美国伯乐电转化仪使用说明
伯乐显影仪的操作流程及注意事项
伯乐显影仪的操作流程及注意事项
操作流程:
1. 打开电源开关,待仪器启动并进入工作状态。
2. 将待显影的胶片放入伯乐显影仪的显影槽中,确保胶片完全浸没在显影液中。
3. 调节显影液的温度和浓度,一般根据胶片的要求进行调节。
确保显影液在适宜的温度和浓度范围内。
4. 设定显影时间,根据胶片的要求设置合适的显影时间。
5. 启动伯乐显影仪开始显影过程。
仪器会自动控制显影液的温度和搅拌速度。
6. 在显影过程中,可以通过观察显影仪的显示屏来了解显影的进程。
根据胶片要求,可以提前停止显影或继续延长显影时间。
7. 显影完成后,将胶片从显影槽中取出,并进行洗涤和定影等后续处理。
注意事项:
1. 在操作伯乐显影仪之前,需要了解所使用胶片的显影要求,包括温度、浓度和时间等参数,以便正确调节仪器。
2. 在放入胶片之前,确保显影槽干净,没有杂质和污染物。
可以用干净的布或棉签清洁显影槽表面。
3. 在调节显影液的温度和浓度时,可以使用温度计和浓度计等工具进行准确测量,以确保显影条件的准确性。
4. 在显影过程中,要定期检查显影液的温度和搅拌情况,确保显影液的稳定性和均匀性。
5. 注意个人安全防护,避免直接接触显影液或其他化学品。
使
用手套和护目镜等防护设备进行操作。
6. 在显影完成后,及时清洁和维护伯乐显影仪,确保仪器的正常运行和长久使用。
美国伯乐电转化仪使用说明
Gene pulser xcell TM Electroporation system quick guide产品名称: Gene Pulser Xcell 电穿孔系统产品型号: Gene Pulser Xcell 电穿孔系统产品展商: 众磊(北京)生物科技发展有限公司驻沪办简单介绍Gene Pulser Xcell 电穿孔系统Gene Pulser Xcell 电穿孔系统的详细介绍【介绍】电穿孔是功能强大的将核酸、蛋白及其它分子导入多种细胞的高效技术。
通过高强度的电场作用,瞬时提高细胞膜的通透性,从而吸收周围介质中的外源分子。
这种技术可以将核苷酸、DNA 与RNA 、蛋白、糖类、染料及病毒颗粒等导入原核和真核细胞内。
电转化相对其它物理和化学转化方法,是一种有价值和有效的替代方法。
Gene Pulser Xcell 系统的设计,基于Bio-Rad 15 年来在电转化技术上经验积累,它提供指数波和方波波型选择、系统配置选择及友好的用户界面。
主要特点指数波和方波波型确保所有细胞类型(原核及真核)均可获得最佳的电转化效果Bio-Rad 专利的* PulseTrac 电路和电弧保护设计,确保可重复性并保护样品模块化设计可根据研究需要选择系统用户友好的数字化界面,具有直观的编程以控制所有参数,包括附属模块的参数包括人工操作、预设规程、用户规程、一个优化规程及其它先进功能等程序选择指数波或方波脉冲选择Gene Pulser Xcell 系统可产生指数波和方波波型,使你选择最适合你细胞的波型与规程。
指数波和方波均能有效地用于电转化及电融合。
电穿孔波型对不同类型细胞的转化效率有很重要的影响。
左,指数衰变脉冲。
当一个充电至电压为V 0 的电容器放电到细胞,加在细胞上的电压随时间以指数方式下降。
从起始电压下降到V0 / e 所需的时间称为为时间常数τ, 一种方便的脉冲时间表达方式。
右,方波脉冲。
放电到样品后截断电容器脉冲可产生方波脉冲。
伯乐半干转膜仪说明书中文
伯乐半干转膜仪说明书中文伯乐半干转膜仪说明书一、产品概述\n伯乐半干转膜仪是一种用于分离液体和固体颗粒的实验室设备。
它采用半干转膜技术,通过膜的微孔将液体分离出来,从而实现固液分离的目的。
本仪器具有操作简便、效率高、分离效果好等特点,广泛应用于化学、生物、医药等领域。
二、产品结构\n伯乐半干转膜仪主要由以下部分组成:\n1. 转膜仪主机:包括电源开关、控制面板和显示屏等。
\n2. 转膜模块:包括转膜夹具和转膜杯等。
\n3. 液体收集容器:用于收集分离出的液体。
\n4. 固体残渣容器:用于收集分离出的固体残渣。
三、使用方法\n1. 将待处理的混合物倒入转膜杯中,注意不要超过杯口。
\n2. 将转膜杯放入转膜夹具中,并将夹具安装到主机上。
\n3. 打开电源开关,启动仪器。
\n4. 在控制面板上设置所需的分离参数,如转速、时间等。
\n5. 按下启动按钮,仪器开始工作。
\n6. 待分离完成后,关闭电源开关,停止仪器运行。
\n7. 将转膜杯从夹具中取出,将液体倒入液体收集容器中。
\n8. 将固体残渣从转膜杯中取出,放入固体残渣容器中。
四、注意事项\n1. 在操作过程中,请佩戴防护手套和护目镜等个人防护装备。
\n2. 请确保待处理的混合物不超过转膜杯的容量范围。
\n3. 在设置分离参数时,请根据实际需要进行调整,并确保参数合理可行。
\n4. 请勿将手指或其他物体接触到转膜模块内部,以免损坏设备或造成伤害。
\n5. 使用完毕后,请及时清洁仪器,并保持其干燥。
五、维护保养\n1.定期清洁仪器表面和内部零部件,以保持其正常运行和延长使用寿命。
\n2. 如发现任何故障或异常情况,请立即停止使用,并联系售后服务人员进行维修。
六、故障排除\n1. 仪器无法启动:请检查电源是否连接正常,电源开关是否打开。
\n2. 转膜杯无法安装:请检查转膜夹具是否正确安装,转膜杯是否损坏。
\n3. 分离效果不理想:请检查分离参数设置是否合理,转膜模块是否损坏。
美国Bio-rad伯乐Trans-Blot SD 半干转印槽使用手册
Trans-Blot®SD Semi-Dry Electrophoretic Transfer Cell InstructionManualCatalog Number170-3940NoteTo insure the best performance from the Trans-Blot SD semi-dry electrophoretic transfer cell, become fully acquainted with these operating instructions before using the cell to transfer samples. Bio-Rad recommends that you first read these instructions carefully. Then assemble and disassemble the cell completely without transferring sample. After these preliminary steps, you should be ready to transfer a sample.Bio-Rad also recommends that all Trans-Blot SD cell components and accessories be cleaned with a suitable laboratory cleaner (such as Bio-Rad Cleaning Concentrate, catalog number 161-0722) and rinsed thoroughly with distilled water, before use.Model___________________________________Catalog Number__________________________Date of Delivery___________________________Warranty Period__________________________Serial Number____________________________Invoice Number___________________________Purchase Order Number____________________WarrantyBio-Rad Laboratories warrants the Trans-Blot SD semi-dry electrophoretic transfer cell against defects in materials and workmanship for 1 year. If any defects occur in the instrument during this warranty period, Bio-Rad Laboratories will repair or replace the defective parts free. The following defects, however, are specifically excluded:1.Defects caused by improper operation.2.Repair or modification done by anyone other than Bio-Rad Laboratories or an authorizedagent.e of fittings or other spare parts supplied by anyone other than Bio-Rad Laboratories.4.Damage caused by accident or misuse.5.Damage caused by disaster.6.Corrosion due to use of improper solvent or sample.This warranty does not apply to parts listed below:1.Platinum plate electrode.For any inquiry or request for repair service, contact Bio-Rad Laboratories after con-firming the model and serial number of your instrument.T able of ContentsPage Section 1 Introduction (1)1.1 Specifications (1)Section 2 Equipment and Reagents (2)2.1 Equipment and Accessories (2)Instruments (4)2.2 RelatedReagents (4)2.3 ChemicalSection 3 Safety Instructions (5)Section 4 Trans-Blot SD Assembly (6)4.1 Preparation for Blotting (6)4.2 Assembly of the Unit for Standard Transfers (7)4.3 Assembly of the Unit for Acidic Transfers (10)Section 5 Buffer Formulation (10)Section 6 Examples of Specific Protocols (11)Blotting (11)6.1 SDS-Protein6.2 DNA Blotting (For acrylamide gels with DNA 250 bp to ~1 kb) (12)6.3 DNA & RNA Blotting (For agarose gels with DNA up to 23 kb,RNA up to 3.5 kb) (12)Section 7 Properties of Protein Blotting Media (12)Section 8 Troubleshooting Guide (13)8.1 PoorTransfer (13)8.2 Poor Binding to Nitrocellulose Membrane (14)8.3 High Background After Incubation with Antibody Probes; Nonspecificor Nonquantitative Detection (14)8.4 Poor Detection Sensitivity or No Reactivity (15)Section 9 References (15)Section 1IntroductionBlotting was first performed by Southern1in 1975 with the transfer of DNA from agarose gels to nitrocellulose membranes. Blotting has subsequently been applied to RNA2-4and protein5,6from both agarose and polyacrylamide gels. Membrane materials have been expanded to include PVDF for improved protein binding capacity. To overcome the inefficiency of capillary transfers, electric current has been adopted for eluting proteins from polyacrylamide gels, as first described by Towbin et al.7in 1979. Since that time, electrophoretic transfer has also been used for DNA and RNA blotting.8-14For blotting PCR fragments, plasmid and vector DNA, and RNA with the SD cell, use the Trans-Blot SD DNA blotting kit. DNA or RNA can be blotted from agarose gel to Zeta-Probe®GT membrane in only 10 minutes, without any gel pretreatments. The kit comes complete with DNA/RNA blotting accessories and a detailed instruction manual.Semi-dry blotting was first reported by Kyhse-Andersen in 1984.15Blotting was performed with plate electrodes in a horizontal configuration. The gel and nitrocellulose membrane were sandwiched between sheets of buffer-soaked filter paper, which served as the ion reservoir and replaced the buffer tank. The plate electrodes, separated only by the filter paper stack, provided high field strength (V/cm) across the gel, and very efficient, rapid transfers.The Trans-Blot semi-dry transfer cell incorporates the original concepts of semi-dry blotting along with innovative features for quick set-up and ease of use. The platinum-coated titanium and stainless steel electrode pair provides efficient, background-free blotting with trouble-free service.1.1 SpecificationsConstructionTrans-Blot SD body Molded polycarbonateAnode Platinum-coated titaniumCathode Stainless steelAnode platform Precision machined acrylicOverall size37 cm x 24 cm x 11 cmMaximum gel size25 cm x 18.5 cmCleaning Do not immerse the unit in liquid. Use special carewhen cleaning the anode plate to avoid scratchingor marring the platinum. Do not use abrasives orstrong detergents. The cathode plate (stainlesssteel) can be cleaned with a mild abrasive toremove salt that may deposit during normal opera-tion. The entire unit can also be periodically disas-sembled and cleaned with water to remove saltdeposits.Chemical compatibility The semi-dry blotter components are not compati-ble with chlorinated hydrocarbons (e.g., chloro-form), aromatic hydrocarbons (e.g., toluene,benzene), or acetone. Use of organic solventsvoids all warranties.4.Lengthy transfer times are not recommended.Do not leave this instrument unattended.Joule heat can be generated rapidly during semi-dry blotting. Transferring longer than2 hours can damage the unit.5.Power supply requirements. The Trans-Blot SD cell should only be used with themicroprocessor-controlled Model 200/2.0 power supply (catalog numbers 165-4761 and165-4762), or the Model 1000/500 power supply (catalog numbers 165-4710 and165-4711). Do not use the Model 250/2.5 power supply with this apparatus. The lowvoltage, high current operating conditions of the Trans-Blot SD cell are not compatiblewith the Model 250/2.5 power supply, and will cause the power supply to blow a fuse.6.Do not operate this instrument in ambient temperatures exceeding 50 °C.ImportantThis Bio-Rad instrument is designed and certified to meet IEC 1010-1* safety standards.Certified products are safe to use when operated in accordance with the instructtionmanual. This instrument should not be modified in any way. Alteration of this instrumentwill:•Void the manufacturer's warranty•Void the IEC1010-1 safety certification•Create a potential safety hazardBio-Rad is not responsible for any injury or damage caused by the use of this instrumentfor purposes other than for which it is intended or by modifications of the instrument notperformed by Bio-Rad or an authorized agent.*IEC 1010-1 is an internationally accepted electical safety standard for laboratory instruments.Section 4Trans-Blot SD AssemblyTo determine the optimum conditions for a particular sample, a time course of transfer should be performed. Since many factors affect transfer e.g.molecular weight, pI, and porosity of the gel, transferring for the full suggested time may not be necessary.4.1 Preparation for Blotting1.Prepare the transfer buffer. See Section 5 for buffer formulation.Note:Buffer preparation is extremely important. Do not adjust transfer buffer pH byaddition of acid or base unless specifically indicated in the instructions. Improperlyprepared buffer will cause excess heat generation and safety e only highquality, reagent grade methanol. Contaminated methanol can result in increased transferbuffer conductivity, as well as poor transfer of macromolecules.2.Following electrophoresis, equilibrate the gels in transfer buffer. Equilibration facilitatesthe removal of electrophoresis buffer salts and detergents. If the salts are not removed, theywill increase the conductivity of the transfer buffer and the amount of heat generatedduring the transfer. Also, low percentage gels (<12% acrylamide) will shrink in methanol-containing buffers. Equilibration allows the gel to adjust to its final size prior toelectrophoretic transfer. The length of time required for equilibration is dependent on thegel thickness. For example, 15 minutes for a 0.75 mm SDS-PAGE gel.Low molecular weight macromolecules (10,000 daltons) may diffuse out of gels more readily. One can allow adequate gel pre-equilibration by changing the pre-equilibration buffer several times during a relatively short pre-equilibration period. This will help to limit diffusion of low molecular weight macromolecules while providing efficient salt reduction.3.Cut the membrane to the dimensions of the gel. Wet the membrane by slowly sliding itat a 45° angle into transfer buffer and allowing it to soak for 15–30 minutes. Complete wetting of the membrane is important to insure proper binding. Abrupt wetting can lead to entrapment of air bubbles in the matrix. These air bubbles can block transfer of molecules. To avoid membrane contamination, always use forceps or wear gloves when handling membranes.4.Cut filter paper to the dimensions of the gel. Two pieces of extra thick filter paper (orfour pieces of thick or six pieces of thin filter paper) per gel are needed for each gel/mem-brane sandwich. Completely saturate the filter paper by soaking in transfer buffer.5.If more than one full-size gel is to be transferred at one time, cut a piece of dialysismembrane with the appropriate molecular weight cutoff to the dimensions of the gel.Completely wet the dialysis membrane in transfer buffer. Spectr/Por™ dialysis membrane is recommended for this use.4.2 Assembly of the Unit for Standard TransfersWear gloves for this procedure to avoid contamination of membranes.1.Remove the safety cover and the stainless steel cathode assembly.2.Place a pre-soaked sheet of extra thick filter paper onto the platinum anode. Roll a pipetor test tube over the surface of the filter paper (like a rolling pin) to exclude all air bubbles. If thick or thin filter paper is used, repeat with one or two more sheets of buffer-soaked filter paper.3.Place the pre-wetted blotting media on top of the filter paper. Roll out all air bubbles.4.Carefully place the equilibrated gel on top of the transfer membrane, aligning the gel onthe center of the membrane. Transfer will be incomplete if any portion of the gel is outside the blotting media. Roll out all air bubbles.5.Place the other sheet of pre-soaked filter paper on top of the gel, carefully removing airbubbles from between the gel and filter paper. If thick filter paper is used, place two sheets on top of the gel, and remove bubbles from between each layer. If thin filter paper is used, place three sheets on top of the gel, and remove bubbles from between each layer.6.If more than one full-size gel is to be transferred, place a sheet of pre-soaked dialysismembrane on top of the filter paper stack. Repeat the procedure from step 2. Up to four mini gels can be transferred at the same time by placing them side-by-side on the anode platform.7.Carefully place the cathode onto the stack. Press to engage the latches with the guideposts without disturbing the filter paper stack.8.Place the safety cover on the unit. Plug the unit into the power supply. Normal transferpolarity is cathode to anode, i.e., red wire to red outlet and black wire to black outlet on the power supply.Caution:Do not reverse polarity. This will result in damage to the stainless steel cathode.9.Turn on the power supply. Transfer mini gels for 15–30 minutes at 10–15 V. Large gelscan be transferred for 30 minutes to 1 hour at 15–25 V. Do not exceed 25V with this instrument. A current limit (3 mA/cm2for large gels; 5.5 mA/cm2for mini gels) is recommended to prevent excessive heating during the run. Under the strong fields developed by this apparatus, transfers may not always be quantitative. A certain quantity of protein may be transferred through the membrane and onto the filter paper below.The Model 200/2.0 power supply is capable of a 200 watt output. This means that unlessa current limit is set, uncontrolled conductivity changes may result in full power beingdelivered to the Trans-Blot SD cell. In this situation, the gel sandwich and electrodes will be exposed to excessive heat. This may result in a safety hazard. It is advisable to monitor resistance, power, and current during the run. Refer to the Model 200/2.0 Instruction Manual for setting current limits and run times, and monitoring these parameters.10.Following transfer, turn the power supply off, and disconnect the unit from the powersupply. Remove the safety cover and the cathode assembly. Discard the filter paper (and dialysis membrane, if used). The transfer efficiency can be monitored by staining the gel with Coomassie blue R-250 protein stain or with Bio-Rad's Silver Stain Kit. Alternatively, prestained molecular weight standards can be used, or a portion of the membrane can be stained for total protein with colloidal gold, Biotin Blot Total Protein Stain, or an anionic dye such as Amido Black. Zeta-Probe membrane can be stained with the Biotin-Blot Total Protein Stain.4.3 Assembly of the Unit for Acidic TransfersIf an acidic transfer buffer is used, the transfer direction will be from the anode to thecathode.1.Remove the safety cover and the stainless steel cathode assembly.2.Place a pre-soaked sheet of extra thick filter paper onto the platinum anode. Roll out allair bubbles. If thin filter paper is used, repeat with two more sheets of buffer-soakedfilter paper. If thick filter paper is used, repeat with one more sheet of buffer soakedfilter paper.3.Carefully place equilibrated gel on top of the filter paper, aligning the gel on the center ofthe membrane. Roll out all air bubbles.4.Place the pre-wetted blotting media on top of the gel. Roll out all air bubbles.5.Place another sheet of pre-soaked extra thick filter paper on top of the blotting membrane,carefully removing all air bubbles. If thin filter paper is used, place three sheets on top of themembrane, or if thick filter paper is used, place two sheets on top of the membrane.6.If more than one gel is to be transferred, place a sheet of pre-soaked dialysis membraneon top of the filter paper stack. Repeat the procedure from step 2.7.Carefully place the cathode assembly onto the stack. Press to engage the latches with theguide posts, without disturbing the filter paper stack.8.Place the safety cover on the unit. Plug the unit into the power supply, red wire to redoutlet and black wire to black outlet.Caution:Do not reverse polarity. This will damage the stainless steel cathode.9.Turn on the power supply. Transfer mini gels for 15–30 minutes at 10–15 V. Large gelscan be transferred for 30 minutes to 1 hour at 15–25 V. Do not exceed 25 V with thisinstrument. A current limit (3 mA/cm 2for large gels; 5.5 mA/cm 2for mini gels) isrecommended to prevent excessive heating during the run.Section 5Buffer FormulationThe following buffers are recommended for use with the Trans-Blot SD cell. For proteintransfers, the single buffer system of Bjerrum and Schafer-Nielsen 16provides more efficientelution than the original isotachophoretic system of Khyse-Andersen, which requires the useof three different buffers.15A carbonate buffer has also been shown to produce highefficiency transfers with improved antibody recognition.1.Bjerrum and Schafer-Nielsen transfer buffer for SDS-proteins using nitrocellulose (withmethanol) or Zeta-Probe membrane (without methanol):1648 mM Tris, 39 mM glycine, (20% methanol) pH 9.2Dissolve 5.82 g Tris and 2.93 g glycine [and 0.375 g SDS or 3.75 ml of 10% SDS] in ddH 2O (add 200 ml of methanol); adjust volume to 1 liter with dd H 2O.DO NOT ADD ACID OR BASE TO ADJUST pH.The buffer will range from pH 9.0to 9.4, depending on the quality of the Tris, glycine, dd H 2O, and methanol. Methanolshould be analytical reagent grade, because metallic contaminants in low grade methanol will plate on the electrodes.Note:Some pH electrodes will not perform a proper measurement for the pH of Trisbuffers. If the pH of the buffer is not correct, check the electrode to be sure it is designedto function with Tris buffers. If the pH electrode works properly with Tris buffers, and thepH is below 9.0, remake the buffer.2.SDS may be added to Buffer 1 to increase protein elution from the gel:48 mM Tris, 39 mM glycine, (20% methanol), 1.3 mM SDS (0.0375%), pH 9.2Dissolve 5.82 g Tris and 2.93 g glycine, and 0.0375 g SDS or 3.75 ml of 10% SDS in ddH 2O (add 200 ml of methanol); adjust the volume to 1 liter with dd H 2O.DO NOT ADD ACID OR BASE TO ADJUST pH.3.Towbin transfer buffer for SDS-proteins using nitrocellulose (with methanol) or Zeta-Probe membrane (without methanol):725 mM Tris, 192 mM glycine (20% methanol), pH 8.3Dissolve 3.03 g Tris and 14.4 g glycine in dd H 2O (add 200 ml of methanol); adjustvolume to 1 liter with dd H 2O.DO NOT ADD ACID OR BASE TO ADJUST pH.4.Dunn carbonate transfer buffer for SDS-proteins using nitrocellulose (with methanol) orZeta-Probe membrane (without methanol):1710 mM NaCHO 3, 3 mM Na 2CO 3(20% methanol), pH 9.9Dissolve 0.84 g NaHCO 3and 0.318 g Na 2CO 3(anhydrous) in dd H 2O (add 200 ml ofmethanol); adjust volume to 1 liter with dd H 2O.DO NOT ADD ACID OR BASE TO ADJUST pH.5.DNA transfer buffer for use with Zeta-Probe membrane:185x TBE stock solution (0.5 M Tris, 0.5 M boric acid, 10 mM EDTA in dd H 2O; adjustvolume to 1 liter with dd H 2O. Dilute to 0.5x TBE with dd H 2O for the working solution.DO NOT ADD ACID OR BASE TO ADJUST pH.6.5x dye buffer (20% Ficoll, 20 mM EDTA, 1% SDS, 0.2% bromophenol blue)Section 6Examples of Specific ProtocolsNote:In order to determine the optimum conditions for a particular sample, a time courseof transfer should be performed. Since many factors affect transfer, e.g., molecular weight,pI, porosity of the gel, it may not be necessary to transfer for the full time or to use highfield intensity transfer conditions. Final transfer conditions for any protein should bedetermined empirically.6.1 SDS-Protein BlottingStandard Blot to Nitrocellulose1. Equilibrate the gel in 500 ml of Towbin buffer (Section 5) for 15 minutes.2. Pre-chill buffer prior to transfer.3. Assemble the sandwich as described in Section4.2.4. Refer to Section 4.2, step 9 for transfer conditions with either large or small gels.6.2 DNA Blotting(For acrylamide gels with DNA 250 bp to ~1 kb)Electrophoresis Run on a Polyacrylamide Gel1.Prepare the stock electrophoresis 5x TBE buffer (Section 5). Dilute the stock to 1x.2.Mix 10–15 µl of the sample with 5 µl of 5x dye buffer, heat to 65 °C for 5 min and loadon a gel.3. A 5% PAGE gel can separate DNAs from about 250 to 1,000 bp.4.Run the gel in 1x TBE buffer at 100 V for 1–2 hours.Standard Blot to Zeta-Probe1.From the 5x TBE electrophoretic buffer, dilute the stock to 0.5x (Section 5) and pre-chill1 L of the buffer.2.Equilibrate the gel, extra thick blot paper, and Zeta-Probe membrane in 0.5x TBE bufferfor at least 15 minutes.Note: Zeta-Probe membrane will bind non-denatured nucleic acids. Therefore, denaturingis not mandatory before transferring. If non-denatured nucleic acids are transferred, theblotted Zeta-Probe membrane must be treated with NaOH prior to hybridization. Refer tothe Zeta-Probe membrane instruction manual.3.Assemble the sandwich as described in Section4.2.4.Run the transfer at 400 mA for 1 hour (voltage should not exceed 25 volts).5.After transfer, separate the membrane from the gel, and rinse the membrane briefly in0.5x TBE buffer.6.Fix the DNA to the membrane by placing the membrane on several pieces of blot papersaturated with 0.4 N NaOH for 10 minutes.7.Rinse the membrane in 2 x SSC for 10 minutes and bake at 80 °C for 1 hour (this isoptional if probing immediately). The membrane is now ready for hybridization. Refer tothe hybridization procedure in the Zeta-Probe blotting membrane instruction manual.6.3 DNA & RNA Blotting(For agarose gels with DNA up to 23 kb, RNA up to 3.5 kb) Refer to the Trans-Blot SD DNA blotting kit instruction manual for transfer protocol and conditions. DNA or RNA cannot be blotted from agarose gels without the use of the Trans-Blot SD DNA blotting kit.Section 7Properties of Protein Blotting MediaPVDF membrane is suitable for presenting transferred proteins for immuno detection (Immun-Blot PVDF) or analysis by Edman. It is resistant to tearing and chemicals. Immun-Blot PVDF is optimized for immunodevelopment with high protein binding capacity (160µg/cm2), but low nonspecific protein binding. This membrane material will resist tearing even when used in repeated stripping and reprobing applications. Sequi-blot PVDF has the highest protein binding capacity (170–200 µg/cm2) and gives outstanding performance in protein sequencing applications.Nitrocellulose membranes have been used extensively for protein binding and detec-tion.7,19-22They can easily be stained for total protein by a dye stain (Amido Black, Coomassie®blue, Ponceau S, Fast Green FCF, etc.22), or the more sensitive Colloidal Gold Total ProteinStain, and also allow either RIA, FIA, or EIA.7Nitrocellulose has a high binding capacity of 80–100 µg/cm2. Nonspecific protein binding sites are easily and rapidly blocked, avoidingsubsequent background problems. Low molecular weight proteins (esp. < 20,000 daltons) may be lost during post transfer washes, thus limiting detection sensitivity.21However, use ofglutaraldehyde fixation and a smaller pore size nitrocellulose membrane (0.2 µm) have been shown to be effective in eliminating this loss.22Large proteins (>100,000 daltons) denaturedby SDS may transfer poorly with the addition of alcohol to the transfer buffer. Alcohol increasesbinding of SDS-proteins to nitrocellulose, but decreases pore sizes in the gel. Elimination ofalcohol from SDS-protein transfers also results in considerably diminished binding to nitrocellulose. Under high field strengths of the Trans-Blot cell, proteins may be transferred through nitrocellulose without binding.The efficiency of binding can be increased by employing a smaller pore size nitrocellulose.23Zeta-Probe positively charged nylon membrane allows binding of SDS-protein complexes in the absence of alcohol.24,25This membrane binds proteins very tightly and is stable to post transfer washes. The binding capacity of Zeta-Probe membrane is ~480 µg/cm2.Reprobing, after stripping of prior probes, may be performed without significant loss of primary bound protein. Even small proteins appear to bind stably. Zeta-Probe membrane cannot be dye-stained, as destaining is impossible. Instead, the Biotin-Blot Total Protein Stain should be used on Zeta-Probe membrane. This assay uses NHS-Biotin (N-hydroxysuccin-imide-biotinate) to biotinylate all the proteins on the membrane surface, and a combination ofan avidin-horseradish peroxidase or avidin-alkaline phosphatase and a color development reagent to detect these biotinylated proteins.26,27The large capacity for molecules (480 µg/cm2) allows sensitive detection of small amounts of proteins in a complex mixture. This high capacity requires more stringent blocking conditions than nitrocellulose.25Zeta-Probe membranes can be effectively and economically blocked using a 5% solution of BLOTTO(non-fat dry milk)3,18,28Section 8Troubleshooting Guide8.1 Poor TransferA. Molecules remain in the gel matrix (as detected by Coomassie blue orsilver staining the gel)1.Transfer time is too short. Increase time of transfer.2.Charge to mass ratio is incorrect. Proteins near their isoelectric point at the pH of thebuffer will transfer poorly. Try a more basic or acidic transfer buffer to increase proteinmobility.3.Filter paper is too dry; insufficient buffer soaking the filter paper. Buffer is depleted earlyin the transfer. The filter paper should be fully saturated with buffer prior to transfer.Increase the number of sheets of filter paper, or use thicker filter paper.4.Power supply circuit tripped. Check the fuse.5.Gel percentage is too high. Reduce %T (total monomer) or %C(crosslinker). A 5% C(with bis as the crosslinker) will produce the smallest pore size gel. Decreasing from thisconcentration will increase pore size and increase transfer efficiency.6.Methanol in the transfer buffer is restricting elution of proteins from the gel. Eliminationof methanol results in increased transfer efficiency, but it also diminishes binding to nitrocellulose. Use PVDF.7.Protein is precipitating in the gel. Try using SDS in the transfer buffer. SDS can increasetransfer efficiency, but can also reduce binding efficiency to nitrocellulose and affect reactivity of some proteins with antibodies.B. Swirls or missing patterns on blot; diffuse transfers1.Contact between blot membrane and gel is poor. Air bubbles or excess moisture remainbetween the blot and gel. Use a test tube or pipet to roll over the membrane carefully in both directions until excess moisture and air bubbles are removed from between gel and membrane and complete contact is established. Use thicker filter paper in the gel/membrane sandwich.Make sure that there are no air bubbles trapped between the filter paper and the gel.2.The gel is not completely equilibrated in transfer buffer. Gel must be properly washed intransfer buffer to avoid shrinking or swelling during transfer. Increase time or number of washes.3.If multiple gels are being transferred simultaneously, cross-contamination may beoccurring. Use a smaller size pore dialysis membrane to separate gel/membrane sandwiches. Use PVDF to more completely bind small pieces.4.Power conditions are too high. Reduce the voltage. Check the buffer conductivity; improp-erly prepared buffer will result in excessive power delivered to the cell.8.2 Poor Binding to Nitrocellulose Membrane1.Proteins separated by SDS-PAGE require 20% methanol in the transfer buffer foroptimal protein binding. Make sure the buffer contains the proper amount of methanol.2.Proteins may be transferring through the nitrocellulose, driven by the high field strengthof the plate electrodes. Use Zeta-Probe membrane (higher binding capacity) or 0.2 micron nitrocellulose (smaller pore size). Transfer using the Trans-Blot cell or the Mini Trans-Blot cell with standard platinum wire electrodes.3.Protein >15,000 daltons may show diminished binding to 0.45 micron nitrocellulose, ormay be washed from the membrane during assays. Use Zeta-Probe membrane or0.2 micron nitrocellulose. To increase stability of binding, proteins can be cross-linked tonitrocellulose with glutaraldehyde.224.Proteins can be removed from nitrocellulose by SDS, NP-40, and several otherdetergents. Use Tween-20 detergent in wash and antibody incubation steps. Reduce or eliminate detergents from buffers. Try glutaraldehyde fixation.5.SDS in the transfer buffer will reduce binding efficiency of proteins. Use 20% methanolin the transfer buffer and equilibrate the gel in methanol buffer prior to transfer.8.3 High Background After Incubation with Antibody Probes; Nonspecific or Nonquantitative DetectionFor a complete troubleshooting guide to Immun-Blot assays, consult the Immun-Blot assay kit manual or the Zeta-Probe instruction manual. If using other detection kit, consult manual or contact manufacturer.。
伯乐半干转膜仪说明书中文
伯乐半干转膜仪说明书中文众所周知,伯乐半干转膜仪是一种常用的实验设备,广泛应用于化学、生物、医药等领域。
本文将为大家详细介绍伯乐半干转膜仪的使用方法和注意事项。
一、仪器概述伯乐半干转膜仪是一种用于分离和富集溶液中的物质的实验设备。
它采用半干转膜技术,通过半透膜将溶液分离为两个部分,达到富集物质的目的。
二、操作步骤1. 准备工作:将伯乐半干转膜仪放在水平台面上,确保仪器平稳。
2. 连接电源:将仪器的电源线插入电源插座,确认电源开关处于关闭状态。
3. 准备样品:将待处理的溶液倒入样品容器中,注意不要超过最大容量标记线。
4. 安装半透膜:将半透膜安装在转膜仪的转膜槽中,确保半透膜平整、无气泡。
5. 调整参数:根据需要,调整转膜仪的转速、温度等参数,以达到最佳分离效果。
6. 开始转膜:按下启动按钮,转膜仪开始工作,样品溶液将被分离为两个部分。
7. 收集物质:根据需求,将分离出的物质收集起来,可以通过出口管道或收集容器进行收集。
8. 清洗仪器:转膜结束后,将仪器内部进行清洗,保持仪器的干净和正常运转。
三、使用注意事项1. 操作前应仔细阅读伯乐半干转膜仪的说明书,了解仪器的使用方法和安全注意事项。
2. 在操作过程中,应佩戴适当的防护设备,如手套、眼镜等,以防溶液溅到身体或眼睛造成伤害。
3. 注意仪器的电源连接是否正确,以免引起电击或其他事故。
4. 样品溶液的浓度及pH值应符合仪器要求,避免对仪器造成损坏。
5. 在调整参数时,应根据实际情况选择适当的数值,避免因参数设置不当导致分离效果不佳。
6. 使用过程中应注意观察仪器运行情况,如发现异常应及时停止操作,并检查故障原因。
7. 转膜结束后,应及时清洗仪器,防止残留物质引起污染或堵塞。
8. 仪器长时间不用时,应进行适当的保养和维护,延长仪器的使用寿命。
伯乐半干转膜仪作为一种重要的实验设备,在科研和生产中发挥着重要作用。
通过合理的操作和注意事项,可以保证仪器的正常运行,同时获得准确的实验结果。
BIO-RAD电转化仪使用教程(自制)
BIO-RAD Gene Pulser Xcell Electroporation SystemBIO-RAD电转化仪使用教程(自制)cexoihtydx 20110902一电转仪示意图Figure 1 connecting the shockpad to the Gene Pulser Xcell main unit.Figure 2 Shockpod with cuvette.Figure 3 Gene Pulser Xcell front panel.二电转仪主界面在主界面中,我们经常会用到:4. Pre-set protocols和5. User protocolsPre-set protocols(预置方案)中,有Bacterial,Fungal和Mammalian三种预置方案。
下面简单介绍一下Bacterial中E. coli和Fungal中Pichia pastoris的电转化方案和注意事项。
三Electroporation of Bacterial Cells (E. coli)1 制备电转化感受态细胞1). Inoculate 5 ml of a fresh overnight E. coli culture into 500 ml of L-broth ina 2.8 L Fernbach flask.2). Grow the cells at 37°C shaking at 300 rpm to an OD600 of approximately 0.5–0.7. The best resultsare obtained with cells that are harvested at early- to mid-log phase; the appropriate cell densitydepends on the strain and growth conditions but should be about 4–5 x 107cells/ml.3). Chill the cells on ice for ~20 min. For all subsequent steps, keep the cells as close to 0°C as possi-ble (in an ice/water bath) and chill all containers in ice before adding cells. Transfer the cells to asterile, cold 500 ml centrifuge bottle and centrifuge at 4000 xg for 15 minutes at 4°C.4). Carefully pour off and discard the supernatant. It is better to sacrifice yield by pouring off a fewcells than to leave any supernatant behind.5). Gently resuspend the pellet in 500 ml of ice-cold 10% glycerol. Centrifuge at 4000 xg for 15 minutes at 4°C; carefully pour off and discard the supernatant.6). Resuspend the pellet in 250 ml of ice-cold 10% glycerol. Centrifuge at 4000 xg for 15 minutesat4°C; carefully pour off and discard the supernatant.7). Resuspend the pellet in ~20 ml of ice-cold 10% glycerol. Transfer to a 30 ml sterile Oakridge tube.Centrifuge at 4000 xg for 15 minutes at 4°C; carefully pour off and discard the supernatant.8). Resuspend the cell pellet in a final volume of 1–2 ml of ice-cold 10% glycerol. The cell concentration should be about 1–3 x 1010cells/ml.9). This suspension may be frozen in aliquots on dry ice and stored at -70°C. The cells are stable forat least 6 months under these conditions.2 电转化转化参数:Pre-set protocols (E. coli)V oltage(V) 1800Capacitance(µF) 25Resistance(ohm) 200Cuvette(mm) 11). Thaw the cells on ice. For each sample to be electroporated: place a 1.5 ml microfuge tube onice, place either a 0.1 or 0.2 cm electroporation cuvette on ice, and place a 17 x 100 mm tubewith 1 ml of SOC at room temperature.2). To a cold, 1.5 ml polypropylene microfuge tube, add 20 µl of cell suspension if electroporating in 0.1 cmcuvettes, or 20–40 µl of cell suspension if electroporating in 0.2 cm cuvettes. Add 1 to 2 µlof DNA(DNA should be in a low ionic strength buffer such as water or TE). Mix well and incubateon ice for ~1 minute. (Note: it is best to mix the plasmids and cells in a microfuge tube since the narrow gap ofthe cuvettes prevents uniform mixing.)3). From the Home screen on Gene Pulser Xcell open the Pre-set Protocols screen, then the BacterialProtocol screen (press 4, then Enter twice). When using the 0.1 cm cuvettes, press Enter to open E. coli, 1mm cuvette Protocol Detail screen. When using the 0.2 cm cuvettes, press 2 then Enter, or 3 then Enter, to select the Protocol Detail screens for E. coli to pulse at 2.5 or 3.0 kV, respectively.4). Transfer the mixture of cells and DNA to a cold electroporation cuvette and tap the suspension to the bottom. Place the cuvette in the ShockPod. Push the chamber lid down to close.5). Pulse once.6). Remove the cuvette from the chamber and immediately add 1 ml of SOC medium to the cuvette.Quickly but gently resuspend the cells with a Pasteur pipette. (The period between applying the pulse and transferring the cells to out growth medium is crucial for recovering E. coli transformants (Dower et al., 1988). Delaying this transfer by even 1 minute causes a 3-fold drop in transformation.This decline continues to a 20-fold drop by 10 minutes.)7). Transfer the cell suspension to a 17 x 100 mm polypropylene tube and incubate at 37°C for 1 hour,shaking at 225 rpm.8). Check and record the pulse parameters. The time constant should be close to 5 milliseconds. Thefield strength can be calculated as actual volts (kV) / cuvette gap (cm).9). Plate on LB plates with antibiotic.3 溶液和试剂1). L-Broth: 10 g Tryptone peptone, 5 g Yeast extract, 5 g NaCl; dissolve in 1.0 L water.Autoclave.2). LB agar plates with selective antibiotic: prepare L broth as above, adding 15g of agar perliter. Autoclave. Cool to 55–60°C and add antibiotic. Pour 12–15 ml per 100 mm plate.3). 10% (v/v) Glycerol: 12.6 g glycerol (density = 1.26 g/cc) in 90 ml of water. Autoclave or filtersterilize.4). TE: 10 mM Tris-HCl pH 8.0, 1 mM EDTA.5). SOB: 2.0 g Tryptone peptone, 0.5 g Yeast extract, 0.2 ml 5 M NaCl, 0.25 ml 1 M KCl; dissolvein 90 ml water. Adjust pH to 7.0. Bring volume to 100 ml. Autoclave. Add 1.0 ml sterile 1 M MgCl2and 1.0 ml sterile 1 M MgSO4.6). SOC: to 100 ml SOB, add 2.0 ml sterile 1 M glucose (sterilize by filtration).4 注意事项1). 细菌电转化电压一般默认为1.8 KV即可,某些细菌可能会需要更高的电压,可以参考电转化仪器厂商的相关资料以及文献报道。
bio电转仪使用手册
bio电转仪使用手册一、简介Bio电转仪是一种用于测量生物电信号的仪器,主要用于医学研究和临床诊断。
本手册将详细介绍Bio电转仪的使用方法、操作步骤和注意事项,以帮助用户正确高效地操作该仪器。
二、仪器结构1. 主机:Bio电转仪的核心部件,包含高精度的信号采集和处理模块。
2. 探头:与被测对象直接接触,采集生物电信号。
3. 连接线:连接主机和探头,传输信号和供电。
4. 显示屏:显示实时测量结果和参数设置。
三、使用方法1. 准备工作在使用Bio电转仪之前,确保如下准备工作已完成:a. 确认仪器和电源正常工作。
b. 清洁探头,并检查是否存在损坏。
c. 将探头正确连接到主机,并确保连接牢固。
d. 检查是否有足够的传输线,以保证正常使用。
e. 打开仪器电源,并待显示屏正常启动后,进入下一步操作。
2. 调整参数a. 使用仪器自带的控制按钮或触摸屏,设置适当的参数。
参数设置包括采样频率、增益、滤波器等。
b. 根据测量对象的特点和需要,选择合适的参数。
如需测量心电图,可选择较高的采样频率和适当的增益。
3. 测量过程a. 将探头正确安放在被测对象的表面,确保电极与皮肤充分接触,同时保持稳定且不产生干扰。
b. 确认所有参数设置正确后,开始测量。
在测量过程中,保持被测对象的舒适和安静,避免产生干扰信号。
c. 实时观察显示屏上的测量结果,并进行记录或保存。
如有异常信号或测量错误,可尝试调整参数或重新测量。
四、注意事项1. 使用过程中,应遵守以下注意事项:a. 避免将仪器及配件放置在潮湿或易受污染的环境中。
b. 操作时需注意安全,避免电击和损伤。
c. 仪器和配件需定期进行清洁和维护,以确保正常使用和延长寿命。
d. 使用前务必阅读并理解本使用手册,并按照要求正确操作。
2. 避免干扰a. 在测量过程中,尽量避免接近大功率电源或其他强电磁源,以免产生干扰信号。
b. 当探头未使用时,可对其进行屏蔽,防止外部干扰。
3. 不当操作及异常情况处理a. 遵循正确的操作流程,避免不当触摸或擅自改变参数设置。
电融合仪操作手册
Multiporator®电转化仪使用说明书目录1 简介 (1)2 应用范围 (1)3 安全警示 (1)4 仪器介绍4.1 包装 (2)4.2 开始………………………………………………………………………………4.3 电击杯插槽……………………………………………………………………4.4 键区………………………………………………………………………………4.5 键及键组合………………………………………………………………………4.6 屏幕显示…………………………………………………………………………4.7 真核细胞和细菌/酵母的电转化………………………………………………4.7.1 连接外接电极(电转化/电融合)插件……………………………………4.8 细胞融合(可选择)……………………………………………………………4.8.1 优化细胞融合(镜下监测)………………………………………………4.8.2 清洗微融合杯………………………………………………………………4.8.3 螺旋融合杯…………………………………………………………………4.8.4 螺旋融合杯的上样及置入…………………………………………………4.8.5 融合及细胞悬液提取…………………………………………………………4.8.6 螺旋融合杯的清洗和消毒…………………………………………………4.9 打印连接/打印机(可选择)…………………………………………………5 操作模式5.1 真核细胞模式……………………………………………………………………5.2 细菌和酵母模式(可选择)……………………………………………………5.3 细胞融合模式(可选择)………………………………………………………5.3.1 功能:细胞排列………………………………………………………………5.3.2 细胞融合步骤…………………………………………………………………6 错误提示……………………………………………………………………………7 仪器的维护7.1 消毒………………………………………………………………………………7.2 清洗………………………………………………………………………………8 技术数据……………………………………………………………………………9 订购信息…………………………………………………………………………1 简介Multiporator®为真核细胞的电转染而设计,因为由有多种模式可选,也可进行细胞融合实验以及细菌和酵母的电转实验。
电转化仪
电转化仪仪器型号:Gene Pulser II生产商:USA Bio-Rad工作原理:Gene Pulser Ⅱ电转化仪器可用于原核细胞、酵母和哺乳动物细胞的转化。
仪器采用Pulse Trac波形传送系统,能产生最精确的指数衰减的脉冲,可在电转化杯里获得最佳的细胞转化。
电穿孔是一个物理过程,利用电脉冲瞬时穿透原核细胞或真核细胞的细胞膜,使得细胞能够吸收各种不同种类的生物分子。
当用化学或其他物理方法转化某些类型的细胞效率不高或有毒性时,电转化则可能是一种有用的方法。
Gene Pulser Ⅱ电穿孔仪由三个部分组成:Gene Pulser Ⅱ装置及两个附属设备Pulse Controller PLUS和Capacitance Extender PLUS。
Gene Pulser Ⅱ可与另两个附属设备中的任意一个一起使用:对于细菌和酵母细胞的电转化(高电压/低电容),使用Pulse Controller PLUS;对于哺乳动物细胞和胚胎组织的电转化(低电压/高电容),则应使用Capacitance Extender PLUS。
系统参数:输入电压220-240V,50-60HZ输入电流15A最大输出电压和电流2500V,125A(正常负荷)电弧时限定值1500A输出波形Pulse Trac指数衰减,RC时间常数取决于所选的样品和电容器输出电压调节50-2500V范围(取决于电容器)内,低电压范围(50-500V)和高电压范围分别具有2V和10V的调节精度。
工作环境温度0-35oC湿度0-95%,无冷凝简易操作指南:1:打开电源2:根据自己的情况设置参数:如电容 c=25μF, 电压 v=1.8kV (0.1cm 电击杯),R=200Ω3:将电击杯两壁水檫干4:电转:所产生的时间常数一般为4.6—5.0ms5:立即加入培养液恢复培养注意:电击杯两壁水一定要檫干;所制备的感受态细胞一定要干净,否则电流过大。
Bio-rad MicroPulser电穿孔仪中文说明书
MicroPulser电穿孔仪操作手册2018年12月27日1、介绍(1)基本原理MicroPulser电穿孔仪用于细菌、酵母和其他众多微生物的电击转化,转化时,高压电脉冲作用于悬浮在小体积高阻介质中的样品。
本系统由一个脉冲发生器(pulse generator)模块、一个电击腔(shocking chamber)和一个装有电极的电击杯(cuvette)组成。
样本放置于电击杯的电极之间。
MicroPulser模块包含一个电容器,将电容器充电至高电压,然后模块将电容器中的电流放电到试管中的样品中。
MicroPulser的电容放电电路产生具有指数衰减波形的电脉冲,如下图。
当电容器放电至样品时,跨越电极的电压迅速上升至最大电压(or峰值电压,peak voltage;也称为初始电压,Vo),并随时间(t)减小,如下式:其中τ=R·C,为时间常数,是脉冲长度的简便表达式。
R为电路电阻,单位为ohms(欧姆)。
C为电容,单位为microfarad(微法拉)。
根据方程1,τ是电压下降至峰值电压1/e(~37%)的时间。
MicroPulser的内部电路被设计以使E.coli、酿酒酵母及其他许多微生物可以得到最佳电穿孔,最佳转化效率发生在大约5ms的时间常数内。
这些电穿孔条件是通过使用10微法拉电容器和将600欧姆电阻与样品池并联以及将30欧姆电阻与样品池串联来实现的。
除时间常数外,电场强度是另一个决定转化效率的重要参数。
电场强度E,是施加于电极间的电压,公式为:其中,V为施加的电压,d为电极间的距离,单位为cm。
电场强度和细胞的尺寸(size)决定了横贯每个细胞的电压降,正是电压降可能是电穿孔中电压效应的重要表现。
30欧姆串联电阻的目的是在发生电弧的情况下保护设备电路。
在正常操作条件下,当样本在高电阻介质中,电阻不会影响施加在样本上的电压。
但是,当样本的电阻较低时,电阻将极大地降低施加在样品上的电压。
bio电转仪使用手册
bio电转仪使用手册一、简介与概述本手册旨在为您提供bio电转仪的使用方法、操作步骤以及维护保养等方面的详细指导。
电转仪是一种高效、便捷的将生物大分子、细胞等样本转移到靶细胞或试剂上的设备。
通过使用电转仪,您可以实现实验室研究、药物筛选、基因转移等多方面的应用。
在开始使用电转仪之前,请务必仔细阅读本手册,以确保安全、正确地操作设备。
二、操作步骤1.准备工作a.设备开机:将电源线插入电源插座,按下设备开关,待设备启动后进行下一步操作。
b.样本准备:根据实验需求,将待转染的样本(如细胞、质粒、寡核苷酸等)制备好,放入电转杯中。
c.设置参数:根据实验需求,设置电转参数,如电压、电流、时间等。
您可以参考设备说明书或预先设定的参数进行调整。
2.电转过程a.细胞转染:将电转杯放入设备上,按照设定的参数进行电转。
电转过程中,请确保细胞紧密排列,以获得更好的转染效果。
b.质粒转染:将质粒DNA与转染试剂混合后,放入电转杯中,按照设定的参数进行电转。
注意在转染过程中,保持试剂盒的稳定性。
c.其他样品转染:根据样品性质,选择适当的转染方法,如脂质体介导转染、慢病毒转染等,并按照相应步骤进行电转。
3.转染后处理a.清洗设备:实验结束后,及时关闭设备电源,用清水冲洗设备表面,避免残留物影响设备性能。
b.样品收集与检测:根据实验需求,收集转染后的样品,并进行相应检测,如细胞活力、基因表达等。
三、设备维护与保养1.定期检查设备电源线、插头、开关等部件,确保设备正常运行。
2.保持设备工作环境干燥、通风,避免阳光直射。
3.严禁在设备表面放置重物或尖锐物品,以免损坏设备外观。
4.实验过程中,请勿让儿童、宠物接近设备,确保实验安全。
四、安全与注意事项1.操作设备时,请务必佩戴实验室防护用具,如手套、口罩等。
2.遵循实验室安全规程,避免触电、火灾等事故。
3.如有异常情况,请立即关闭设备电源,并及时联系售后服务。
五、故障排除与售后服务1.如遇设备故障,请先检查电源、电缆、插头等是否正常。
BORDLINE M系列辅助转换器产品说明书
A modular and flexible family of auxiliary converters that meets the requirements of the market—BORDLINE® M base productsBORDLINE®M converters are compact and rugged units, designed for the onboard supply of electrical power on rail vehicles (AC loads, DC loads and for charging batteries).—Table of contents004 – 005BORDLINE® Mbase products 006 B ORDLINE® M55 007B ORDLINE®M90 008B ORDLINE®M170 010 – 011O ptions list4B O R D LI N E ® M B A S E PRO D U C T SABB Railway Research Center constantly monitors the requirements of the market, technological in-novations, and new, emerging needs to develop and launch innovative products and services to meet customers’ requirements and schedules.ABB has redesigned the BORDLINE M auxiliary converter product family for urban mass transit vehicles with the focus on the following: short time-to-market, high reliability and cost-effective maintainability.BORDLINE M auxiliary converters are based on modular architecture; thanks to the use of stan-dardized PEBB (Power Electronics BuildingBlocks), ABB power modules that are 100% inter-nally designed and validated, different assem-blies can be developed utilizing their simple flexi-ble combinations.With a proven service track record of over 30 years, this set of tested and flexible power mod-ules makes it possible to have maximum versatil-ity in the availability of spare parts (the use of standardized components - LRUs-, which can be reused in different projects).Moreover, the combination of ABB PEC control platform Power Electronic Controller (with stan-dard software base line) and BORDLINE® View di-agnostic software ensures the excellent manage-ment of corrective maintenance andobsolescence through preventive maintenance throughout the complete life cycle of the con-verter.—BORDLINE® M base productsA modular and flexible family of auxiliary converters that meets the requirements of the marketAlso known as the ABB Base Product platform, the new BORDLINE® M auxiliary converter plat-form for urban mass transit has been designed in three power sizes according to vehicle re-quirements:• BORDLINE® M55(power range from 35kVA to 60kVA) • BORDLINE® M90(power range from 70kVA to 90kVA)• BORDLINE® M170(power range from 100kVA to 170kVA)BORDLINE® M Base products are flexible convert-ers, which are highly standardized but tailorable to the customer’s requirements thanks to a wide set of options that can be simply combined (i.e. specific fixing point, DC output power, inputstage) in order to reach a system that fully meets the customer’s specific needs, both in new vehi-cles and retrofit projects.This approach leads to a big benefit for railway operators as the time and costs of product con-figuration and maintenance are significantly re-duced.Weight & volume Simple, robust & Platform components with a proven service recordHighBenefits for vehicles builders and railway operators:• Fast time-to-market • Design to cost (RC)• Easy,fast and cost-effective maintenance (low Life Cycle Cost)• Reduced vehicle consumption • High vehicle availability • Worldwide serviceKey product features :• Customizable with easy combination of available options• Based on 100% validated components (PEBB, PEC, BORDLINE® BC - SiC Battery Charger module, SW Base Line)• Simple, robust & waterproof mechanical design • Optimized Weight & volume• Capable to be connected to all actual TCMS interfaces6B O R D LI N E ® M B A S E PRO D U C T SEnvironmental Condition Ambient Temperature Range -25°C÷45°CInstallation Roof—BORDLINE® M55_DC_600/750_RAuxiliary Power Converter System - DataSheetMechanicalDimensions (LxWxH)1600mm 600mm 500mmWeight ≤ 255 kg Cooling Type Forced Air Main Power Input Nominal Input Voltage 600VDC/750V DC3AC Output Configurations Voltage Power Frequency380V AC 50kVA 50Hz 400V AC 55kVA 50Hz415V AC 55kVA 50Hz/60Hz 480V AC55kVA50Hz/60Hz LVDC Output Configurations Voltage 1xBC Module 2xBC Module 24V DC 6,35kW/225A 12kW/450A 36V DC 9,45kW/225A 12kW/450A 72V DC 6,35kW/75A 12kW/150A 110V DC9,45kW/75A12kW/150A—7—BORDLINE® M90_DC_750_UAuxiliary Power Converter System - DataSheetEnvironmental Condition Ambient Temperature Range -25°C÷45°CMechanicalDimensions (LxWxH)1800mm 800mm 560mmWeight ≤ 350kg Cooling Type Forced Air Main Power Input Nominal Input Voltage 750V DC 3AC Output Configurations Voltage Power Frequency380V AC 85kVA 50Hz 400V AC 90kVA 50Hz415V AC 90kVA 50Hz/60Hz 480V AC90kVA50Hz/60HzLVDC Output Configurations Voltage 1xBC Module 2xBC Module 24V DC 6,35kW/225A 12,7kW/450A 36V DC 9,45kW/225A 18,9kW/450A 72V DC 6,35kW/75A 12,7kW/150A 110V DC9,45kW/75A18,9kW/150AInstallation Roof—8B O R D LI N E ® M B A S E PRO D U C T S—BORDLINE® M170_DC_1500_UAuxiliary Power Converter System - DataSheet—Environmental Condition Ambient Temperature Range-25°C÷45°CMechanicalDimensions (LxWxH)2440mm 940mm 742mmWeight≤ 655kg3AC Output Configurations Voltage Power Frequency380V AC 160kVA 50Hz 400V AC 170kVA 50Hz415V AC 170kVA 50Hz/60Hz 480V AC170kVA50Hz/60HzLVDC Output Configurations Voltage Modules x Power /Current24V DC 1x or 2 x 6,35kW/225A 36V DC 1x or 2 x 9,45kW/225A 72V DC 1x or 2x or 3x 6,35kW/75A 110V DC1x or 2x or 3x 9,45kW/75A Main Power Input Nominal Input Voltage 1500V DC Installation Roof910B O R D LI N E ® M B A S E PRO D U C T S—BORDLINE®Auxiliary Power Converter System - Options list—Input Stage Configuration Options Input fuse:Input fuse can be added in the APCS input in the rare case where the APCS input line is not protected by a dedicated fuseSingle Input Diode: The input fuse can be added in order to store the input filter energy in case of rail gap or in the case where a reverse polarity might appear during the normal operationInput Current Sensor:Input current sensor can be added for an accurate measurement of the APCS power consumptionInput Filter Resonance Frequency: Input filter can be customized in order to ensure the interoperability between APCS, Vehicle and catenaryHV Voltage Indicator LED:A double flashing LED visible from outside can be installed in order to provide information to the operator that a voltage higher than 50V is present at the input terminalNeutral Output: When APCS provides the neutral output, a max neutral power must be agreedAPCS Synchronization: APCS inverter output can be connected in parallel with other BORDLINE®M APCS without any communication bus. Only an output voltage sensor (and Main 3AC contactor) is needed Main 3AC Contactor: Main 3AC contactor can be installed in order to insulate the APCS from train distribution line. It is a mandatory option in case of APCS synchronization option is includedEarth Fault detector: An Earth Fault detector based on the current measurement to ground, can be installed. The purpose is not intended as a protectionDirect Workshop Input:A dedicated input for the Workshop operation can be added in order to provide energy to the 3AC output and the battery charger. The normal workshop input is considered insulated from the ground accordingly EN 50546. The APCS must consider also the possibility to be connect with a grounded workshop InputIndirect Workshop Input:In case of workshop input voltage does not match the 3AC output voltage, one 3Phase inverter must operates as active front end, and the other 3Phase inverter operates as normal inverter. The normal workshop input is considered insulated from the ground accordingly EN 50546. The APCS must consider also the possibility to be connect with a grounded workshop Input Workshop Dead Battery Start: If option [12] is installed, the workshop dead battery start is not anymore possible only with BORDLINE®BC Function, an additional power supply shall be consideredError! Reference source not found.:The inverter can be implemented as 2 inverter modules that can operate independently, so that a redundancy management strategy can be implemented in case of a single faultA DC Contactor can be installed in order to disconnect the DC load when vehicle is parked. If option is installed, the contactor coil will be available at X100 connector in order to be integrated in the vehicle logicPermanent Load Output: If DC Load Contactor is installed an output can be added for the permanent connected load 3C supplied battery chargers:In the standard configuration the Battery charger is taking energy from the 3AC line, but it can be also connected to the internal DC bus, in order to optimize the converter behavior—3AC output Configuration Options —LV DC output Configuration Options11—Control Power Supply Configuration OptionsHV Dead Battery Start: An additional control Power supply taking energy from HV input can be installed inside APCS,so that the APCS is able to start-up also in case of Dead Battery Start and HV Voltage only isavailableStand-by: A contactor can be added in order to disconnect control power supply in case of prolongedtime of APCS nonoperation, so that the battery power consumption can be drastically reduced.An additional Digital input on connector X100 can be also installed in order to wake-up theAPCS againAuto Wake-Up: Option [19] can be improved with Auto Wake-up function that consist on a relay that is able todetect the presence of high voltage in a valid range. This relay can be used to automaticallywake-up the APCS from Stand-by, when HV is applied—Mechanical Configuration OptionsFixing Point Customization: Fixing Points cab be customizedDoor-Lock: APCS panels can be locked with fast locking system or security keyConnectors customization: All connectors can be customized in the limit of the technical feasibilitySurface Treatment: Different internal and external surface treatment can be agreed—Mechanical Configuration OptionsLHD Cable: LHD Cable can be added in order to be integrated with vehicle fire extinguisher systemTCMS Communication Protocols: Standard communication Protocol is CANOpen, with ABB data dictionary. Othercommunication interfaces are available, like MVB, Ethernet TRPD and Ethernet CIPTCMS Customized Data Dictionary: A customer specified communication data dictionary can be implementedExternal Diagnostic Port: Internal X501 Ethernet diagnostic port can be connected to an externally accessible connector12B O R D LI N E® M B A S E PRO D U C T S We reserve the right to make technicalchanges or modify the contents of thisdocument without prior notice.With regard to purchase orders,the agreed particulars shall prevail.ABB AG does not accept any responsi-bility whatsoever for potential errorsor possible lack of information in thisdocument.We reserve all rights in this documentand in the subject matter and illustra-tions contained therein. Any reproduc-tion, disclosure to third parties or uti-lization of its contents – in whole or inparts – is forbidden without prior writ-ten consent ofABB AG. Copyright© 2020 ABBAll rights reservedA RTI CL E O R CH A P TER TITL E139A K K 107991A 3308 10.2020—ABB S.p.A.TractionVia Albareto 3516153, Genova Italy**************************.com /railway/auxiliaryconverters。
电转化仪使用方法
电转化仪使用方法嘿,朋友们!今天咱就来讲讲这电转化仪的使用方法。
电转化仪啊,就像是一个神奇的魔法盒子,能帮我们完成一些特别的实验任务呢!想象一下,它就是那个能把普通的东西变得神奇的宝贝。
首先呢,咱得把电转化仪准备好,就像战士上战场前要检查自己的武器一样。
确保它的各个部件都完好无损,没有啥毛病。
这可是关键的第一步哦!然后呢,把要处理的样本啥的准备好。
这就好比做饭,食材得先备好不是?可别马马虎虎的,不然出来的结果可能就不那么理想啦。
接下来,按照操作说明,一步一步来。
别着急,就像走楼梯一样,稳稳当当的。
设置好各项参数,可别设置错啦,不然那不就乱套了嘛。
在操作的过程中,要时刻留意电转化仪的状态。
它要是有啥“小情绪”,咱得赶紧发现呀。
就像照顾小孩子一样,得细心着呢。
你说这电转化仪是不是挺有意思的?它能帮我们在实验里探索好多未知的东西。
但咱可不能小瞧它哦,得认真对待它。
使用电转化仪的时候,还得注意安全。
这可不是开玩笑的,电这东西可得小心点。
就好像过马路要左右看一样,不能马虎。
还有啊,用完了电转化仪,也得好好收拾收拾。
把它擦干净,放好,就像我们每天睡觉前要把自己的床铺好一样。
总之呢,电转化仪是个很重要的实验工具,咱得学会正确使用它。
这样才能让它发挥出最大的作用呀!大家可都要记住这些要点哦,别到时候手忙脚乱的。
相信大家都能很好地驾驭这个神奇的小盒子,让我们的实验更顺利,更成功!怎么样,是不是对电转化仪的使用方法更清楚啦?那就赶紧去试试吧!。
bio电转仪使用手册
Bio电转仪——让你了解身体电信号的神奇仪器
我们的身体每时每刻都在发出电信号,这些信号通过神经系统传递,控制我们的肌肉运动、心跳、呼吸等生理功能。
而Bio电转仪则是一种能够测量这些电信号的仪器。
Bio电转仪的使用方法非常简单,只需要将电极贴在身体上,就能够测量出身体发出的电信号。
这些电信号可以反映出身体内部的生理状态,比如心跳、呼吸、肌肉运动等。
通过对这些信号的分析,我们可以了解身体的健康状况,及时发现潜在的健康问题。
Bio电转仪的应用范围非常广泛,比如在医疗领域,可以用于诊断心脏病、神经系统疾病等;在运动领域,可以用于监测运动员的身体状态,提高训练效果;在科学研究领域,可以用于研究人体生理学、神经科学等方面的问题。
除了以上应用领域,Bio电转仪还有一些非常有趣的应用。
比如,有些艺术家将Bio 电转仪的测量结果作为音乐的创作素材,创造出了一些非常独特的音乐作品。
还有一些科技公司将Bio电转仪与虚拟现实技术结合起来,开发了一些可以通过身体动作控制虚拟世界的游戏。
Bio电转仪的使用虽然非常简单,但是在使用过程中还是需要注意一些事项。
使用前需要将身体部位清洗干净,以保证电极能够贴紧皮肤;需要注意电极的位置,不同的位置对应不同的测量结果;需要注意仪器的使用方法,避免误操作导致测量结果不准确。
Bio电转仪是一种非常神奇的仪器,它能够让我们了解身体内部的电信号,帮助我们更好地了解身体的健康状况。
无论是在医疗、运动、科学研究还是艺术、科技领域,Bio 电转仪都有着广泛的应用前景。
让我们一起来探索这个神奇的世界吧!。
bio电转仪使用手册800字左右_概述及范文模板
bio电转仪使用手册800字左右概述及范文模板1. 引言1.1 概述本篇文章是一篇关于bio电转仪使用手册的长文,旨在向用户提供全面的指导和说明。
随着科技的不断进步和生物医学领域的发展,bio电转仪作为一种重要的生物信号记录工具,在研究、临床诊断以及治疗中扮演着至关重要的角色。
本手册将介绍使用bio电转仪所需的准备工作,详细说明如何进行电源连接和电极安装,并对其功能进行全面介绍。
此外,还将针对一些常见问题提供解答,并对未来发展进行展望和建议。
1.2 文章结构本手册共分为五个部分,依次是引言、使用方法、功能介绍、常见问题解答以及结论与展望。
引言部分概述了本篇文章所涵盖内容,并简要说明各节内容安排。
使用方法部分将详细介绍使用bio电转仪前需要做哪些准备工作,包括检查设备完整性与操作准确性等。
接着会指导用户如何正确连接电源和安装电极,确保设备正常运行。
功能介绍部分将全面阐述bio电转仪的主要功能。
重点介绍如何使用该设备记录生物电信号,以及数据传输与保存的方法。
此外,还会介绍如何对记录的数据进行分析和解读。
常见问题解答部分将回答一些用户常遇到的问题。
主要包括如何处理噪音干扰、如何保养仪器以及如何与计算机连接并导出数据等内容。
结论与展望部分将对本手册所涵盖内容进行总结,并提供对未来发展的展望和建议。
1.3 目的本篇文章的目的是为用户提供一份详细而全面的bio电转仪使用手册,帮助他们正确操作设备并理解其功能。
通过阅读本手册,用户可以掌握使用bio电转仪的基本知识和技巧,提高工作效率和准确性,并充分利用该设备在各个领域中的优势。
同时,我们也希望通过本手册进一步推动相关技术研究和应用的发展,为生物医学领域做出贡献。
2. 使用方法2.1 准备工作在开始使用bio电转仪之前,请确保已经准备好以下材料和环境:1. bio电转仪本体:确保机器完好无损且处于正常工作状态。
2. 电源线:将bio电转仪连接到稳定的电源插座上。
Eporator
Eporator®电转化仪和电转化仪价格Eporator®电转化仪 标题:Eporator®电转化仪欢迎使用Eppendorf Eporator® — 高效转化细菌和酵母的产品方案!Eppendorf Eporator 是您和您的实验室的理想选择。
咨询一下技术专家-以您提供的细菌和酵母为例-它们将证明,Eppendorf Eporator 的产品特征和性能会让你的实验更加容易,结果更加出色。
电转化可以用来将DNA 转入感受肽细菌和酵母中,相对化学方法,电转化法可以获得更高的转化效率。
这种方法比其他方法获得的重复性更加好,操作简易并节省时间。
提高样本处理速度 — 简易的单键操作:只需设置电压或选择预设参数并插入电击杯 界面直观-彩色显示器中的状态信息可以减少错误 迅速灵活地改设程序 —两个程序键可以储存和调用最常用的参数,默认设置:P1 1700V 和P2 2500V 安全的电路设计和内置式电击插槽,杜绝...厂家:上海政泓 市场价格:优惠价格:百度搜索联系Eppendorf 临床离心机套装 标题:Eppendorf 临床离心机套装Great Bundle Savings! 如果您需要可以离心不同样品通量的冷冻或非冷冻型离心机,以下 Eppendorf 离心机套装必有一款能满足您的需求: 临床离心机套装包括 5702 R 冷冻离心机 13 mm 和 16 mm 采血管或尿管适配器。
临床离心机套装包括: 5702 R 冷冻离心机 水平转子 A-4-38 含圆形吊篮 4 个适配 13 mm 采血管或尿管适配器(2 套,每套 2 个) 4 个适配 16 mm 采血管或尿管适配器 (2 套,每套 2 个)Technical specifications 临床离心机套装 每个适配器 / 每个转子的试管数量 13 mm 试管 16 mm 试管 5702 R 适配水平转子 厂家:上海政泓 市场价格: 优惠价格:百度搜索联系。
伯乐Power PacTM通用型电源
伯乐PowerPac TM 通用型电源面板说明红外接口 数值-字母键清除键箭头 编辑EDIT 设置SETUP停止/主菜单 运行/暂停软键运行/暂停 当暂停后,当前步骤的运行参数可以被修改,修改后的程序可以在运行结束后按SA VE 储停止/主菜单 立即终止当前程序并显示最后的运行参数,如果没有程序运行,则返回主菜单N ote :在运行阶段修改程序,必须在结束后按SA VE 保存 设置 设置电源的默认参数,如断电检测,时间,屏幕对比度以及按键声音等编辑 调用软键功能来设置运行模式(恒流/恒压/恒定功率),限制参数(电压/电流/功率)和时间模式 箭头 在选项间移动,以*标示选中的选项清除 清楚输入的数值,或恢复之前输入的数值 数值-字母键 用来输入参数的数值或程序的名称,连续点击同一个按键,可以在切换输入的内容 如:连续点击2abc 这个按键,可以在a/b/c/2/A/B/C/2之间切换软键 分别对应LCD 屏幕下方的三个不同的功能键操作指南电源安装正确插入电引线将电引线插入电源输出(角度垂直于插口斜面)仪器设置PFd 断电检测,恢复供电时,程序将继续运行PFd=ON NEXY RUN ONLY 仅对本次运行有效PFd= ON 对所有运行有效RRCd-NLDd 检测负载超过20%或15mA或空载(低于2mA)系统会发出警报并中断程序PANEL 仪器面板设置,包括对比对(CONTRAST),按键声音(KEY CHIRP)以及时钟(CLOCK)实验操作开机后进入主菜单,使用软件选择程序的类型MANUAL一步程序,不储存METHODS一步/多步程序,储存按METHODS,创建一个新的方法按向上箭头,输入方法的名字按CE键盘清楚默认名字,然后通过数值-字母键输入名字完成后按OK按EDIT编辑一个空的步骤(*标记)选择CONSTV/CONSTA/CONSTW(恒压/恒流/恒定功率)并输入如果不需要设置限制参数(默认的限定参数显示在屏幕右侧)和时间模式,直接点击运行按EDIT设置限制参数,如无需设置时间模式,则直接点击运行按EDIT设置时间模式小时/伏特-小时/无限制添加一个新的步骤或保存按向下箭头选择一个空的步骤,重复上述步骤完成编辑或直接保存点击运行。
MicroPulser电穿孔仪的操作及维护规程
Bio-Rad MicroPulser 电穿孔仪的操作及维护规程1、功能介绍 1.1选择预设程序MicroPulser 电穿孔仪预设了常用的微生物电击程序,包括5个细菌和5个真菌电击程序。
如下:按"Settings"键选择"Bacteria","Fungi"和"Manual "设置。
当"Fungi "旁的LED灯亮时,预存的真菌转化程序即被调出,按"Raise"和"Lower"键显示出不同的真菌转化程序。
电击的参数自动按显示的程序设定。
同样的,选择"Bacteria "程序相同。
1.2 选择手动模式A. 改变电压按 "Settings" 键,当"Manual"旁的LED灯亮时,显示屏显示电压值 (单位kV)。
按"Raise"和"Lower"键在0.20 kV to 3.00 kV之间改变电压设置。
如果仪器刚刚打开,显示值为"0.00"。
B. 截短脉冲当"Manual"旁的LED灯亮时,同时按"Raise"和"Lower"键LED屏显示“t—”,表示为脉冲选择了时间。
开机时的默认设置为标准的指数衰减脉冲,衰减过程并不被截短,显示为“——”。
同时按"Raise"和"Lower"键后只松开"Lower"键,显示数字为截短的脉冲持续时间,单位为毫秒(ms),从1毫秒开始以0.1毫秒为增量一直到4毫秒。
限定脉冲时间在1-4毫秒之间。
同时按"Raise"和"Lower"键后只松开"Raise"键,可以调整脉冲时间到更短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gene pulser xcell TM Electroporation system quick guide
产品名称: Gene Pulser Xcell 电穿孔系统
产品型号: Gene Pulser Xcell 电穿孔系统
产品展商: 众磊(北京)生物科技发展有限公司驻沪办
简单介绍
Gene Pulser Xcell 电穿孔系统
Gene Pulser Xcell 电穿孔系统的详细介绍
【介绍】
电穿孔是功能强大的将核酸、蛋白及其它分子导入多种细胞的高效技术。
通过高强度的电场作用,瞬时提高细胞膜的通透性,从而吸收周围介质中的外源分子。
这种技术可以将核苷酸、DNA 与RNA、蛋白、糖类、染料及病毒颗粒等导入原核和真核细胞内。
电转化相对其它物理和化学转化方法,是一种有价值和有效的替代方法。
Gene Pulser Xcell 系统的设计,基于Bio-Rad 15年来在电转化技术上经验积累,它提供指数波和方波波型选择、系统配置选择及友好的用户界面。
主要特点指数波和方波波型确保所有细胞类型(原核及真核)均可获得最佳的电转化效果Bio-Rad 专利的* PulseTrac 电路和电弧保护设计,确保可重复性并保护样品模块化设计可根据研究需要选择系统用户友好的数字化界面,具有直观的编程以控制所有参数,包括附属模块的参数包括人工操作、预设规程、用户规程、一个优化规程及其它先进功能等程序选择
指数波或方波脉冲选择
Gene Pulser Xcell 系统可产生指数波和方波波型,使你选择最适合你细胞的波型与规程。
指数波和方波均能有效地用于电转化及电融合。
电穿孔波型对不同类型细胞的转化效率有很重要的影响。
左,指数衰变脉冲。
当一个充电至电压为V 0 的电容器放电到细胞,加在细胞上的电压随时间以指数方式下降。
从起始电压下降到V0 / e 所需的时间称为为时间常数τ, 一种方便的脉冲时间表达方式。
右,方波脉冲。
放电到样品后截断电容器脉冲可产生方波脉冲。
脉冲时间为细胞被放电的时间。
所有方波设备都会产生细微的电压下降。
这种电压下降称为脉冲下垂,并以起始电压的百分比计量。
PulseTrac 电路和电弧保护提供可靠的、可重复的和安全的性能Bio-Rad 独创的专利微处理器控制电路能为任何规程提供可重复的结果,无论使用何种介质,它所产生的电压值可在全世界范围内测试。
PulseTrac 电路和电弧保护:
●确保电压准确地传送到电击杯
●把CE 模块中的低压电容器精确度从20% 提升到10%
●便于电容器再校正,以保持精确的脉冲指标,修正电容器随着时间而发生的偏移
●提供脉冲前样品电阻测量
●当脉冲或电路中断时,可安全地自动放电降
●低电弧危险,保护设备及样品
用户友好界面,便于编程和控制
主单元上的图形界面可控制包括任何连接的附属模块在内的所有功能。
界面由一个通过功能键和字母数字键盘
操作的屏幕组成。
根据屏幕提示进行简便而直观的编程。
屏幕用于编程和显示储存与设定的程序、运行参数以及波型。
规程包括:
●人工编程以输入或编辑方波或指数衰变脉冲的所有参数
●辅助编程需要的时间常数
●预设有适合常用细菌、真菌和哺乳动物细胞株的优化程序
●优化规程
●根据不同的波型选择,显示时间常数、实际电压、脉冲间隔和脉冲时间等参数
●储存和调用前100 个实验的脉冲参数
预优化规程,可快速选择程序这项功能为每个细胞株提供一组专用的预优化参数。
提供以下细胞株的预设程序
选择你所需要的系统
Gene Pulser Xcell 是由一个主单元、2 个附属模块(CE 与PC 模块)及ShockPod
电击槽组成的模块式电穿孔系统。
CE 模块与Gene Pulser Xcell主单元配合使用可电转化多数真核细胞(包括哺乳动物细胞和植物原生质体)。
PC模块建议用于细菌和真菌的电转化,或其它需要在小体积和高电阻样品上施加高电压脉冲的应用。
【技术指标】
Gene Pulser Xcell 完全系统
包括主单元、CE模块、PC模块
输出波型:指数衰变或方波
电压:10–3,000 V
电容10–500 V, 25–3,275 µF , 25 µF 增量500–3,000 V, 10, 25, 50 µF
电阻(并联)50–1,000 Ω ,50 Ω 增量,加无穷大
样品电阻10–2,500 V 内,最小20 Ω2,500–3,000 V 内,最小600 Ω
方波时间10–500 V: 持续时间0.05–10 ms ,0.05 ms 增量;
持续时间10–100 ms ,1 ms 增量,1–10 个脉冲,间隔0.1–10 s 500–3,000 V:
持续时间0.05-5 ms,0.05 ms 增量,1-2 个脉冲,最小间隔5s
Gene Pulser Xcell 真核系统
包括主单元、CE 模块;
输出和其他规格除了无并联电阻外,输出等与完全系统相同
Gene Pulser Xcell 微生物系统
包括主元件、PC 模块
输出波型:指数衰变或方波
电压:200–3,000 V
电容10, 25, 50 µF
电阻(并联)50–1,000 Ω 增量50 Ω ,加无穷大
样品电阻200–2,500 V 内,最小20 Ω
2,500–3,000 V 内,最小600 Ω
方波时间持续时间0.05–5 ms ,0.05 ms 增量,1-2 个脉冲,最小间隔5s
Gene Pulser Xcell 主单元
输出波型:指数衰变或方波
电压:200–3,000 V
放电电容10, 25, 50 µF
样品电阻200–2,500 V 内,最小20 Ω
2,500–3,000 V 内,最小600 Ω
方波时间持续时间0.05–5 ms ,0.05 ms 增量,1-2 个脉冲,最小间隔5s
常规
输入电压100–120 V AC 或220–240 V AC, 50/60 Hz
电源最大240 W (在短放电过程中)
工作环境温度0–35°C, 湿度0–95% (无冷凝水)
安全认证EN61010, EMC EN61326 A 级安全认证
大小(W x D x H) 主单元:31 x 30 x 14 cm
CE 模块:31 x 28 x 9 cm
PC 模块:31 x 28 x 5 cm
重量主单元: 6.6 公斤
CE 模块:3.1 公斤
PC 模块:1.9 公斤
使用说明
人工操作:
1.从最初的显示屏开始
按Enter键选择实验指数式衰减
按2键,之后按Enter键选择指数式衰减并且要指定一个时间常量
按3键,之后按Enter键来选择方波
2.使用上、下键来选择屏幕上各量的参数值。
当一个参数值是加亮的,使用键盘输入一个数值,然后按Enter键来接受这个数值
3. 当必要的参数输入完毕时,机器上的脉冲键就是可激活的了
4. 按下脉冲键来开始电击样品
5.按返回键返回详细设定显示界面,并且进行另一次的脉冲。
使用仪器设置好的程序
1.在最初的显示界面,按4键,然后按Enter键来浏览已经设置好的程序
2.按1-3键来选择样品是细菌、真菌或是哺乳动物细胞;按Enter键来选择组织类型和显示组织列表。
对
于细菌和哺乳动物细胞预先设置好的程序,使用左、右方向键来在两个屏之间触发
3.按数字键来设置参数来使之呈现高亮状态。
然后按Enter键来选择和显示程序详细的界面
4.按脉冲键来电击样品
5.按返回键来返回程序详细界面并且来进行下一次的脉冲
使用一个用户设置好的程序
1.在最初显示界面,按5键,之后按Enter键来打开用户程序菜单并且显示第一个用户界面。
用左、右
方向键来在两个界面间切换
2.按1-12键来使目标用户名高亮,按Enter键来选择名字并且显示第一个用户参数界面,使用左、右方
向键来在两个界面间切换
3.按1-12键来使目标程序名高亮,按Enter键来选择名字并且显示程序详细信息界面。
仪器上的脉冲键
现在是可被激活的
4.按脉冲键来电击样品
5.按返回键来返回程序详细界面并且来进行下一次的脉冲
BIO-RAD
Gene pulser xcell TM Electroporation system
quick guide
2009-4-5。