试一试2_质数、合数
奇数偶数质数和合数_知识点整理
奇数偶数质数和合数_知识点整理【奇数.偶数.质数.合数知识点归纳】奇数和偶数知识要点::1.偶数:自然数中,能被2整除的数叫做偶数。
2.奇数:自然数中,不能被2整除的数叫做奇数。
3.0也是偶数。
4.一个整数是偶数还是奇数,是这个整数自身的一种性质,这种性质,叫做奇偶性。
5.在这一讲中,我们向大家介绍奇数和偶数的三个最常见的性质:性质1:任何一个奇数一定不等于任何一个偶数。
性质2:相邻的两个自然数总是一奇一偶。
性质3:有趣的运算规律:(1)偶数±偶数=偶数(2)奇数±奇数=偶数(3)偶数±奇数=奇数(4)偶数×偶数=偶数(5)偶数×奇数=偶数(6)奇数×奇数=奇数★以上性质可以推广到“多个整数”的运算:(1)任意个偶数之和或差,结果必是偶数;(2)奇数个奇数之和或差,结果必是奇数;(3)偶数个奇数之和或差,结果必是偶数;(4)任意个奇数之积必是奇数;(5)在连乘中,有一个或一个以上因数是偶数,其积必为偶数。
质数和合数知识要点1、自然数按因数的个数来分:质数、合数、1、0四类.(1)、质数(或素数):只有1和它本身两个因数。
(2)、合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
(3)、1:只有1个因数。
“1”既不是质数,也不是合数。
注:①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③ 20以内的质数:有8个(2、3、5、7、11、13、17、19)④ 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97 2、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:本身;最小的偶数是:0;A的最小倍数是:本身;最小的质数是:2;4、用短除法分解质因数(一个合数写成几个质数相乘的形式)。
2六年级上-质数、合数与分解质因数
解:1、74
解:2、7、31
• 练习 1
1、两个质数的乘积是62,这两个质数的是多少? 2、三个互不相同的质数相加,和为30,那么这三个质数是多少?
解:1、2和31
解:2、11、17
•例 2
自然数N是一个两位质数,它的个位数字和十位数字都是质数, 且交换位置后,仍然是一个质数,这个自然数是多少?
• 小练习
用短除法分解质因数:252
5005
解:252=2×2×3×3×7 解:5005=5×7×11×13
•例 4
请把下面的数分解质因数:(1)360;(2)373;(3)17640
解:1、360=2×2×2×3×3×5 2、质数 3、17640=2×2×2×3×3×5×7×7
• 练习 4
请写出88的所有素因数. 解:88=2×2×2×11
100以内的质数:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131
•总 结
•例 1
1、两个质数的和是39,这两个质数的乘积是多少? 2、三个互不相同的质数相加,和为40,那么这三个质数是多少?
1.小于10的素数有( )
A.3个 B.4个 C.5个 D.6个
2.几个素数的积一定是( )
A.素数 B.合数 C.奇数 D.偶数
3.下列说法中正确的是( )
A.一个正整数不是素数,就是合数 B.两个素数的乘积也可能是偶
数
C.所有的偶数都是合数
D.一个素数的因数肯定是素数
解:1.B 2.B 3.B
•小 总 结
解:37或73
人教版五年级数学下册第二单元因数和倍数——质数和合数练习四(选自教材P16-P17)
5×7=35 7×9=63 ……
【选自教材P16 练习四 第4题】
5×8=40 8×12=96
7×8=56 ……
14×24=336 ……
奇数×奇数 奇数×偶数 偶数×偶数
=奇数
=偶数
=偶数
5. 30名学生要分成甲、乙两队。如果甲队 人数为奇数,乙队人数为奇数还是偶数?如 果甲队人数为偶数呢?【选自教材P17 练习四 第5题】
【选自教材P16 练习四 第1题】
(3)在1,2,3,4,5,…中,除了质
数以外都是合数。
不正确。除了质数外,有 合数,还有1。1既不是质 数也不是合数。
【选自教材P16 练习四 第1题】
(4)两个质数的和是偶数。
不正确。如2是质数,3也 是质数 ,2+3=5,而5是 奇数。
【选自教材P16 练习四 第2题】
练习四
(选自教材P16-P17练习四)
1. 判断下面的说法是否正确,并说一说你的 理由。【选自教材P16 练习四 第1题】 (1)所有的奇数都是质数。
不正确,如9是奇数,但 不是质数,而是合数。
【选自教材P16 练习四 第1题】
(2)所有的偶数都是合数。
不正确,因为2是偶数, 但不是合数,是质数。
偶数
58 14 62
3.你知道下面的数各是多少吗?【选自教材P16 练习四 第3题】
我们两个 我们两个
我们两个 我们两个
的和是10。 的积是21。 的和是20。 的积是91。
我是最小 的质数。
3和7 2和4
13和7
我是最小 的合数。
4. 奇数与奇数的积是奇数还是偶数?奇数与偶
数的积是奇数还是偶数?偶数与偶数的积呢?
7. 探索 6 的倍数特征,并记录你探索的 过程和结果。【选自教材P17 练习四 第7题】 6的倍数的特征:各位上的数的和是3的 倍数且个位上的数是偶数。 探究过程:先写出一些6的倍数,然后观 察它的个位上的数和各个数位上的数的 和的特点。
人教版五年级下册数学 第二单元 质数和合数 同步练习
人教版五年级下册数学第二单元质数和合数同步练习一.选择题1.三个不同质数和是50,其中一定有一个质数是()。
A.41. B.29 C.19 D.22.一个两位数是由3个不同的质数相乘得到的,它的因数共有()个.A.8 B.6 C.5 D.33.已知A=3×7×10,则A一共有()个因数.A.6 B.12 C.16 D.204.奇数×偶数的积,一定是()。
A.奇数B.偶数C.可能是奇数,也可能是偶数D.不确定5.是质数也是偶数.()A.1 B.2 C.3 D.96.当n是一个大于0的自然数时,则2n+1一定是()。
A.奇数B.偶数C.质数D.合数7.当a是自然数时,2a+1一定是()。
A.偶数 B.奇数 C.质数 D.合数8.在2,4,8,9,11,15中,合数的个数有()。
A.3个B.4个C.5个D.6个9.a,b是两个互质的合数,且a>b,已知a和b的最小公倍数是84,则同时满足以上条件的a,b有()组。
A.1 B.2 C.3 D.6二.填空题10.相邻的两个最小质数的乘积是( )。
11.任意两个奇数的和是( )数,差是( )数,积是( )数。
12. 20可以写成质数( )与质数( )的和.13.一个三位数,它的百位上是最小的质数,十位上是最小的合数,个位上的数是合数又是奇数,这个三位数是( )。
14.在1~20中,既是偶数又是质数的是( ),既是奇数又是合数的是( )和( )。
( )既不是质数,也不是合数。
三.判断题15.1+23+19+33+51+77的和是偶数。
( )16.一个合数加一个合数的结果不一定是合数。
( )17.24=3×8,3和8都是24的质因数。
( )18.两个连续的自然数,不能都是质数。
( )19.如果任取4个自然数,积为偶数,则这4个数至少有1个是偶数。
( )四.解答题20.一个长方形周长是30厘米,长和宽的长度数量都是素数.那么这个长方形的长、宽各是多少厘米?面积是多少平方厘米?21.戴老师共买了40个篮球和排球,如果篮球的个数为偶数,那么排球的个数为奇数还是偶数?如果篮球的个数为奇数呢?22.一个长方形的长和宽都是以米为单位的质数,周长是24米,这个长方形的面积是多少?23.三个不同质数的和是82,这三个质数的积最大可能是多少?24.一个四位数,个位上的数既不是质数也不是合数,十位上的数既是质数又是偶数,百位上的数是最小的合数,千位上的数既是奇数又是合数,这个四位数是多少?。
什么叫奇数,偶数,质数,合数
什么叫奇数,偶数,质数,合数这是小学数学知识1.奇数,偶数是一对数学概念。
定义是能被2整除的数叫偶数,比如:0 2 4 6 8等;不能被2整除的数叫奇数,比如:1 3 5 7 9等。
根据定义我们可以把自然数分为奇数和偶数,最小的偶数是0,最小的奇数是1。
判断一个自然数是奇数还是偶数,只要把这个数除以2就能判断出来。
能被2整除的数就是偶数,不能被2整除的数就是奇数。
例如:48 12 88 60 10 0这几个数就是偶数71 93 145 9 35 11这几个数就是奇数平时见多了,拿出一个自然数一眼就能看出来是奇数还是偶数。
2.质数,合数也是一对数学概念定义是除了1和它本身没有别的因数的数叫质数,比如:2 3 5 11 13 41等,最小的质数是2;除了1和它本身还有其他因数的数叫合数,比如:4 6 9 15 27 36 111等,最小的合数是4。
1既不是质数也不是合数。
判断一个自然是质数还是合数,方法也很简单,就是看这个数的因数的个数,有两个因数的数就是质数;而有三个或三个以上的因数的数就是合数。
例如:172****1983等就是质数。
8 10 21 45 81 51等都是合数。
判断质数和合数有些难度。
数小时一眼就可以看出来。
数较大(两位数或两位数以上)时,就要用2 3 5去除这个数,能被2 3 5整除的数就是合数,不能被2 3 5整除的数就是质数(一部分数可以)。
在实际做题时要复杂很多,几类数杂糅在一起,既要符合这个条件,同时又要满足那个条件,判断起来容易顾此失彼,从而出现错误。
把每类数从定义上理清了,记住了,实际做题时才能准确无误。
说明:这里说的数是指自然数。
四年级下册数学试题培优专题:第 2 讲 质数、合数与分解质因数
第2讲 质数、合数与分解质因数一、质数与合数一个数除了1和它本身,没有其他的约数,这样的数叫做质数(也叫做素数). 一个数除了1和它本身,还有其他的约数,这样的数叫做合数. 注意:0和1既不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;2是唯一的偶质数. 除了2和5,多位质数的个位数字只能是1、3、7、9.二、质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数. 分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数. (通常相同质因数要写成乘方的形式)三、部分特殊数的分解293=101是质数 201551331=××299311=× 100171113=×× 522016237=×× 3999337=× 1000173137=×2017是质数 10101371337=×××201821009=×1111141271=×20193673=×2202025101××(2000后,年份为质数的有2003、2011、2017、2027)四、判断一个数是否为质数找一个大于且接近这个数的完全平方数2k ,若小于k 的所有质数都不是这个数的约数,可判定此数为质数. 例如:判断113是否为质数,找大于113的完全平方数,214412=,试小于12的质数:2、3、5、7、11,它们都不是113的约数,所以113是质数.【例题1】 (1)a b c 、、都是质数,且25a b +=,54b c +=,求a 与c 的乘积. (2)a b 、都是质数,且3531a b +=,求a 与b 的和.【例题2】 用1、2、3、4、5、6、7、8、9这个9个数字组成质数,要求每个数字都要用到并且只能用一次,那么最多能组成多少个质数?≠,且ab、ba都是质数,【例题3】小蘑菇搬新家了,发现新家的门牌号是形如abba的四位数,其中a b具有这种形式的四位数有多少个?【例题4】小蘑菇通过2、0、1、9这四个数字构成了一个数列(不断地将2、0、1、9这四个数字按照这个顺序加在数后面):2、20、201、2019、20192、201920、2019201、20192019、201920192、……、这个数列中,质数有多少个?【例题5】请将下面各数中的合数分解质因数:72、133、252、264、1428【例题6】四个小朋友的年龄恰好是四个连续的自然数,他们的年龄之积是5040.这四个小朋友的年龄分别是多少岁?【例题7】 已知201920242029+=+=+迎新年,且6384××=迎新年, 那么迎×新+新×年=_________.【例题8】 (1)两个正整数的乘积为100,这两个正整数都不含有数字0,则这两个正整数之和是多少?(2)四个互不相同的正整数的乘积是231,则这四个数的和是多少?×××计算结果的末尾有多少个连续的0?【例题9】(1)算式9758672380(2)302!的计算结果的末尾有多少个连续的0?【例题10】如果一个整数具备以下性质:①这个数与1的差为质数;②这个数除以2所得的商也是质数;③这个数除以9的余数为5.则称这个整数为幸运数,那么在两位数中,最大的幸运数是多少?【例题11】桌子上有0~9这十张数字卡片,甲、乙、丙三人每人各取了其中的三张,并将自己拿到的三张数字卡片组成的所有不同的三位数求和,结果甲、乙、丙的答案分别是1554,1688,4662,剩下的那张数字卡片是多少?(注:卡片不能颠倒)【例题12】一个三位数各位数字的乘积是18,满足条件的所有三位数的总和是多少?第2讲 质数、合数与分解质因数【例题1】【分析】 (1)62;(2)7或9【例题2】 【分析】 6【例题3】 【分析】 8【例题4】 【分析】 1【例题5】【分析】 327223=×,133719=×,22252237=××,32642311××,2142823717×××【例题6】【分析】 7、8、9、10【例题7】 【分析】 722【例题8】【分析】 (1)29;(2)22【例题9】【分析】 (1)3;(2)74【例题10】 【分析】 14【例题11】 【分析】 9。
2.质数与合数
数学竞赛班讲义班级______姓名______学号______第二讲质数与合数知识点归纳一、正整数的一种分类:质数、合数、1。
二、质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数)。
三、合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。
四、质数的性质:(1)质数只有1和本身两个正约数;(2)质数中只有一个偶数2;(3)如果两个质数的和或差是奇数那么其中必有一个是2;(4)如果两个质数的积是偶数那么其中也必有一个是2;(5)任何合数都可以分解为几个质数的积。
能写成几个质数的积的正整数就是合数。
例题与分析1.用1,2,3三个数码(可以重复)可以组成的最大两位质数是多少?2.用1,2,3,4四个数字中的三个可以组成的三位最大质数是多少?3.在所有两位以上的质数中,在个位数上不可能出现的数字共有多少个?4. 设xy 是小于50的质数,且)(|2y x +,则满足条件的数共有多少个?5. 已知三个质数30=++z y x ,则xyz 最小为多少?6. 图中的每个圆圈内的数都是质数,且大三角形每条边上三个数的和与其中小三角形上三个顶点的和都相等,则这个和最小是多少?7. 如果P 是质数,且42+P ,43+P 仍是质数,那么P 最小是多少?8. 请在下式的方框内填入6个50以内的不同质数.2×□+□×□+□×□×□=20029. 三个质数的积恰为它们和的7倍,则这三个数是多少?10. 将50写成10个质数之和,则其中最大的一个不会超过多少?11. 已知P ,5)4(2-+P 都为质数,求)4)(3)(2)(1(++++P P P P 的值.12. 已知两个质数a 和b ,它们的积加上7后恰好为三个不同质数的乘积,这三个质数均不超过30,求a 的最小值.练习与巩固1. 最小的质数与最小的合数之和为____________.2. 两个合数的和为质数,则这两个数最小为__________,___________.3. 20以内的质数共有__________个,最大的一个为___________.4. 下列五个数15、23、39、41、51中,_________和_________为质数.5. 已知两个质数a 和b 的和是奇数,则它们的积为___________(填“奇数”或偶数).6. 两个质数的和为43,则这两个质数较大数比较小数大____________.7. 正整数A 和B 都是质数,且6723=+B A ,且B A >,则__________=+B A .8. 有一个质数加上10或12后,仍为质数,则这个数最小为__________.9. 试写出5个由小到大的连续正整数,它们都是合数,其中最小数的最小值为__________.10. 有一类两位质数,将十位数字与个位数字对换后仍为质数,则所有这些数之和为_____.11. 分别判断117和373是质数还是合数.12. 已知x 、y 、z 为三个质数,且24=+y x ,66=+z y ,z y x <<,求x 、y 、z 的值.。
第二节 质数、合数和分解
第二节质数、合数和分解质因数一、基本概念和知识1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。
一个数除了1和它本身,还有别的约数,这个数叫做合数。
判断一个数是质数还是合数的常用方法:对于一个自然数N,先找到一个自然数 A,使得A2略大于或等于N,再用A以内的所有质数去试除N,若有质数能整除N,则N是合数;若没有质数能整除N,则N是质数。
要特别记住:1不是质数,也不是合数。
2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例:把30分解质因数。
分解质因数的方法可用短除法或直接法分解。
30=2×3×5。
其中2、3、5叫做30的质因数。
又如12=2×2×3=22×3,2、3都叫做12的质因数。
在分解质因数时把相同的质因数相乘用乘方的形式写出来,这种书写形式叫做分解质因数的标准式。
如12=22×3就是把12分解质因数的标准式。
例题讲解例1:三个连续自然数的乘积是210,求这三个数.例2:两个质数的和是40,求这两个质数的乘积的最大值是多少?例3:连续九个自然数中至多有几个质数?为什么?例4:写出10个连续的自然数,个个都是合数。
例5:把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。
例6:有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三数的乘积是42560.求这三个自然数。
例7:有3个自然数a、b、c.已知a×b=6,b×c=15,a×c=10.求a×b×c是多少?练习1、边长为自然数,面积为105的形状不同的长方形共有多少种?2、两个质数的和是99,求这两个质数的乘积是多少?3、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是多少?4、找出1992所有的不同质因数,它们的和是多少?5、三个连续自然数的积是1716,这三个自然数分别是多少6、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等。
《质数和合数》教案
《质数和合数》教案一、教学目标知识与技能:1. 学生能够理解质数和合数的概念。
2. 学生能够判断一个自然数是质数还是合数。
3. 学生能够找出给定范围内所有的质数和合数。
过程与方法:1. 学生通过探究活动,培养观察、分析、归纳的能力。
2. 学生能够运用质数和合数的知识解决实际问题。
情感态度与价值观:1. 学生培养对数学的兴趣,体验成功的喜悦。
2. 学生培养合作意识,学会与他人交流分享。
二、教学内容1. 质数和合数的定义。
2. 判断一个自然数是质数还是合数的方法。
3. 找出给定范围内所有的质数和合数。
三、教学重点与难点重点:1. 质数和合数的定义。
2. 判断一个自然数是质数还是合数的方法。
难点:1. 理解质数和合数的含义,能够正确判断一个自然数是质数还是合数。
2. 找出给定范围内所有的质数和合数。
四、教学方法采用探究式教学法、小组合作学习法、讲授法等多种教学方法,引导学生主动参与,培养学生的观察能力、思考能力和动手能力。
五、教学准备教具:黑板、粉笔、课件。
学具:练习本、铅笔。
六、教学过程1. 导入:通过复习上节课的内容,引导学生回顾自然数的分类,为新课的学习做好铺垫。
2. 探究:组织学生进行小组讨论,探究质数和合数的定义,引导学生通过观察、分析、归纳得出结论。
3. 讲解:讲解质数和合数的定义,举例说明如何判断一个自然数是质数还是合数。
4. 练习:布置练习题,让学生运用质数和合数的知识解决问题,巩固所学内容。
5. 总结:对本节课的内容进行总结,强调质数和合数的重要性。
七、课堂练习(1)7 (2)12 (3)17 (4)242. 填空题:填空使等式成立。
(1)4 = _______ + _______ (2)21 = _______ + _______3. 解答题:找出100以内的所有质数和合数。
八、课后作业(1)31 (2)40 (3)43 (4)652. 应用题:小明有一堆数字卡片,其中有质数也有合数。
五年级下册数学《质数和合数》教案3篇
五年级下册数学《质数和合数》教案3篇Teaching plan of "prime number and total number" in mathem atics volume 2 of grade 5五年级下册数学《质数和合数》教案3篇前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:五年级下册数学《质数和合数》教案2、篇章2:五年级下册数学《质数和合数》教案3、篇章3:五年级下册数学《质数和合数》教案篇章1:五年级下册数学《质数和合数》教案教学内容:苏教版义务教育教科书《数学》五年级下册第37页例6、“试一试”和“练一练”,第39页练习六第1~3题。
教学目标:1.使学生认识质数和合数的意义,能判断或写出质数或者合数,并说明理由;体会非0自然数的分类,了解50以内的质数。
2.使学生通过比较、分类、概括等活动认识质数和合数,积累认识数学概念的基本活动经验,进一步体会分类的思想,培养观察、比较,以及抽象、概括和判断、推理等思维能力。
3.使学生主动参与数学思考和交流等活动,体会数学内容的内在联系,产生对数学的积极情感和主动学习数学的愿望。
重点难点:理解和认识质数和合数。
教学准备:小黑板教学过程:一、导入新课回顾:同学们在前面研究因数和倍数中,以是不是2的倍数为标准对大于O的自然数进行过分类,还记得按这个标准,把大于0自然数分成了哪几类吗?(板书:偶数奇数)引入:这节课我们继续研究大于O的自然数的分类。
质数和合数练习题二-文档资料
质数和合数练习题二
质数、合数练习题二
1.下面的数中,哪些是合数,哪些是质数。
1、13、24、29、41、57、63、79、87
合数有:
质数有:
2.写出两个都是质数的连续自然数。
3.写出两个既是奇数,又是合数的数。
4.判断:
(1)任何一个自然数,不是质数就是合数。
()
(2)偶数都是合数,奇数都是质数。
()
(3)7的倍数都是合数。
()
(4)20以内最大的质数乘以10以内最大的奇数,积是171。
()
(5)只有两个约数的数,一定是质数。
()
(6)两个质数的积,一定是质数。
()
(7)2是偶数也是合数。
()
(8)1是最小的自然数,也是最小的质数。
()
(9)除2以外,所有的偶数都是合数。
()
(10)最小的自然数,最小的质数,最小的合数的和是7。
()
5.在()内填入适当的质数。
10=()+()
10=()×()
20=()+()+()
8=()×()×()
6.分解质因数。
655694761351058793
7.两个质数的和是18,积是65,这两个质数分别是多少?
8.一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数是()。
9.用10以内的质数组成一个三位数,使它能同时被3、5整除,这个数最小是(),最大是()。
《质数和合数》数学教案
《质数和合数》数学教案《质数和合数》数学教案作为一名教师,常常要根据教学需要编写教案,借助教案可以有效提升自己的教学能力。
教案应该怎么写才好呢?下面是店铺为大家收集的《质数和合数》数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《质数和合数》数学教案1教学目标:使学生理解质数与合数的饿意义,掌握判断质数合数的方法,教学过程:一、复习约数的概念,找约数的方法。
二、引入新课例1写出下面每一个自然数的全部约数,在根据约数的个数,把这些自然数进行分类。
自然数约数1121、251、591、3、9111、11121、2、3、4、6、12171、17201、2、4、5、10、20381、2、19、38451、3、5、9、15、45(1)找约数(2)按照约数的多少进行分类?(3)讨论:1是什么数?最小的质数是几?最小的合数是几?三、巩固练习1、练一练第一题,练习判断一个数是质数还是合数。
分析:怎样去判断一个自然数是质数还是合数2、试一试第三题判断下面各题,正确的在括号里打对,不正确的打错。
四、总结归纳1、使学生弄清奇数与质数,偶数与合数是不同的概念五、布置作业反思:对于本节课的知识学生还好理解,但当把自然数的另一个分类混合的时候学生的概念就出现了混乱。
所以我们的教学不能光着眼于学生会不会做这些题目,而是应该真正的了解把自然数分成1、质数、合数的理由是什么。
并懂的与偶数、奇数的分类是不同的理由,也就是两个不能相等的概念。
并渗透一种交叉的概念。
《质数和合数》数学教案2教学目标:1、创设情境,让学生经过探索理解质数和合数的概念,并能判断质数合数。
2、培养学生自主探索、独立思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力教学重难点:理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
教学过程:一、课前谈话师:你们知道吗?数学在生活中真的是无处不在,如果把你们学号当成一个数,谁能试着用你学过的整除知识描述你的数?二、教学过程:(一)情境引入:(1)把你的学号看成一个数,这个数是几,你手里就有多少个这样小正方形。
人教版五年级下册数学第二单元《质数和合数》教案
人教版五年级下册数学第二单元《质数和合数》教案学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。
教师是数学学习的组织者、引导者和合作者。
下面是小编给大家整理的人教版五年级下册数学第二单元《质数和合数》教案5篇,希望对大家能有所帮助!人教版五年级下册数学第二单元《质数和合数》教案1一、学情分析:《质数和合数》这一课内容比较抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。
另外,到本节课为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学生辨析这些概念。
二、教学目标:1、理解质数和合数的概念。
2、能熟练判断质数与合数,能够找出100以内的质数。
3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
三、教学重难点:重点:理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。
难点:能运用一定的方法,从不同的角度判断、感悟质数合数。
四、教学过程:(一)导入新课。
找出1~20各数的因数。
你发现了什么?(学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……)今天我们学习的内容就与一个数因数的个数有关。
[设计意图说明:让学生用自己的话描述1~20各数因数的特点,通过观察学生虽然没有质数与合数的概念,但对这些数已经有了自己的分类与认识,为之后的分类与概念的学习打下基础。
](二)新授探究一:认识质数和合数师:请同学们按照因数的个数,将这些数分分类。
(学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)师:同学们都说得非常好,请打开课本翻到第14页,请你按照它的方法分一分。
小学奥数:质数与合数(二).专项练习及答案解析
5-3-2.质数与合数(二).题库 教师版 page 1 of1. 掌握质数与合数的定义2. 能够用特殊的偶质数2与质数5解题3. 能够利用质数个位数的特点解题4. 质数、合数综合运用一、质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.。
模块一、偶质数2 【例 1】 如果,,a b c 都是质数,并且a b c -=,则c 的最小值是_________【考点】偶质数2 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,17题【解析】 本题考察的是最小的偶质数2,所以c 最小是2.【答案】2【例 2】 两个质数之和为39,求这两个质数的乘积是多少.【考点】偶质数2 【难度】2星 【题型】解答【解析】 因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,乘积为74.我们要善于抓住此类题的突破口。
人教版小学数学五年级下册第2单元 质数和合数同步练习(含解析)
人教版小学数学五年级下册第2单元 2.3质数和合数同步练习一、单选题1.在2、4、9、43、39、57、21、15这八个数中,合数有()个。
A.5B.6C.7D.82.下列说法中,正确的是()A.最小的自然数是1B.两个不同的素数一定是互素的C.素数一定是奇数D.若a÷b=m,且m为整数,则a能被b整除3.我们知道:4=2+2,6=3+3,8=5+3,10=7+3,12=7+5,14=11+3……那么,是不是所有大于2的偶数,都可以表示为两个质数的和呢?这是数学家______最先提出。
A.陈景润B.欧几里得C.哥德巴赫D.华罗庚4.两个不同质数的乘积一定是()。
A.合数B.质数C.可能是质数,也可能是合数5.a、b和c是三个非零自然数,在a=b×c中,能够成立的说法是()A.b和c是互质数B.b和c都是a的质因数C.b和c都是a的约数D.b定是c的倍数6.两个不同质数相乘的积一定是()。
A.质数B.合数C.奇数D.偶数二、填空题7.28的因数有,其中是质数,是合数;30以内7的倍数有。
8.个是;是个,再加上个就是最小的质数。
9.一个数与它的倒数的和是4.25,这两个数的积是。
10.最小的质数与最小的合数的比是。
11.10以内所有质数的和是,最大的质数和最小的质数的差是。
12.要使0.5:x的比值恰好是最小的质数,x的值应是。
13.两个质数的和是20,积是91,它们的差是。
三、判断题14.合数可能是偶数,也可能是奇数。
()15.分数的分子与分母是两个不同的质数,这样的分数一定是最简分数。
()16.在自然数中,只有2既是质数,又是偶数。
()17.任意两个不同的质数一定只有公因数1。
()18.任意两个质数的积一定是偶数。
()四、解答题19.一个长方形的长和宽的数值都是质数,周长是56厘米,这个长方形的面积大约是多少?20.天天、明明和丁丁的学号都是质数,他们的学号都小于20,并且天天的学号最大,丁丁的学号最小,他们的学号加上6或者减去6,都是质数。
质数和合数练习题及答案
质数和合数练习题及答案1、最小的自然数是,最小的质数是,最小的合数是,最小的奇数是。
、20以内的质数有,20以内的偶数有,0以内的奇数有。
、20以内的数中不是偶数的合数有,不是奇数的质数有。
4、在5和25中,是的倍数,是的约数,能被整除。
5、在15、36、45、60、135、96、120、180、570、588这十个数中:能同时被2、3整除的数有,能同时被2、5整除的数有,能同时被2、3、5整除的。
6、下面是一道有余数的整数除法算式:A÷B=C??R若B是最小的合数,C是最小的质数,则A最大是 ,最小是.7、三个连续奇数的和是87,这三个连续的奇数分别是、、。
二)判断题,对的在括号里写“√”,错的写“×”。
1、1既不是质数也不是合数。
、个位上是3的数一定是3的倍数。
3、所有的偶数都是合数。
、所有的质数都是奇数。
5、两个数相乘的积一定是合数。
质数、合数练习题二1. 下面的数中,哪些是合数,哪些是质数。
1、13、24、29、41、57、63、79、87合数有:质数有:2. 写出两个都是质数的连续自然数。
3. 写出两个既是奇数,又是合数的数。
4. 判断:任何一个自然数,不是质数就是合数。
偶数都是合数,奇数都是质数。
7的倍数都是合数。
20以内最大的质数乘以10以内最大的奇数,积是171。
只有两个约数的数,一定是质数。
两个质数的积,一定是质数。
2是偶数也是合数。
1是最小的自然数,也是最小的质数。
.9、除2以外,所有的偶数都是合数。
最小的自然数,最小的质数,最小的合数的和是7。
5. 在内填入适当的质数。
10=+ 10=×20=++8=××6. 分解质因数。
669 13510937. 两个质数的和是18,积是65,这两个质数分别是8. 一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数是。
9. 用10以内的质数组成一个三位数,使它能同时被3、5整除,这个数最小是,最大是。
双色球名词解释之质合惊现最大遗漏值1677
双色球名词解释之质合:惊现最大遗漏值1677双色球一直以来都是我站的热门彩种之一,深受广大彩民的喜爱,在双色球的投注中,各种各样的数据都会或多或少的出现一些规律,我们今天要说的便是质合。
首先来为大家介绍一下什么是质合,只能被1和自身整除的数为质数,除了能被1和自身整除,还能被其它数整除的数为合数。
红球中质合数如下:[质数] 01 02 03 05 07 11 13 17 19 23 29 31[合数] 04 06 08 09 10 12 14 15 16 18 20 21 22 24 25 26 27 28 30 32 33质合比:开奖红球号码中质数个数和合数个数之比为红球质合比。
示例:2:4表示2个质数,4个合数。
以上是双色球2019年前110期的数据,从表中可以看到,全质组合、五质一合组合和全合组合出现次数较少,只是不经意间暂露头角,而三质三合、两质四合和一质五合出号次数较多,为出号主流。
而四质两合组合则偶尔打一下擦边球。
这些规律的出号会给我们带来怎样的启发呢?找出规律巧选质数如当期在质数的小数阵营里面选择了3个小质数号码,那么就可以不再选大数号码的质数;反之大数的质数号码多选了,小数的质数号码就无须在做考虑。
同样还可以从同尾码的系列中去考虑质数号码,也就是说,利用同尾码的原理,可将质数的大小号码结合起来选取。
如选同尾号码3,可考虑同尾码中03与13、23进行结合,另一个号码非质数号码就不做考虑。
同理,在挑选同尾号码07、19的时候,也可以考虑与质数号码17和29,依次类推进行质数号码的选取。
最为有效的方法是对上期红球的质数号码进行分析,看其能不能作为重复号码出现,如能做重复号码出现,只要在选出另外的一个质数号码即可,反之就当作杀号进行排除。
最终选取质数号码的关键是从上期或上几期的号码中确定出所要的质数号码,选好质数号码之后,再结合其它所选的号码进行组合就可以了。
两质四合位列第一质合比是双色球中一个重要参数,在33个红球中,质数12个,合数21个,合数占有明显优势,两质四合形态出现平率最高,令人意外的是尽管质数只有12个,但是开出三质三合形态的次数也不逊色,而4:2比例近两期开热,所以彩民朋友们要在选号的时候要注意哦。
2为什么是质数又是合数
2为什么是质数又是合数
2不是合数,2是质数。
合数是指在大于1的整数中,除了1和它本身之外,还能被其他数(除了0)整除的数。
相比之下,它是一个质数,1既不是质数,也不是合数。
的最小合成数是4。
质数简介
质数也叫质数。
一个大于1的自然数,除了1和它本身,不能被其他自然数整除的,叫做素数;否则称为合数(规定1既不是质数也不是合数)。
质数性质
(1)质数p的约数只有两个:1和p。
(2)初等数学基本定理:任何大于1的自然数,要么本身就是素数,要么可以分解成几个素数的乘积,而且这种分解是唯一的。
(3)质数的个数是无限的。
(4)所有大于10的质数中,个位数只有1,3,7,9。