是否为集合的一个二元基底,并说明理由;①,;②,.(2)若集合是集合的一个元基底,证明:;(3)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底.第(2)题已知函数.(1)若曲线在点处的切线与直线平行,求出这条切线的方程;(2)讨论函数的单调性.第(3)题已知,当时,.(1)若函数的图象过点,求此时函数的解析式;(2)若函数只有一个零点,求实数a的值.第(4)题已知椭圆的四个顶点围成的四边形的面积为原点到直线的距离为(1)求椭圆的方程;(2)已知定点,是否存在过的直线,使与椭圆交于两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程;若不存在,请说明理由.第(5)题在直角坐标系中,直线与抛物线交于,两点.(1)证明:为钝角三角形;(2)若直线与直线平行,直线与抛物线相切,切点为,且的面积为,求直线的方程.。

辽宁省抚顺市2024高三冲刺(高考数学)人教版能力评测(备考卷)完整试卷

辽宁省抚顺市2024高三冲刺(高考数学)人教版能力评测(备考卷)完整试卷

辽宁省抚顺市2024高三冲刺(高考数学)人教版能力评测(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知角,的顶点均为坐标原点,始边均为x轴正半轴,终边分别过点,,则()A.或B.3或C.D.第(2)题关于函数,有下述三个结论:①函数的一个周期为;②函数在上单调递增;③函数的值域为.其中所有正确结论的编号是()A.①②B.②C.②③D.③第(3)题设变量满足,则的最大值和最小值分别为()A.1,B.2,C.1,D.2,第(4)题设函数,若关于的不等式有且仅有一个整数解,则正数的取值范围是()A.B.C.D.第(5)题某校组织知识竞赛,已知甲同学答对第一题的概率为,从第二题开始,甲同学回答第题时答错的概率为,,当时,恒成立,则的最大值为()A.B.C.D.第(6)题已知平面向量,,若与为单位正交基底,则与夹角的余弦值为()A.B.C.D.1第(7)题已知函数,若函数存在零点,则实数的取值范围为()A.B.C.D.第(8)题下列说法中,错误的有()A.用决定系数来刻画回归的效果时,的值越接近1,说明模型拟合的效果越好B .已知随机变量,若,则C.对于随机事件与,若,,则事件与独立D.已知采用分层抽样得到的商三年级100名男生和50名女生的身高情况为:男生样本平均数为173,女生样本平均数为164,则总体样本平均数为170二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题在中,内角,,的对边分别为,,,下列说法中正确的是()A.若为锐角三角形,则B.若,则为等腰三角形C.若,则D.若,,,则符合条件的有两个第(2)题图,在边长为4的正方形中,为的中点,为的中点.若分别沿,把这个正方形折成一个四面体,使、两点重合,重合后的点记为,则在四面体中,下列结论正确的是()A.B.到直线的距离为C.三棱锥外接球的半径为D.直线与所成角的余弦值为第(3)题双曲线的左、右焦点分别为点,斜率为正的渐近线为,过点作直线的垂线,垂足为点,交双曲线于点,设点是双曲线上任意一点,若,则()A.双曲线的离心率为B.双曲线的共轭双曲线方程为C.当点位于双曲线右支时,D.点到两渐近线的距离之积为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在边长为的正三角形中,点是边上的中点,则___________.第(2)题设是表面积为的球的球面上的五个点,平面,且四边形为正方形,则四棱锥体积的最大值为__________.第(3)题一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如图所示,左视图是一个矩形,则这个矩形的面积是____________ .四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,.(1)若,讨论函数的单调性;(2)当时,恒成立,求的取值范围.第(2)题如图椭圆C:的离心率为,点在椭圆C上.过椭圆的左焦点F的直线l与椭圆C交于C,D两点,并与y轴交于点M,A,B分别为椭圆的上、下顶点,直线AD与直线BC交于点N.(1)求椭圆C的标准方程;(2)已知O为坐标原点,当点M异于A,B两点时,求证:为定值.第(3)题已知函数,.(1)当时,讨论的单调性;(2)若存在唯一极值点,求的取值范围.第(4)题设函数,其中是自然对数的底数,.(1)若,求的最小值;(2)若,证明:恒成立.第(5)题已知抛物线:上一点的纵坐标为3,点到焦点距离为5.(1)求抛物线的方程:(2)过点作直线交于A,B两点,过点A,B分别作C的切线与,与相交于点,过点A作直线垂直于,过点作直线垂直于,与相交于点E,、、、分别与轴交于点P、Q、R、S.记、、、的面积分别为、、、.若,求实数的取值范围.。

江苏省宿迁市2024高三冲刺(高考数学)苏教版质量检测(巩固卷)完整试卷

江苏省宿迁市2024高三冲刺(高考数学)苏教版质量检测(巩固卷)完整试卷

江苏省宿迁市2024高三冲刺(高考数学)苏教版质量检测(巩固卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题我国魏晋时期的数学家刘徽用“割圆术”科学地求出了圆周率的结果.他的方法是从直径为2尺的圆内接正六边形开始割圆,依次得正十二边形、正二十四边形……割得越细,正多边形面积和圆面积之差越小,他通过计算正3072边形的面积估算出了的值.某同学利用刘徽的“割圆术”思想设计了如图所示的程序框图,则输出的值为()A.8B.9C.10D.11第(2)题已知,则实数a的取值范围为()A.B.C.D.第(3)题已知椭圆的右焦点为,上顶点为,若直线与圆:相切,则该椭圆的离心率为()A.B.C.D.或第(4)题函数的最小正周期为π,将的图象向左平移个单位长度后,得到一个偶函数的图象,则()A.B.C.D.第(5)题为了降低或消除白炽灯对眼睛造成的眩光,给光源加上一个不透光材料做的灯罩,可以起到十分显著的效果.某一灯罩的防止眩光范围,可用遮光角这一水平夹角来衡量.遮光角是指灯罩边沿和发光体边沿的连线与水平线所成的夹角,图中灯罩的遮光角用表示.若图中,,且,则()A.44B.66C.88D.110第(6)题已知集合,,则()A.B.C.D.第(7)题如图所示,已知三棱锥中,底面为等腰直角三角形,斜边,侧面为正三角形,D为的中点,底面,则三棱锥外接球的表面积为()A.B.C.D.第(8)题将函数的图象向左平移个单位长度,所得图象的对称轴中与y轴距离最近的是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题定义在上的函数的导函数满足,当且仅当时,等号成立,则必有()A.B.C.D.第(2)题已知函数的定义域为,且,若,则下列说法正确的是()A.B.有最大值C.D.函数是奇函数第(3)题已知复数,下列说法正确的是()A.若为纯虚数,则B.若是的共轭复数,则C.若,则D.若,则取最大值时,三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知,若关于的方程恰有三个不同的解,则满足上述条件的的值可以为_____________.(写出一个即可)第(2)题如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=1,AC=CD=DA=2,动点M在边DC上(不同于D点),P为边AB上任意一点,沿AM将△ADM翻折成△AD'M,当平面AD'M垂直于平面ABC时,线段PD'长度的最小值为_____.第(3)题在中,,,,为外一点,满足,则三棱锥的外接球的半径为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在四棱锥中,平面,底面是等腰梯形,,.(1)求证:平面平面;(2)若,,直线与平面所成的角为,求四棱锥的体积.第(2)题如图,在四棱锥中,底面为直角梯形,,,底面,为的中点,,.(1)证明:平面;(2)求点到平面的距离.第(3)题已知函数.(1)当时,求函数的单调区间;(2)若函数的零点至少有两个,求实数的最小值.第(4)题以坐标原点为圆心的两个同心圆半径分别为和,为大圆上一动点,大圆半径与小圆相交于点轴于于点的轨迹为.(1)求点轨迹的方程;(2)点,若点在上,且直线的斜率乘积为,线段的中点,当直线与轴的截距为负数时,求的余弦值.第(5)题某人工智能研究实验室开发出一款全新聊天机器人棋型,它能够通过学习和理解人类的语言来进行对话.聊天机器人棋型的开发主要采用(人类反馈强化学习)技术,在测试它时,如果输入的问题没有语法错误,则它的回答被采纳的概率为,当出现语法错误时,它的回答被采纳的概率为.(1)在某次测试中输入了7个问题,聊天机器人棋型的回答有5个被采纳,现从这7个问题中抽取4个,以表示抽取的问题中回答被采纳的问题个数,求的分布列和数学期望;(2)设输入的问题出现语法错误的概率为,若聊天机器人棋型的回答被采纳的概率为,求的值.。

福建省三明市2024高三冲刺(高考数学)人教版质量检测(拓展卷)完整试卷

福建省三明市2024高三冲刺(高考数学)人教版质量检测(拓展卷)完整试卷

福建省三明市2024高三冲刺(高考数学)人教版质量检测(拓展卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知数据是某市100个普通职工2023年3月份的收入(均不超过0.8万元),设这100个数据的中位数为,平均数为,如果再加上某人2023年3月份的收入(约1万元),则相对于,,这101个数据下列说法正确的是()A.极差一定不变B.中位数可能不变C.平均数一定不变D.众数一定改变第(2)题中国古代制定乐律的生成方法是最早见于《管子·地员篇》的三分损益法,三分损益包含两个含义:三分损一和三分益一.根据某一特定的弦,去其,即三分损一,可得出该弦音的上方五度音;将该弦增长,即三分益一,可得出该弦音的下方四度音.中国古代的五声音阶:宫、徵(zhǐ),商、羽、角(jué),就是按三分损一和三分益一的顺序交替,连续使用产生的.若五音中的“宫”的律数为81,请根据上述律数演算法推算出“羽”的律数为()A.72B.48C.54D.64第(3)题已知集合,,,则()A.B.C.D.第(4)题执行如图所示的程序框图,输出的()A.3B.4C.5D.6第(5)题集合,,则()A.B.C.D.第(6)题下列函数中,既是定义域内单调递增函数,又是奇函数的为()A.B.C.D.第(7)题已知点在抛物线:上,则的焦点到其准线的距离为()A.B.C.1D.2第(8)题已知是定义在上的奇函数,,且在上单调递增,则不等式的解集为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题掷一枚骰子,记事件:掷出的点数为偶数;事件:掷出的点数大于2.则下列说法正确的是()A.B.C.D.第(2)题已知函数,则()A.有两个极值点B.有两个零点C.点是曲线的对称中心D.过点可作曲线的两条切线第(3)题已知等比数列的公比为2,且,,成等差数列,则下列命题正确的是()A.;B.,,成等差数列C.是等比数列;D.,,,,,成等差数列三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在中,角的对边分别是,已知,三角形面积为12,则______.第(2)题设是随机事件,且,则______.第(3)题对某实验项目进行测试,测试方法:①共进行3轮测试;②每轮测试2次,若至少合格1次,则本轮通过,否则不通过.已知测试1次合格的概率为,如果各次测试合格与否互不影响,则在一轮测试中,通过的概率为________;在3轮测试中,通过的次数X的期望是________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题平面直角坐标系中,椭圆的焦距为,过焦点的最短弦长为.(1)求椭圆的标准方程;(2)斜率为的直线与椭圆交于两点,为椭圆上异于的点,求的面积的最大值.第(2)题设为正整数,各项均为正整数的数列定义如下:,(1)若,写出,,;(2)求证:数列单调递增的充要条件是为偶数;(3)若为奇数,是否存在满足?请说明理由.第(3)题对任意正整数,若存在数列,满足,其中,则称数列为正整数的生成数列,记为.(1)写出2018的生成数列;(2)求证:对任意正整数,存在唯一的生成数列;(3)求生成数列的所有项的和.第(4)题如图所示,为矩形,为梯形,平面平面,.(1)若点为的中点,证明:平面;(2)求异面直线与所成角的大小.第(5)题数列的前项和为,且对任意正整数,都有;(1)试证明数列是等差数列,并求其通项公式;(2)如果等比数列共有2017项,其首项与公比均为2,在数列的每相邻两项与之间插入个后,得到一个新数列,求数列中所有项的和;(3)如果存在,使不等式成立,若存在,求实数的范围,若不存在,请说明理由;。

江苏省宿迁市2024高三冲刺(高考数学)人教版能力评测(备考卷)完整试卷

江苏省宿迁市2024高三冲刺(高考数学)人教版能力评测(备考卷)完整试卷

江苏省宿迁市2024高三冲刺(高考数学)人教版能力评测(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数()有四个不同的零点,则实数的取值范围是A.B.C.D.第(2)题已知数列前项和为,且,则()A.B.C.D.第(3)题若关于的方程有三个不相等的实数解,,,且,其中,为自然对数的底数,则的值为()A.B.C.D.1第(4)题若函数有三个不同的零点,则实数a的取值范围是()A.B.C.D.第(5)题已知数列是单调递增数列,,,则实数的取值范围为()A.B.C.D.第(6)题如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数的图象上.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于( )A.B.C.D.第(7)题过原点且倾斜角为的直线与圆相切,则()A.B.C.D.第(8)题设直线,一束光线从原点出发沿射线向直线射出,经反射后与轴交于点,再次经轴反射后与轴交于点. 若,则的值为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数在上单调递增,则的可能值是( )A.B.C.D.第(2)题下列结论正确的是()A.若随机变量,且,则B.若随机变量满足,则C.若样本数据线性相关,则用最小二乘法估计得到的经验回归直线经过该组数据的中心点D.根据分类变量与的成对样本数据,计算得到 . 依据的独立性检验,可判断与有关第(3)题正四棱锥中,各棱长均为1,过点M,N,Q的平面交PD于点S,且,则()A.B.点S到平面PMQ的距离为C.平面MNQ与平面ABCD夹角的余弦值为D.两个四棱锥与体积之比为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,则使得成立的x的取值范围是___________.第(2)题在中,,,是中点,则__________.第(3)题已知数列满足,令,数列的前项和为,若对任意的恒成立,则实数的取值范围为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题后疫情时代,为了可持续发展,提高人民幸福指数,国家先后出台了多项减税增效政策.某地区对在职员工进行了个人所得税的调查,经过分层随机抽样,获得500位在职员工的个人所得税(单位:百元)数据,按,分成九组,制成如图所示的频率分布直方图:假设每个组内的数据是均匀分布的.(1)求这500名在职员工的个人所得税的中位数(保留到小数点后一位);(2)从个人所得税在三组内的在职员工中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人,记年个税在内的员工人数为,求的分布列和数学期望;(3)以样本的频率估计概率,从该地区所有在职员工中随机抽取100名员工,记年个税在内的员工人数为,求的数学期望与方差.第(2)题如图,直三棱柱的体积为1,,,.(1)求证:;(2)求二面角的余弦值.第(3)题如图,在平面四边形中,,,点在线段上,且,.(1)求的长;(2)若,,求的大小.第(4)题已知函数.(1)讨论的单调性;(2)若有两个不相同的零点,设的导函数为.证明:.第(5)题如图,是边长为4的等边三角形,,分别是,的中点,把沿折起,使到达位置,已知.(1)证明:平面平面;(2)求点到平面的距离.。

辽宁省抚顺市2024高三冲刺(高考数学)人教版能力评测(自测卷)完整试卷

辽宁省抚顺市2024高三冲刺(高考数学)人教版能力评测(自测卷)完整试卷

辽宁省抚顺市2024高三冲刺(高考数学)人教版能力评测(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题函数的图像A.关于原点对称B.关于直线对称C.关于轴对称D.关于直线对称第(2)题若点在圆上,则的取值范围为()A.B.C.D.第(3)题某学校有6个数学兴趣小组,每个小组都配备1位指导老师,现根据工作需要,学校准备将其中4位指导老师由原来的小组均相应的调整到其他兴趣小组,其余的2位指导老师仍在原来的兴趣小组(不作调整),如果调整后每个兴趣小组仍配备1位指导老师,则不同的调整方案为()A.135种B.360种C.90种D.270种第(4)题命题:“”的否定是()A.B.C.D.第(5)题已知斜率为1的直线把圆分成的两段弧的弧长之比为,则直线在轴上的截距为()A.或B.1或3C.1或D.或3第(6)题要测定古物的年代,可以用放射性碳法:在动植物的体内都含有微量的放射性.动植物死亡后,停止了新陈代谢,不再产生,且原来的会自动衰变.经过5730年,它的残余量只有原始量的一半.现用放射性碳法测得某古物中含量占原来的,推算该古物约是m年前的遗物(参考数据:),则m的值为()A.12302B.13304C.23004D.24034第(7)题若焦点在轴上的双曲线的离心率为3,则与的关系为()A.B.C.D.第(8)题函数的图象大致为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题设是非零复数,则下列选项正确的是()A.B.C.若,则的最小值为3D.若,则的最小值为.第(2)题一批产品中有3个正品,2个次品.现从中任意取出2件产品,记事件:“2个产品中至少有一个正品”,事件:“2个产品中至少有一个次品”,事件:“2个产品中有正品也有次品”,则下列结论正确的是()A.事件与事件为互斥事件B.事件与事件是相互独立事件C.D.第(3)题若均为不相等实数,下列命题中正确的是()A.若,,则B.若,,,则C.若,,则D.当时,不等式成立三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在平面直角坐标系中,函数(且)的图像恒过定点P,若角θ的终边过点P,则__________.第(2)题已知等差数列的前项和为,若成等差数列,且成等比数列.则__________第(3)题如图,点是抛物线的焦点,点分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是_______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题的内角、、所对的边分别为、、.已知,.(1)若,求;(2)若,求的面积.第(2)题如图,在斜三棱柱中,侧面底面,侧棱与底面成的角,,底面是边长为2的正三角形,其重心为点,是线段上一点,且.(1)求证:∥平面;(2)求三棱锥的体积.第(3)题在中,已知角,,所对的边分别为,,,.(1)求角的大小;(2)若为锐角三角形,求的取值范围.第(4)题已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.第(5)题某手机配件生产厂为了了解该厂生产同一型号配件的甲、乙两车间的生产质量.质检部门随机从甲、乙两车间各抽检了件配件,其检测结果:等级一等品二等品次品甲车间配件频数乙车间配件频数其中一、二等品为正品.(1)分别估计甲、乙车间生产出配件的正品的概率;(2)该厂规定一等品每件的出厂价是二等品每件的出厂价的倍.已知每件配件的生产成本为元,根据环保要求,每件次品需要处理费用为元,厂家要求生产的每件配件的平均利润不低于元,求二等品每件的出厂的最低价.。

江苏省宿迁市2024高三冲刺(高考数学)人教版能力评测(强化卷)完整试卷

江苏省宿迁市2024高三冲刺(高考数学)人教版能力评测(强化卷)完整试卷

江苏省宿迁市2024高三冲刺(高考数学)人教版能力评测(强化卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题球面上两点间距离的定义为:经过球面上两点的大圆在这两点间劣弧的长度(大圆就是经过球心的平面截球面所得的圆).设地球的半径为,若甲地位于北纬东经,乙地位于北纬西经,则甲、乙两地的球面距离为()A.B.C.D.第(2)题若函数有4个零点,则实数的取值范围是A.B.C.D.第(3)题线性分形又称为自相似分形,其图形的结构在几何变换下具有不变性,通过不断迭代生成无限精细的结构.一个正六边形的线性分形图如下图所示,若图1中正六边形的边长为1,图中正六边形的个数记为,所有正六边形的周长之和、面积之和分别记为,其中图中每个正六边形的边长是图中每个正六边形边长的,则下列说法正确的是()A.B.C.存在正数,使得恒成立D.第(4)题设全集,则如图阴影部分表示的集合为()A.B.C.D.第(5)题设集合,,,则下列集合不为空集的是()A.B.C.D.第(6)题2020年11月10日,我国“奋斗者”号载人深潜器在马里亚纳海沟成功坐底,下潜深度达到惊人的,创造了我国载人深潜的新记录.当“奋斗者”号下潜至某一深度时,处于其正上方海面处的科考船用声呐装置向“奋斗者”号发射声波.已知声波在海水中传播的平均速度约为,若从发出至回收到声波所用时间为,则“奋斗者”号的实际下潜深度约为()A.B.C.D.第(7)题现有6个同学站成一排照相,如果甲、乙两人必须相邻,而丙、丁两人不能相邻,那么不同的站法共有()种.A.144B.72C.36D.24第(8)题抛物线上的一点到焦点的距离为1,则点的纵坐标为()A.B.C.D.0二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题在平面直角坐标系中,已知点是一个动点,则下列说法正确的是()A.若,则点的轨迹为椭圆B.若,则点的轨迹为双曲线C.若,则点的轨迹为一条直线D.若,则点的轨迹为圆第(2)题已知平面向量,,,则下列说法正确的是()A.若,则或B .的充要条件是C .若,则D.若,则第(3)题已知向量,,,则下列命题正确的是()A .当且仅当时,B.在上的投影向量为C.存在θ,使得D.存在θ,使得三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在中,若,则______________第(2)题已知函数,若,则的值为______.第(3)题若复数,则________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题设函数.(1)讨论的单调性;(2)若函数有两个零点,,求实数a的范围.第(2)题在直角坐标系xoy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为.(1)写出C的普通方程并说明是什么曲线;(2)求l与C交点的直角坐标.第(3)题如图,在四棱台中,四边形是边长为4的菱形,,平面,.(1)证明:;(2)求二面角的正弦值.第(4)题已知函数(1)求不等式的解集;(2)设的最小数为,正数满足,求的最小值.第(5)题如图,已知多面体的底面为矩形,四边形为平行四边形,平面平面,点在线段上,且.(1)当时,证明:平面;(2)若直线与平面所成角的正弦值为,求的值.。

云南省曲靖市2024高三冲刺(高考数学)人教版能力评测(巩固卷)完整试卷

云南省曲靖市2024高三冲刺(高考数学)人教版能力评测(巩固卷)完整试卷

云南省曲靖市2024高三冲刺(高考数学)人教版能力评测(巩固卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知D是圆锥的顶点,O是圆锥底面圆的圆心,是底面圆的内接正三角形,若该圆锥的母线和底面圆的直径长度相等,则AO与CD所成角的余弦值为()A.B.C.D.第(2)题已知的展开式中的常数项为0,则()A.3B.C.2D.第(3)题已知全集,集合,则A.B.C.D.第(4)题已知定义在上的奇函数满足,当时,.若函数在区间上有10个零点,则实数的取值范围是()A.B.C.D.第(5)题将一个棱长为4的正四面体同一侧面上的各棱中点两两连接,得到一多面体,则这个多面体的外接球的体积为()A.B.C.D.第(6)题正多面体也称柏拉图立体,被誉为最有规律的立体结构,是所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形). 数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体. 如图,已知一个正八面体的棱长为2,,分别为棱,的中点,则直线和夹角的余弦值为()A.B.C.D.第(7)题函数在的最大值为m,在的最大值为n,则以下命题为假命题的是()A.,且B.,且C.,且D.,且第(8)题在四棱锥中,底面为正方形,为等边三角形,二面角为,则异面直线PC与AB所成角的余弦值为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题如图所示,在长方体中,,,点E是棱CD上的一个动点,F是BC的中点,,给出下列命题,其中真命题的().A.当E是CD的中点时,过的截面是四边形B.当点E是线段CD的中点时,点P在底面ABCD所在平面内,且平面,点Q是线段MP的中点,则点Q的轨迹是一条直线C.对于每一确定的E,在线段AB上存在唯一的一点H,使得平面D.过点M做长方体的外接球的截面,则截面面积的最小值为第(2)题有两组样本数据1,3,5,7,9和1,2,5,8,9,则这两组样本数据的()A.样本平均数相同B.样本中位数相同C.样本方差相同D.样本极差相同第(3)题如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段BC1上运动,则下列判断中正确的是( )A.DP∥面AB1D1B.三棱锥A﹣D1PC的体积为C.平面PB1D与平面ACD1所成二面角为90°D.异面直线与所成角的范围是三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题从的展开式各项的系数中任取两个,其和为奇数的概率是___________.第(2)题某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.第(3)题目前,全国已经有八省市确定实行选考模式,除语文、数学、英语必考外,还需要从物理、化学、生物、政治、历史、地理这六科中再选三科,某校甲、乙、丙、丁四位同学分别从化学、生物、历史、地理四门课程中各选一门课程,且所选课程互不相同,下面是关于他们选课的些信息:①甲和丙均不选地理,也不选生物:②乙不选生物,也不选历史:③如果甲不选历史,那么丁就不选生物,若以上信息都是正确的,则依据以上信息可推断丙同学所选的课程是___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知等比数列的前项和为,且.(1)求数列的通项公式;(2)在与之间插入个数,使这个数组成一个公差为的等差数列,求证数列的前项和.第(2)题在平面直角坐标系中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)若曲线C关于直线l对称,求a的值;(2)若为曲线C上两点,且,求面积的最大值.第(3)题已知,不等式的解集为.(1)求集合;(2),不等式恒成立,求正实数的最小值.第(4)题已知函数.(1)证明:;(2)求不等式的解集.第(5)题已知实数,,.(1)若,求的值;(2)求证:;(3)用反证法证明:.。

福建省三明市2024高三冲刺(高考数学)苏教版能力评测(巩固卷)完整试卷

福建省三明市2024高三冲刺(高考数学)苏教版能力评测(巩固卷)完整试卷

福建省三明市2024高三冲刺(高考数学)苏教版能力评测(巩固卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题函数在在区间上单调递增,则k得取值范围是()A.B.C.D.(-,1]第(2)题若实数满足不等式组,则的最大值为()A.B.C.D.3第(3)题抛掷两枚质地均匀的骰子,已知两枚骰子向上的点数之和为偶数,则向上的点数之和为8的概率为()A.B.C.D.第(4)题已知向量,,若,则()A.B.C.1D.第(5)题已知函数,其中是自然对数的底数,下列说法中错误的是()A.在是增函数B.是奇函数C.在上是增函数D .设,则满足的正整数的最小值是2第(6)题数列表示第n天午时某种细菌的数量.细菌在理想条件下第n天的日增长率.当这种细菌在实际条件下生长时,其日增长率会发生变化.下图描述了细菌在理想和实际两种状态下细菌数量Q随时间的变化规律.那么,对这种细菌在实际条件下日增长率的规律描述正确的是()A.B.C.D.第(7)题已知圆柱的母线长与底面的半径之比为,四边形为其轴截面,若点E为上底面圆弧的中点,则异面直线与所成的角为()A.B.C.D.第(8)题已知函数,若函数有两个零点,则实数a的取值范围为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题对于实数x,符号表示不超过x的最大整数,例如,.定义函数,则()A.函数的最大值为1B.函数的最小值为0C.D .时,方程有5个不同实数根第(2)题经研究,变量y与变量x具有线性相关关系,数据统计如下表,并且根据表中数据,求得y关于x的线性回归方程为,下列正确的是()x247101522y8.19.41214.418.524A.变量y与x呈正相关B.样本点的中心为(10,14.4)C.D.当时,y的估计值为13第(3)题下列是(,,)的必要条件的是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,则的解集为______.第(2)题若,则________.第(3)题若向量,不共线,且,则________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知公差不为0的等差数列的前项和为成等比数列,且.(1)求;(2)求数列的前项和.第(2)题如图,直线经过上的点,并且交直线于,连接.(1)求证:直线是的切线;(2)若的半径为,求的长.第(3)题画糖是一种以糖为材料在石板上进行造型的民间艺术,常见于公园与旅游景点.某师傅制作了一种新造型糖画,为了进行合理定价先进行试销售,其单价(元)与销量(个)相关数据如下表:(1)已知销量与单价具有线性相关关系,求关于的线性相关方程;(2)若该新造型糖画每个的成本为元,要使得进入售卖时利润最大,请利用所求的线性相关关系确定单价应该定为多少元?(结果保留到整数)参考公式:线性回归方程中斜率和截距最小二乘法估计计算公式:.参考数据:.第(4)题1.已知函数.(1)若是的极值点,求t的值,并讨论的单调性;(2)证明:当时,.第(5)题某晚报曾刊登过一则生活趣事,某市民唐某乘坐出租车时,在半途中骂骂咧咧要求司机临时停靠,打表计价结账,然后重新计价,继续前行,该市民解释说,根据经验,这样分开支付车费比一次性付费便宜一些,他的这一说法有道理吗?确实,由于出租车运价上调,有些人出行时会估计一下可能的价格,再决定是否乘坐出租车.据了解,2018年上海出租车在5时到23时之间起租价为14元/3千米,超起租里程单价为2.50元/千米,总里程超过15千米(不含15千米)部分按超起租里程单价加50%.此外,相关部门还规定了低速等候费和其他时段的计价办法,以及适合其他车型的计价办法.你乘坐过出租车吗?你会仿效那位市民唐某的做法吗?为什么?(1)根据上述情境你能提出什么数学问题?为了解决你的问题,你能否作出一些合理假设?(2)你能否根据你的假设建立数学模型,并回答你所提出的问题.。

辽宁省大连市2024高三冲刺(高考数学)人教版能力评测(巩固卷)完整试卷

辽宁省大连市2024高三冲刺(高考数学)人教版能力评测(巩固卷)完整试卷

辽宁省大连市2024高三冲刺(高考数学)人教版能力评测(巩固卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是()A.B.C.D.第(2)题已知圆是圆心为原点的单位圆,是圆上任意两个不同的点,,则的取值范围为()A.B.C.D.第(3)题命题“对于任意正数,都有”的否定是()A.对于任意正数,都有B.对于任意正数,都有C.存在正数,使得D.存在非正数,使得第(4)题已知点是曲线上任意一点,则的最大值为()A.B.C.D.第(5)题将函数的图象横坐标伸长为原来的2倍,再向左平移单位,得到函数的部分图象(如图所示).对于,,且,若,都有成立,则下列结论中不正确的是()A.B.C .在上单调递增D.函数在的零点为,则第(6)题已知抛物线,直线交抛物线于两点,与轴交于点,与抛物线的准线交于,若,则的取值范围是()A.B.或C.D.或第(7)题已知三棱锥中,,三棱锥的体积为,其外接球的体积为,则线段长度的最大值为()A.7B.8C.D.10第(8)题某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题在正方体中,,点满足,.下列结论正确的有()A.直线与一定为异面直线B.直线与平面所成角正弦值为C.四面体的体积恒定且为2D.当时,的最小值为第(2)题“脸谱”是戏曲舞台演出时的化妆造型艺术,更是中国传统戏曲文化的重要载体如图,“脸谱”图形可近似看作由半圆和半椭圆组成的曲线C,其方程为.则下列说法正确的是()A.曲线C包含的封闭图形内部(不含边界)有11个整数点(横、纵坐标均为整数)B.曲线C上任意一点到原点距离的最大值与最小值之和为5C.若A(0,-)、B(0,),P是曲线C下半部分中半椭圆上的一个动点,则cos∠APB的最小值为-D.画法几何的创始人加斯帕尔·蒙日发现:椭圆中任意两条互相垂直的切线,其交点都在与椭圆同中心的圆上,称该圆为椭圆的蒙日圆;那么曲线C中下半部分半椭圆扩充为整个椭圆C':后,椭圆C'的蒙日圆方程为:第(3)题设是坐标原点,抛物线的焦点为,点,是抛物线上两点,且.过点作直线的垂线交准线于点,则()A.过点恰有2条直线与抛物线有且仅有一个公共点B.的最小值为2C.的最小值为D.直线恒过焦点三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在的展开式中,常数项为_________.(用数字作答)第(2)题点A,B是抛物线上的两点,F是抛物线C的焦点,若,中点D到抛物线C的准线的距离为d,则的最小值为__________.第(3)题已知底面为正三角形、侧棱都相等的三棱锥的体积为,高为2,其各顶点都在同一球面上.则该球的表面积为__________________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题农业科研人员为了提高某农作物的产量,在一块试验田中随机抽取该农作物50株作研究,单株质量(单位:克)落在各个小组的频数分布如下表:数据分组频数4810121033(1)根据频数分布表,求该农作物单株质量落在的概率(用频率估计概率);(2)求这50株农作物质量的样本平均数;(同一组数据用该组区间的中点值作代表)(3)若这种农作物单株质量服从正态分布,其中近似为样本平均数,近似为样本方差,经过计算知,求.附:①若服从正态分布,则,;②.第(2)题已知,.(1)若,证明:;(2)若,证明:.第(3)题已知椭圆的左、右顶点分别为,,左、右焦点分别为,,离心率为,点,为线段的中点.(1)求椭圆的方程.(2)若过点且斜率不为0的直线与椭圆的交于,两点,已知直线与相交于点,试判断点是否在定直线上?若是,请求出定直线的方程;若不是,请说明理由.第(4)题已知点,在椭圆上.(1)求椭圆的方程;(2)直线与椭圆交于两个不同的点(异于),过作轴的垂线分别交直线于点,当是中点时,证明.直线过定点.第(5)题已知函数.(1)若,求函数的最值;(2)若,函数在上是增函数,求a的最大整数值.。

福建省三明市2024高三冲刺(高考数学)人教版能力评测(巩固卷)完整试卷

福建省三明市2024高三冲刺(高考数学)人教版能力评测(巩固卷)完整试卷

福建省三明市2024高三冲刺(高考数学)人教版能力评测(巩固卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知为函数的导函数,且,若,则方程有且仅有一个根时的取值范围是()A.B.C.D.第(2)题某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是()(锥体体积公式:,其中为底面面积,为高)A.B.C.D.第(3)题掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中事件发生的概率为( )A.B.C.D.第(4)题已知函数,,实数,满足,若,,使得成立,则的最大值为A.4B.C.D.3第(5)题()A.B.C.D.第(6)题已知向量,,若,则( )A.B.C.D.第(7)题在三棱锥中,,中点为,,则此三棱锥的外接球的表面积为A.B.C.D.第(8)题已知角的对边分别为满足,则角的最大值为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题记正四棱柱为,截面将正四棱柱分成两部分,点E,F,G,H分别在棱,,,上,且,,记,,,,则下列说法正确的是()A.四边形为矩形B.C.若截面是有一个角为的菱形,则截面与的底面夹角的正弦值为D.若的侧棱长为3,设,,,则在确定的空间直角坐标系中,不同的点共42个第(2)题如图,棱长为2的正方体的内切球为球,分别是棱,的中点,在棱上移动,则()A.对于任意点,平面B.直线被球截得的弦长为C.过直线的平面截球所得的所有截面圆中,半径最小的圆的面积为D.当为的中点时,过的平面截该正方体所得截面的面积为第(3)题已知,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题展开式中的常数项为______.第(2)题魔方又叫鲁比克方块(Rubk’sCube),是由匈牙利建筑学教授鲁比克•艾尔内于1974年发明的机械益智玩具,与华容道、独立钻石棋一起被国外智力专家并称为智力游戏界的三大不可思议.而魔方受欢迎的程度更是智力游戏界的奇迹.通常意义下的魔方,即指三阶魔方,三阶魔方可以看作是将一个各面上均涂有颜色的正方体的棱三等分,然后沿等分线把正方体切开所得,共由26个色块组成.现有一个复原好的三阶魔方,白面朝上,只可以扭动最外侧的六个表面,某人按规定将魔方随机扭动两次,每次均顺时针转动,记事件为“顶面白色色块的个数为3”,则事件发生的概率___________.第(3)题已知的展开式中的常数项为240,则展开式中项的系数为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,.(1)讨论在上的单调性;(2)当时,讨论在上的零点个数.第(2)题如图,在多面体中,平面⊥平面.四边形为正方形,四边形为梯形,且.(1)求证:⊥;(2)求直线与平面所成角的正弦值;(3)线段BD上是否存在点M,使得直线平面?若存在,求的值;若不存在,请说明理由.第(3)题如图,在多面体中,四边形与均为直角梯形,,,平面,,.(1)已知点为上一点,且,求证:与平面不平行;(2)已知直线与平面所成角的正弦值为,求该多面体的体积.第(4)题已知函数(e为自然对数的底数),其中.(1)讨论函数的单调性;(2)若函数的两个极值点为,证明:.第(5)题记为数列的前n项和,时,满足,.(1)求的通项公式;(2)求.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.根据下面给出的2004年至2018年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案 D解析根据柱形图可观察两个变量的相关性,易知A、B、C正确,2006年以来我国二氧化硫年排放量与年份负相关,选项D错误.故选D.2.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为()A.8 B.15C.16 D.32答案 C解析由标准差的性质知,2x1-1,2x2-1,…,2x0-1的标准差为2×8=16,故选C.3.重庆市2018年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是( ) A .19 B .20C .21.5D .23答案 B解析 根据茎叶图及中位数的概念,由茎叶图知,该组数据的中位数为20+202=20.故选B.4.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1365石 答案 B解析 根据样本估计总体,可得这批米内夹谷约为28254×1534≈169石.故选B.5.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.167 B.137C.123 D.93答案 B解析初中部女教师的人数为110×70%=77,高中部女教师的人数为150×(1-60%)=60,则该校女教师的人数为77+60=137,故选B.6.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3答案 D解析由随机抽样定义可知,每个个体成为样本的概率相等,故选D.7.为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8C.12 D.18答案 C解析设样本容量为n,由题意,得(0.24+0.16)×1×n=20,解得n=50.所以第三组频数为0.36×1×50=18.因为第三组中没有疗效的有6人,所以第三组中有疗效的人数为18-6=12.8.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.答案 4解析由系统抽样方法知,应把35人分成7组,每组5人,每组按规则抽取1人,因为成绩在区间[139,151]上的共有4组,故成绩在区间[139,151]上的运动员人数是4.9.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.答案24解析60×(0.015+0.025)×10=24.10.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A 2表示事件:“A 地区用户的满意度等级为非常满意”; C B 1表示事件:“B 地区用户的满意度等级为不满意”; C B 2表示事件:“B 地区用户的满意度等级为满意”, 则C A 1与C B 1独立,C A 2与C B 2独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2.P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,故P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,P (C )=1020×1620+820×420=0.48.11.某工厂36名工人的年龄数据如下表:分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值x 和方差s 2;(3)36名工人中年龄在x -s 与x +s 之间有多少人?所占的百分比是多少(精确到0.01 %)?解 (1)由系统抽样的知识可知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,故所有样本数据的编号为4n -2,n =1,2,…,9.其数据为:44,40,36,43,36,37,44,43,37.(2)x =44+40+…+379=40. 由方差公式知,s 2=19[(44-40)2+(40-40)2+…+(37-40)2]=1009.(3)因为s 2=1009,所以s =103∈(3,4),所以36名工人中年龄在x -s 和x +s 之间的人数等于在区间[37,43]内的人数,即40,40,41,…,39,共23人.所以36名工人中年龄在x -s 和x +s 之间的人数所占的百分比为2336≈63.89%.12.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个.”因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216.分布列为因为X~B,方差D(X)=3×0.6×(1-0.6)=0.72.13.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,3 9,36.根据上述数据得到样本的频率分布表如下:(1)1212(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.解(1)根据已知数据统计出n1=7,n2=2;计算得f1=0.28,f2=0.08.(2)由于组距为5,用频率组距得各组的纵坐标分别为0.024,0.040,0.064,0.056,0.016.不妨以0.008为纵坐标的一个单位长、5为横坐标的一个单位长画出样本频率分布直方图如下.(3)根据样本频率分布直方图,以频率估计概率,则在该厂任取1人,其日加工零件数落在区间(30,35]的频率为0.2,估计其概率为0.2.所以在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率P=1-C04(0.2)0(1-0.2)4=0.5904.。

相关文档
最新文档