(完整word版)数列求和方法(带例题和练习题)
数列求和(综合)
【例题 3】已知数列{an}的前 n 项和为 Sn,且 Sn (1)求 an,bn; (2)求数列{an· bn}的前 n 项和 Tn.
2n2 n, n R*
,数列{bn}满足 an=4log2bn+3,
练习: 设数列
an 的前 n 项和为 Sn ,且 a1 1, an1 2Sn 1 ,数列 bn 满足 a1 b1 ,点 P(bn , bn1 )
a1bn ;证明: Tn +12= 2an +10bn (n N + ) .
等差数列绝对值求和
1、数列 a n 中, a1 8, a4 2 且满足 a n 2 2an 1 a n ⑴求数列 a n 的通项公式; ⑵设 S n | a1 | | a2 | | an | ,求 S n ;
【例题 2】设数列
an 的前项和为 S n ,且 S n 2
1 , bn 为等差数列,且 a1 2n 1
b1 ,
a2 (b2 b1 ) a1 .
(1)求数列 (2)设 cn
an 和 bn 通项公式;
bn ,求数列 cn 的前 n 项和 Tn an
n (3 log 2
an 1 ) ,求数列{ }的前 n 项和 bn 3
2、已知{ an }是等差数列,其前 n 项和为 S n ,{ bn }是等比数列,且 a1 = b1 =2 , a4 +b4 =27 , S4 b4 =10 . (Ⅰ)求数列{ an }与{ bn }的通项公式; (Ⅱ)记 Tn anb1 an1b2 an2b3
(Ⅱ) 设 bn
3 m ,Tn 是数列 {bn } 的前 n 项和, 求使得 Tn 对所有 n N 都成立的 a n a n 1 20
数列求和Microsoft Word 文档 (2)
第二讲数列求和(一)一、知识要点若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练例题1、有一个数列:4,10,16,22.…,52.这个数列共有多少项? 【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
边学边练:等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?例题2、有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?【思路导航】这个等差数列的首项是3.公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399.边学边练:一等差数列,首项=3.公差=2.项数=10,它的末项是多少?例题3、有这样一个数列:1.2.3.4,…,99,100。
请求出这个数列所有项的和。
【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。
1+2+3+…+99+100=(1+100)×100÷2=5050上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。
(完整word版)数列的通项公式与求和的常见方法
常见数列通项公式的求法类型一:公式法1(或定义法)1()n n a a p p +-=为常数1()n na q q a +=为非零常数 例1. 已知数列{}n a 满足11a =,12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。
例2.已知数列{}n a 满足12a =,13n na a += *()n N ∈,求数列{}n a 的通项公式。
变式练习:1.已知数列{}n a 满足12a =,110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。
2.已知数列{}n a 满足16a =-,13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。
3. 已知数列{}n a 满足11a =,212=a ,11112n n na a a -++=(2)n ≥,求数列{}n a 的通项公式。
4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。
类型二:(累加法))(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解例:已知数列{}n a 满足121n n a a n +=++*()n N ∈,11a =,求数列{}n a 的通项公式。
变式练习:1.已知数列{}n a 满足211=a ,n a a n n 21+=+,*()n N ∈求数列{}n a 的通项公式。
2.已知数列{}n a 满足11a =,11(1)n n a a n n -=+-,(2)n ≥,求数列{}n a 的通项公式。
3.已知数列{}n a 满足1231nn n a a +=+⨯+, *()n N ∈,13a =,求数列{}n a 的通项公式。
4.已知数列{}n a 中,12a =,11ln(1)n n a a n+=++,求数列{}n a 的通项公式。
数列求和的八种重要方法与例题
n
n-1
n
n
n-1
n
2S =lg(xy) +lg(xy) + ...+lg(xy)
n
= 2n(n +1) S = n(n +1)
2.错位相减 当{an}是等差数列,{bn}是等比数列,求 数列{anbn}的前n项和适用错位相减
典例3:
通项
1+2×3+3×32+4×33+…+n×3n-1=?
5.拆项分组求和法
6.并项求和法
深化数列中的数学思想方法:
热点题型1:递归数列与极限. 1
an 2 1 设数列{an}的首项a1=a≠ ,且 an 1 4 a 1 n 4 1 记 bn a2 n 1 ,n=l,2,3,…· . 4
n为偶数
,
n为奇数
1
a1 1, 故b1
1 1 1 2
2;
3 1 13 20 a3 , 故b3 4; a4 , 故b4 . 3 1 4 20 3 4 2
7 1 8 a2 , 故b2 7 1 3 8 8 2
热点题型2:递归数列与转化的思想方法.
数列{an}满足a11且8an116an12an50 (n1)。记 bn 1 (n1)。 an 2 (1)求b1、b2、b3、b4的值; (2)求数列{bn}的通项公式及数列{anbn}的前n项和Sn。 1 1 1 bn 得an , 代入递推关系8an1an 16an1 2an 5 0, 1 bn 2 an 1 a b bn 1 2 n n
{an+bn+cn}
等差
等比
高中数学数列求和的五种方法
⾼中数学数列求和的五种⽅法⼀、公式法求和例题1、设 {an} 是由正数组成的等⽐数列,Sn为其前 n 项和,已知 a2 · a4=1 , S3=7,则 S5 等于( B )(A) 15/2 (B) 31/4 (C) 33/4 (D) 17/2解析:∵ {an} 是由正数组成的等⽐数列 , 且 a2 · a4 = 1, q > 0 ,例题1图注:等⽐数列求和公式图例题2、已知数列 {an} 的前 n 项和 Sn = an^2+bn (a、b∈R), 且 S25=100 , 则a12+a14等于( B )(A) 16 (B) 8 (C) 4 (D) 不确定解析:由数列 {an} 的前 n 项和 Sn = an^2 + bn (a、b∈R), 可知数列 {an} 是等差数列,由S25= 1/2 ×(a1 + a25)× 25 = 100 ,解得 a1+a25 = 8,所以 a1+a25 = a12+a14 = 8。
注:等差数列求和公式图⼆、分组转化法求和例题3、在数列 {an} 中, a1= 3/2 ,例题3图(1)解析:例题3图(2)故例题3图(3)∵ an>1,∴ S < 2="">∴有 1 < s=""><>∴ S 的整数部分为 1。
例题4、数列例题4图(1)例题4图(2)解析:例题4图(3)三、并项法求和例题5、已知函数 f(x) 对任意 x∈R,都有 f(x)=1-f(1-x), 则 f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) 的值是多少?解析:由条件可知:f(x)+f(1-x)=1,⽽x+(1-x)=1,∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1,∴ f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) = 3。
数列求和方法(带例题和练习题)(可编辑修改word版)
数列求和主要思路:1. 求数列的和注意方法的选取:关键是看数列的通项公式:2. 求和过程中注意分类讨论思想的运用:3.转化思想的运用; 数列求和的常用方法——、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:s 加严j )〃” 2 1 2 [加 1 n (4=1) 2、 等比数列求和公式:S =八「(1一/) u 一 a qn ] _J _______ = 1 力 (g H 1)〔1-9 1-9 n13、S 〃=》k = l + 2 + 3 + +…+ /?..= -it (n +1)=l 2 + 22 +32 +...+ /* =^n(n +l)(2n+l) os n =^A :3 = I 3 + 23 + 33+ •••+/73J 】公式法求和注意事项 (1)弄准求和项数〃的值:(2)等比数列公比°未知时,运用前〃项和公式要分类。
例 1.求和 l+X + x2+・・ ・+0-2(“n2,XHO) 二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{知• bn }的前n 项和,其中{a n }. {0}分别是等差数列和等比数列. 例 2・求和:1 +3x + 5x 2 + 7x 3 + ・・・ + (2〃一1)#12 4&例,求数列〒芦去 三、倒序相加法如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用 倒序相加发,如等差数列的前n 项和就是此法推导的 例 4.求sin 2 h+ sin ' 2°+ sin ' 3。
+ …+ sin 2 88•+ sin 2 89。
的值例 4 变式训练八 求 cosl° +cos2° +cos3° +• • •+cosl78° +cosl79° 的值. 例 4 变式训练 2:数列{an }: a t = 19a 2= 3, a 3= 2,a^2= a n ^x -a n , S2002.例4变式训练3:在各项均为正数的等比数列中,若。
数列求和的八种重要方法与例题
练习10:
已知Sn=-1+3-5+7+…+(-1)n(2n-1),
1)求S20,S21 2)求Sn
=20 S20=-1+3+(-5)+7+……+(-37)+39
S21=-1+3+(-5)+7+(-9)+……+39+(-41)
=-21
总的方向: 1.转化为等差或等比数列的求和 2.转化为能消项的 思考方式:求和看通项(怎样的类型) 若无通项,则须先求出通项 方法及题型: 1.等差、等比数列用公式法 2.倒序相加法 3.错位相减法 4.裂项相消法
1 (1 3
2n )
5
n
12 3
1 (2n 5n 1) 3
热点题型3:递归数列与数学归纳法.
已知数列{an}的各项都是正数,且满足:a01,an1
(nN)
1 2
an (4
an ).
(1)证明an<an+1<2(nN) (2)求数列{an}的通项公式an
用数学归纳法证明:
类型a1+an=a2+an-1=a3+an-2=……
典例. 已知 lg(xy) 2 2.倒序相加法
S =lgxn +lg(xn-·1 y)+ ...+lg(x·1 yn-1)+lgyn,
(x > 0,y > 0) 求S .
S =lgxn +lg(xn-·1 y)+ ...+lgyn
S =lgyn +lg(yn-·1 x)+ ...+lgxn 2S =lg(xy)n +lg(xy)n + ...+lg(xy)n
数列求和常用方法(含答案)
数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。
数列求和专题(必考必练,方法全面,有答案)
数列求和专题一.公式法(已知数列是等差或等比数列可以直接使用等差或等比的求和公式求和) 二.分组求和法若数列的通项是若干项的代数和,可将其分成几部分来求.例1:求数列11111246248162n n ++L ,,,,,…的前n 项和n S .- 23411111111(2462)(1)222222n n n S n n n ++⎛⎫=+++++++++=++- ⎪⎝⎭L L .例2: 求数列5,55,555,…,55…5 的前n 项和S n解: 因为55…5=)110(95-n 所以 S n =5+55+555+...+55 (5)=[])110()110()110(952-+⋅⋅⋅+-+-n=⎥⎦⎤⎢⎣⎡---n n 110)110(1095 =815095108150--⨯n n 练习:、求数列11111,2,3,4,392781L 的前n 项和。
解:211223nn n ++-⋅三.错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.例: 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………(0x ≠)解: 当x=1时,23121315171(21)1135(21)n n S n n n -=+∙+∙+∙+⋅⋅⋅+-∙=++++-=当x ≠1时, 132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………. ① ①式两边同乘以x 得n xS = 231135(23)(21)n n x x x n x n x -+++⋅⋅⋅+-+-………② (设制错位)①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+n练习: 1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 1224-+-=n n n S2. 已知数列.}{,)109()1(n n nn S n a n a 项和的前求⨯+=四.裂项相消法 常见的拆项公式有:1()n n k =+111()k n n k -+=1k,1(21)(21)n n =-+111()22121n n --+,等. 例1:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S. 解:∵)2(1+n n =211(21+-n n )S n =⎥⎦⎤⎢⎣⎡+-+⋅⋅⋅+-+-)211()4121()311(21n n =)2111211(21+-+--n n =42122143+-+-n n 例2:设9)(2+=x x f ,(1)若;),2(),(,111n n n u n u f u u 求≥==-(2)若;}{,,3,2,1,11n n k k k S n a k u u a 项和的前求数列 =+=+解:(1)}{),2(9122121n n nu n u u u ∴⎩⎨⎧≥+==- 是公差为9的等差数列,,89,0,892-=∴>-=∴n u u n u n n n(2)),8919(9119891--+=++-=k k k k a k);119(91)]8919()1019()110[(91-+=--+++-+-=∴n n n S n练习: 1、 求数列2112+,2124+,2136+,2148+,…的前n 项和n S .2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.五.倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例1:求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5例2: 求222222222222123101102938101++++++++的和. 解:设222222222222123101102938101S =++++++++ 则222222222222109811012938101S =++++++++.两式相加,得 2111105S S =+++=∴=,.练习:设221)(xx x f +=,求:⑴)4()3()2()()()(111f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++ 【解题思路】观察)(x f 及⎪⎭⎫ ⎝⎛x f 1的特点,发现1)1()(=+xf x f 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .例6: 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ cos(180)cos n n -=- (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0练习:已知:n S n n ⋅-++-+-+-=+1)1(654321 .求n S .(⎪⎪⎩⎪⎪⎨⎧-+=)(2)(21为正偶数为正奇数n n n n S n )。
详解数列求和的方法+典型例题.docx
详解数列求和的常用方法数列求和是数列的重要内容之一, 除了等差数列和等比数列有求和公式外, 大部分数列的求和都需要一定的技巧。
第一类:公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、等差数列的前 n 项和公式n( a 1 a n )na 1n(n1)d S n222、等比数列的前 n 项和公式na 1 (q 1)Sna 1 (1 q n ) a 1a n q (q 1)1 q1 q3、常用几个数列的求和公式n1n(n 1)( 1)、 S nk 1 2 3nk 12n222221 (1)(21)( 2)、 S nk 1 2 3 n nn nk 16nk 313 23 33n 3 [ 1n(n 1)] 2( 3)、 S nk 12第二类:乘公比错项相减(等差等比)这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{ a n b n } 的前 n 项和,其中 { a n } , { b n } 分别是等差数列和等比数列。
例 1:求数列 { nq n 1 } ( q 为常数 ) 的前 n 项和。
解:Ⅰ、若 q =0, 则 S n =0Ⅱ、若q =1 ,则1 ( 1)12 3nn nS nⅢ、若 q ≠ 0 且 q ≠ 1,2则 S n1 2q 3q 2nq n 1①qS n q2q 2 3q3nq n②①式—②式: (1q) S n1q q 2q3q n 1nq nS n1q (1 q q 2q 3q n 1nq n )1S n1q (1q n nq n )11qS n1q n nq n(1q) 21q0(q0)综上所述: S n 1n(n1)(q1)2q n nq n1(1q) 21(q 0且 q 1)q解析:数列 { nq n 1} 是由数列n与 q n 1对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n 项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行分类讨论,最后再综合成三种情况。
(完整版)数列求和合集例题与标准答案)
数列求和汇总答案一、利用常用求和公式求和利用下列常用求和公式求和是数列求和地最基本最重要地方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a qq a q na S n nn 例1、已知,求地前n 项和.3log 1log 23-=x ⋅⋅⋅++⋅⋅⋅+++nx x x x 32解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得(利用常用公式)nn x x x x S +⋅⋅⋅+++=32===1-x x x n --1)1(211)211(21--n n 21练习:求地和.22222222123456...99100-+-+-+--+解:2222222212345699100-+-+-+--+ ()()()()2222222221436510099=-+-+-++- ()()()()()()()()2121434365651009910099=-++-++-++-+ 3711199=+++ +由等差数列地求和公式得()50503199S 50502+==二、错位相减法求和这种方法是在推导等比数列地前n 项和公式时所用地方法,这种方法主要用于求数列{a n ·b n }地前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.例2求和:………………………①132)12(7531--+⋅⋅⋅++++=n n x n x x x S 解:由题可知,{}地通项是等差数列{2n -1}地通项与等比数列{}地通项之积1)12(--n xn 1-n x设……………………….②(设制错位)nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=①-②得(错位相减)n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--再利用等比数列地求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴21)1()1()12()12(x x x n x n S n n n -+++--=+练习:求数列前n 项地和.⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n解:由题可知,{}地通项是等差数列{2n}地通项与等比数列{}地通项之积n n 22n 21设…………………………………①n n nS 2226242232+⋅⋅⋅+++=………………………………②(设制错位)14322226242221++⋅⋅⋅+++=n n nS ①-②得(错位相减)1432222222222222211(+-+⋅⋅⋅++++=-n n n nS 1122212+---=n n n ∴1224-+-=n n n S 三、反序相加法求和这是推导等差数列地前n 项和公式时所用地方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个.)(1n a a +例3求地值89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++解:设………….①89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S 将①式右边反序得…………..②(反序)1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S 又因为1cos sin ),90cos(sin 22=+-=x x x x ①+②得(反序相加)=89)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S ∴S=44.52、求和:222222222222222101109293832921101++++++++++ 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见地数列,然后分别求和,再将其合并即可.例4、求和:⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+n n y x y x y x 11122 ()1,1,0≠≠≠y x x 解:原式=()nx x x x ++++ 32⎪⎪⎭⎫ ⎝⎛++++n y y y 1112=()yy y xx x n n 1111111-⎪⎪⎭⎫⎝⎛-+--=nn n n y y y x x x --+--++1111练习:求数列地前n 项和:, (231),,71,41,1112-+⋅⋅⋅+++-n aa a n 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n 将其每一项拆开再重新组合得(分组))23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 当a =1时,=(分组求和)2)13(n n n S n -+=2)13(nn +当时,=1≠a 2)13(1111n n a a S nn -+--=2)13(11n n a a a n -+---练习:求数列地前n 项和.∙∙∙+∙∙∙),21(,,813,412,211nn 解:n n n n n n n n S 211)1(21)21212121()321()21(81341221132-++=+∙∙∙+++++∙∙∙+++=++∙∙∙+++=五、裂项法求和这是分解与组合思想在数列求和中地具体应用.裂项法地实质是将数列中地每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和地目地.通项分解(裂项)如:例5求数列地前n 项和.⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 解:设(裂项)n n n n a n -+=++=111则(裂项求和)11321211+++⋅⋅⋅++++=n n S n =)1()23()12(n n -++⋅⋅⋅+-+-=11-+n 练习:求13,115,135,163之和.解:94911(21)9171()7151()5131()311(21)9171(217151(21)5131(21)311(2197175153131163135115131=-=⎥⎦⎤⎢⎣⎡-+-+-+-=-+-+-+-=⨯+⨯+⨯+⨯=+++六、合并法求和针对一些特殊地数列,将某些项合并在一起就具有某种特殊地性质,因此,在求数列地和时,可将这些项放在一起先求和,然后再求S n .例6、数列{a n }:,求S 2002.n n n a a a a a a -====++12321,2,3,1解:设S 2002=2002321a a a a +⋅⋅⋅+++由可得n n n a a a a a a -====++12321,2,3,1,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵(找特殊性质项)0665646362616=+++++++++++k k k k k k a a a a a a ∴S 2002=(合并求和)2002321a a a a +⋅⋅⋅+++=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5练习:在各项均为正数地等比数列中,若地值.103231365log log log ,9a a a a a +⋅⋅⋅++=求解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列地性质(找特殊性质项)q p n m a a a a q p n m =⇒+=+和对数地运算性质得N M N M a a a ⋅=+log log log (合并求和))log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++==)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列地通项求和先根据数列地结构及特征进行分析,找出数列地通项及其特征,然后再利用数列地通项揭示地规律来求数列地前n 项和,是一个重要地方法.例7、求5,55,555,…,地前n 项和.解:∵a n =59(10n -1)∴S n =59(10-1)+59(102-1)+59(103-1)+…+59(10n -1)=59[(10+102+103+……+10n )-n]=(10n +1-9n-10)练习:求数列:1,,,地前n 项和.解:=e an dAl l h i ng si nt h er be ng ae od =版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.xHAQX74J0X用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.LDAYtRyKfEUsers may use the contents or services of this article forpersonal study, research or appreciation, and other non-commercialor non-profit purposes, but at the same time, they shall abide bythe provisions of copyright law and other relevant laws, and shallnot infringe upon the legitimate rights of this website and itsrelevant obligees. In addition, when any content or service ofthis article is used for other purposes, written permission andremuneration shall be obtained from the person concerned and the relevant obligee.Zzz6ZB2Ltk转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。
数列求和的八种重要方法与例题
数列求和的常见方法
1.公式法
常用的公式有:
(1)等差数列{an}的前n项和n(n 1) n(a1 an ) na1+ d S n= ① =② 2 2 (2)等比数列{ n 项和 n an}的前 a a q
a1 (1 q ) S n= ③ 1 q =④
1 n
.
(q≠1). 1 q 1 n(n+1)(2n+1) 2 2 2 2 (3)1 +2 +3 +…+n =⑤ 6 1 2 2 n ( n +1) (4)13+23+33+…+n3=⑥ 4 .
【解析 】
分组求和: 典例5:
数列{an}的通项an=2n+2n-1,
求该数列的前n项和.
同类性质的数列归于一组,目的 是为便于运用常见数列的求和公式.
分组求和法: 把数列的每一项分成两项,或把数 列的项“集”在一块重新组合,或把整 个数列分成两部分,使其转化为等差或 等比数列,这一求和方法称为分组求和 法.
2 1 1 1 1 n 两式相减得 Sn= + 2+ 3+…+ n- n+1 3 3 3 3 3 3 1 1 1- n 3 3 n 1 1 n = - n+1= - n- n+1, 1 2 3 2×3 3 1- 3 3 1 n 3 2n+3 ∴Sn= - - = - . 4 4×3n-1 2×3n 4 4×3n
.
倒序相加法:
1 2 n 1 求:f (0) f ( ) f ( ) f ( ) f (1) ? n n n
1 例2:若x1 x2 1则f ( x1 ) f ( x2 ) 2
【解析 】
完整版详解数列求和的方法典型例题
详解数列求和的常用方法数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。
第一类:公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、等差数列的前n项和公式n(a-i a n) n(n 1)dna i2 22、等比数列的前n项和公式na i(q 1)S n a i(1 q n) a i a・q(q 1)1 q 1 q3、常用几个数列的求和公式n 1 /1)(1)S n k 1 2 3n-n(nk 12(2)、S nnk212 2232 2 n丄n(n1)(2n1)k 16(3)、S nnk313 2333 3 n G n(n1)]2 k 12第二类:乘公比错项相减(等差等比)这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n b n}的前n项和,其中{a n},{b n}分别是等差数列和等比数列。
例1 :求数列{nq n 1}(q为常数)的前n项和。
解:1、若q=0,则S n=0n、若q=1,则S n1 2 3n訥1)『若q丰0且q丰1,S n则S n 1 2q 3q2n 1nq①(课本中的的等比数列前 n 项和公式就是用这种方法推导出来的) ,但要注意应按以上三种情况进行分类讨论,最后再综合成三种情况。
第三类:裂项相消法这是分解与组合思想在数列求和中的具体应用。
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最 终达到求和的目的通项分解(裂项)1、乘积形式,如:qS n q 2q 23q 3nnq①式一②式:(1 q)S n n 1 nq nqS n1 —(1 qn \nq )S nn \nq )S n1 q n (1 q)2nq n 1 q综上所述:S n0(q 0) 1—n(n 1)(q 2 1 q n(1 q)1) nnq ((q 1 q0且 q 1)解析:数列{nq n 1}是由数列 n 与q n对应项的积构成的,此类型的才适应错位相减,如:(1)、 a n1 丄 n(n 1)n (2)、a n(2n)2 (2n 1)(2 n 1)1 1(2n 1(3)、a nn(n 1)( n 2)(n 1)(n 2)]n a n n(n 1)1 2(n 1) n 1 nn2 n(n 1)21 (n 1)2n这是推导等差数列的前 n 项和公式时所用的方法,就是将一个数列倒过来排列 (反序),再把它与原数列相加,就可以得到n 个(a 1 a n )。
(完整版)数列求和合集例题与标准答案)
数列求和汇总答案一、利用常用求和公式求和利用下列常用求和公式求和是数列求和地最基本最重要地方法.1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n 例1、已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32地前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得n n x x x x S +⋅⋅⋅+++=32(利用常用公式) =x x x n --1)1(=211)211(21--n =1-n 21 练习:求22222222123456...99100-+-+-+--+地和.解:2222222212345699100-+-+-+--+()()()()2222222221436510099=-+-+-++-()()()()()()()()2121434365651009910099=-++-++-++-+3711199=++++由等差数列地求和公式得 ()50503199S 50502+== 二、错位相减法求和这种方法是在推导等比数列地前n 项和公式时所用地方法,这种方法主要用于求数列{a n ·b n }地前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.例2求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }地通项是等差数列{2n -1}地通项与等比数列{1-n x }地通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②(设制错位)①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减) 再利用等比数列地求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+ 练习:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项地和.解:由题可知,{n n 22}地通项是等差数列{2n}地通项与等比数列{n 21}地通项之积 设n n n S 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n n S ………………………………②(设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n n S (错位相减) 1122212+---=n n n ∴1224-+-=n n n S 三、反序相加法求和这是推导等差数列地前n 项和公式时所用地方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例3求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++地值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得 1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴S =44.52、 求和:222222222222222101109293832921101++++++++++四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见地数列,然后分别求和,再将其合并即可.例4、求和:⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+n n y x y x y x 11122 ()1,1,0≠≠≠y x x 解:原式=()n x x x x ++++ 32⎪⎪⎭⎫ ⎝⎛++++n y y y 1112 =()yy y x x x n n1111111-⎪⎪⎭⎫ ⎝⎛-+-- =nn n n y y y x x x --+--++1111练习:求数列地前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n a a a S n n 将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(n n +(分组求和) 当1≠a 时,2)13(1111n n a a S n n -+--==2)13(11n n a a a n -+--- 练习:求数列•••+•••),21(,,813,412,211nn 地前n 项和. 解:n n n n n n n n S 211)1(21)21212121()321()21(81341221132-++=+•••+++++•••+++=++•••+++= 五、裂项法求和这是分解与组合思想在数列求和中地具体应用.裂项法地实质是将数列中地每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和地目地.通项分解(裂项)如:例5求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 地前n 项和. 解:设n n n n a n -+=++=111(裂项) 则11321211+++⋅⋅⋅++++=n n S n (裂项求和) =)1()23()12(n n -++⋅⋅⋅+-+- =11-+n练习:求13,115,135,163之和. 解:94)911(21)9171()7151()5131()311(21)9171(21)7151(21)5131(21)311(2197175153131163135115131=-=⎥⎦⎤⎢⎣⎡-+-+-+-=-+-+-+-=⨯+⨯+⨯+⨯=+++六、合并法求和 针对一些特殊地数列,将某些项合并在一起就具有某种特殊地性质,因此,在求数列地和时,可将这些项放在一起先求和,然后再求S n .例6、数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a=5练习:在各项均为正数地等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求地值. 解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列地性质q p n m a a a a q p n m =⇒+=+(找特殊性质项)和对数地运算性质N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列地通项求和先根据数列地结构及特征进行分析,找出数列地通项及其特征,然后再利用数列地通项揭示地规律来求数列地前n 项和,是一个重要地方法.例7、求5,55,555,…,地前n 项和.解:∵a n =59(10n -1)∴S n =59(10-1)+59(102-1)+59(103-1)+…+59(10n -1)=59[(10+102+103+……+10n )-n]=(10n +1-9n-10)练习:求数列:1,,,地前n 项和.解:==版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.xHAQX74J0X用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.LDAYtRyKfE Users may use the contents or services of this article for personal study, research or appreciation, and other non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.Zzz6ZB2Ltk转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。
数列求和(公式+例题)
1《数列求和》【知识要点】主要方法:1、基本公式法:(1)等差数列求和公式:()()11122n n n a a n n S na d +-==+(2)等比数列求和公式:()111,11,111n n n na q S a q a a qq qq =⎧⎪=-⎨-=≠⎪--⎩ (3)1123....(1)2n n n ++++=+ (4)()()2221121216n n n n +++=++(5)()23333112314n n n ++++=+⎡⎤⎣⎦2、错位相消法:给12n n S a a a =+++各边同乘以一个适当的数或式,然后把所得的等式和原等式相减,对应项相互抵消,最后得出前n 项和n S .一般适应于数列{}n n a b 的前n 项求和,其中{}n a 成等差数列,{}n b 成等比数列。
3、分组求和:把一个数列分成几个可以直接求和的数列,然后利用公式法求和。
4、拆项(裂项)求和:把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和. 常见的拆项公式有:(1)若{}n a 是公差为d 的等差数列,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭; (2)()()1111212122121n n n n ⎛⎫=-⎪-+-+⎝⎭; (3)()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦;(41a b=-;(51k=;(6)11,1,2nn n S n a S S n -=⎧=⎨-⎩≥5、倒序相加法:根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的。
【典例精析】例1、111112123123nS n=+++⋅⋅⋅++++++++例2、23123n nn S a a aa =++++例3、已知等差数列{}n a 的首项为1,前10项的和为145,求.242n a a a +++例4、求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值例5、求数列{n(n+1)(2n+1)}的前n 项和.例6、数列{a n }的前n 项和n 2n 21S 2n -=,数列{b n }满足nn n a 1a b +=。
高中数列求和方法大全(配练习及答案)
数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+- 的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=nnn x x x x x x S n xx x x x x n n 2)111()(242242++++++++=(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
数列求和的经典方法(含答案)
数列求和的经典方法(含答案)数列前n 项和的求法知识归纳:1.拆项求和法:将一个数列拆成若干个简单数列(如等差数列、等比数列、常数数列等等),然后分别求和.(“拆项”的典型例子是数列“n S =n n 21813412211++++”的求和) 2.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列.(“并项”的典型例子是数列“n S n n ?-++-+-+-=+1)1(654321 ”的求和.) 3.裂项求和法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项.(“裂项”的典型例子是数列“)1(1321211+++?+?=n n S n ”的求和) 4.错位求和法:将一个数列的每一项都作相同的变换,然后将得到的新数列错动一个位置与原数列的各项相减,这是仿照推导等比数列前n 项和公式的方法.若}{n a 是等差数列,{n b }是等比数列,则数列{n n b a ?}的求和运用错位求和方法.(比如:.}{,)10 9()(n n nn S n a n a 项和的前求?=) 5.倒序求和法:将一个数列的倒数第k 项(k =1,2,3,…,n )变为顺数第k 项,然后将得到的新数列与原数列进行变换(相加、相减等),这是仿照推导等差数列前n 项和公式的方法.例1(错位求和法):求数列}{1-n nq (q 为常数)的前n 项和。
解:Ⅰ、若q =0,则n S =0Ⅱ、若q =1,则)1(21321+=+?+++=n n n S n Ⅲ、若q ≠0且q ≠1,则12321-+?+++=n n nq q q S ①n n nq q q q qS +?+++=3232 ②①式—②式:n n n nq q q q q S q -+?++++=--1321)1( )1(11132n n n nq q q q q qS -+?++++-=- ?)11(11n nn nq qq q S ----=qnq q q S nn n ----=1)1(12综上所述:≠≠----=+==)10(1)1(1)1)(1(21)0(02q q q nq q q q n n q S nn n 且例二(裂项求和法): 1、乘积形式,如:(1)、111)1(1+-=+=n n n n a n (2)、)121121(211)12)(12()2(2+--+=+-=n n n n n a n (3)、])2)(1(1)1(1[21)2)(1(1++-+=++=n n n n n n n a n(4)、nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++= -则 2、根式形式,如:n n nn a n -+=++=111练习1:求数列211?,321?,431?,…,)1(1+n n ,…的前n 项和n S 解:∵)1(1+n n =111+-n n111313121211+-+?++-+-=n n S n ?111+-=n S n 练习2:求数列311?,421?,531?,…,)2(1+n n ,…的前n 项和n S 解:由于:)2(1+n n =211(21+-n n )则:??+-++-+-=)211()4121()311(21n n S n)2111211(21+-+--=n n S n ? 42122143+-+-=n n S n例三(倒序法):已知函数()xf x = (1)证明:()()11f x f x +-=;(2)求128910101010f f f f ??++++的值.练习:若函数)(x f 对任意R x ∈都有2)1()(=-+x f x f 。
数列求和的七种方法及例题
数列求和的七种方法及例题
1、直接求和法:将数列中所有的项都加起来,累加求和。
例如:求 1+2+3+4+5=15
2、等差数列求和法:只适用于等差数列,将首项和末项相加,乘以项数,再除以2。
例如:求 1+3+5+7+9=25
3、等比数列求和法:只适用于等比数列,求出公比,然后用求和公式求和。
例如:求 3+6+12+24=45
4、分而治之法:将大的问题分解成小的问题,再求出小的问题的答案之和为大的问题的答案。
例如:求
1+2+3+4+5=15
5、求差法:将数列中连续的相邻两项差值求出,然后把差值相加求和。
例如:求 1+2+3+4+5=15
6、高阶法:当数列中有多项时,可以把它们分成高阶和低阶两组,先求高阶项和低阶项的和,在相加求和。
例如:求 1+2+3+4+5=15
7、循环求和法:将数列中的每一项都分别相加,然后把结果累加求和。
例如:求 1+2+3+4+5=15。
数列求和方法
一. 公式法:记住以下公式对求和来说是有益的。
(1) 等差、等比数列可直接利用等差、等比数列的前n 项和公式求和;(2)2222321n ++++ 6)12)(1(++=n n n ;(3)3333321n ++++ 22)1(⎥⎦⎤⎢⎣⎡+=n n ;求和(1)1111111111 ++++=n S ;(2)2)1(x x S n +=2221(xx ++ +2)1(n n x x ++。
解:(1)1111111111 ++++=n S )9999999999(91 ++++=)]110()110()110[(912-++-+-=n ]9)110(10[91n n --⨯= 81109101--=+n n ; (2)当1±=x 时,222)2()2()2(±++±+±= n S n 4=;当1±≠x 时,12(22x x S n ++= )12(44x x +++ ++ )12(22n nx x ++ )(242nx x x +++= )222(++++ )111(242n x x x ++++ 1)1(22--=x x x n n 2+2221)1(-----+x x x n )1()1)(1(22222-+-=+x x x x n n n n 2+;例题2:设数列1,)21(+,)2221(12-++++n , 的前n 项和为=n S ( )。
A .n 2B .n n -2C .n n -+12D . 221--+n n解:特殊值法:4,121==S S ,在选项中只有答案D 满足,11222221--=++++=n n n a ,2221)21(21--=---=∴+n n Sn n n ;二. 分组求合法:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当折开,可分为几个等差、等比或常见的数列,既能分别求和,然后再合并。
例题3:求数列)}12)(1({++n n n 的前n 项和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的求和数列求和主要思路:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 11123(1)2nn k S k n n n ===+++++=+∑L… 4、2222211123(1)(21)6nn k S k n n n n ===++++=++∑L5、 2333331(1)1232nn k n n S k n =+⎡⎤===++++=⎢⎥⎣⎦∑L 公式法求和注意事项 (1)弄准求和项数n 的值;(2)等比数列公比q 未知时,运用前n 项和公式要分类。
例1.求和221-++++n xx x Λ(0,2≠≥x n )二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.例2.求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S例3.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 三、倒序相加法如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的例4.求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例5.已知数列{}n a 的通项公式321nn a n =+-,求数列{}n a 的前n 项和n S 。
例5变式训练1: 求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 例5变式训练2:求数列的前n 项和:13,24,35,,(2),n n ⨯⨯⨯+L L ;例6.求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…五、裂项相消法:这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1)111)1(1+-=+n n n n(2)1111()(2)22n n n n =-++ (3))121121(21)12)(12(1+--=+-n n n n若为等差数列,公差为d ,则;(4=(5))121121(211)12)(12()2(2+--+=+-=n n n n n a n (6) ])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(7) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则)()1(n f n f a n -+=例7.求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.例8.在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 例8变式训练1:求数列的前n 项和:1111,,,,,132435(2)n n ⨯⨯⨯+L L ; 参考答案:例2解:1x ≠时132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ 1x =时 略例3解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S例4.解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (倒序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5例4变式训练1:解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cos οοοn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0例4变式训练2:解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5例4变式训练3:解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++=10例5.略例5变式训练1:解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k 43421321个个 (找通项及特征)∴ 32111111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(9113214434421个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ 例5变式训练2:∵2(2)2n n n n +=+,∴n S 222(123=+++ (2))2(123n ++⨯+++…)n +(1)(27)6n n n ++=例6.解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n 将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---例7.解:设n n n n a n -+=++=111 (裂项) 则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n例8.解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n例8变式训练1:∵1111()(2)22n n n n =-++,∴11111111[(1)()()()]2324352n S n n =-+-+-++-+L 1111(1)2212n n =+--++.数列求和练习一、选择题1 .设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n+ B .2533n n + C .2324n n+ D .2n n +2 .等比数列{}n a 的前n 项和为n S ,且41a ,22a ,3a 成等差数列。若1a =1,则4S =( )A .7B .8C .15D .163 .数列11111,2,3,424816,……的前n 项和为( )A .2122n n n ++B .2122n n n +-+C .21122n n n +-++D .21122n n n ++-+4 .已知等差数列{}n a 中,10795=-+a a a ,记n n a a a S +++=Λ21,则13S 的值为( )A .130B .260C .156D .1685 .等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m = ( )A .38B .20C .10D .96 .等差数列是5,Λ743,724中,第n 项到n +6项的和为n T ,则当n T 最小时,n 的值为 ( )A .6B .4C .5D .37 .等差数列{}n a 中,n S 是其前n 项和,12008a =,20072005220072005S S -=,则2008S 的值为 ()2006A - ()2006B ()2008C - ()2008D8 .将二进制数()1611112L 14243转换成十进制是( )A .1722-B .1622-C .1621-D .1521-9 .设等比数列}{n a 的前n 项和为n S ,且0n S ≠*()n N ∈, 则下列等式成立的是( )A .23n n n S S S +=B .223n nn nS S S S = C .223n n n n n n n S S S S S S S -=-- D .2232n n nn n n nS S S S S S S -=--10.已知二次函数1)12()1(2++-+=x n x n n y ,当n 依次取10,,4,3,2,1•••时,其图像在x 轴上所截得的线段的长度的总和为 ( )A .1B .1110C .1112 D .1211 11.数列⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++,2221,,221,21,122n的前n 项和=n S( )A .n2B .n n-2C .n n -+12D .221--+n n12.等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n n T S =132+n n,则55b a 等于( )A .32 B .149 C .3120 D .1711 13.数列{}n a 的通项公式是11++=n n a n ,若前n 项的和为10,则项数n 为( )A .11B .99C .120D .121 14.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A .)251,0(+ B .]1,215(- C .)251,1[+ D .)251,215(+- 15.数列{2312++n n }的前n 项和为 ( )A .4212++n nB .2212+-n nC .42+n nD .221+-n n二、填空题16.等差数列{n a }前n 项和为n S 。已知1m a -+1m a +-2ma=0,21m S -=38,则m=_______17.已知1)1 1(=,f ,且对任意正整数n m 、若k n m f =) (,,则1)1 (+=+k n m f ,,则=)1000 1(,f _____________。