计量经济学参考答案
计量经济学习题及参考答案解析详细版
计量经济学习题及参考答案解析详细版计量经济学(第四版)习题参考答案潘省初第⼀章绪论试列出计量经济分析的主要步骤。
⼀般说来,计量经济分析按照以下步骤进⾏:(1)陈述理论(或假说)(2)建⽴计量经济模型(3)收集数据(4)估计参数(5)假设检验(6)预测和政策分析计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对⽽⾔不重要因⽽未被引⼊模型的变量,以及纯粹的随机因素。
什么是时间序列和横截⾯数据? 试举例说明⼆者的区别。
时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民⽣产总值、就业、货币供给、财政⾚字或某⼈⼀⽣中每年的收⼊都是时间序列的例⼦。
横截⾯数据是在同⼀时点收集的不同个体(如个⼈、公司、国家等)的数据。
如⼈⼝普查数据、世界各国2000年国民⽣产总值、全班学⽣计量经济学成绩等都是横截⾯数据的例⼦。
估计量和估计值有何区别?估计量是指⼀个公式或⽅法,它告诉⼈们怎样⽤⼿中样本所提供的信息去估计总体参数。
在⼀项应⽤中,依据估计量算出的⼀个具体的数值,称为估计值。
如Y就是⼀个估计量,1nii YY n==∑。
现有⼀样本,共4个数,100,104,96,130,则根据这个样本的数据运⽤均值估计量得出的均值估计值为5.107413096104100=+++。
第⼆章计量经济分析的统计学基础略,参考教材。
请⽤例中的数据求北京男⽣平均⾝⾼的99%置信区间NS S x ==45= ⽤也就是说,根据样本,我们有99%的把握说,北京男⾼中⽣的平均⾝⾼在⾄厘⽶之间。
25个雇员的随机样本的平均周薪为130元,试问此样本是否取⾃⼀个均值为120元、标准差为10元的正态总体?原假设120:0=µH备择假设 120:1≠µH 检验统计量()10/2510/25XX µσ-Z ====查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即此样本不是取⾃⼀个均值为120元、标准差为10元的正态总体。
计量经济学各章习题及答案
第一章习题一、单项选择1.( ) 是经济计量学的主要开拓者人和奠基人。
A.费歇(fisher) B .费里希(frisch)C.德宾(durbin)D.戈里瑟(glejer)2.随机方程又称为()。
A.定义方程 B.技术方程C.行为方程 D.制度方程3.计量经济分析工作的研究对象是()。
A.社会经济系统B.经济理论C.数学方法在经济中的应用D.经济数学模型二、多项选择1.经济计量学是下列哪些学科的统一()。
A.经济学B.统计学C.计量学D.数学E.计算机2.对一个独立的经济计量模型来说,变量可分为()、A.内生变量B独立变量C外生变量D.相关变量E虚拟变量3.经济计量学分析工作的工作步骤包括()。
A设定模型B估计参数C检验模型D应用模型E收集数据三、名词解释1.时序数据2.横截面数据3.内生变量4.解释变量5.模型6.外生变量第一章习题答案一、单项选择B\C\A二、多项选择1C\D 2A\C 3A\B\C\D三、名词解释1.时序数据指同一指标按时间顺序记录的数据列,在同一数据列中的数据必须是同口径的,有可比性2.横截面数据同一时间,在不同统计单位的相同统计指标组成的数据列,要求统计的时间相同,不要求统计对象及范围相同。
要求数据统计口径和计算方法具有可比性3.内生变量具有一定概率分布的随机变量,数据由模型本身决定4.解释变量在模型中方程右边作为影响因素的变量,即自变量 5.模型对经济系统的数学抽象 6.外生变量非随机变量,取值由模型外决定,是求解模型时的已知数第二章习题一、单项选择1.一元线性回归分析中有TSS=RSS+ESS 。
则RSS 的自由度为()。
A nB 1C n-1D n-2 2.一元线性会规中,0β∧、1β∧的值为( )∑∑---=∧2i)()(0X X Y Y X X ii )(βXY 01∧∧-=ββ XY 10∧∧-=ββ∑∑---=∧2i)()(1X X Y Y X X ii)(βY X =+∧∧10ββ∑∑---=∧2i)()(0X X Y Y X X ii )(βXY 10∧∧+=ββ∑∑---=∧2i)()(1X X Y Y X X ii)(β3.一元线性回归中,相关系数r=()ABDCA.∑∑∑----222)()()))(Y Y X X Y Y X X i i i i (( B.∑∑∑----22)()())(Y Y X X Y Y X X iiii(C ∑∑∑----22)()())(Y Y X X Y Y X X iii i( D∑∑∑---222)()()(Y Y X X Y Y iii4.对样本相关系数r ,以下结论中错误的是( )。
计量经济学习题参考答案
计量经济学习题参考答案第⼀章导论1.计量经济学是⼀门什么样的学科?答:计量经济学的英⽂单词是Econometrics,本意是“经济计量”,研究经济问题的计量⽅法,因此有时也译为“经济计量学”。
将Econometrics译为“计量经济学”是为了强调它是现代经济学的⼀门分⽀学科,不仅要研究经济问题的计量⽅法,还要研究经济问题发展变化的数量规律。
可以认为,计量经济学是以经济理论为指导,以经济数据为依据,以数学、统计⽅法为⼿段,通过建⽴、估计、检验经济模型,揭⽰客观经济活动中存在的随机因果关系的⼀门应⽤经济学的分⽀学科。
2.计量经济学与经济理论、数学、统计学的联系和区别是什么?答:计量经济学是经济理论、数学、统计学的结合,是经济学、数学、统计学的交叉学科(或边缘学科)。
计量经济学与经济学、数学、统计学的联系主要是计量经济学对这些学科的应⽤。
计量经济学对经济学的应⽤主要体现在以下⼏个⽅⾯:第⼀,计量经济学模型的选择和确定,包括对变量和经济模型的选择,需要经济学理论提供依据和思路;第⼆,计量经济分析中对经济模型的修改和调整,如改变函数形式、增减变量等,需要有经济理论的指导和把握;第三,计量经济分析结果的解读和应⽤也需要经济理论提供基础、背景和思路。
计量经济学对统计学的应⽤,⾄少有两个重要⽅⾯:⼀是计量经济分析所采⽤的数据的收集与处理、参数的估计等,需要使⽤统计学的⽅法和技术来完成;⼀是参数估计值、模型的预测结果的可靠性,需要使⽤统计⽅法加以分析、判断。
计量经济学对数学的应⽤也是多⽅⾯的,⾸先,对⾮线性函数进⾏线性转化的⽅法和技巧,是数学在计量经济学中的应⽤;其次,任何的参数估计归根结底都是数学运算,较复杂的参数估计⽅法,或者较复杂的模型的参数估计,更需要相当的数学知识和数学运算能⼒,另外,在计量经济理论和⽅法的研究⽅⾯,需要⽤到许多的数学知识和原理。
计量经济学与经济学、数学、统计学的区别也很明显,经济学、数学、统计学中的任何⼀门学科,都不能替代计量经济学,这三门学科简单地合起来,也不能替代计量经济学。
计量经济学-参考答案
一、解释概念:1、多重共线性:是指在多元线性回归模型中,解释变量之间存在的线性关系。
2、SRF:就是样本回归函数。
即是将样本应变量的条件均值表示为解释变量的某种函数。
3、解释变量的边际贡献:在回归模型中新加入一个解释变量所引起的回归平方和或者拟合优度的增加值。
4、一阶偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,剔除另一个变量对它们的影响的真实相关程度的指标。
5、最小方差准则:在模型参数估计时,应当选择其抽样分布具有最小方差的估计式,该原则就是最佳性准则,或者称为最小方差准则。
6、OLS:普通最小二乘估计。
是利用残差平方和为最小来求解回归模型参数的参数估计方法。
7、偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,剔除其它变量(部分或者全部变量)对它们的影响的真实相关程度的指标。
8、WLS:加权最小二乘法。
是指估计回归方程参数时,按照残差平方加权求和最小的原则进行的估计方法。
9、U t自相关:即回归模型中随机误差项逐项值之间的相关。
即Cov(U t,U s)≠0 t ≠s。
10、二阶偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,剔除另两个变量对它们的影响的真实相关程度的指标。
11、技术方程式:根据生产技术关系建立的计量经济模型。
13、零阶偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,不剔除任何变量对它们的影响的相关程度的指标。
也就是简单相关系数。
14、经验加权法:是根据实际经济问题的特点及经验判断,对滞后经济变量赋予一定的权数,利用这些权数构成各滞后变量的线性组合,以形成新的变量,再用最小二乘法进行参数估计的有限分布滞后模型的修正估计方法。
15、虚拟变量:在计量经济学中,我们把取值为0和1 的人工变量称为虚拟变量,用字母D表示。
(或称为属性变量、双值变量、类型变量、定性变量、二元型变量)16、不完全多重共线性:是指在多元线性回归模型中,解释变量之间存在的近似的线性关系。
计量经济学答案
一、名词解释1.时间序列数据的平稳性:如果随机时间序列均值和方差均是与时间t无关的常数,协方差只与时间间隔k有关,则称该随机时间序列是平稳的。
2.虚拟变量:是指人们构造的反应定性因素变化、只取0和1的人工变量,并且习惯上用符号D来表示。
3.异方差性:对于不同的样本点,随机误差项的方差不等于常数,则称模型出现了异方差性。
4.自相关性:如果随机误差项的各期值之间存在着相关关系,即协方差不等于0,则称模型存在着自相关性。
5随机变量的协整关系:如果同阶单整序列线性组合后单整阶数降低,则称变量之间存在着协整关系。
6.给定一个信息集,At,它至少包含(Xt,Yt),在“现在和过去可以影响未来,而未来不能影响过去”城里下,如果利用Xt的过去比不利用它时可以更好地预测Yt,称Xt为Yt的格兰杰原因,反之亦然。
7.随机变量的协整性:8.条件异方差ARCH模型:考虑m阶自回归模型AR(m)Yt=c+ρ1yt-1+ρ2yt-2+……+ρmyt-m+εt其中εt为白噪声过程随机误差项的平方(εt)2服从一个q阶自回归过程,即(εt)2=α0+α1(εt-1)2+α2(εt-2)2+……+αq(εt-p)2+ηt(1)其中ηt服从白噪声过程。
对模型的一个约束条件是(1)的特征方程1-α1z-α2z2-……-αq Z q=0的所有根均落在单位圆外,即要求模型参数满足其中α1+α2+……αq<1此外,为保证εt2为正值,对模型的另一个约束条件为α0>0,αi≥0,1≤i≤q。
上述模型即为条件方差模型。
9.误差修正模型ECM:对于yi的(1,1)阶自回归滞后模型:εiY t=α+β0x t+β1x t-1+β2y t-1+⊿y t=β⊿x t+γecm t-1+εt。
(1)其中,ecm t-1=y t-1-α0-α1x t-1,γ=β2-1,α0=(α+β0)/﹙1-β2﹚,α1=β1/(1-β2)称式(1)为误差修正模型ECM10.多重共线性:多元回归模型的解释变量之间存在较强的线性关系的性质二、填空题1.合理选择解释变量的关键:正确理解有关经济理论和把握所研究经济现象的行为规律。
(完整word版)计量经济学习题与答案(word文档良心出品)
第一章绪论1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
答:由于客观经济现象的复杂性,以至于人们目前仍难以完全地透彻地了解它的全貌。
对于某一种经济现象而言,往往受到很多因素的影响,而人们在认识这种经济现象的时候,只能从影响它的很多因素中选择一种或若干种来说明。
这样就会有许多因素未被选上,这些未被选上的因素必然也会影响所研究的经济现象。
因此,由被选因素构成的数学模型与由全部因素构成的数学模型去描述同一经济现象,必然会有出入。
为使模型更加确切地说明客观经济现象,所以有必要引入随机误差项。
随机误差项形成的原因:①在解释变量中被忽略的因素;②变量观测值的观测误差;③模型的关系误差或设定误差;④其他随机因素的影响。
第二章 一元线性回归模型例1、令kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为μββ++=educ kids 10(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
解答:(1)收入、年龄、家庭状况、政府的相关政策等也是影响生育率的重要的因素,在上述简单回归模型中,它们被包含在了随机扰动项之中。
有些因素可能与增长率水平相关,如收入水平与教育水平往往呈正相关、年龄大小与教育水平呈负相关等。
(2)当归结在随机扰动项中的重要影响因素与模型中的教育水平educ 相关时,上述回归模型不能够揭示教育对生育率在其他条件不变下的影响,因为这时出现解释变量与随机扰动项相关的情形,基本假设4不满足。
例2.已知回归模型μβα++=N E ,式中E 为某类公司一名新员工的起始薪金(元),N 为所受教育水平(年)。
随机扰动项μ的分布未知,其他所有假设都满足。
(1)从直观及经济角度解释α和β。
(2)OLS 估计量αˆ和βˆ满足线性性、无偏性及有效性吗?简单陈述理由。
计量经济学习题集参考答案
计量经济学习题集参考答案第一章一、单选ADABD BAACB ACBD二、多选ABCD BCDE BCE ABC三、四、略第二章一、单选CBDDD BCDDD ADBDC ABBDD BDAAD BBCB二、多选ACD ABCE ABC BE AC CDE ABCE CDE ABCE ADE ABCDE ABCE BCE三、判断×××√×四、五、略六、计算与分析题1、(1)令Y=1/y,X=e −x ,则可得线性模型:Y= + X+u。
0 β 1 β(2) 1 =sinx,=cosx,=sin2x,=cos2x,则原模型可化为线性模型X 2 X 3 X 4 X Y= 1 + + + +u。
β 1 X 2 β 2 X 3 β 3 X 4 β 4 X2、(1)设 1 = ,= ,则原模型化为Xx12 X 21xy= 0 + + +u;β 1 β 1 X 2 β 2 X(2)对原模型取对数:LnQ=LnA+αLnK+βLnL+u,设Y=LnQ,a=LnA, 1 =LnK,=LnL,则原模型可化为:X 2 XY=a+α1+β +u。
X 2 X(3)模型取对数:Lny= 0 + x+u,设Y=Lny,则原模型化为β 1 βY= 0 + x+u。
β 1 β(4)由模型可得:1-y= ,从而有:1 exp[ ( )]exp[ ( )]0 10 1x ux u+ −+ +−+ +ββββexp( )1 0 1 x uyy = + +−ββ取对数:Ln x u ,设Y= Ln ,则yy = + +−0 1 )1( ββ)1(yy−原模型可化为:Y= + x +u 。
0 1 ββ3、显著;=4.8387,=0.0433;[0.7186, 0.9013],不包含0。
S0 ˆβS1 ˆβ4、(1)yˆ=26.2768+4.2589X(2)两个系数的经济意义:产量为0 时,总成本为26.2768;当产量每增加1 时,总成本平均增加4.2589。
计量经济学习题及参考答案
计量经济学各章习题第一章绪论1.1试列出计量经济分析地主要步骤.1.2计量经济模型中为何要包括扰动项?1.3什么是时间序列和横截面数据? 试举例说明二者地区别1.4估计量和估计值有何区别?第二章计量经济分析地统计学基础2.1名词解释随机变量概率密度函数抽样分布样本均值样本方差协方差相关系数标准差标准误差显著性水平置信区间无偏性有效性一致估计量接受域拒绝域第I 类错误2.2请用例 2.2中地数据求北京男生平均身高地99%置信区间.2.325 个雇员地随机样本地平均周薪为130元,试问此样本是否取自一个均值为120 元、标准差为10 元地正态总体?文档收集自网络,仅用于个人学习2.4某月对零售商店地调查结果表明,市郊食品店地月平均销售额为2500 元,在下一个月份中,取出16 个这种食品店地一个样本,其月平均销售额为2600 元,销售额地标准差为480 元.试问能否得出结论,从上次调查以来,平均月销售额已经发生了变化?文档收集自网络,仅用于个人学习第三章双变量线性回归模型3.1判断题(判断对错;如果错误,说明理由)(1)OLS 法是使残差平方和最小化地估计方法.(2)计算OLS 估计值无需古典线性回归模型地基本假定.(3)若线性回归模型满足假设条件(1)~(4),但扰动项不服从正态分布,则尽管OLS 估计量不再是BLUE ,但仍为无偏估计量.文档收集自网络,仅用于个人学习(4)最小二乘斜率系数地假设检验所依据地是t 分布,要求地抽样分布是正态分布.2(5)R2=TSS/ESS.(6)若回归模型中无截距项,则.(7)若原假设未被拒绝,则它为真.(8)在双变量回归中,地值越大,斜率系数地方差越大.3.2设和分别表示Y 对X 和X 对Y 地OLS 回归中地斜率,证明r 为X 和Y 地相关系数.3.3证明:(1)Y 地真实值与OLS 拟合值有共同地均值,即;(2)OLS 残差与拟合值不相关,即.3.4证明本章中( 3.18)和( 3.19)两式:(1)(2)3.5考虑下列双变量模型:模型1:模型2:(1)1 和1地OLS 估计量相同吗?它们地方差相等吗?(2)2 和2地OLS 估计量相同吗?它们地方差相等吗?3.6有人使用1980-1994 年度数据,研究汇率和相对价格地关系,得到如下结果:其中,Y=马克对美元地汇率X=美、德两国消费者价格指数(CPI)之比,代表两国地相对价格(1)请解释回归系数地含义;(2)X t 地系数为负值有经济意义吗?(3)如果我们重新定义X 为德国CPI与美国CPI之比,X 地符号会变化吗?为什么?3.7随机调查200 位男性地身高和体重,并用体重对身高进行回归,结果如下:其中Weight 地单位是磅(lb ),Height 地单位是厘米(cm).(1)当身高分别为177.67cm、164.98cm、187.82cm 时,对应地体重地拟合值为多少?(2)假设在一年中某人身高增高了 3.81cm,此人体重增加了多少?3.8设有10 名工人地数据如下:X 10 7 10 5 8 8 6 7 9 10Y 11 10 12 6 10 7 9 10 11 10 其中X= 劳动工时,Y= 产量(1)试估计Y=α+βX + u(要求列出计算表格);(2)提供回归结果(按标准格式)并适当说明;(3)检验原假设β=1.0.3.9用12 对观测值估计出地消费函数为Y=10.0+0.90X ,且已知=0.01,=200,=4000,试预测当X=250 时Y 地值,并求Y 地95%置信区间.文档收集自网络,仅用于个人学习3.10设有某变量(Y)和变量(X)1995—1999 年地数据如下:(3)试预测X=10 时Y 地值,并求Y 地95%置信区间.3.11根据上题地数据及回归结果,现有一对新观测值X =20,Y=7.62,试问它们是否可能来自产生样本数据地同一总体?文档收集自网络,仅用于个人学习3.12有人估计消费函数,得到如下结果(括号中数字为t 值):=15 + 0.81 =0.98(2.7)(6.5)n=19(1)检验原假设:=0(取显著性水平为5%)(2)计算参数估计值地标准误差;(3)求地95%置信区间,这个区间包括0 吗?3.13试用中国1985—2003 年实际数据估计消费函数:=α+β + u t其中:C代表消费,Y 代表收入.原始数据如下表所示,表中:Cr=农村居民人均消费支出(元)Cu=城镇居民人均消费支出(元)Y =国内居民家庭人均纯收入(元) Yr =农村居民家庭人均纯收入(元) Yu=城镇居民家庭人均可支配收入(元) Rpop=农村人口比重(%) pop=历年年底我国人口总数(亿人)P=居民消费价格指数(1985=100)Pr=农村居民消费价格指数(1985=100)Pu=城镇居民消费价格指数(1985=100)数据来源:《中国统计年鉴2004》使用计量经济软件,用国内居民人均消费、农村居民人均消费和城镇居民人均消费分别对各自地人均收入进行回归,给出标准格式回归结果;并由回归结果分析我国城乡居民消费行为有何不同.文档收集自网络,仅用于个人学习第四章多元线性回归模型4.1某经济学家试图解释某一变量Y 地变动.他收集了Y 和 5 个可能地解释变量~地观测值(共10 组),然后分别作三个回归,结果如下(括号中数字为t 统计量):文档收集自网络,仅用于个人学习( 1) = 51.5 + 3.21 R=0.63(3.45) (5.21)2) 33.43 + 3.67 + 4.62 + 1.21 R=0.75 文档收集自网络,仅用于个人学(3.61 )(2.56)(0.81) (0.22)3) 23.21 + 3.82 + 2.32 + 0.82 + 4.10 + 1.21(2.21 )(2.83)(0.62) (0.12) (2.10) (1.11)文档收集自网络,仅用于个人学习R=0.80 你认为应采用哪一个结果?为什么?4.2为研究旅馆地投资问题,我们收集了某地地1987-1995 年地数据来估计收益生产函数R=ALKe ,其中R=旅馆年净收益(万年) ,L=土地投入,K=资金投入, e 为自然对数地底.设回归结果如下(括号内数字为标准误差) :文档收集自网络,仅用于个人学习= -0.9175 + 0.273lnL + 0.733lnK R=0.94(0.212) (0.135) (0.125)(1)请对回归结果作必要说明;( 2)分别检验α和β 地显著性;( 3)检验原假设:α =β = 0;4.3我们有某地1970-1987 年间人均储蓄和收入地数据,用以研究1970-1978 和1978 年以后储蓄和收入之间地关系是否发生显著变化. 引入虚拟变量后,估计结果如下(括号内数据为标准差) :文档收集自网络,仅用于个人学习= -1.7502 + 1.4839D + 0.1504 - 0.1034D·R=0.9425 文档收集自网络,仅用于个人学习(0.3319) (0.4704) (0.0163) (0.0332)其中:Y=人均储蓄,X=人均收入,D= 请检验两时期是否有显著地结构性变化.4.4说明下列模型中变量是否呈线性,系数是否呈线性,并将能线性化地模型线性化.(1)(2)(3)4.5有学者根据某国19年地数据得到下面地回归结果:其中:Y=进口量(百万美元),X1 =个人消费支出(百万美元),X2 =进口价格/国内价格.(1)解释截距项以及X1和X2系数地意义;(2)Y 地总变差中被回归方程解释地部分、未被回归方程解释地部分各是多少?(3)进行回归方程地显著性检验,并解释检验结果;(4)对“斜率”系数进行显著性检验,并解释检验结果.4.6由美国46个州1992年地数据,Baltagi 得到如下回归结果:其中,C=香烟消费(包/人年),P=每包香烟地实际价格Y=人均实际可支配收入(1)香烟需求地价格弹性是多少?它是否统计上显著?若是,它是否统计上异于-1?(2)香烟需求地收入弹性是多少?它是否统计上显著?若不显著,原因是什么?(3)求出.4.7有学者从209 个公司地样本,得到如下回归结果(括号中数字为标准误差):其中,Salary=CEO 地薪金Sales=公司年销售额roe=股本收益率(%)ros=公司股票收益请分析回归结果.4.8为了研究某国1970-1992 期间地人口增长率,某研究小组估计了下列模型:其中:Pop=人口(百万人),t=趋势变量,.(1)在模型 1 中,样本期该地地人口增长率是多少?(2)人口增长率在1978 年前后是否显著不同?如果不同,那么1972-1977和1978-1992 两时期中,人口增长率各是多少?文档收集自网络,仅用于个人学习4.9设回归方程为Y= β0+β1X1+β2X2+β3X3+ u, 试说明你将如何检验联合假设:β1= β2 和β3 = 1 .文档收集自网络,仅用于个人学习4.10下列情况应引入几个虚拟变量,如何表示?(1)企业规模:大型企业、中型企业、小型企业;(2)学历:小学、初中、高中、大学、研究生.4.11在经济发展发生转折时期,可以通过引入虚拟变量来表示这种变化.例如,研究进口消费品地数量Y 与国民收入X 地关系时,数据散点图显示1979 年前后明显不同.请写出引入虚拟变量地进口消费品线性回归方程.文档收集自网络,仅用于个人学习4.12柯布-道格拉斯生产函数其中:GDP=地区国内生产总值(亿元)K=资本形成总额(亿元)L= 就业人数(万人)P=商品零售价格指数(上年=100)试根据中国2003 年各省数据估计此函数并分析结果.数据如下表所示第五章模型地建立与估计中地问题及对策5.1判断题(判断对错;如果错误,说明理由)(1)尽管存在严重多重共线性,普通最小二乘估计量仍然是最佳线性无偏估计量(BLUE ).(2)如果分析地目地仅仅是为了预测,则多重共线性并无妨碍. (3)如果解释变量两两之间地相关系数都低,则一定不存在多重共线性. (4)如果存在异方差性,通常用地t 检验和 F 检验是无效地. (5)当存在自相关时,OLS 估计量既不是无偏地,又不是有效地.(6)消除一阶自相关地一阶差分变换法假定自相关系数必须等于 1. (7)模型中包含无关地解释变量,参数估计量会有偏,并且会增大估计量地方差,即增大误差.(8)多元回归中,如果全部“斜率”系数各自经t 检验都不显著,则R2值也高不了.(9)存在异方差地情况下,OLS 法总是高估系数估计量地标准误差.(10)如果一个具有非常数方差地解释变量被(不正确地)忽略了,那么OLS 残差将呈异方差性.5.2考虑带有随机扰动项地复利增长模型:Y 表示GDP,Y0是Y 地基期值,r 是样本期内地年均增长率,t 表示年份,t=1978,⋯,2003.文档收集自网络,仅用于个人学习试问应如何估计GDP 在样本期内地年均增长率?5.3 检验下列情况下是否存在扰动项地自相关 .(1) DW=0.81,n=21,k=3(2)DW=2.25,n=15,k=2(3)DW=1.56,n=30,k=55.4有人建立了一个回归模型来研究我国县一级地教育支出:Y= β0+β1X1+β 2X2+β3X3+u其中:Y,X1,X2 和X3分别为所研究县份地教育支出、居民人均收入、学龄儿童人数和可以利用地各级政府教育拨款.文档收集自网络,仅用于个人学习他打算用遍布我国各省、市、自治区地100 个县地数据来估计上述模型.(1)所用数据是什么类型地数据?(2)能否采用OLS 法进行估计?为什么?(3)如不能采用OLS 法,你认为应采用什么方法?5.5试从下列回归结果分析存在问题及解决方法:(1)= 24.7747 + 0.9415 - 0.0424 R=0.9635SE:(6.7525)(0.8229)(0.0807)其中:Y=消费,X2=收入,X3=财产,且n=5000 (2)= 0.4529 - 0.0041t R=0.5284t:(-3.9606) DW=0.8252其中Y= 劳动在增加值中地份额,t=时间该估计结果是使用1949-1964 年度数据得到地.5.6工资模型:wi=b0+b1Si+b2Ei+b3Ai+b4Ui+ui其中Wi=工资,Si=学校教育年限,Ei=工作年限,Ai=年龄,Ui=是否参加工会.在估计上述模型时,你觉得会出现什么问题?如何解决?5.7你想研究某行业中公司地销售量与其广告宣传费用之间地关系.你很清楚地知道该行业中有一半地公司比另一半公司大,你关心地是这种情况下,什么估计方法比较合理.假定大公司地扰动项方差是小公司扰动项方差地两倍.文档收集自网络,仅用于个人学习(1)若采用普通最小二乘法估计销售量对广告宣传费用地回归方程(假设广告宣传费是与误差项不相关地自变量),系数地估计量会是无偏地吗?是一致地吗?是有效地吗?文档收集自网络,仅用于个人学习(2)你会怎样修改你地估计方法以解决你地问题?(3)能否对原扰动项方差假设地正确性进行检验?5.8考虑下面地模型其中GNP=国民生产总值,M =货币供给. (1)假设你有估计此模型地数据,你能成功地估计出模型地所有系数吗?说明理由.(2)如果不能,哪些系数可以估计?(3)如果从模型中去掉这一项,你对(1)中问题地答案会改变吗?(4)如果从模型中去掉这一项,你对(1)中问题地答案会改变吗?5.9采用美国制造业1899-1922年数据,Dougherty得到如下两个回归结果:(1)(2)其中:Y=实际产出指数,K=实际资本投入指数,L =实际劳动力投入指数,t=时间趋势(1)回归式(1)中是否存在多重共线性?你是如何得知地?(2)回归式(1)中,logK 系数地预期符号是什么?回归结果符合先验预期吗?为什么会这样?(3)回归式(1)中,趋势变量在其中起什么作用?(4)估计回归式(2)背后地逻辑是什么?(5)如果(1)中存在多重共线性,那么(2)式是否减轻这个问题?你如何得知?(6)两个回归地R2可比吗?说明理由.5.10有人估计了下面地模型:其中:C=私人消费支出,GNP=国民生产总值,D=国防支出假定,将(1)式转换成下式:使用1946-1975数据估计(1)、(2)两式,得到如下回归结果(括号中数字为标准误差):1)关于异方差,模型估计者做出了什么样地假定?你认为他地依据是什么?2)比较两个回归结果.模型转换是否改进了结果?也就是说,是否减小了估计标准误差?说明理由.5.11设有下列数据:RSS1=55,K =4,n1=30RSS3=140,K =4,n3=30 请依据上述数据,用戈德佛尔德-匡特检验法进行异方差性检验(5%显著性水平).5.12考虑模型(1)也就是说,扰动项服从AR (2)模式,其中是白噪声.请概述估计此模型所要采取地步骤.5.13对第 3 章练习题 3.13 所建立地三个消费模型地结果进行分析:是否存在序列相关问题?如果有,应如何解决?5.14为了研究中国农业总产值与有效灌溉面积、化肥施用量、农作物总播种面积、受灾面积地相互关系,选31 个省市2003 年地数据资料,如下表所示:文档收集自网络,仅用于个人学习表中:Y=农业总产值(亿元,不包括林牧渔)X1=有效灌溉面积(千公顷)X2=化肥施用量(万吨)X23=化肥施用量(公斤/亩)X3=农作物总播种面积(千公顷)X4=受灾面积(千公顷)(1)回归并根据计算机输出结果写出标准格式地回归结果;(2)模型是否存在问题?如果存在问题,是什么问题?如何解决?第六章动态经济模型:自回归模型和分布滞后模型6.1判断题(判断对错;如果错误,说明理由)(1)所有计量经济模型实质上都是动态模型.(2)如果分布滞后系数中,有地为正有地为负,则科克模型将没有多大用处. (3)若适应预期模型用OLS 估计,则估计量将有偏,但一致. (4)对于小样本,部分调整模型地OLS 估计量是有偏地.(5)若回归方程中既包含随机解释变量,扰动项又自相关,则采用工具变量法,将产生无偏且一致地估计量.(6)解释变量中包括滞后因变量地情况下,用德宾-沃森d 统计量来检测自相关是没有实际用处地.6.2用OLS 对科克模型、部分调整模型和适应预期模型分别进行回归时,得到地OLS 估计量会有什么样地性质?文档收集自网络,仅用于个人学习6.3简述科克分布和阿尔蒙多项式分布地区别.6.4考虑模型假设相关.要解决这个问题,我们采用以下工具变量法:首先用对和回归,得到地估计值,然后回归其中是第一步回归(对和回归)中得到地.(1)这个方法如何消除原模型中地相关?(2)与利维顿采用地方法相比,此方法有何优点?6.5设其中:M=对实际现金余额地需求,Y*=预期实际收入,R*=预期通货膨胀率假设这些预期服从适应预期机制:其中和是调整系数,均位于0和1之间.(1)请将M t 用可观测量表示;(2)你预计会有什么估计问题?6.6考虑分布滞后模型假设可用二阶多项式表示诸如下:若施加约束==0,你将如何估计诸系数(,i=0,1, (4)6.7为了研究设备利用对于通货膨胀地影响,T. A.吉延斯根据1971年到1988年地美国数据获得如下回归结果:文档收集自网络,仅用于个人学习其中:Y=通货膨胀率(根据GNP 平减指数计算)X t=制造业设备利用率X t-1 =滞后一年地设备利用率1)设备利用对于通货膨胀地短期影响是什么?长期影响又是什么?(2)每个斜率系数是统计显著地吗?(3)你是否会拒绝两个斜率系数同时为零地原假设?将利用何种检验?6.8考虑下面地模型:Y t = α+β(W0X t+ W1X t-1 + W2X t-2 + W3X t-3)+u t 请说明如何用阿尔蒙滞后方法来估计上述模型(设用二次多项式来近似) .6.9下面地模型是一个将部分调整和适应预期假说结合在一起地模型:Y t*= βX t+1eY t-Y t-1 = δ(Y t*- Y t-1) + u tX t+1e- X t e= (1-λ)( X t - X t e);t=1,2,⋯, n式中Y t*是理想值,X t+1e和X t e是预期值.试推导出一个只包含可观测变量地方程,并说明该方程参数估计方面地问题.文档收集自网络,仅用于个人学习第七章时间序列分析7.1单项选择题(1)某一时间序列经一次差分变换成平稳时间序列,此时间序列称为()地.A.1 阶单整B.2阶单整C.K 阶单整D.以上答案均不正确文档收集自网络,仅用于个人学习(2)如果两个变量都是一阶单整地,则().A .这两个变量一定存在协整关系B.这两个变量一定不存在协整关系C.相应地误差修正模型一定成立D.还需对误差项进行检验文档收集自网络,仅用于个人学习(3)如果同阶单整地线性组合是平稳时间序列,则这些变量之间关系是() .A. 伪回归关系B.协整关系C.短期均衡关系D. 短期非均衡关系(4).若一个时间序列呈上升趋势,则这个时间序列是().A .平稳时间序列B.非平稳时间序列C.一阶单整序列 D. 一阶协整序列7.2请说出平稳时间序列和非平稳时间序列地区别,并解释为什么在实证分析中确定经济时间序列地性质是十分必要地.文档收集自网络,仅用于个人学习7.3什么是单位根?7.4Dickey-Fuller(DF)检验和Engle-Granger(EG)检验是检验什么地?文档收集自网络,仅用于个人学习7.5什么是伪回归?在回归中使用非均衡时间序列时是否必定会造成伪回归?7.6由1948-1984 英国私人部门住宅开工数(X)数据,某学者得到下列回归结果:注:5%临界值值为-2.95,10%临界值值为-2.60. (1)根据这一结果,检验住宅开工数时间序列是否平稳.(2)如果你打算使用t 检验,则观测地t 值是否统计显著?据此你是否得出该序列平稳地结论?(3)现考虑下面地回归结果:请判断住宅开工数地平稳性.7.7由1971-I 到1988-IV 加拿大地数据,得到如下回归结果;A.B.C.其中,M1=货币供给,GDP=国内生产总值,e t=残差(回归A)(1)你怀疑回归 A 是伪回归吗?为什么?(2)回归 B 是伪回归吗?请说明理由.(3)从回归 C 地结果,你是否改变(1)中地结论,为什么?(4)现考虑以下回归:这个回归结果告诉你什么?这个结果是否对你决定回归 A 是否伪回归有帮助?7.8 检验我国人口时间序列地平稳性,数据区间为1949-2003 年.单位:万人7.9对中国进出口贸易进行协整分析,如果存在协整关系,则建立E CM 模型.1951-2003 年中国进口(im )、出口(ex)和物价指数(pt,商品零售物价指数)时间序列数据见下表.因为该期间物价变化大,特别是改革开放以后变化更为激烈,所以物价指数也作为一个解释变量加入模型中.为消除物价变动对进出口数据地影响以及消除进出口数据中存在地异方差,定义三个变量如下:文档收集自网络,仅用于个人学习第八章联立方程模型8.1判断题(判断对错;如果错误,说明理由)(1)OLS 法适用于估计联立方程模型中地结构方程.(2)2SLS 法不能用于不可识别方程.(3)估计联立方程模型地2SLS 法和其它方法只有在大样本地情况下,才能具有我们期望地统计性质 .(4) 联立方程模型作为一个整体,不存在类似 R 2这样地拟合优度测度 .(5) 如果要估计地方程扰动项自相关或存在跨方程地相关, 则 2SLS 法和其它估 计结构方程地方法都不能用 .(6) 如果一个方程恰好识别,则 ILS 和 2SLS 给出相同结果 .8.2 单项选择题1) 结构式模型中地方程称为结构方程 .在结构方程中, 解释变量可以是前定变3) 如果联立方程模型中某个结构方程包含了模型中所有地变量,则这个方程5)当一个结构式方程为恰好识别时,这个方程中内生解释变量地个数( A .与被排除在外地前定变量个数正好相等 B .小于被排除在外地前定变量个数 C .大于被排除在外地前定变量个数D .以上三种情况都有可能发生 文档收集自网络,仅用于个人学习6) 简化式模型就是把结构式模型中地内生变量表示为 ( ).A. 外生变量和内生变量地函数关系B.前定变量和随机误差项地模型C.滞后变量和随机误差项地模型 D.外生变量和随机误差项地模量,也可以是 ( ).文档收集自网络,仅用于个人学习 A. 外生变量 B.滞后变量2)前定变量是 ( )地合称 .A.外生变量和滞后内生变量C.内生变量D. 外生变量和内生变量 C.外生变量和虚拟变量 D. 解释变量和被解释变量( ).A. 恰好识别B.不可识别 (4) 下面说法正确地是( ).A.内生变量是非随机变量 C.外生变量是随机变量 C.过度识别 D.不确定B. 前定变量是随机变量个人收集整理勿做商业用途型7) 对联立方程模型进行参数估计地方法可以分两类,即:( ).A.间接最小二乘法和系统估计方法B.单方程估计法和系统估计方法个人收集整理勿做商业用途C.单方程估计法和二阶段最小二乘法D.工具变量法和间接最小二乘法(8)在某个结构方程过度识别地条件下,不适用地估计方法是().A. 间接最小二乘法B.工具变量法C.二阶段最小二乘法D.有限信息极大似然估计法8.3行为方程和恒等式有什么区别?8.4如何确定模型中地外生变量和内生变量?8.5考虑下述模型:C t = α + β D t +u t I t = γ + δD t-1 + νt D t = C t +I t + Z t ;t=1 ,2,⋯,n其中 C = 消费支出,D= 收入,I = 投资,Z = 自发支出. C、I 和D是内生变量.试写出消费支出地简化型方程,并研究各方程地识别问题.8.6考虑下述模型:Y t = C t + I t +G t +X tC t = β 0 + β 1D t + β2C t-1 + u tD t = Y t –T tI t = α0 + α1Y t + α2R t-1 +νt 模型中各方程是正规化方程,u t、νt为扰动项.(1)请指出模型中地内生变量、外生变量和前定变量.(2)写出用2SLS法进行估计时,每个阶段中要估计地方程.8.7下面是一个简单地美国宏观经济模型(1960-1999)其中C=实际私人消费,I= 实际私人总投资,G=实际政府支出,Y =实际GDP,M= 当年价M2,R=长期利率;P=消费价格指数.内生变量:C,I,R,Y 前定变量:C t-1,I t-1,M t-1,P t,R t-1 和G t.(1)应用识别地阶条件,决定各方程地识别状态;(2)你打算用什么方法来估计可识别行为方程?8.8假设有如下计量经济模型:其中,Y=国民收入,I=净资本形成,C=个人消费,Q =利润,P=生活费用指数,R= 工业劳动生产率1)写出模型地内生变量、外生变量和前定变量;个人收集整理勿做商业用途(2)用识别地阶条件确定各方程地识别状态;(3)此模型中是否有可以用ILS 法估计地方程?如有,请指出;(4)写出用2SLS 法进行估计时,每个阶段中要估计地方程. 8.9考虑下述模型:消费方程:C t=α0 +α 1Y t +α2C t-1 +u①投资方程:I t=β0 +β1Y t +β2I t –1+u2t②进口方程:M t = 0 + 1Y t + u3t ③Y t = C t+ I t + G t + X t - M t模型中各方程是正规化方程,u 1t, ⋯u3t为扰动项.(1)请指出模型中地内生变量、外生变量和前定变量.(2)利用阶条件识别各行为方程.(3)写出用3SLS 进行估计时地步骤.8.10考察下述国民经济地简单模型式中,C为消费,Y 为国民收入,I 为投资,R为利率.设样本容量n 为20,已算得中间结果为:(1)判别模型中消费方程地识别状态;(2)用间接最小二乘法求消费方程结构式系数;(3)将采用哪种方法估计投资方程?为什么?(不必计算)8.11由联立方程模型;得到其简化式如下:(1)两结构方程可识别吗?(2)如果知道,识别情况有何变化?(3)若对简化式进行估计,结果如下:个人收集整理勿做商业用途试求出结构参数地值,并说明如何检验原假设个人收集整理勿做商业用途版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。
计量经济学习题参考答案
第一章练习题:一、选择题:1.下面属于截面数据的是:( D )A. 1991—2003年各年某地区20个乡镇的平均工业产值。
B. 1991—2003年各年某地区20个乡镇的各镇工业产值。
C. 某年某地区20个乡镇工业产值的合计数。
D. 某年某地区20个乡镇各镇的工业产值。
2.一个模型用于预测前必须经过的检验有:( ABCD ) A. 经济准则检验。
B. 统计检验。
C. 计量经济学准则检验。
D. 模型预测检验。
E. 实践检验。
3.对计量经济模型的统计准则检验包括:( BDE ) A.估计标准误差评价。
B.拟合优度检验。
C.预测误差程度评价。
D.总体线性关系显著性检验。
E.单个回归系数的显著性检验。
4.对计量经济模型的计量经济学准则检验包括:( BCE ) A.误差程度检验。
B. 异方差检验。
C. 序列相关性检验。
D.超一致性检验 E.多重共线性检验。
5.计量经济分析工作的四个步骤是:(BCDE ) A.理论研究。
B. 设定模型。
C. 估计参数。
D.检验模型. E.应用模型。
二、简答题:1.下面设计的计量经济模型是否合理,为什么?(不合理,GDP 在这里是定义方程)μ+⋅+=∑=i 31i i GDP b a GDP,其中,i GDP 是第一产业、第二产业和第三产业增加值。
μ为随机误差项。
第二章 练习题一、选择题:1.变量之间的关系可以分为两大类,它们是:( A )A.函数关系和相关关系B.线性相关关系和非线性相关关系C.正相关关系和负相关关系D.简单相关关系和复杂相关关系2.相关关系是指:( D )A.变量间的非独立关系B.变量间的因果关系C.变量间的函数关系D.变量间的不确定的依存关系 3.进行相关分析时,假定相关的两个变量 ( A )A. 都是随机变量B.都不是随机变量C. 一个是随机变量,一个不是随机变量D. 随机的或非随机都可以4.参数β的估计量βˆ具有有效性是指 ( B ) A. ()0v ar =βˆ B. ()βˆv ar 为最小 C. ()0=-ββˆ D. ()ββ-ˆ为最小 5.对于i i 10ie X βˆβˆY ++=,以σˆ表示估计标准误差,iY ˆ表示回归值。
计量经济学课后答案
计量经济学课后答案计量经济学课后答案第⼀章绪论(⼀)基本知识类题型 1-1.什么是计量经济学?1-2.简述当代计量经济学发展的动向。
1-3.计量经济学⽅法与⼀般经济数学⽅法有什么区别?1-4.为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。
1-5.为什么说计量经济学是⼀门经济学科?它在经济学科体系中的作⽤和地位是什么? 1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合⼀个具体经济问题说明建⽴与应⽤计量经济学模型的主要步骤。
1-8.建⽴计量经济学模型的基本思想是什么?1-9.计量经济学模型主要有哪些应⽤领域?各⾃的原理是什么?1-10.试分别举出五个时间序列数据和横截⾯数据,并说明时间序列数据和横截⾯数据有和异同?1-11.试解释单⽅程模型和联⽴⽅程模型的概念,并举例说明两者之间的联系与区别。
1-12.模型的检验包括⼏个⽅⾯?其具体含义是什么? 1-13.常⽤的样本数据有哪些?1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
1-15.估计量和估计值有何区别?哪些类型的关系式不存在估计问题? 1-16.经济数据在计量经济分析中的作⽤是什么?1-17.下列假想模型是否属于揭⽰因果关系的计量经济学模型?为什么?⑴其中为第t 年农村居民储蓄增加额(亿元)、为第t 年城镇居民可⽀配收⼊总额(亿元)。
⑵其中为第(1 t )年底农村居民储蓄余额(亿元)、为第t 年农村居民纯收⼊总额(亿元)。
1-18.指出下列假想模型中的错误,并说明理由:(1)其中,为第t 年社会消费品零售总额(亿元),为第t 年居民收⼊总额(亿元)(城镇居民可⽀配收⼊总额与农村居民纯收⼊总额之和),为第t 年全社会固定资产投资总额(亿元)。
(2)t t Y C 2.1180+=其中,C 、Y 分别是城镇居民消费⽀出和可⽀配收⼊。
(3)t t t L K Y ln 28.0ln 62.115.1ln -+=其中,Y 、K 、L 分别是⼯业总产值、⼯业⽣产资⾦和职⼯⼈数。
计量经济学习题及全部答案
《计量经济学》习题(一)一、判断正误1.在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法。
( ) 2.最小二乘法进行参数估计的基本原理是使残差平方和最小。
( )3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为(n -1)。
( ) 4.当我们说估计的回归系数在统计上是显著的,意思是说它显著地异于0。
( )5.总离差平方和(TSS )可分解为残差平方和(ESS )与回归平方和(RSS )之和,其中残差平方和(ESS )表示总离差平方和中可由样本回归直线解释的部分。
( ) 6.多元线性回归模型的F 检验和t 检验是一致的。
( )7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差。
( ) 8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的自相关。
( )9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果。
( ) 10...D W 检验只能检验一阶自相关。
( ) 二、单选题1.样本回归函数(方程)的表达式为( )。
A .i Y =01i i X u ββ++ B .(/)i E Y X =01i X ββ+C .i Y =01ˆˆi i X e ββ++D .ˆi Y =01ˆˆiX ββ+ 2.下图中“{”所指的距离是( )。
A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在总体回归方程(/)E Y X =01X ββ+中,1β表示( )。
A .当X 增加一个单位时,Y 增加1β个单位 B .当X 增加一个单位时,Y 平均增加1β个单位 C .当Y 增加一个单位时,X 增加1β个单位 D .当Y 增加一个单位时,X 平均增加1β个单位 4.可决系数2R 是指( )。
A .剩余平方和占总离差平方和的比重B .总离差平方和占回归平方和的比重C .回归平方和占总离差平方和的比重D .回归平方和占剩余平方和的比重 5.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=800,估计用的样本容量为24,则随机误差项i u 的方差估计量为( )。
计量经济学课后答案
2.7 设销售收入,,,,,,,,,12个月的有关资料计算出以下数据:(单位:万元) 2()425053.73tXX -=∑ 647.88X = 2()262855.25tY Y -=∑ 549.8Y =()()334229.09tt XX Y Y --=∑(1) 拟合简单线性回归方程,并对方程中回归系数的经济意义作出解释。
(2) 计算可决系数和回归估计的标准误差。
(3) 对2β进行显著水平为5%的显著性检验。
(4) 假定下年1月销售收入为800万元,利用拟合的回归方程预测其销售成本,并给出置信度为95%的预测区间。
练习题2.7参考解答:(1)建立回归模型: i i i u X Y ++=21ββ用OLS 法估计参数: 222()()334229.09ˆ0.7863()425053.73ii i iiiX X Y Y x yX X xβ--====-∑∑∑∑12ˆˆ549.80.7863647.8866.2872Y X ββ=-=-⨯= 估计结果为: ˆ66.28720.7863i iY X =+ 说明该百货公司销售收入每增加1元,平均说来销售成本将增加0.7863元。
(2)计算可决系数和回归估计的标准误差 可决系数为:22222222222ˆˆˆ()0.7863425053.73262796.990.999778262855.25262855.25i i iiiiy x x Ryyyββ===⨯===∑∑∑∑∑∑由 2221i iery=-∑∑ 可得222(1)ii eR y =-∑∑222(1)(10.999778)262855.2558.3539ii eR y =-=-⨯=∑∑回归估计的标准误差: ˆ 2.4157σ=(3) 对2β进行显著水平为5%的显著性检验*222^^22ˆˆ~(2)ˆˆ()()t t n SE SE βββββ-==-^22.4157ˆ()0.0037651.9614SE β==== *2^2ˆ0.7863212.51350.0037ˆ()t SE ββ===查表得 0.05α=时,0.025(122) 2.228t -=<*212.5135t =表明2β显著不为0,销售收入对销售成本有显著影响.(4) 假定下年1月销售收入为800万元,利用拟合的回归方程预测其销售成本,并给出置信度为95%的预测区间。
计量经济学参考答案
第二章练习题及参考解答练习题2.1 参考解答:计算中国货币供应量(以货币与准货币M2表示)与国内生产总值(GDP)的相关系数为:计算方法: 2222()()i i i iXY i i i i n X Y X Y r n X X n Y Y -=--∑∑∑∑∑∑∑或 ,22()()()()ii X Y iiX X Y Y r X X Y Y --=--∑∑∑计算结果:M2 GDP M2 1 0.6 GDP0.61经济意义: 这说明中国货币供应量与国内生产总值(GDP)的线性相关系数为0.,线性相关程度相当高。
练习题2.2参考解答美国软饮料公司的广告费用X 与销售数量Y 的散点图为说明美国软饮料公司的广告费用X 与销售数量Y 正线性相关。
x y x 1 0.4 y0.41说明美国软饮料公司的广告费用X 与销售数量Y 的正相关程度相当高。
若以销售数量Y 为被解释变量,以广告费用X 为解释变量,可建立线性回归模型 i i i u X Y ++=21ββ 利用EViews 估计其参数结果为经t 检验表明, 广告费用X 对美国软饮料公司的销售数量Y 确有显著影响。
回归结果表明,广告费用X 每增加1百万美元, 平均说来软饮料公司的销售数量将增加14.40359(百万箱)。
练习题2.3参考解答: 1、 建立深圳地方预算内财政收入对GDP 的回归模型,建立EViews 文件,利用地方预算内财政收入(Y )和GDP 的数据表,作散点图可看出地方预算内财政收入(Y )和GDP 的关系近似直线关系,可建立线性回归模型: t t t u GDP Y ++=21ββ 利用EViews 估计其参数结果为即 ˆ20.46110.0850t tY GDP =+ (9.8674) (0.0033)t=(2.0736) (26.1038) R 2=0.9771 F=681.4064经检验说明,深圳市的GDP 对地方财政收入确有显著影响。
《计量经济学》习题及答案
《计量经济学》习题及答案(解答仅供参考)第一套一、名词解释:1. 计量经济学:计量经济学是经济学的一个分支,它使用数学和统计学的方法,对经济现象进行量化分析,建立经济模型,预测和解释经济行为和现象。
2. 异方差性:在回归分析中,如果误差项的方差随自变量的变化而变化,这种现象称为异方差性。
3. 自相关性:在时间序列分析中,如果一个变量的当前值与它的过去值存在相关性,这种现象称为自相关性。
4. 多重共线性:在多元回归分析中,如果两个或多个自变量之间高度相关,这种现象称为多重共线性。
5. 随机抽样:随机抽样是一种统计抽样方法,每个样本单位都有一定的概率被选入样本,且各个样本单位之间的选择是独立的。
二、填空题:1. 在线性回归模型中,参数估计的常用方法是______最小二乘法______。
2. 如果一个变量的分布是对称的,那么它的偏态系数应该接近于______0______。
3. 在时间序列分析中,______平稳性______是进行预测的前提条件之一。
4. ______工具变量法______是处理内生性问题的一种常用方法。
5. 如果一个经济变量的变化完全由其他经济变量的变化所决定,那么这个变量被称为______外生变量______。
三、单项选择题:1. 下列哪种情况可能导致异方差性?(B)A. 自变量和因变量之间存在非线性关系B. 自变量的某些组合导致误差项的方差增大C. 因变量和误差项之间存在相关性D. 样本容量过小2. 在进行回归分析时,如果发现数据存在多重共线性,以下哪种方法可以解决这个问题?(C)A. 增加样本容量B. 使用非线性模型C. 删除相关性较强的自变量D. 对自变量进行标准化3. 下列哪种情况可能会导致自相关性?(A)A. 时间序列数据中存在滞后效应B. 因变量和某个自变量之间存在非线性关系C. 样本容量过小D. 自变量之间存在多重共线性四、多项选择题:1. 下列哪些是计量经济学的基本假设?(ABCD)A. 线性关系假设B. 零均值假设C. 同方差性假设D. 无自相关性假设E. 正态性假设2. 下列哪些是处理内生性问题的方法?(ACD)A. 工具变量法B. 加权最小二乘法C. 两阶段最小二乘法D. 广义矩估计法E.岭回归法五、判断题:1. 在进行回归分析时,如果自变量和因变量之间不存在线性关系,那么回归结果将没有任何意义。
计量经济学习题及全部答案
计量经济学习题及全部答案Newly compiled on November 23, 2020《计量经济学》习题(一)一、判断正误1.在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法。
( ) 2.最小二乘法进行参数估计的基本原理是使残差平方和最小。
( )3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为(n -1)。
( ) 4.当我们说估计的回归系数在统计上是显着的,意思是说它显着地异于0。
( ) 5.总离差平方和(TSS )可分解为残差平方和(ESS )与回归平方和(RSS )之和,其中残差平方和(ESS )表示总离差平方和中可由样本回归直线解释的部分。
( ) 6.多元线性回归模型的F 检验和t 检验是一致的。
( )7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差。
( )8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的自相关。
( )9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果。
( ) 10...DW 检验只能检验一阶自相关。
( ) 二、单选题1.样本回归函数(方程)的表达式为( )。
A .i Y =01i i X u ββ++B .(/)i E Y X =01i X ββ+C .i Y =01ˆˆi i X e ββ++D .ˆi Y =01ˆˆi X ββ+ 2.下图中“{”所指的距离是( )。
A .随机干扰项B .残差C .i Y 的离差D .ˆi Y 的离差 3.在总体回归方程(/)E Y X =01X ββ+中,1β表示( )。
A .当X 增加一个单位时,Y 增加1β个单位B .当X 增加一个单位时,Y 平均增加1β个单位C .当Y 增加一个单位时,X 增加1β个单位D .当Y 增加一个单位时,X 平均增加1β个单位 4.可决系数2R 是指( )。
A .剩余平方和占总离差平方和的比重B .总离差平方和占回归平方和的比重C .回归平方和占总离差平方和的比重D .回归平方和占剩余平方和的比重 5.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=800,估计用的样本容量为24,则随机误差项i u 的方差估计量为( )。
计量经济学答案部分Word版
计量经济学答案部分Word版第一章导论一、单项选择题1-6: CCCBCAC二、多项选择题ABCD;ACD;ABCD三.问答题什么是计量经济学?答案见教材第3页四、案例分析题假定让你对中国家庭用汽车市场发展情况进行研究,应该分哪些步骤,分别如何分析?(参考计量经济学研究的步骤)第一步:选取被研究对象的变量:汽车销售量第二步:根据理论及经验分析,寻找影响汽车销售量的因素,如汽车价格,汽油价格,收入水平等第三步:建立反映汽车销售量及其影响因素的计量经济学模型第四步:估计模型中的参数;第五步:对模型进行计量经济学检验、统计检验以及经济意义检验;第六步:进行结构分析及在给定解释变量的情况下预测中国汽车销售量的未来值为汽车业的发展提供政策实施依据。
第二章简单线性回归模型一、填空题1、线性、无偏、最小方差性(有效性),BLUE。
2、解释变量;参数;参数。
3、随机误差项;随机误差项。
二、单项选择题1-4:BBDA;6-11:CDCBCA三、多项选择题1.ABC;2.ABC;3.BC;4.ABE;5.AD;6.BC四、判断正误:1. 错;2. 错;3. 对;4.错;5. 错;6. 对;7. 对;8.错五、简答题:1.为什么模型中要引入随机扰动项?答:模型是对经济问题的一种数学模型,在模型中,被解释变量是研究的对象,解释变量是其确定的解释因素,但由于实际问题的错综复杂,影响被解释变量的因素中,除了包括在模型中的解释变量以外,还有其他一些因素未能包括在模型中,但却影响被解释变量,我们把这类变量统一用随机误差项表示。
随机误差项包含的因素有:第一,未知影响因素的代表;第二,无法取得数据的已知因素的代表;第三,众多细小影响因素的综合代表;第四,模型的设定误差;第五,变量的观测误差;第六,经济现象的内在随机性。
由此可见,随机误差项有十分丰富的内容,在计量经济研究中起着重要的作用,一定程度上,随机误差项的性质决定着计量经济方法的选择和使用。
计量经济学参考答案
第一章1.6一个完整的计量经济模型应包括哪些基本要素?你能举一个例子吗?答:一个完整的计量经济模型应包括三个基本要素:经济变量、参数和随机误差项。
例如研究一家店铺月销售额的计量经济模型:u βX αY ++=其中,Y 为该月店铺销售总额,X 为该月店铺销售量,二者是经济变量;α和β为参数;u 是随机误差项。
1.7答:经济变量反映不同时间、不同空间的表现不同,取值不同,是可以观测的因素。
经济参数是表现经济变量相互依存程度的、决定经济结构和特征的、相对稳定的因素,通常不能直接观测。
参数是未知的,又是不可直接观测的。
由于随机误差项的存在,参数也不能通过变量值去精确计算。
只能通过变量样本观测值选择适当方法去估计。
1.11答:时间序列数据:中国1990年至2013年国内生产总值,可从中国统计局网站查得数据。
截面数据:中国2013年各城市收入水平,中国统计局网站查得数据。
面板数据:中国1990年至2013年各城市收入水平,中国统计局网站查得数据。
虚拟变量数据:自然灾害状态,1表示该状态发生,0表示该状态不发生。
1.13为什么对已经估计出参数的模型还要进行检验?你能举一个例子说明各种检验的必要性吗?答:一,在设定模型时,对所研究经济现象规律性的认识可能并不充分,所依据的经济理论对所研究对象也许还不能作出正确的解释和说明。
二,经济理论是正确的,但可能我们对问题的认识只是从某些局部出发,或者只是考察了某些特殊的样本,以局部去说明全局的变化规律,可能导致偏差。
三,我们用以估计参数的统计数据或其它信息可能并不十分可靠,或者较多地采用了经济突变时期的数据,不能真实代表所研究的经济关系,或者由于样本太小,所估计参数只是抽样的某种偶然结果。
第二章2.3(1) 当1000f Y =时,消费支出C 的点预测值: ˆ500.61000650iC =+⨯=(元) (2)平均值的预测区间:已知: ˆ650iC =,0.025(10) 2.23t =,22300ˆ302122ie n σ===--∑,22ˆˆ[(f f C t C t αασσ-+[(650 2.23 2.23=-+=(650-27.5380,650+27.5380)=(622.46,677.54)当1000fY=时,在95%的置信概率下消费支出C平均值的预测区间为(622.46,677.54)元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章练习题及参考解答练习题2.1 参考解答:计算中国货币供应量(以货币与准货币M2表示)与国内生产总值(GDP)的相关系数为:计算方法: XY n X Y X Y r -=或,()()X Y X X Y Y r --=计算结果:M2 GDPM2 1 0.996426148646GDP0.996426148646 1经济意义: 这说明中国货币供应量与国内生产总值(GDP)的线性相关系数为0.996426,线性相关程度相当高。
练习题2.2参考解答美国软饮料公司的广告费用X 与销售数量Y 的散点图为说明美国软饮料公司的广告费用X 与销售数量Y 正线性相关。
说明美国软饮料公司的广告费用X 与销售数量Y 的正相关程度相当高。
若以销售数量Y 为被解释变量,以广告费用X 为解释变量,可建立线性回归模型 i i i u X Y ++=21ββ 利用EViews 估计其参数结果为经t 检验表明, 广告费用X 对美国软饮料公司的销售数量Y 确有显著影响。
回归结果表明,广告费用X 每增加1百万美元, 平均说来软饮料公司的销售数量将增加14.40359(百万箱)。
练习题2.3参考解答: 1、 建立深圳地方预算内财政收入对GDP 的回归模型,建立EViews 文件,利用地方预算内财政收入(Y )和GDP 的数据表,作散点图可看出地方预算内财政收入(Y )和GDP 的关系近似直线关系,可建立线性回归模型: t t t u GDP Y ++=21ββ 利用EViews 估计其参数结果为即 ˆ20.46110.0850t tY GDP =+ (9.8674) (0.0033)t=(2.0736) (26.1038) R 2=0.9771 F=681.4064经检验说明,深圳市的GDP 对地方财政收入确有显著影响。
20.9771R =,说明GDP 解释了地方财政收入变动的近98%,模型拟合程度较好。
模型说明当GDP 每增长1亿元时,平均说来地方财政收入将增长0.0850亿元。
当2008年GDP 为7500亿元时,地方财政收入的点预测值为:2008ˆ20.46110.08508000700.4611Y =+⨯=(亿元) 区间预测:为了作区间预测,取0.05α=,f Y 平均值置信度95%的预测区间为:2ˆf Y t α 利用EViews 由GDP 数据的统计量得到 2031.266x σ= 2300.773X = n=18 则有222(1)2031.266(181)70142706.5669i x xn σ=-=⨯-=∑221()(80002300.773)32481188.3976f X X -=-=取0.05α=,2008ˆ700.4611Y =,0.025(18-2)=2.120t 平均值置信度95%的预测区间为:^^2f Y t ασ20088000GDP =时700.4611 2.12027.2602⨯700.461141.6191= (亿元)f Y 个别值置信度95%的预测区间为:^^2f Y t ασ 即700.4611 2.12027.2602⨯ 700.461171.2181= (亿元)练习题2.4参考解答:(1)以最终消费为被解释变量Y ,以国民总收入为解释变量X ,建立线性回归模型: i i i u X Y ++=21ββ 利用EViews 估计参数并检验回归分析结果为:ˆ3044.3430.530112t tY X =+ (895.4040) (0.00967) t= (3.3999) (54.8208)20.9908R = n=30(2)回归估计的标准误差即估计的随机扰动项的标准误差ˆσ=由EViews 估计参数和检验结果得ˆ3580.903σ=, 可决系数为0.9908。
(3)由t 分布表可查得0.025(302) 2.048t -=,由于20.02554.8208(28) 2.048t t β=>= ,或由P 值=0.000可以看出, 对回归系数进行显著性水平为5%的显著性检验表明, 国民总收入对最终消费有显著影响。
(4)如果2008年全年国民总收入为300670亿元,预测可能达到的最终消费水平为:2008ˆ3044.3430.530112300670162433.1180Y =+⨯=(亿元) 对最终消费的均值置信度为95%的预测区间为:^^f Y t ασ由Eviews 计算国民总收入X 变量样本数据的统计量得:68765.51x σ= 63270.07X = n=30 则有222(1)68765.51(301)137132165601.2429i x xn σ=-=⨯-=∑22()(30067063270.07)56358726764.0049f X X -=-=取0.05α=,2008ˆ162433.1180Y =,0.025(30-2)=2.048t ,已知 ˆ3580.903σ=,平均值置信度95%的预测区间为:^^2f Y t ασ=162433.1180 2.0483580.903⨯ =162433.11884888.4110 (亿元)练习题2.5参考解答:美国各航空公司航班正点到达比率X 和每10万名乘客投诉次数Y 的散点图为由图形看出航班正点到达比率和每10万名乘客投诉次数呈现负相关关系, 利用建立描述投诉率(Y )依赖航班按时到达正点率(X )的回归方程: i i i u X Y ++=21ββ利用EViews 估计其参数结果为即 i iX Y 070414.0017832.6ˆ-= (1.017832)(-0.014176)t=(5.718961) (-4.967254) R 2=0.778996 F=24.67361从检验结果可以看出, 航班正点到达比率对乘客投诉次数确有显著影响。
这说明当航班正点到达比率每提1个百分点, 平均说来每10万名乘客投诉次数将下降0.07次。
如果航班按时到达的正点率为80%,估计每10万名乘客投诉的次数为384712.080070414.0017832.6ˆ=⨯-=iY (次)练习题2.6参考解答:1.分析每股帐面价值和当年红利的相关性 作散布图:从图形看似乎具有一定正相关性,计算相关系数:每股帐面价值和当年红利的相关系数为0.7086472.建立每股帐面价值X 和当年红利Y 的回归方程:12i i i Y X u ββ=++回归结果:参数2β的t 检验:t 值为3.7580,查表0.025(162) 2.145t -=<2 3.7580t β=,或者P 值为0.0021<0.05α=,表明每股红利对帐面价值有显著的影响。
3.回归系数的经济意义:平均说来公司的股票每股红利增加1元,当年帐面价值将增加6.8942元练习题2.7参考解答:(1)建立回归模型: i i i u X Y ++=21ββ用OLS 法估计参数: 222()()334229.09ˆ0.7863()425053.73ii i iiiX X Y Y x yX X xβ--====-∑∑∑∑12ˆˆ549.80.7863647.8866.2872Y X ββ=-=-⨯= 估计结果为: ˆ66.28720.7863i iY X =+ 说明该百货公司销售收入每增加1元,平均说来销售成本将增加0.7863元。
(2)计算可决系数和回归估计的标准误差 可决系数为:22222222222ˆˆˆ()0.7863425053.73262796.990.999778262855.25262855.25i i iiiiy x x Ryyyββ===⨯===∑∑∑∑∑∑由 2221i iery=-∑∑ 可得222(1)ii eR y =-∑∑222(1)(10.999778)262855.2558.3539ii eR y =-=-⨯=∑∑回归估计的标准误差: ˆ 2.4157σ=(3) 对2β进行显著水平为5%的显著性检验*222^^22ˆˆ~(2)ˆˆ()()t t n SE SE βββββ-==-^22.4157ˆ()0.0037651.9614SE β==== *2^2ˆ0.7863212.51350.0037ˆ()t SE ββ===查表得 0.05α=时,0.025(122) 2.228t -=<*212.5135t =表明2β显著不为0,销售收入对销售成本有显著影响.(4) 假定下年1月销售收入为800万元,利用拟合的回归方程预测其销售成本,并给出置信度为95%的预测区间。
ˆ66.28720.786366.28720.7863800695.3272i iY X =+=+⨯=万元 预测区间为: 2ˆˆF F Y Y t ασ=695.3272 2.228 2.4157695.3272 1.9978F Y =⨯=练习题2.8参考解答:(1) 分别设定简单线性回归模型,分析各国人均寿命与人均GDP 、成人识字率、一岁儿童疫苗接种率的数量关系: 1) 人均寿命与人均GDP 关系 121i i i Y X u ββ=++ 估计检验结果:2) 人均寿命与成人识字率关系3) 人均寿命与一岁儿童疫苗接种率关系(2)对所建立的多个回归模型进行检验由人均GDP 、成人识字率、一岁儿童疫苗接种率分别对人均寿命回归结果的参数t 检验值均明确大于其临界值,而且从对应的P 值看,均小于0.05,所以人均GDP 、成人识字率、一岁儿童疫苗接种率分别对人均寿命都有显著影响.(3)分析对比各个简单线性回归模型 人均寿命与人均GDP 回归的可决系数为0.5261 人均寿命与成人识字率回归的可决系数为0.7168 人均寿命与一岁儿童疫苗接种率的可决系数为0.5379 相对说来,人均寿命由成人识字率作出解释的比重更大一些练习题2.9参考解答:没有截距项的过原点回归模型为: 2i i Y X u β=+ 因为222ˆ()i i ie Y X β=-∑∑ 求偏导 222ˆ2()()2ˆi i i ii i e Y X X e X ββ∂=--=-∂∑∑∑ 令 222ˆ2()()0ˆi i i ie Y X X ββ∂=--=∂∑∑ 得 22ˆi i iX Y X β=∑∑ 而有截距项的回归为22ˆi iix yxβ=∑∑对于过原点的回归,由OLS 原则:0ie =∑已不再成立, 但是0iie X=∑是成立的。
还可以证明对于过原点的回归 222ˆ()iVar Xσβ=∑ , 22ˆ1ie n σ=-∑而有截距项的回归为 222ˆ()iVar xσβ=∑ , 22ˆ2ie n σ=-∑练习题2.10参考解答:如果将“地方财政收入Y ”和“本市生产总值GDP ”数据的计量单位分别或同时由”亿元”改为”万元”,数据变为:深圳市地方预算内财政收入与国内生产总值A.当“地方财政收入”和“本市生产总值”数据的计量单位均为“亿元”时估计检验结果为:11ˆ20.461060.084965t tY GDP =+ (9.867440) (0.003255)t=(2.073593) (26.10376) R 2=0.977058B.当“地方财政收入” 的计量单位为“亿元”,“本市生产总值” 的计量单位为“万元” 时:12ˆ20.461060.00000850t tY GDP =+ (9.867440)(0.000000325)t=(2.073593) (26.10376) R 2=0.977058C.当“地方财政收入” 的计量单位为“万元”,“本市生产总值” 的计量单位为“亿元” 时:21ˆ204610.6849.6520t tY GDP =+ (98674.40) (32.54902)t=(2.073593) (26.10376) R 2=0.977058D.当“地方财政收入” 的计量单位为“万元”,“本市生产总值” 的计量单位为“万元” 时:22ˆ204610.60.084965t tY GDP =+ (98674.40) (0.0032549)t=(2.073593) (26.10376) R 2=0.977058可以总结出,变量度量单位对回归影响的一般规律为:1)当被解释变量测量单位改变(扩大或缩小常数c 倍),而解释变量测量单位不变时:OLS 截距和斜率的估计值及标准误差都缩小或扩大为原来的c 倍. (如C 的情况)2)当解释变量测量单位改变(扩大或缩小常数c 倍),而被解释变量测量单位不变时:OLS 斜率的估计值及标准误差扩大或缩小为原来的c 倍,但不影响截距的估计. (如B 的情况)3)当被解释变量和解释变量测量单位同时改变相同倍数时,OLS 的截距估计值及标准误差扩大为原来的c 倍,但不影响斜率的估计. (如D 的情况)4)当被解释变量和解释变量测量单位改变时,不会影响拟合优度.可决系数是纯数没有维度,所以不随计量单位而变化。