2017-试验配合物键合异构体的制备及用红外-化学试验教学中心

合集下载

《综合化学实验无机实验部分》课程教学大纲

《综合化学实验无机实验部分》课程教学大纲

《综合化学实验无机实验部分》教学大纲一、说明(一)实验目的、要求综合化学实验(无机化学实验部分)是按照实验教学“一体化多层次”及由专业教学改为“通才教学”和适度的专业教学相结合的指导思想,面向化学专业学生开设的一门独立的实验课。

基于培养学生综合化学实验技能的重要性,本课程目的着重于促进学生在化学学习中手脑并重、手脑并用、手脑协调,强调培养创新精神、创新意识、创新能力,综合运用各方面的知识、各种实验手段以完整地解决实际问题,结合学生情况因材施教,培养科学思维方法和训练科研能力,作为基础实验课(着重知识学习和能力训练)与科学研究(以已知解决未知)间的衔接、过渡,为后继课程学习、将来从事化学化工生产、研发及其相关工作打下良好的基础。

通过本课程的学习,要求学生初步学会查阅相关文献和设计实验的能力,综合运用化学实验的基本知识和无机化学等各方面知识,巩固先修课程的操作技能,学习一些精密仪器的使用,培养发现问题、分析和解决问题、创新思维能力。

(二)实验内容的选取和实施中注意的问题本课程的各个实验,内容上都具有一定的综合性,在教学方法方面注意指导学生查阅文献,设计方案,对实验结果进行分析和讨论。

实验通常两人1组,培养合作精神。

(三)考核方式与要求考核方式为考查。

实验成绩由三部分组成:平时实验操作40%、平时实验报告和预习报告40%和期末的实验操作考试20%,计算总评成绩。

平时应注意检查学生的学习情况,并促进学生的学习。

(四)实验项目与时数安排注:具体实验内容根据实际教学计划学时从上表中选择。

二、实验内容实验一:二氯化一氯五氨合钴配合物的水合速率常数和活化能的测定1、[Co(NH3)5Cl]Cl2的制备。

2、[Co(NH3)5Cl]Cl2的水合速率常数和活化能的测定。

说明和要求:通过二氯化一氯五氨合钴的制备掌握速率常数、活化能的测定原理;进一步熟悉分光光度计的使用。

实验二:水合醋酸铜的制备1、Cu(OH)2的制备。

2024年浙江省高中化学奥林匹克竞赛模拟试卷(含答案与解析)_3084

2024年浙江省高中化学奥林匹克竞赛模拟试卷(含答案与解析)_3084

2024年浙江省高中奥林匹克竞赛模拟试题化学考生须知:1.全卷分试题卷和答题卡两部分,所有试题均为选择题,共80题。

2.本卷答案必须做在答题卡上,做在试题卷上无效。

考后交答题卡。

必须在答题卡上写明姓名、学校、考点、考场和准考证号,字迹清楚。

同时用2B铅笔填涂准考证号。

3.答题时,请用2B铅笔将答题卡上对应题目的答案标号涂黑。

4.可以使用非编程计算器。

一、单选题1. 下列物质都能与浓热氢氧化钠溶液反应,产生气体与众不同的是A. AlB. SiC. PD. B2. 某铼(Re)的氯化物,它可由CCl4和Re2O7在封闭管中子400℃反应而成。

在晶态时,用X射线测得其结构为二聚体,该二聚体为两个八面体共用一条棱得到,则该二聚体的化学式为A. ReCl8B. ReCl7C. ReCl6D. ReCl53. 缺铁性贫血是世界上最普遍的营养性问题,一个简单的解决办法是生产铁强化酱油,即在酱油中加入易吸收铁的添加剂——Na2FeY,其中Y4-是乙二胺四乙酸(H4Y)的酸根形式,H4Y结构如下左图。

生产铁强化酱油产生的废水可用绿色消毒剂X(如下图)来杀菌。

下列有关说法正确的是A. 从酸碱质子理论来说,H4Y只有酸性B. H6Y2+只有4个pKa数值C. [FeY]2-即[FeEDTA]2-,亚铁离子周围6配位,形成6个五元环D. X能够杀菌的原因是其水解可产生次氯酸4. 元素周期表的形式多种多样,下图是扇形元素周期表的一部分(1~36号元素),与中学常见的长式元素周期表相比,第一到第十八可看成族,⑩为Fe元素。

由扇形周期表的填充规律,下列有关已填入的元素说法不正确的是A. ⑤处于长式周期表第二周期第VIA族B. ②最高价氧化物水化物能与⑦的最高价氧化物反应C. ①与③均可形成既含极性键又含非极性键的化合物D. ⑩单质能与CO形成两种稳定配合物Fe(CO)5和Fe(CO)65. 胂(AsH3)是非常毒的气体,受热分解成两种单质。

探究实验--钴配合物合成

探究实验--钴配合物合成

1、 二(4,6-二羟基嘧啶)四水合钴(Ⅱ)试剂::乙醇,金属钠,丙二酰胺,甲酰胺,浓盐酸,三乙胺,六水合硫酸钴(均为AR)仪器:回流冷凝管,三颈瓶,酒精灯方法:1、在盛有乙醇(150mL)的250ml三颈瓶中加入金属Na(4.6g,0.2mo1)充分反应后,加入丙二酰胺(10.2g,0.1mo1),甲酰胺(6.5mL,0.2mo1),加热回流2小时后,水浴蒸出乙醇,减压再抽一下,收集固体,50mL水冲洗转入烧杯中,加入活性炭脱色,抽虑,滤液中加入浓盐酸,直至大量黄色沉淀生成.产率:80% ,水重结晶.2、 配合物的合成:将l0 mL的4,6一二羟基嘧啶(0.112 g,1 mmo1)水悬浮液用三乙胺调至pH=7.0,再将5mL的CoSO4·6H2O(0.1314 g,0.5mmo1)水溶液逐滴加入到上述溶液中,混合液搅拌30rain,过滤,滤液在室温下静置3d后得到适于X一射线单晶衍射的红色棒状晶体.热分析及光谱分析:热重分析;配体及配合物吸收曲线的制作2、 钴键连异构体制备试剂:氨水、盐酸、亚硝酸钠、无水乙醇、NH4Cl、CoCl2·6H2O方法:1、[Co(NH3)5C1]Cl2的制备:在氯化钴(Ⅱ)的水溶液中,加入过量NH3·H20和NH4Cl,即生成可溶性的[Co(NH3)6]2+,对所组成的反应混合物进行空气氧化,[Co(NH3)6]2+被氧化成稳定的[Co(NH3 )6]3+ ,随后用过量的盐酸酸化,生成[Co(NH3)5C1]C12。

过滤,洗涤和干燥后,得到紫红色产品.2、 配合物键合异构体[Co(NH3)5NO2 ]Cl2和[Co(NH3)5ONO]Cl2的制备2.1 键合异构体(I)的制备称取1.0 g[Co(NH3)5C1]Cl2(紫红色)溶于15 mL 2 mol’L 氨水中,在水浴中加热,使其溶解,过滤除去不溶物,滤液冷却后用4 mol·L 盐酸酸化至pH=3~4。

EDTA的测定及使用

EDTA的测定及使用

EDTA的测定及使用徐莉、B制药122、1210303218摘要:阐述EDTA课题的研究意义,以及介绍EDTA测定的方法和如何使用EDTA 来解决一些问题。

EDTA的应用十分广泛,EDTA对植物的生长以及铜吸收有一定影响。

EDTA在医学上也有一定的作用,可以治疗一些疾病。

EDTA在工业上也有作用可以用在食品添加剂和配料中,EDTA用途十分广泛,可用作彩色感光材料冲洗加工的漂白定影液,染色助剂,纤维处理助剂,化妆品添加剂,血液抗凝剂,洗涤剂,稳定剂,合成橡胶聚合引发剂,EDTA是螯合剂的代表性物质。

能和碱金属,稀土元素和过度金属等形成稳定的水溶性络合物。

同时我们也可以用EDTA 来测定一些物质,例如,测定水的硬度。

关键字:EDTA;合成;使用Synthesis and use of EDTAXuli, pharmacy122, 1210303218 BAbstract: in this paper, the EDTA subject research significance, as well as the synthesis of EDTA method and how to use EDTA to solve some problems. EDTA application is very extensive, EDTA on plant growth and cu absorption has a certain influence. EDTA on medicine also have certain effect, can treat some diseases. EDTA is also effective in industry can be used in food additives and ingredients, EDTA USES is very wide, can be used for bleaching of color photographic materials washing processing stop bath, dyeing auxiliaries, fiber processing additives, cosmetic additives, blood anticoagulant, detergent, stabilizing agent, synthetic rubber polymerization initiator, EDTA chelating agent is the representation of the material. Can and alkali metal, rare earth element and metal form stable water-soluble complex. Key words: EDTA; Synthesis; use1.前言EDTA是无机分析中广泛应用的试剂之一。

钴(Ⅲ)配合物的制备及表征

钴(Ⅲ)配合物的制备及表征

[Co(NH3)5NO2]C l2和[Co(NH3)5ONO]Cl2键合异构体红外光谱
讨论与分析:
实验一:[Co(NH3)6]Cl3配合物的制备及Co含量测定 本实验制备终产率较低,主要由于[Co(NH3)6]Cl3 在水溶液中溶解度较高(293K,6.9g/100ml),溶液 量较大,因此残留在溶液中的产品较多; Co含量测定中,相对平均偏差符合要求,而结果 大于理论值,可能是方案存在系统误差。可能原因有: 1、加入纯净水中的溶解O2 将I- 氧化导致测定结果偏 高;2、滴定终点判定存在误差;3、硫代硫酸钠溶液 放臵时间较长,可能存在少量变质,导致结果偏高。
实验二:键合异构体[Co(NH3)5NO2 ]Cl2和[Co(NH3)5ONO]Cl2的制备
本实验需制备[Co(NH3)5 Cl]Cl2 作为中间原料,相比与制备 [Co(NH3)6]Cl3 两者条件存在一定差异,通过实验可以发现, 在没有活性炭存在时,由氯化亚钴与过量的氨、氯化铵反应 的主要产物是二氯化一氯五氨合钴(Ⅲ),有活性炭存在时 的主要产物是三氯化六氨合钴(Ⅲ)。 制备键连异构体时主要制备条件差异在于溶液PH的控制。 当溶液呈酸性时,产物为棕黄色粉末,为[Co(NH3)5NO2 ],而 在中性或弱碱性条件下产物为橙红色粉末。可能的原因是由 于在酸性较强的体系中,亚硝酸多以分子形态存在,氧上连 有氢,因此此时N与Co配位更容易;而在中性或弱酸性体系 中,存在较多以游离的亚硝酸根,氧的配位能力较强,且氧 个数多于N,因此在此时O配位更具优势。
键合异构体[Co(NH3)5NO2 ]Cl2和[Co(NH3)5ONO]Cl2的制备 2.2.1 键合异构体(I)的制备: 称取1.0 g[Co(NH3)5C1]Cl2(紫红色)溶于15 mL 2 mol〃L-1 氨水中,在水浴中加热,使其溶解,过 滤除去不溶物,滤液冷却后用4 mol〃L 盐酸酸化 至pH=3~4。加入1.5 g亚硝酸钠,温和加热使其 全部溶解,过滤除去不溶物。溶液冷却后,小心 注入15 mL浓盐酸(在通风厨进行),再在冰水中冷 却,使结晶完全,抽滤,用无水乙醇洗涤两次, 风干,产品为黄色。

【清华】实验一 未知样品的红外光谱定性分析

【清华】实验一 未知样品的红外光谱定性分析

实验一未知样品的红外光谱定性分析班级:化01实验时间:20131022组员: 常宽(2010011839) 郭雅容(2010011822)肖雅博(2010011824) 孙悦(2010011825)一、实验目的1.了解鉴定未知物的一般过程,掌握用标准谱库进行化合物鉴定的方法。

二、实验原理在相同的制样和测定条件下,被分析的样品和标准纯化合物的红外光谱谱图,若吸收峰的位置、吸收峰的数目和峰的强度完全一致,则可认为这两者是同一化合物。

三、仪器和试剂仪器:Perkin Elmer Spectrum One 光谱仪,压片和压膜,玛瑙研钵,镊子,KBr(AR)未知试样:固体:C4H6O5, C6H6O2, C8H6O4四、实验内容及步骤1.取200 mg干燥的KBr粉末,在玛瑙研钵中混均后研磨(颗粒在2 微米左右),压片,测绘红外背景吸收;2.取1~2 mg 的未知样品粉末与200 mg干燥的KBr粉末,在玛瑙研钵中混均后研磨(颗粒在2 微米左右),压片,测绘红外谱图。

根据分子式和谱图,结合谱图检索确定未知化合物的结构。

五、数据记录与分析1. C4H6O5红外吸收谱图对于第一个样品,我们经过研磨压片红外分析之后,得到了如图1所示的红外光谱结果。

我们利用软件将主要的峰和系列峰标注在了谱图之上。

由图中可见,主要的吸收峰为3445 cm-1的尖峰,3000 cm-1的钝峰,1720 cm-1的强度最大的吸收峰。

此外,在1500 cm-1-1000 cm-1处有许多特征峰。

其中3446cm-1的尖峰是未缔合羟基的吸收峰;2992 cm-1的宽峰是羧酸的羟基缔合峰;1688cm-1的峰是羰基的伸缩振动峰。

根据我们所学过的相关知识,我们可以从红外谱图上推测样品的结构。

3445 cm-1的吸收峰表明可能有游离的羟基,2992 cm-1的吸收峰表明可能有缔合的羟基,1688 cm-1的吸收峰表明存在羰基,计算不饱和度为2,且共有5个氧原子,结合标准谱图的对比,该化合物应为HOOCCH2CH(OH)COOH图1 C4H6O5红外吸收谱图2.C6H6O2红外吸收谱图对于第二个样品,我们经过研磨压片红外分析之后,得到了如图2所示的红外光谱结果。

两种Go(Ⅲ)配合物键合异构体的制备及结构分析

两种Go(Ⅲ)配合物键合异构体的制备及结构分析

调整 不同反应条件 ,可生成 配合 物 l 和配合物 2两种健
合异构体 。
1 主 要 实验 仪 器 和 试 剂 . 2
V ' 一7 0 型 红 外 光 谱 仪 ( 日本 岛 津 制 作 所 ); IR 8 0 I U -5 1C型紫外 可见 分光光度计(日本岛津制作所 ) 氨 V 2 0 P ; 水、无水 乙醇、过氧化 氢、亚硝酸钠、溴化钾 、丙酮、盐酸 、 氯化钻 、氯化铵均为分析纯 。
在键合异构体中,配合物 的化学 式相 同,中心原子与配
位体及配位数也相 同 , 只是与中心原子 键合 的配位体 的配位
不 断 搅 拌 下 ,慢 慢 滴 加 7 L 0 H 02 m 3 % 2 ,生 成粉 红 色 的
[ oNH ) o】I溶液。再 向此溶液中缓慢加入 2 mL浓盐 C ( 3 H2 C 3 5 5 酸, 将混合物放在水浴上加热 l 分钟, 5 再冷却到室温 ,有紫 红色结晶析出 ,抽滤,用少量蒸馏水洗涤 2 3次 ,再用少量 - 无水 乙醇 、 丙酮 依 次洗 涤 一 次 ,烘 干, [ oNH ) I 2 得 C ( 3C] 5 CI 55g ,产率 约为 6 . .I 1 %。 2 1. .2配合物 l的制备 3 将 1 g【 oN ) I I加入到 1mL mo.L’ . C (H3 C ] 2 0 5 C 5 2 1 的氨水
1. . 3配合 物 2的制备 3
将 1 gC ( H3C ] I加入到 2 o. 的氨水 . [ oN ) I 2 0 s C 5mL4m 1L’ 中,水 浴加热溶解 。冷却后 ,以 4 mo.L。CI溶液调至 1 H
利 用制 备得 到 的前 驱物在 不 同的条 件下 与亚硝 酸钠 反
师范学院化学与材 料科 学系教师 。

配合物的结构异构与立体异构

配合物的结构异构与立体异构

3、多形异构体
分子式相同,立体结构不同的异构体。
P
Cl
P
Ni
Cl
ph
P CH2 C6H5
ph
P
Cl
Ni
Cl
P
红色,反磁性
蓝绿色,顺磁性
正方形,有顺反异构
四面体
4、顺反异构体
顺反异构是最常见的几何异构。 18世纪Werner出色的完成了配位数为4和6的配 合物的顺反异构的合成与分离,为确立配位理 论提供了最令人信服的证明。
化学式相同但结构和性质不同的化合物
配合物的异构现象是配合物的重要性质之一, 它是指配合物化学组成相同,但原子间联结方 式或空间排列方式不同而引起结构和性质不同 的一些现象。
配合物的异构现象由配合物配位键的刚性和方 向性决定。
2、异构的分类
结构异构:
异 电离异构、水合异构、配位异构、键合异构等 构
a、配位原子与中心原子的软硬度影响
b、其它配体的影响
c、配体空间因素的影响
a、配位原子与中心原子的软硬度影响
配体以哪一端配位原子与中心原子成键与二者 的软硬度有关
软硬酸碱法则:硬亲硬,软亲软
硬酸-硬碱
软酸-软碱
[Ta(NCS)6] [VO(NCSe)4]3
[Pt(SCN)6]2 [Ag(SeCN)2]
乙酰丙酮根(acac) 半胱氨酸根
H3C C CH C CH3
O
O
HS CH2 CH COOH
NH2
半胱氨酸可以生成以下三种配合物
HS CH2 CH CO NH M O
NH2 CH2 CH CO SH M O
HS CH2 CH COOH
M
NH2

2024年广东省高考化学总复习高频考点必刷题20 有机化学基础和物质结构综合大题含详解

2024年广东省高考化学总复习高频考点必刷题20 有机化学基础和物质结构综合大题含详解

【尖子生创造营】2024年高考化学总复习高频考点必刷1000题(广东专用)必练20有机化学基础和物质结构综合大题1.(2023·广东高考真题)室温下可见光催化合成技术,对于人工模仿自然界、发展有机合成新方法意义重大。

一种基于CO、碘代烃类等,合成化合物ⅶ的路线如下(加料顺序、反应条件略):(1)化合物i的分子式为___________。

化合物x为i的同分异构体,且在核磁共振氢谱上只有2组峰。

x的结构简式为___________(写一种),其名称为___________。

(2)反应②中,化合物ⅲ与无色无味气体y反应,生成化合物ⅳ,原子利用率为100%。

y为___________。

(3)根据化合物v的结构特征,分析预测其可能的化学性质,完成下表。

序号反应试剂、条件反应形成的新结构反应类型a______________________消去反应b______________________氧化反应(生成有机产物)(4)关于反应⑤的说法中,不正确的有___________.A.反应过程中,有C-I键和H-O键断裂B.反应过程中,有C=O双键和C-O单键形成C.反应物i中,氧原子采取sp3杂化,并且存在手性碳原子D.CO属于极性分子,分子中存在由p轨道“头碰头”形成的键(5)以苯、乙烯和CO为含碳原料,利用反应③和⑤的原理,合成化合物ⅷ。

基于你设计的合成路线,回答下列问题:(a)最后一步反应中,有机反应物为___________(写结构简式)。

(b)相关步骤涉及到烯烃制醇反应,其化学方程式为___________。

(c)从苯出发,第一步的化学方程式为___________(注明反应条件)。

2.(2022·广东高考真题)基于生物质资源开发常见的化工原料,是绿色化学的重要研究方向。

以化合物I为原料,可合成丙烯酸V、丙醇VII等化工产品,进而可制备聚丙烯酸丙酯类高分子材料。

(1)化合物I 的分子式为_______,其环上的取代基是_______(写名称)。

对苯二甲酸锌

对苯二甲酸锌

对苯⼆甲酸锌Hydrothermal Synthesis and Crystal Structure of a Novel 2-Fold Interpenetrated Framework Based on Tetranuclear Homometallic ClusterRong-Yi Huang ?Xue-Jun Kong ?Guang-Xiang LiuReceived:15December 2007/Accepted:11January 2008/Published online:5March 2008óSpringer Science+Business Media,LLC 2008Abstract A novel 2-fold parallel interpenetrated polymer,Zn 2(OH)(pheno)(p -BDC)1.5áH 2O (1)(pheno =phenan-threne-9,10-dione;p -BDC =1,4-benzenedicarboxylate)was prepared by hydrothermal synthesis and characterized by IRspectra,elemental analysis and single crystal X-ray /doc/c97a12ccf61fb7360b4c65f3.html plex1crystallizes in the orthorhombic space group Pbca and affords a three-dimensional (3D)six-connected a -Ponetwork.Keywords Carboxylate ligand áHomometallic complex áa -Po1IntroductionIn the last decade,the construction by design of metal-organic frameworks (MOFs)using various secondary building units (SBUs)connected through coordination bonds,supramolecular contacts (e.g.,hydrogen bonding,p áááp stacking,etc.),or their combination has been an increasingly active research area [1].The design and controlled assembly of coordination polymers based on nano-sized MO(OH)clusters and multi-functional car-boxylates have been extensively developed for their crystallographic and potential applications in catalysis,nonlinear optics,ion exchange,gas storage,magnetism and molecular recognition [2].In most cases,multinu-clear metal cluster SBUs can direct the formation of novel geometry and topology of molecular architectureand help to retain the rigidity of the networks [3].A number of carboxylate-bridged metal clusters have been utilized to build extended coordination frameworks.Among these compounds,frameworks from multinuclear zinc cluster SBUs,including dinuclear (Zn 2)[4],trinu-clear (Zn 3)[5],tetranuclear (Zn 4)[6],pentanuclear (Zn 5)[7],hexanuclear (Zn 6)[8],heptanuclear (Zn 7) [9],and octanuclear (Zn 8)[10]clusters have attracted great interest and have been investigated extensively.Addi-tionally,a series of systematic studies on this subject has demonstrated that an interpenetrated array cannot prevent porosity,but enhances the porous functionalities of the supramolecular frameworks [11].More importantly,the research upsurge in interpenetration structures was pro-moted by the fact that interpenetrated nets have been considered as potential super-hard materials [12]and possess peculiar optical and electrical properties [13].Herein we present the synthesis,structure,and spectral properties of a new coordination polymer based on tetranuclear homometallic cluster,Zn 2(OH)(pheno)(p -BDC)1.5áH 2O (1).2Experimental2.1Materials and MeasurementsAll commercially available chemicals are reagent grade and used as received without further puri?cation.Sol-vents were puri?ed by standard methods prior to use.Elemental analysis for C,H and N were carried with a Perkin-Elmer 240C Elemental Analyzer at the Analysis Center of Nanjing University.Infrared spectra were obtained with a Bruker FS66V FT IR Spectrophotometer as a KBr pellet.R.-Y.Huang áX.-J.Kong áG.-X.Liu (&)Anhui Key Laboratory of Functional Coordination Compounds,College of Chemistry and Chemical Engineering,Anqing Normal University,Anqing 246003,P.R.China e-mail:liugx@/doc/c97a12ccf61fb7360b4c65f3.htmlJ Inorg Organomet Polym (2008)18:304–308DOI 10.1007/s10904-008-9199-72.2Preparation of Zn2(OH)(pheno)(p-BDC)1.5áH2O(1)A mixture containing Zn(NO3)2á6H2O(0.20mmol), p-1,4-benzenedicarboxylic acid(H2BDC)(0.20mmol), phenanthrene-9,10-dione(pheno)(0.10mmol)and NaOH (0.20mmol)in water(10mL)was sealed in a18mL Te?on lined stainless steel container and heated at150°C for72h.The reaction product was dark yellow block crystals of1,which were washed by deionized water sev-eral times and collected by?ltration;Yield,78%. Elemental Analysis:Calcd.for C24H15N2O10Zn2:C,46.33;H,2.43;N,4.50%.Found:C,46.38;H,2.47;N,4.48%.IR (KBr pellet),cm-1(intensity):3437(br),3062(m),1587(s),1523(m),1491(w),1424(m),1391(s),1226(w),1147 (w),1103(w),1051(w),875(w),843(m),740(w),728 (m),657(w).2.3X-ray Structure DeterminationThe crystallographic data collections for complex1were carried out on a Bruker Smart Apex II CCD with graphite-monochromated Mo-K a radiation(k=0.71073A?)at 293(2)K using the x-scan technique.The data were inte-grated by using the SAINT program[14],which also did the intensities corrected for Lorentz and polarization effects.An empirical absorption correction was applied using the SADABS program[15].The structures were solved by direct methods using the SHELXS-97program; and,all non-hydrogen atoms were re?ned anisotropically on F2by the full-matrix least-squares technique using the SHELXL-97crystallographic software package[16,17]. The hydrogen atoms were generated geometrically.All calculations were performed on a personal computer with the SHELXL-97crystallographic software package[17].The details of the crystal parameters,data collection and re?nement for four compounds are summarized in Table1. Selected bond lengths and bong angles for complex1are listed in Table2.3Results and DiscussionThe X-ray diffraction study for1reveals that the material crystallizes in the orthorhombic space group Pbca and features a2-fold parallel interpenetrated3D?3D net-work motif.The asymmetric unit contains two Zn(II) atoms,one hydroxyl,one pheno ligand,one and half of p-BDC molecules and one solvent water molecule.Selected bond lengths for1are listed in Table2.As shown in Fig.1, the Zn1ion,which is in the center of a tetrahedral geom-etry,is surrounded by three carboxylic oxygen atoms (Zn–O=1.918(5)–1.964(5)A?)from three p-BDC ligands and one l3-OH oxygen atom(O9).The Zn–O distance is1.965(5)A?.Two nitrogen atoms(N1and N2)that belong to pheno,one p-BDC oxygen atom(O3A)and one hydroxyl oxygen atom(O9A)are ligated to the Zn2center in the equatorial plane with another oxygen atom(O9)that arises from the second hydroxyl group and one oxygen atom(O5)that arises from the second p-BDC molecule situated in the axial position.EachZn2lies approximately in the equatorial position with a maximum deviation (0.048A?)from the basal plane.In the structure,Zn–O and Zn–N bond distances are in the range of 2.0530(5)–2.112(5)and2.157(5)–2.184(2)A?,respectively. There exist two types of p-BDC found in1(Scheme1); namely,monobidentate bridging(l3)and bi-bidentatebridging(l4)coordination modes.The bidentate bridging p-BDC connects mixed metals,where the smallest ZnáááZn distance is3.163A?,to complete a homodinuclear cluster, which is further linked by l3-OH into a six-connected Table1Crystal data and summary of X-ray data collection for1Zn2(pheno)(OH)(BDC)1.5áH2O Empirical formula C24H15N2O10Zn2Molecular mass/g mol-1622.12Color of crystal Dark yellowCrystal fdimensions/mm0.1890.1690.12 Temperature/K293Lattice dimensionsa/A?18.777(9)b/A?13.657(6)c/A?19.983(9)a/°90b/°90c/°90Unit cell volume(A?3)5125(4)Crystal system OrthorhombicSpace group PbcaZ8l(Mo-K a)/mm-1 1.931D(cacl.)/g cm-3 1.613Radiation type Mo-K aF(000)2504Limits of data collection/° 2.04B h B25.05Total re?ections24155Unique re?ections,parameters4545,347No.with I[2r(I)2821R1indices[I[2r(I)]0.0657w R2indices0.1858Goodness of?t 1.060Min/max peak(Final diff.map)/e A?-3-0.658/2.322tetranuclear cluster that is jointly coordinated by six p-BDC molecules(Fig.2).The clusters are further extended by p-BDC into a single3D framework(Fig.3).For clarity, we used the topological method to analyze this3D framework.Thus,the six-connected SBU is viewed to be a six-connected node.Furthermore,based on consideration of the geometry of thisnode,the3D frame is classi?ed as an a-Po net with41263topology(Fig.4).Of particular interest,the most intriguing feature of complex1is that a pair of identical3D single nets is interlocked with each other,thus directly leading to the formation of a2-fold interpenetrated3D?3D architecture(Fig.4)and the two pcu(a-Po)frameworks are related by a screw axis21[18]. Recently,a complete analysis of3D coordination networks shows that more than50interpenetrated pcu(a-Po)frames have been documented in the CSD database[18],including 2-fold,3-fold[19],and4-fold[20]interpenetration.In addition,several non-interpenetration motifs with a-Po topology have been reported to date[21].ZnZnO ZnZnZnZnO Znbidentate bidentate bidentate monodentateI IIScheme1Coordination modesof the bdc ligands in the structure of1;I is bis(bidentate),II is bi/monodentateFig.1ORTEP representation of complex1(the H atoms have been omitted for the sake of clarity).The thermal ellipsoids are drawn at 30%probabilityTable2Selected bond lengths(A?)and angles(°)for1Symmetry transformations usedto generate equivalent atoms:#1x-1/2,y,-z+1/2;#2-x,-y+1,-z;#3-x+1/2,-y+1,z-1/2Zn(1)–O(1) 1.918(5)Zn(2)–O(9)#2 2.091(4)Zn(1)–O(4)#1 1.953(5)Zn(2)–O(9) 2.103(5)Zn(1)–O(6) 1.964(5)Zn(2)–O(3)#3 2.112(5)Zn(1)–O(9) 1.965(5)Zn(2)–N(1) 2.157(6)Zn(2)–O(5)#2 2.053(5)Zn(2)–N(2) 2.184(6)O(1)–Zn(1)–O(4)#197.9(2)O(9)–Zn(2)–O(3)#388.81(18)O(1)–Zn(1)–O(6)112.9(2)O(5)#2–Zn(2)–N(1)94.7(2)O(4)#1–Zn(1)–O(6)104.7(2)O(9)#2–Zn(2)–N(1)170.7(2)O(1)–Zn(1)–O(9)122.9(2)O(9)–Zn(2)–N(1)91.6(2)O(4)#1–Zn(1)–O(9)109.7(2)O(3)#3–Zn(2)–N(1)88.9(2)O(6)–Zn(1)–O(9)107.0(2)O(5)#2–Zn(2)–N(2)87.1(2)O(5)#2–Zn(2)–O(9)#291.9(2)O(9)#2–Zn(2)–N(2)98.3(2)O(5)#2–Zn(2)–O(9)173.72(19)O(9)–Zn(2)–N(2)94.5(2)O(9)#2–Zn(2)–O(9)81.82(19)O(3)#3–Zn(2)–N(2)164.3(2)O(5)#2–Zn(2)–O(3)#391.3(2)N(1)–Zn(2)–N(2)75.7(2)O(9)#2–Zn(2)–O(3)#397.42(19)Fig.2Polyhedral representation of the homotetranuclear unit as asix-connected node linked by p-BDC ligandsMoreover,rich inter and intra hydrogen-bonds between the water molecules and the carboxylate groups (Table 3)further strengthen the stacking of the supra-architecture (Fig.5).4Supplementary MaterialsCrystallographic data (excluding structure factors)for thestructures reported in this paper have been deposited with the Cambridge Crystallographic Data Center as supple-mentary publication /doc/c97a12ccf61fb7360b4c65f3.html DC-666555.Copies of the data can be obtained free of charge on application to CCDC,12Union Road,Cambridge CB21EZ,UK (Fax:+44-1223-336033;e-mail:deposit@/doc/c97a12ccf61fb7360b4c65f3.html ).Acknowledgments This work was supported by the National Nat-ural Science Foundation of China (20731004)and the Natural Science Foundation of the Education Committee of Anhui Province,China(KJ2008B004).Fig.3Polyhedral presentation of one set of the 3D network along a -axis (a )and b -axis (b )Table 3Distance (A ?)and angles (°)of hydrogen bonding for com-plex 1D–H áááADistance of D áááA (A ?)Angle of D–H–A (°)O1W–H1WB áááO2#1 2.677(9)164O9–H19áááO1W#2 2.841(9)151C13–H13áááO3#3 3.045(10)121C22–H22áááO1W#43.353(10)167Symmetry transformations used to generate equivalent atoms:#1x,y,1+z;#2-x,1-y,-1+z;#3-x+1/2,-y+1,z -1/2;#4-x,1-y,1-zFig.4Simpli?ed schematic representation of the 3D ?3D two-fold interpenetrated a -Po network in1Fig.5Projection of the structure of 1along b -axis (dotted lines represent hydrogen-bonding)References1.(a)P.J.Hagrman,D.Hagrman,J.Zubieta,Angew.Chem.Int.Ed.38,2638(1998);(b)S.Leininger,B.Olenyuk,P.J.Stang,Chem.Rev.100,853(2000);(c)A.Erxleben,Coord.Chem.Rev.246, 203(2003);(d)K.Biradha,Y.Hongo,M.Fujita,Angew.Chem. Int.Ed.39,3843(2000);(e)P.D.Harey,H.B.Gray,J.Am.Chem.Soc.110,2145(1988);(f)D.Cave,J.M.Gascon,A.D.Bond,S.J.Teat,P.T.Wood,/doc/c97a12ccf61fb7360b4c65f3.html mun.1050(2002);(g)F.A.AlmeidaPaz,J.Klinowski,Inorg.Chem.43,3882(2004);(h)K.Biradha, Y.Hongo,M.Fujita,Angew.Chem.Int.Ed.39,3843(2000);(i) M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O’Ke-egge,O.M.Yaghi,Science295,469(2002);(j)S.Q.Zhang,R.J. Tao,Q.L.Wang,N.H.Hu,Y.X.Cheng,H.L.Niu,W.Lin,J.Am.Chem.Soc.123,10395(2001);(k)L.Carlucci,G.Ciani,D.M.Proserpio,Cryst.Growth Design5,37(2005)2.(a)M.Eddaoudi,D.B.Moler,H.Li,B.Chen,T.M.Reineke,M.O’Keeffe,O.M.Yaghi,Acc.Chem.Res.34,319(2001);(b)P.J.Hagrman,D.Hagrman,J.Zubieta,Angew.Chem.Int.Ed.38, 2638(1999);(c)O.R.Evans,W.Lin,Acc.Chem.Res.35,511 (2002);(d)S.Kitagawa,R.Kitaura,S.Noro,Angew.Chem.Int.Ed.43,2334(2004);(e)S.L.James,Chem.Soc.Rev.32,276 (2003);(f)L.Pan,H.Liu,X.Lei,X.Huang,D.H.Olson,N.J.Turro,J.Li,Angew.Chem.Int.Ed.42,542(2003)3.(a)G.Ferey,C.Mellot-Draznieks,C.Serre,/doc/c97a12ccf61fb7360b4c65f3.html lange,Acc. Chem.Res.38,217(2005);(b)M.Eddaoudi,J.Kim,J.B.Wachter,H.K.Chae,M.O’Keeffe,O.M.Yaghi,J.Am.Chem.Soc.123,4368(2001);(c)M.Eddaoudi,J.Kim,M.O’Keeffe, O.M.Yaghi,J.Am.Chem.Soc.124,376(2002);(d)A.Thiru-murugan,S.Natarajan,Cryst.Growth Design6,983(2006);(e) R.Murugavel,M.G.Walawalkar,M.Dan,H.W.Roesky,C.N.R. Rao,Acc.Chem.Res.37,763(2004)4.(a)J.Kim,B.Chen,T.M.Reineke,H.Li,M.Eddaoudi,D.B.Moler,M.O’Keeffe,O.M.Yaghi,J.Am.Chem.Soc.123,8239 (2001);(b)J.J.Lu,A.Mondal,B.Moulton,M.Zaworotko,An-gew.Chem.Int.Ed.40,2113(2001)5.(a)Q.R.Fang,X.Shi,G.Wu,G.Tain,G.S.Zhu,R.W.Wang,S.L.Qiu,J.Solid State Chem.176,1(2003);(b)H.Li,C.E.Davis,T.L.Groy,D.G.Kelley,O.M.Yaghi,J.Am.Chem.Soc.120,2186(1998)6.(a)M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O’Keeffe,O.M.Yaghi,Science295,469(2002);(b)B.Kesanli,Y.Cui,M.R.Smith,E.W.Bittner,B.C.Bockrath,W.B.Lin, Angew.Chem.Int.Ed.44,72(2005)7.Q.R.Fang,G.S.Zhu,Z.Jin,M.Xue,X.Wei,D.J.Wang,S.L.Qiu,Cryst.Growth Design7,1035(2007)8.C.Lei,J.G.Mao,Y.Q.Sun,H.Y.Zeng,A.Clear?eld,Inorg.Chem.42,6157(2003)9.J.R.Li,Y.Tao,Q.Yu,X.H.Bu,/doc/c97a12ccf61fb7360b4c65f3.html mun.1527(2007)10.S.Y.Yang,L.S.Long,R.B.Huang,L.S.Zheng,/doc/c97a12ccf61fb7360b4c65f3.html mun.472(2002)11.T.M.Reineke,M.Eddaoudi,D.M.Moler,M.O’Keeffe O.M.Yaghi,J.Am.Chem.Soc.122,4843(2002)12.D.M.Proserpio,R.Hoffman,P.Preuss,J.Am.Chem.Soc.116,9634(1994)13.(a)O.Ermer,Adv.Mater.3,608(1991);(b)/doc/c97a12ccf61fb7360b4c65f3.html ler,Adv.Mater.13,525(2001)14.SAINT version6.02a,Software Reference Manual(Bruker AXSInc.,Madison,W1,2002)15.G.M.Sheldrick,SADABS:Program for Empirical AbsorptionCorrection of Area Detector Data(University of Go¨ttingen, 1996)16.G.M.Sheldrick,SHELXS-97:Program for Crystal StructureSolution(University of Go¨ttingen,1997)17.G.M.Sheldrick,SHELXL-97:Program for Crystal StructureRe?nement(University of Go¨ttingen,1997)18.V.A.Blatov,L.Carlucci,G.Ciani,D.M.Proserpio,Cryst.Eng.Comm.6,377(2004)19.(a)B.F.Hoskins,R.Robson,N.V.Y.Scarlett,J.Chem.Soc./doc/c97a12ccf61fb7360b4c65f3.html mun.2025(1994);(b)E.Siebel,R.D.Fischer,Chem. Eur.J.3,1987(1997);(c)B.F.Abrahams,B.F.Hoskins,R.Robson,D.A.Slizys,/doc/c97a12ccf61fb7360b4c65f3.html m.4,478(1997);(d)M.J. Plater,M.R.S.J.Foreman,J.M.S.Skakle,Cryst.Eng.4,293 (2001);(e)X.L.Wang,C.Qin,E.B.Wang,Z.M.Su,Chem.Eur. J.12,2680(2006)20.B.Kesanli,Y.Cui,R.Smith,E.Bittner,B.C.Bockrath,W.Lin,Angew.Chem.Int.Ed.117,74(2005)21.(a)H.L.Gao,L.Yi,B.Ding,H.S.Wang,P.Cheng,D.Z.Liao,S.P.Yan,Inorg.Chem.45,481(2006);(b)Y.H.Wen,J.Zhang, X.Q.Wang,Y.L.Feng,J.K.Cheng,Z.J.Li,Y.G.Yao,New J. Chem.29,995(2005);(c)H.L.Sun,B.Q.Ma,S.Gao,S.R.Batten,Cryst.Growth Design5,1331(2005);(d)J.Yang,J.F.Ma,Y.Y.Liu,S.L.Li,G.L.Zheng,Eur.J.Inorg.Chem.2174 (2005)。

山东省潍坊市2024届高三下学期高考模拟考试(三模)化学试题含答案

山东省潍坊市2024届高三下学期高考模拟考试(三模)化学试题含答案

潍坊市高考模拟考试化学2024.5注意事项:1.答题前,考生先将自己的学校、班级、姓名、考生号、座号填写在相应位置。

2.选择题答案必须使用2B 铅笔(按填涂样例)正确填涂;非选择题答案必须使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。

3.请按照题号在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

保持卡面清洁,不折叠、不破损。

可能用到的相对原子质量:H 1B 11C 12N 14O 16F 19Na 23Mg 24S 32Cl35.5Mn 55Fe 56Co 59Bi 209一、选择题:本题共10小题,每小题2分,共20分。

每小题只有一个选项符合题目要求。

1.2024年“两会”提出的“新质生产力”涵盖新材料、新能源、生物医药等产业链。

下列说法错误的是A.精确控制硬化过程的可编程水泥属于硅酸盐材料B.具有独特光学、电学性能的纳米半导体CdTe 量子点属于胶体C.福建号航母使用高性能富锌底漆是采用牺牲阳极保护法防腐蚀D.新型药物(VV116)所含氕与氘互为同位素2.下列操作或装置能达到实验目的的是A.甲:制备4FeSO 固体B.乙:测定中和反应反应热C.丙:在铁质镀件表面镀铜D.丁:分离甲苯和乙醇3.下列分子或离子中,空间构型不为直线形的是A.22C Cl B.2NO + C.3I +D.SCN -4.血红蛋白结合2O 后的结构如图所示,CO 也可与血红蛋白结合。

下列说法错误的是A.血红蛋白中心离子2Fe +与卟啉环形成6个螯合键B.CO 与血红蛋白结合时,C 原子提供孤电子对C.第一电离能:N H C >>D.基态2Fe +含有4个未成对电子5.2-苯并咪唑(TF)可用于检测甲醛,其制备过程及甲醛检测反应机理如下图。

下列说法错误的是A.一定条件下,1mol 物质I 最多可消耗3molNaOHB.1mol 物质II 可与29molH 反应C.TF 既可以与酸又可以与碱反应D.TF 检测甲醛的过程中发生了加成和消去两步反应6.钠离子电池具有充电速度快和低温环境性能优越的特点,其电极材料的导电聚合物中掺杂磺酸基可增强其电化学活性,其工作原理如图所示。

配合物键合异构体的制备及红外光谱测定

配合物键合异构体的制备及红外光谱测定

配合物键合异构体的制备及红外光谱测定医药化工学院化学教育专业学生:周丽婷指导老师:梁华定一、实验目的(1)通过[Co(NH3)5NO2]Cl2和[Co(NH3)5ONO]Cl2的制备,了解配合物的键合异构现象。

(2)利用配合物的红外光谱图鉴别这两种不同的键合异构体。

二、实验原理键合异构体是配合物异构现象中的一个重要类型。

配合物的键合异构体是指相同的配体以不同的配位方式形成的多种配合物。

在这类配合物中,配合物的化学式相同,中心原子与配体及配位数也相同,只是与中心原子键合的配体的配位原子不同。

当配体中有两个不同的原子都可以作为配位原子时,配体可以不同的配位原子与中心原子键合而生成键合异构配合物。

如本实验中合成的[Co(NH3)5NO2]Cl2和[Co(NH3)5ONO]Cl2就是一例。

当亚硝酸根离子通过氧原子跟中心原子配位(M←ONO)时称为亚硝酸根配合物,而以氮原子与中心原子配位(M←NO2)时形成的配合物叫硝基配合物。

红外光谱法是测定配合物键合异构体的有效方法。

分子或基团的振动导致相结合原子间的偶极矩发生改变时,它就可以吸收相应频率的红外辐射而产生对应的红外吸收光谱。

分子或基团内键合原子间的特征吸收频率ν受其原子质量和键的力常数等因素影响,可用下式表示:式中ν为频率,k为基团的化学键力常数,μ为基团中成键原子的折合质量,μ=m1m2/( m1+ m2), m1和m2分别为相键合的两原子的各自的相对原子质量。

由上式可知,基团的化学键力常数k 越大,折合质量μ越小,则基团的特征频率就越高,反之,基团的力常数k 越小,折合质量μ越大,则基团的特征频率就越低,当基团与金属离子形成配合物时,由于配位键的形成不仅引起了金属离子与配位原子之间的振动(称配合物的骨架振动),而且还将影响配体内原来基团的特征频率。

配合物的骨架振动直接反映了配位键的特性和强度,这样就可以通过骨架振动的测定直接研究配合物的配位键性质。

有机化学合成实验课件

有机化学合成实验课件
50~60oC搅 拌10分钟
乙酰丙酮
搅拌5分钟
抽滤
水洗
乙醇洗涤
干燥
丙酮-石油醚重结晶
化学教学实验中心
Chem is try !
实验
从茶叶中提取咖啡因
实 验 目 的:
了解天然物质的提取及纯化 掌握索氏提取器的使用 掌握用常压升华法提纯有机物的方法
化学教学实验中心
Chem is try !
减压!
合成化学实验要求
1.实验预习
实验目的、实验内容、反应式、试 剂物理常数及用量、实验步骤(要求实 验时不看实验教材)
2.实验操作
要求操作正确、规范。合理安排 实验,有连贯性。
化学教学实验中心
Chem is try !
3.实验记录及报告
如实记录实验过程及现象。认真及时完成实 验报告。
O H3C O N N CH3 CH3 N N
易溶于氯仿、水及乙醇等; 含结晶水的咖啡因为无色针状晶体, 100℃时即失去结晶水,并开始升华 120℃升华显著,178℃升华很快。
咖啡因(1,3,7-三甲基-2,6-二氧嘌呤)
化学教学实验中心
Chem is try !
实 验 装 置 图:
索式提取装置
度,又方便蒸馏完毕后装置的拆除。
减压蒸馏前注意是先开减压装置,再加热蒸馏液;蒸馏完毕后,先 停止加热,再通大气,关闭减压泵。
化学教学实验中心
Chem is try !
实验
双甘氨酸合铜 (Ⅱ)一水 合物顺、反异构体的合成
实 验 目 的:
掌握配位化合物不同异构体的制备方法
学习利用异构体不同物理性质来提纯的方法 了解不同几何异构体的表征手段
实 验 原 理:

分子印迹聚合物的制备及其在固相萃取中的应用---优秀毕业论文参考文献可复制黏贴

分子印迹聚合物的制备及其在固相萃取中的应用---优秀毕业论文参考文献可复制黏贴

绪论引言分子印迹技术(Molecular Imprinting Technique, MIT)是20世纪80年代迅速发展起来的一种化学分析分离技术,即制备在空间结构及结合位点上与目标分子完全匹配的聚合物的实验技术。

分子印迹技术涉及化学、高分子、生物、医药、材料等多学科交叉,在化学仿生传感器、模拟抗体、模拟酶催化、膜分离技术、对映体和位置异构体的分离、固相提取、临床药物分析等领域展现了良好的应用前景[1]。

固相萃取(solid phase extraction, SPE)是一种基于色谱分离的样品前处理方法,是指液体样品在正压、负压或重力作用下通过装有固体吸附剂的固相萃取装置,从而将特定的化合物吸附并保留在SPE柱上的实验方法。

主要应用于环境样品痕量检测、药物分析与分离、生物与临床样品分析及其他如食品工业等方面,是一个被非常看好的并具发展潜力的新型分离技术。

1.2分子印迹技术1.2.1分子印迹技术原理及方法分子印迹聚合物(Molecular Imprinted Polymers, MIPs) 是模板分子(Template)以共价键或非共价键形式与功能单体(Monomers) 结合,并在引发剂作用下与交联剂(Crosslinker) 发生聚合,洗去模板分子之后,形成在空间结构及结合位点上与目标分子完全匹配的几何空间空穴,该空穴在形貌和作用力方面对模板分子都有着记忆和识别特性。

印迹过程图示见图1。

1.2.1.1 分子印迹法-预组装法预组装法(Pre-organized approach )也叫共价印迹法,是由德国的 Wulff 教授研究小组[2]于20世纪70年代初期创立。

共价印迹法是指在进行聚合反应以前,功能单体和模板分子之间是通过共价键相互联结的,该共价联结的产物在保持共价联结固定的情况下,进行聚合反应,聚合完成后,上述的共价联结则通过分解反应,使聚合物中的模板除去,即得到分子印迹聚合物。

当此印迹聚合物和客体分子相遇时,则又可形成相同的共价联结。

配合物的立体化学

配合物的立体化学

单帽八面体
dbm=二苯甲酰甲烷
2.1 配合物的空间结构
8. 配位数8 构型:四方反棱柱体、三角十二面体、立方体、双帽三棱柱体、六角双锥 四方反棱柱体: [Eu(dbm)4]-、Cs4[U(NCS)8] 三角十二面体:[Zr(NO3)2(acac)2]、K4[Mo(CN)8]2H2O 立方体:Na3[PaF8] 双帽三棱柱体: Li4[UF8] 六角双锥:[UO2(Ac)3]4-、(NH4)4[VO2(C2O4)3]
d0
d0 d0 4f6 4f2 4f6 4f3
2.1 配合物的空间结构
配位 数
11
构型(点群 符号)
单帽五方反 棱柱 双帽五方反 棱柱(三角 二十面体) (Ih) 双帽六角反 棱柱体
图形
实例
中心原 子d电子 数
4f6
(15-C-5)Eu(NO3)3
12
[Nd(NO3)6]3[Pr(bipy)6]3+ [Ce(NO3)6]3U(BH4)4、 U(BH4)4OMe、 U(BH4)42(C4H8O)
Cl Cl Cl
[Cu(Me3PS)Cl]3, [Au(PPh3)3]+, [AuCl(PPh3)2], [HgI3]-, [Pt(PPh3)3]
2.1 配合物的空间结构
4. 配位数4 构型:四面体、平面正方形、畸变四面体 四面体:第一过渡系金属[尤其是Fe2+、Co2+以及具有球对称d0、d5(高自旋)或d10电 子构型的金属离子];碱性较弱或体积较大的配体——价层电子对互斥理论。如: [Be(OH2)4]-、[SnCl4]、[Zn(NH3)4]2+、Ni(CO)4、 [FeCl4]-等 平面正方形:d8电子组态的Ni2+(强场)、第二、三过渡系的Rh+ 、Ir+、Pd2+、Pt2+、 Au3+等。如: [Ni(CN)4]2-、[AuCl4]-、[Pt(NH3)4]2+、 [PdCl4]2- 、[Rh(PPh3)3Cl]等 畸变四面体: [CuCl4]2-、 Co(CO)4 四面体 电子排布: e4t24 平面正方形 dyz2dxz2dz22dxy2

上海师范大学综合实验复习

上海师范大学综合实验复习

综合实验2复习资料整理实验一:电解聚合法合成导电高分子及性能研究实验原理:聚苯胺随氧化程度的不同呈现出不同的颜色。

完全还原的聚苯胺,不导电,为白色;经部分氧化掺杂,得到Emeraldine 碱,蓝色,不导电;再经酸掺杂,得到Emeraldine 盐,绿色,导电;如果Emeraldine 碱完全氧化,则得到Pernigraniline 碱,不能导电。

一般认为当p ϕ∆为55/n 至65/n mV 时,该电极反应是可逆过程。

可逆电流峰的p ϕ与电压扫描速率ν无关,且1/2pcpa i i ν=∝。

对于部分可逆(也称准可逆)电极过程来说,59/p n ϕ∆> mV ,且随ν的增大而变大,/pcpa i i 可能大于1,也可能小于或等于1,pc i 、pa i 仍正比于1/2ν。

思考题: 1. 为什么恒电位聚合后的绿色聚苯胺具有导电性?答:聚苯胺随氧化程度不同呈现出不同的颜色。

经部分氧化掺杂,再经酸掺杂后,得聚苯胺盐,呈绿色。

聚苯胺的形成是通过阳极偶合机理完成的,在酸性条件下,聚苯胺链具有导电性,保证了电子能通过聚苯胺链传导至阳极,使链增长继续,最后生成聚合物。

2. 为什么说聚苯胺电极过程是电化学可逆的?答:因为实验中得到的循环伏安极化曲线中有氧化峰和还原峰,而且两者图形大致对称,所以可以判断聚苯胺电极过程是电化学可逆的。

实验二:纳米氧化铝粉体的制备及使用激光粒度仪进行粒度测定(上)思考题:1.聚乙二醇(PEG)的作用?其聚合度对纳米氧化铝粒径的影响?答:聚乙二醇在溶液中易与氢氧化铝胶粒表面形成氢键,所以聚乙二醇比较容易的吸附于胶粒表面,形成一层保护膜,包围胶体粒子。

保护膜具有一定厚度,会存在空间位阻效应,故可以有效的抑制胶体粒子的团聚,使胶粒能稳定的分散在溶液中。

聚乙二醇的聚合度越小,说明链长越短,得到的胶粒半径较小。

聚合度越大,链长越长,得到的胶粒半径越大,但过长的链长容易互相缠绕,不利于胶粒的分散。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4 配合物键合异构体的制备及用红外光谱对其进行分析与鉴别
1. 实验目的
1.1 掌握键合异构的基本概念。

1.2 通过[Co(NH3)5NO2]Cl2和[Co(NH3)5ONO]Cl2的制备,了解配合物的键合异构现象。

1.3利用红外光谱图分析与鉴别键合异构体。

2 实验原理
键合异构体是配合物异构现象中的一个重要类型。

配合物的键合异构体是由同一个配体通过不同的配位原子跟中心原子配位而形成的多种配合物。

其分为两种情况,一种是由同一配体在与不同的中心原子形成配合物时,用不同的配位原子与中心原子相配位,这种异构体叫做配位键合异构体。

另一种是配合物中的中心原子和配体组成完全相同,而只是与中心原子相结合的配位原子不同,这是真正的键合异构体。

通常把这两种异构体统称为键合异构体。

生成键合异构体的必要条件是配体的两个不同原子都含有孤对电子。

如果一种配体中具有两个配位原子,则就有出现键合异构现象的可能,常见的配位体有:亚硝酸根离子(NO2-和ON=O-)、氰根离子(CN-和NC-)、硫氰酸根离子(SCN-和NCS-)、亚砜R2SO 中的硫和氧可分别成键。

例如,当亚硝酸根离子通过N原子跟中心原子配位时,这种配合物叫做硝基配合物,而通过O原子跟中心原子配位时,这种配合物叫做亚硝酸根配合物。

同样,硫氰酸根离子通过S原子跟中心原子配位时,叫做硫氰酸根配合物,而通过N原子跟中心原子配位时,叫做异硫氰酸根配合物。

红外吸收光谱法是根据物质对红外辐射的选择性吸收特性而建立起来的一种光谱分析方法。

分子吸收红外辐射后发生振动和转动能级的跃迁,所以红外光谱法实质上是根据分子内部原子间的相对振动和转动等信息来鉴别化合物和确定物质分子结构的分析方法。

红外光谱表示方法:横坐标一般用波数(cm-1)表示,也可以用波长(微米)来表示;纵坐标可以用透射率T %或吸光度A 来表示,二者的关系为:A = -lgT 。

红外光谱的特点:
1. 具有高度特征性,除了光学异构体外,两个结构不同的化合物,一定具有不同的红外光谱。

红外吸收的波长位置与吸收谱带的强度和形状,反映了分子结构上的特点,可以用来鉴定未知物的结构或确定化学基团;
2. 分析特征性强,对气体、液体、固体试样都可以测定,并且试样需要量少、分析速度快、不破坏试样等特点。

是鉴定化合物和测定分子结构最有用的方法之一。

红外光谱是测定配合物键合异构体的最有效的方法。

每一基团都有它自己的特征频率,基团的特征频率是受其原子质量和键的力常数等因素所影响的,可用下式表示:
1
21
2k υπμ⎛⎫= ⎪⎝⎭
式中ν为频率,k 为基团的化学键力常数,μ为基团中成键原子的折合质量。

由上式可知,基团的化学键力常数k 越大,折合质量μ越小,则基团的特征频率就越高。

反之,基团的力常数越小,折合质量越大,则基团的特征频率就越低。

当基团与金属离子形成配合物时,由于配位键的形成不仅引起了金属离子与配位原子之间的振动(称为配合物的骨架振动),而且还影响配体中原来基团的特征频率。

配合物的骨架振动直接反映了配位键的特性和强度,这样就可以通过骨架振动的测定直接研究配合物的配位键性质。

但是,由于配合物中心原子的质量一般都比较大,而且配位键的力常数比较小。

因此,这种配位键的振动频率都很低,一般出现在200-500cm -1的低频范围,该低频区的红外吸收比较复杂,这对研究配位键带来很大的困难。

然而由于配合物的形成,配体中的配位原子与中心原子的配位作用会改变整个配体的对称性和配体中某些原子的电子云,同时还可能使配体的构型发生变化,这些因素都能引起配体特征频率的变化。

因此,可以利用这种配体特征频率的变化来研究配位键的性质。

本实验是测定二氯化一硝基五氨合钴([Co(NH 3)5NO 2]Cl 2)和测定二氯化一亚硝酸根五氨合钴[Co(NH 3)5ONO]Cl 2)配合物的红外光谱,利用它们的谱图可以识别哪一个配合物是通过氮原子配位的硝基配合物,哪一个是通过氧原子配位的亚硝基配合物。

亚硝酸根离子(NO 2-)中的N 或O 原子与Co 3+配位时,对N-O 键特征频率的影响是不同的,当NO 2-以N 原子配位形成
价的,则在二个N-O
键之间键力常数的减弱是平均分配的,由于键力常数的减
Co 3+时,由于N 给出电荷,使N-O 键力常数减弱,因为两个N-O 是等
弱,而使N-O 键的伸缩频率降低,在1428cm -1左右出现特征吸收峰;当NO 2-
峰出现在1065cm -1附近,而另一个没有配位的O-N 键力常数比用N 配位时的N-O 键力常数大,故在1468cm -1出现特征吸收峰。

因此,我们可以从它们的红外光谱图来识别其键合异构体。

3 仪器与试剂
仪器:集热式磁力加热搅拌器、100 ml 烧杯、250 ml 烧杯、抽滤瓶、布氏漏斗、10ml/50ml 量筒、100 ml 三口烧瓶、表面皿、pH 试纸、温度计、分液漏斗、布氏漏斗、抽滤瓶、表面皿。

试剂:亚硝酸钠、浓盐酸(12 M )、浓氨水(25-28%,14 M )、双氧水、95%乙醇、六水合二氯化钴(CoCl 2•6H 2O ),氯化铵,纯度均为AR 级。

冰水、广泛pH 试纸。

4 实验步骤
4.1 制备二氯化一氯五氨合钴(见预实验)
4.2键合异构体的制备(查文献《一种配合物键合异构体的制备及红外光谱测定》)
键合异构体(I)的制备:在15 mL 2 mol/L 的氨水中溶解1.0 g [Co(NH 3)5Cl]Cl 2,在水浴上加热使其全部溶解,过滤除去不溶物(不是必须的,视情况而定),滤液冷却后用4 mol/L 的盐酸酸化到pH 为3-4,加入1.5 g 亚硝酸钠,温和加热(>70℃,75℃为佳)使所生成的沉淀全部溶解,冷却溶液,在通风橱内向冷却液中小心注入15 mL 的浓盐酸(pH ≈2),再在冰水中冷却使结晶完全,滤出棕黄色晶体,用无水乙醇洗涤,晾干,记录产率。

键合异构体(II)的制备:在20 mL 水和7 mL 浓氨水的混合液中溶解1.0 g
[Co(NH 3)5Cl]Cl 2,在水浴上加热使其全部溶解,过滤除去不溶物,滤液冷却后,以4 mol/L 的盐酸中和溶液,使pH 为5~6,冷却后加入1.0 g 亚硝酸钠,搅动使其溶解,用4 mol/L 的盐酸调pH 为4,再在冰水中冷却,有橙红色的晶体析出,过滤晶体,并用冰水和无水乙醇洗涤,在室温下干燥,记录产率。

5 数据处理
(1)分别计算二氯化一氯五氨合钴、键合异构体(I)和键合异构体(II)的产率。

(2)由测定的两种异构体的红外光谱图,标识并解释谱图中的主要特征吸收峰。

根据两种异构体的红外光谱图,确认哪个是氮配位的硝基配合物,
哪个是氧配位
Co 以O 原子配位形成时,则配位的O-N 键力常数减弱,其特征吸收
的亚硝基根配合物。

6. 思考题
(1)阐述两种鉴别键合异构体的方法?
(2)在制备二氯化一氯五氨合钴时,最后分别用稀盐酸、冰水、乙醇洗涤产物,
三者的作用各是什么?
(3)写出制备二氯化一氯五氨合钴时,每一步的反应式,并注明每一步产物的颜
色。

(4)制备两种键合异构体最关键的因素是,其取值范围是?异构体的转化方式
是?久置后异构体会发生何许变化?。

相关文档
最新文档