任意角的三角函数练习题
任意角的三角函数和弧度制 基础练习(含解析)
任意角的三角函数和弧度制 基础练习一、选择题1.下列选项中与-80°终边相同的角为( )A. 100°B. 260°C. 280°D. 380°2.在平面直角坐标系中,角3πα+的终边经过点P (1,2),则sin α=( )3.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A. 125 B. 512- C. 512 D. 125- 4.小明出国旅游,当地时间比中国时间晚一个小时,他需要将表的时针旋转,则转过的角的弧度数是( ) A. π3 B. π6 C. -π3 D. -π65.已知角α的终边经过点(sin 48,cos48)P ︒︒,则sin(12)α︒-=( )A. 12 C. 12- D. 6.若12cos 13x =,且x 为第四象限的角,则tanx 的值等于 A 、125 B 、-125 C 、512 D 、-5127.若函数()cos 2()6f x x xf π=+',则()3f π-与()3f π的大小关系是( ) A. ()()33f f ππ-= B. )3()3(ππf f <- C. )3()3(ππf f >- D. 不确定 8.若θ是第四象限角,则下列结论正确的是( )A .sin 0>θB .cos 0<θC .tan 0>θD .sin tan 0>θθ9.一扇形的中心角为2,对应的弧长为4,则此扇形的面积为( )A .1B .2C .3D .410.已知tan 2α,其中α为三角形内角,则cos α=()A. 5- D.二、填空题11.若扇形的面积是1 cm 2,它的周长是4 cm,则扇形圆心角的弧度数为______.12.已知角2α的终边落在x 轴下方,那么α是第 象限角. 13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=_________.14.已知一扇形所在圆的半径为10cm ,扇形的周长是45cm ,那么这个扇形的圆心角为 弧度.15.弧长为3π,圆心角为135°的扇形,其面积为____.三、解答题16.已知角α的终边经过点P (54,53-). (1)求sin α的值. (2)17.(本小题满分14分)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?18.在平面直角坐标系xOy 中,以Ox 为始边,角α的终边与单位圆O 的交点B 在第一象限,已知(1,3)A -.(Ⅰ)若OA OB ⊥,求tan α的值.(Ⅱ)若B 点横坐标为45,求AOB S ∆.19.已知2sin tan 3⋅=αα,且0<<απ.(Ⅰ)求α的值;(Ⅱ)求函数()4cos cos()f x x x =-α在[0,]4π上的值域.试卷答案1.C2.A3.B4.B5.A6.D8.D9.D10.A11.212.二或四13.1/314.2.515.6π 16.17.(1)设扇环的圆心角为,则()30102(10)x x θ=++-, 所以10210x xθ+=+,………………………4分 (2) 花坛的面积为 2221(10)(5)(10)550,(010)2x x x x x x θ-=+-=-++<<.…7分 装饰总费用为()9108(10)17010x x x θ++-=+, …………………………9分 所以花坛的面积与装饰总费用的比22550550==1701010(17)x x x x y x x -++---++, …………11分令17t x =+,则3913243()101010y t t =-+≤,当且仅当t=18时取等号,此时121,11x θ==. 答:当1x =时,花坛的面积与装饰总费用的比最大.……………………………14分18.⑴解法1:由题可知:(1,3)A -,(cos ,sin )B αα, (1,3)OA =-,(cos ,sin )OB αα=OA OB ⊥,得0OA OB ⋅= ∴cos 3sin 0αα-+=,1tan 3α= 解法2、由题可知:(1,3)A -,(cos ,sin )B αα 3OA k =-, tan OB k α= ∵OA OB ⊥,∴1OA OB K K ⋅=-得3tan 1α-=-, 得1tan 3α=⑵解法1:由⑴OA == 记AOx β∠=, (,)2πβπ∈∴sin β==,cos β==1OB = 4cos 5α=,得3sin 5α==43sin sin()10510510AOB βα∠=-=+=∴11sin 122AOB S AO BO AOB ∆=∠=32= ……12分 解法2:3sin 5α== 即43(,)55B 即:(1,3)OA =-,43(,)55OB = ,OA ==1OB =,4313cos OA OB AOB OA OB-⨯+⨯⋅∠===sin 10AOB ∠==则113sin 122102AOB S AO BO AOB ∆=∠=⨯= ……12分略19.解:(Ⅰ)由已知得ααcos 3sin 22=,则02cos 3cos22=-+αα…………… 3分 所以21cos =α或2cos -=α(舍)…………………………………5分 又因为πα<<0所以 3πα=……………………………………………………………7分 (Ⅱ)由(Ⅰ)得)3cos(cos 4)(π-=x x x f)sin 23cos 21(cos 4x x x +=……………………9分 x x x cos sin 32cos 22+=x x 2sin 32cos 1++=)62sin(21π++=x ………………………………11分 由40π≤≤x 得32626πππ≤+≤x ……………………………………12分 所以 当0=x 时,)(x f 取得最小值2)0(=f 当6π=x 时,)(x f 取得最大值3)6(=πf ……………………14分 所以函数)(x f 在]4,0[π上的值域为]3,2[……………………………15分。
任意角和弧度制、任意角的三角函数专题及答案
任意角和弧度制、任意角的三角函数专题一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-342.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 36.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .129.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .410.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .3219.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π321.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .1222.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12D .323.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.任意角和弧度制、任意角的三角函数专题及答案一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-34答案 D解析 根据三角函数的定义,tan α=y x =35-45=-34,故选D. 2.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 答案 A解析 ∵sin2>0,cos3<0,tan4>0,∴sin2cos3tan4<0.3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π答案 B解析 由题意知l =|α|r ,∴|α|=l r =1812=32.4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是()A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 答案 A解析 由三角函数的定义知,选A.5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 3答案 D解析 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,故选D. 6.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 答案 B解析 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0,所以y =-1+1-1=-1.7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 答案 C解析 设扇形的半径为R ,则12R 2|α|=2,∴R 2=1,∴R =1,∴扇形的周长为2R +|α|·R =2+4=6,故选C.8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .12答案 D解析 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z),又β=-π3,所以α=2k π+5π6(k ∈Z),即得sin α=12.9.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .4 答案 A解析 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.10.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.答案 ⎝ ⎛⎭⎪⎫12,32解析 根据题意得Q (cos π3,sin π3),即Q ⎝ ⎛⎭⎪⎫12,32.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.答案 ⎩⎨⎧⎭⎬⎫-π3,5π3解析 因为角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以角α为第四象限角,且tan α=-3,即α=-π3+2k π,k ∈Z ,因此落在(-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫-π3,5π3.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 答案 0解析 由题意得P (a ,-b ),Q (b ,a ),∴tan α=-b a ,tan β=a b (a ,b ≠0),∴sin αcos β+tan αtan β+1cos α·sin β=-b a 2+b 2b a 2+b 2+-ba ab +1a a 2+b 2·a a 2+b 2=-1-b 2a 2+a 2+b2a 2=0.二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案 C解析 由题意|OM |=|cos x |,f (x )=|OM ||sin x |=|sin x cos x |= 12|sin2x |,由此可知C 正确. 14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 答案 C解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin2α=2sin αcos α>0,故选C.15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,∴sin35°cos35°>sin35°>sin33°.∴c >b >a ,选C.16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12答案 A解析 由题意得f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6=f ⎝ ⎛⎭⎪⎫5π6+sin 5π6+sin11π6+sin 17π6=0+12-12+12=12.三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n 时,2n π+π4≤α≤2n π+π2,此时α的终边和π4≤α≤π2的终边一样.当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .32答案 B解析 r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12,∴m =12.19.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 答案 A解析 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎨⎧3a -9≤0,a +2>0,即-2<a ≤3. 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π3答案 B解析 ∵sin 5π6=12,cos 5π6=-32,∴角x 的终边经过点⎝ ⎛⎭⎪⎫12,-32,tan x =-3,∴x =2k π+53π,k ∈Z ,∴角x 的最小正值为5π3.(也可用同角基本关系式tan x =sin xcos x得出.) 21.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .12答案 C解析 如图,由三角函数的定义,设x A =cos α,则y B =sin(α+30°),∴x A -y B =cos α-sin(α+30°)=12cos α-32sin α=cos(α+60°)≤1.22.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12 D .3答案 A解析 设此扇形的半径为r ,弧长为l ,则2r +l =4,面积S =12rl =12r (4-2r )=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2.从而α=l r =21=2.23.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )答案 C解析 如图,取AP 的中点为D ,设∠DOA =θ,则d =2r sin θ=2sin θ,l =2θr =2θ, ∴d =2sin l2,故选C.24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.答案 15解析 因为π<α<3π2时,cos α<0,所以r =-5cos α,故sin θ=-35,cos θ=45,则sin θ+cos θ=15.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值. 解 ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2),由三角函数的定义,有sin α=-66,1tan α=-5,∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同样可求得sin α+1tan α=65-66.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.解 设P ,Q 第一次相遇时所用的时间是t , 则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π. 所以t =4(秒),即第一次相遇的时间为4秒.设第一次相遇点为C ,第一次相遇时P 点已运动到终边在π3·4=4π3的位置,则x C =-cos π3·4=-2,y C =-sin π3·4=-2 3.所以C 点的坐标为(-2,-23). P 点走过的弧长为43π·4=163π,Q 点走过的弧长为23π·4=83π.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.解 (1)由题意可得f (x )=-(x -1)2+1+a ,而0≤x ≤3,所以m =f (1)=1+a ,n =f (3)=a -3.(2)由题意知,角β终边经过点A (a ,a ), 当a >0时,r =a 2+a 2=2a , 则sin β=a 2a =22,cos β=a 2a =22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=2+64.当a <0时,r =a 2+a 2=-2a , 则sin β=a -2a=-22,cos β=a -2a=-22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=-2+64.综上所述,sin ⎝ ⎛⎭⎪⎫β+π6=-2+64或2+64.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.解 (1)因为x 1=35,y 1>0,所以y 1=1-x 21=45,所以sin α=45,cos α=35,所以x 2=cos ⎝ ⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=-210.(2)S 1=12sin αcos α=14sin2α.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以α+π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以S 2=-12sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=-14sin ⎝ ⎛⎭⎪⎫2α+π2=-14cos2α.因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43,所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以tan α=2.。
任意角的三角函数练习题
任意角的三角函数(一)三角函数的定义角α的终边上一点P (a ,b ),它与原点的距离r =22b a +>0,则(1)r b 叫做三角形的正弦,即sin α=r b; (2) r a 叫做三角形的余弦,即cos α=r a;(3) a b 叫做三角形的正切,即tan α=.ab1.已知角α的终边和单位圆的交点为P ,则P 的坐标为( )A .(sinα,cos α)B .(cosα,sin α)C .(sinα,tan α)D .(tanα,sin α) 2.已知角α的终边过点P,则sinα=______,cos α=_________,tanα=________3.角α的终边上有一点P (-3a ,4a ),a ∈R ,且a ≠0,则2sinα+cos α=____.4.点P是角α终边上的一点,且,则b 的值是________.5.已知角α的终边经过点P (x ,3-)(x >0).且cos α=2x,则tan α________. (二)三角函数值符号的判断.1.若45πα=,则点P (cosα,sin α)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知0tan cos <⋅θθ,那么角θ是( )A .第一或第二象限B .第二或第三象限C .第三或第四象限D .第一或第四象限 3.函数xxx x x x y tan tan cos cos sin sin ++=的值域是 . 4.sin2·cos3·tan4的符号是( )A .小于0B .大于0C .等于0D .不确定(三)三角函数求值.(1)5cos1803sin902tan 06sin 270-+- ;(2)cos sin tan sin cos 364344ππππππ-+-+.(3)5sin902cos0cos180-++ .(4)213cos tan tan sin cos 24332ππππ-+-+π.同角三角函数基本关系式公式:1cos sin 22=+αα ; αααcos sin tan =1.若α是第四象限角,125tan -=α,则αsin 等于( ) A .51 B .51- C .135 D .135- 2.化简 160sin 12-的结果是 .3.下列三个式子:① 100cos 100sin 12=-;② ααπαsin )2tan(cos =+; ③αααααtan 2sin 1sin 1sin 1sin 1=+---+正确是有 个4.已知55sin =α,则=-αα44cos sin . 5.已知1312sin =α,且παπ-<<-23,则=αtan . 6.已知2cos sin =-αα,),0(πα∈,则=αtan .7.=---10sin 110sin 10cos 10sin 212.8.ααααsin 1cos cos 1cos 1-=+-成立的α的范围是 .9.已知53sin +-=m m θ,524cos +-=m m θ,其中πθπ<<2,则=θtan . 10.化简下列各式:(1)若α为第三象限角,化简αααα22cos 1sin 2sin 1cos -+-;(2)()ααααtan 1cos tan 11sin 22++⎪⎭⎫ ⎝⎛+11.已知]2,0[πθ∈,而θsin ,θcos 是方程012=++-k kx x 的两个实数根,求k 和θ的值.诱导公式口诀:奇变偶不变,符号看象限.将三角函数的角度全部化成απ+⋅2k 或是απ-⋅2k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函数名,偶数就不变 1、sin1560°的值为( ) A 、21-B 、23-C 、21D 、232、若(),2,53cos παππα<≤=+则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 54-3、sin34π·cos625π·tan45π的值是( )A .-43B .43C .-43D .43 4、)2cos()2sin(21++-ππ ( ) A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25、已知()21sin -=+πα,则()πα7cos 1+的值为 ( ) A .332 B . -2 C . 332- D . 332± 6、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π ( ) A 、21-B 、21C 、23-D 、23 7、若a =αtan ,则()()απαπ+--3cos 5sin = ____ ____.8、已知x x f 3cos )(cos =,则)30(sinf 的值为 。
4.1 任意角、弧度制及任意角的三角函数练习题
§4.1 任意角、弧度制及任意角的三角函数一、选择题1.sin 2cos 3tan 4的值( ).A .小于0B .大于0C .等于0D .不存在 解析 ∵sin 2>0,cos 3<0,tan 4>0, ∴sin 2cos 3tan 4<0. 答案 A2.已知点P (sin 5π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ是第________象限角.( )A .一B .二C .三D .四 解析:因P 点坐标为(-22,-22),∴P 在第三象限. 答案:C3.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的中心角的弧度数是( )A .1B .4C .1或4D .2或4解析 设此扇形的半径为r ,弧长是l ,则⎩⎨⎧2r +l =6,12rl =2,解得⎩⎨⎧r =1,l =4或⎩⎨⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.答案 C4.若cos α=-32,且角α的终边经过点(x,2),则P 点的横坐标x 是( ).A .2 3B .±2 3C .-2 2D .-2 3解析 由cos α=x x 2+4=-32,解得,x =-2 3.答案 D5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A.45-B.35-C.35D.45解析 设(,2)P a a 是角θ终边上任意一点,则由三角函数定义知:cos θ=,所以223cos 22cos 12(15θθ=-=⨯-=-,故选B. 答案 B6.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ).A .-12 B.12 C .-32 D.32解析 ∵r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12.∵m >0,∴m =12. 答案 B7.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( ).A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12解析 设α=∠POQ ,由三角函数定义可知,Q 点的坐标(x ,y )满足x =cos α, y =sin α,∴x =-12,y =32,∴Q 点的坐标为⎝ ⎛⎭⎪⎫-12,32.答案 A 二、填空题8.若β的终边所在直线经过点P ⎝ ⎛⎭⎪⎫cos 3π4,sin 3π4,则sin β=________, tan β=________.解析:因为β的终边所在直线经过点P ⎝ ⎛⎭⎪⎫cos 3π4,sin 3π4,所以β的终边所在直线为y =-x ,则β在第二或第四象限. 所以sin β=22或-22,tan β=-1. 答案:22或-22-1 9.已知点P (tan α,cos α)在第三象限,则角α的终边在第______象限. 解析 ∵点P (tan α,cos α)在第三象限,∴tan α<0,cos α<0. ∴角α在第二象限. 答案 二10.弧长为3π,圆心角为135的扇形的半径为 ,面积为 .解析 由扇形面积公式得:12lR =6π.答案 4;6π11.若三角形的两个内角α,β满足sin αcos β<0,则此三角形为________. 解析 ∵sin αcos β<0,且α,β是三角形的两个内角. ∴sin α>0,cos β<0,∴β为钝角.故三角形为钝角三角形. 答案 钝角三角形 12.函数y =sin x +12-cos x 的定义域是________. 解析由题意知⎩⎨⎧sin x ≥0,12-cos x ≥0,即⎩⎨⎧sin x ≥0,cos x ≤12.∴x 的取值范围为π3+2k π≤x ≤π+2k π,k ∈Z.答案 ⎣⎢⎡⎦⎥⎤π3+2k π,π+2k π(k ∈Z)三、解答题13. (1)确定tan -3cos8·tan5的符号;(2)已知α∈(0,π),且sin α+cos α=m (0<m <1),试判断式子sin α-cos α的符号.解析 (1)∵-3,5,8分别是第三、第四、第二象限角, ∴tan(-3)>0,tan5<0,cos8<0, ∴原式大于0.(2)若0<α<π2,则如图所示,在单位圆中,OM =cos α,MP =sin α,∴sin α+cos α=MP +OM >OP =1.若α=π2,则sin α+cos α=1.由已知0<m <1,故α∈⎝ ⎛⎭⎪⎫π2,π.于是有sin α-cos α>0.14.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ,cos θ.解析:∵θ的终边过点(x ,-1)(x ≠0),∴tan θ=-1x,又tan θ=-x ,∴x 2=1,∴x =±1. 当x =1时,sin θ=-22,cos θ=22; 当x =-1时,sin θ=-22,cos θ=-22. 15.如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴正半轴的交点,A 点的坐标为⎝ ⎛⎭⎪⎫35,45,△AOB 为正三角形.(1)求sin ∠COA ; (2)求cos ∠COB .解析 (1)根据三角函数定义可知sin ∠COA =45.(2)∵△AOB 为正三角形,∴∠AOB =60°, 又sin ∠COA =45,cos ∠COA =35,∴cos ∠COB =cos(∠COA +60°) =cos ∠COA cos 60°-sin ∠COA sin 60° =35·12-45·32=3-4310. 16.角α终边上的点P 与A (a,2a )关于x 轴对称(a >0),角β终边上的点Q 与A 关于直线y =x 对称,求sin α·cos α+sin β·c os β+tan α·tan β的值.解析 由题意得,点P 的坐标为(a ,-2a ), 点Q 的坐标为(2a ,a ). 所以,sin α=-2aa 2+-2a2=-25, cos α=a a 2+-2a 2=15, tan α=-2aa=-2,sin β=a 2a 2+a 2=15,cos β=2a 2a2+a2=25, tan β=a 2a =12,故有sin α·cos α+sin β·cos β+tan α·tan β =-25×15+15×25+(-2)×12=-1.。
任意角的三角函数练习题及参考答案
任意角的三角函数练习题一.选择题1.已知角α的终边过点P (-1,2),cos α的值为 ( )A .-55 B .- 5 C .552 D .252.α是第四象限角,则下列数值中一定是正值的是( )A .sin αB .cos αC .tan αD .cot α3.已知角α的终边过点P (4a ,-3a )(a <0),则2sin α+cos α的值是 ( )A .25B .-25C .0D .与a 的取值有关4.α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α=42x ,则sin α的值为 ( )A .410 B .46 C .42D .-410 5.函数x x y cos sin -+=的定义域是 ( ) A .))12(,2(ππ+k k ,Z k ∈ B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈ D .[2k π,(2k+1)π],Z k ∈6.若θ是第三象限角,且02cos <θ,则2θ是 ()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知sin α=54,且α是第二象限角,那么tan α的值为 ( )A .34- B .43- C .43 D .34 8.已知点P (ααcos ,tan )在第三象限,则角α在 ( )A .第一象限B .第二象限C .第三象限D .第四象限 二.填空题1.已知sin αtan α≥0,则α的取值集合为 .2.角α的终边上有一点P (m ,5),且)0(,13cos ≠=m mα,则sin α+cos α=______.3.已知角θ的终边在直线y =33x 上,则sin θ= ;θtan = .4.设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 . 三.解答题 1.求43π角的正弦.余弦和正切值.2.若角α的终边落在直线y x 815=上,求ααtan sec log 2-.3.(1)已知角α的终边经过点P(4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零),求2sinα+cosα的值.参考答案一. 选择题ABAA BBAB 二.填空题 1.⎭⎬⎫⎩⎨⎧∈+<<+-Z k k k ,2222|ππαππα; 2.12=m 时,1317cos sin =+αα;12-=m 时,137cos sin -=+αα. 3.21sin ±=θ;33tan =θ. 4.4745πθπ<<.三.解答题1.2243sin=π;2243cos -=π;143tan -=π. 2.(1)取)15,8(1P ,则17=r ,2815817log tan sec log 22-=-=-αα; (2)取)15,8(2--P ,则17=r ,2815817log tan sec log 22=--=-αα. 3.(1)∵3,4-==y x ,∴5=r ,于是:5254532cos sin 2-=+-⋅=+αα.(2)∵a y a x 3,4-==,∴a r 5=,于是:当0>a 时,5254532cos sin 2-=+-⋅=+αα 当0<a 时,5254532cos sin 2=-+⋅=+αα (3)若角α终边过点()3,4P ,则254532cos sin 2=+⋅=+αα;若角α终边过点()3,4-P ,则5254532cos sin 2=-+⋅=+αα; 若角α终边过点()3,4--P ,则254532cos sin 2-=-+-⋅=+αα; 若角α终边过点()3,4-P ,则5254532cos sin 2-=+-⋅=+αα.。
必修4--任意角三角函数(提高练习)
1.下列各组角中,终边相同的角是 ( )A .π2k与)(2Z k k ∈+ππ B .)(3k3Z k k ∈±πππ与C .ππ)14()12(±+k k 与 )(Z k ∈D .)(66Z k k k ∈±+ππππ与2.设角α和β的终边关于y 轴对称,则有( )A .)(2Z k ∈-=βπαB .)()212(Z k k ∈-+=βπαC .)(2Z k ∈-=βπαD .)()12(Z k k ∈-+=βπα3.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( )A .2°B .2C .4°D .44.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为 5.已知集合},3604536090|{},,360150360|{Z k k k B Z k k k A ∈︒⋅+︒<<︒⋅+︒-=∈︒⋅+︒<<︒⋅=ββαα求A ∩B ;B A Y6设α角属于第二象限,且2cos2cosαα-=,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ.其中符号为负的有A .① B .② C .③ D .④ 8.若角0600的终边上有一点()a ,4-,则a 的值A .34 B .34- C .34± D .3 9.函数xxx x x x y tan tan cos cos sin sin ++=的值域是( ) A .{}3,1,0,1- B .{}3,0,1- C .{}3,1- D .{}1,1- 10.若α为第二象限角,那么α2sin ,2cosα,α2cos 1,2cos1α中,其值必为正的有( )A .0个 B .1个 C .2个 D .3个11.已知)1(,sin <=m m α,παπ<<2,那么=αtan ( ).A .21m m -B .21m m-- C .21mm-± D . m m 21-±12.若角α的终边落在直线0=+y x 上,则ααααcos cos 1sin 1sin 22-+-的值等于( ). A .2 B .2- C .2-或2 D .013.已知3tan =α,23παπ<<,那么ααsin cos -的值是( ). A .231+-B .231+-C .231-D .231+14 若54sin =α,且α是第二象限角,则αtan 的值为( ) 15化简4cos 4sin 21-的结果是( )A 、4cos 4sin +B 、4cos 4sin -C 、4sin 4cos -D 、4cos 4sin -- 16、在△ABC 中,若最大角的正弦值是22,则△ABC 必是( ) A 、等边三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形 17、若θsin 、θcos 是关于x 的方程0242=++m mx x 的两个实根,则m 值为( )A 、⎪⎭⎫⎢⎣⎡-∈0,34mB 、51-=mC 、51±=mD 、51+=m 19、已知αsin 、αcos 是方程06242=++m x x 的两实根,求:(1) m 的值; (2)αα33cos sin +的值.20、若点P 在32π的终边上,且OP=2,则点P 的坐标( )A . )3,1(B .)1,3(-C .)3,1(--D .)3,1(-αααααααcos cos sin sin sin ,+-++-1111cos 19化简是第二象限角已知,21 ( )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒ 22,计算,10cos270°+4sin0°+9tan0°+15cos360°=_____________23 定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,2π]时,f (x )=sin x ,求f (3π5)的值。
高考数学专题复习:任意角的三角函数
高考数学专题复习:任意角的三角函数一、单选题1.设角θ的终边经过点34,55P ⎛⎫- ⎪⎝⎭,那么2sin cos θθ+等于( )A .25B .25-C .1D .1-2.sin 240︒=( )A .B .-1C .1-D .32-3.“6x π=”是“1sin 2x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.已知tan 2α=,则4sin cos 5cos 3sin αααα-=+( )A .57B .310C .711 D .855.若tan 0α<,则( ) A .sin 0α< B .cos 0α< C .sin 20α<D .cos 20α<6.已知tan 3α=,则3sin cos 2ααπ⎛⎫+= ⎪⎝⎭( )A .110- B .110 C .14-D .147.已知tan 2α=,则3sin cos αα=( ) A .57B .310C .65D .858.已知1cos θθ=,则2sin 1cos sin 22cos θθθθ+-=--( )A .0B .4--C .0或4--D .4+4--9.已知角α的终边过点()3,4,则tan α=( ) A .35B .34C .45D .4310.已知1sin 3θ=,且θ为锐角,则tan θ=( )A .-B .C .D 11.若1cos 63πα⎛⎫-= ⎪⎝⎭,则sin 3πα⎛⎫+= ⎪⎝⎭( )A .13-B .13C D .122201cos 160--的结果为( )A .sin10B .sin102C .12D .1二、填空题 13.已知3cos 5α=,(),2αππ∈,则tan α=________. 14.已知角α的终边上的一点(4,3)(0)t t t ->,则sin α=________.15.已知cos α=,则()3sin sin cos 22ππααπα⎛⎫⎛⎫+--++= ⎪ ⎪⎝⎭⎝⎭________. 16.已知()3sin 5f x x x =++,若()sin 9f x =,则()sin f x π+⎡⎤⎣⎦=________.三、解答题17.已知角α的顶点为坐标原点O ,始边与x 轴正半轴重合,终边上有一点(),P a b ()0a <,且tan 2α=,5OP =. (1)求a ,b 的值;(2)求()()()()()22sin cos tan cos tan αππαπααπα+++--的值.18.已知sin cos αα+=. (1)求sin cos αα⋅的值; (2)若ππ2α<<,求11sin cos αα-的值.19.化简(1)cos sin α是第二象限角) (2)4222sin sin cos cos αααα++20.已知sin 2cos 0,2k k Z παααπ⎛⎫-=≠+∈ ⎪⎝⎭.(1)求4sin 2cos 5cos 3sin αααα-+的值;(2)求sin cos αα⋅的值;(3)求22sin 5sin cos cos 1αααα+++的值.21.是否存在角()022ππαβαβπ⎛⎫∈-∈ ⎪⎝⎭,,,,,,使等式()sin 32ππαβ⎛⎫-=- ⎪⎝⎭,()()απβ-=+同时成立?若存在,求出αβ,的值;若不存在,试说明理由.22.化简:cos 210cos(420)tan 330tan 390sin 750cos900︒︒︒︒︒︒⋅-⋅⋅⋅.参考答案1.D 【分析】利用任意角的三角函数的定义可求出sin ,cos θθ的值,从而可求得答案 【详解】解:因为角θ的终边经过点34,55P ⎛⎫- ⎪⎝⎭,所以43sin ,cos 55θθ=-=,所以432sin cos 2155θθ⎛⎫+=⨯-+=- ⎪⎝⎭,故选:D 2.A 【分析】运用诱导公式和特殊角的三角函数值即可化简求值. 【详解】解:sin 240sin(18060)sin 60︒=︒+︒=-︒= 故选:A . 3.A 【分析】根据充分必要条件的定义判断. 【详解】 6x π=时,1sin 2x =,充分的, 但56x π=时,也有1sin 2x =,因此不必要.故是充分不必要条件. 故选:A . 4.C 【分析】先利用同角三角函数的关系对4sin cos 5cos 3sin αααα-+变形,然后将tan 2α=代入求解即可【详解】解:因为tan 2α=, 所以4sin cos 4tan 142175cos 3sin 53tan 53211αααααα--⨯-===+++⨯,故选:C 5.C 【分析】根据三角函数正负性的性质进行逐一判断即可. 【详解】因为tan 0α<,所以α在第二象限或第四象限.A :当α在第二象限时,sin 0α<不成立;当α在第四象限时,sin 0α<成立,故本选项不正确;B :当α在第二象限时,cos 0α<成立;当α在第四象限时,cos 0α<不成立,故本选项不正确;C :当α在第二象限时,即22()4224()2k k k Z k k k Z ππαππππαππ+<<+∈⇒+<<+∈,所以sin 20α<成立;当α在第四象限时,即3222()34244()2k k k Z k k k Z ππαππππαππ+<<+∈⇒+<<+∈,所以sin 20α<成立,因此本选项正确;D :当α在第二象限时,即22()4224()2k k k Z k k k Z ππαππππαππ+<<+∈⇒+<<+∈,所以cos 20α<不恒成立;当α在第四象限时,即3222()34244()2k k k Z k k k Z ππαππππαππ+<<+∈⇒+<<+∈, 所以cos 20α<不恒成立,因此本选项不正确, 故选:C 6.A 【分析】利用222223cos 1sin cos cos 2sin cos tan 1αααααααπ⎛⎫+=-=-=- ⎪++⎝⎭算出答案即可.【详解】 因为tan 3α=所以222223cos 11sin cos cos 2sin cos tan 110αααααααπ⎛⎫+=-=-=-=- ⎪++⎝⎭故选:A 7.C 【分析】把3sin cos αα化为关于sin ,cos αα的二次齐次式,再转化成用tan α表示出即可得解. 【详解】因tan 2α=,则22223sin cos 3tan 3263sin cos sin cos tan 1215αααααααα⋅====+++. 故选:C 8.C 【分析】先联立221cos ,sin cos 1θθθθ⎧=⎪⎨+=⎪⎩,解出sin θ,cos θ的值,再把sin θ,cos θ的值代入表达式求解即可. 【详解】联立221cos ,sin cos 1θθθθ⎧=⎪⎨+=⎪⎩, 解得sin 0cos 1θθ=⎧⎨=⎩或sin 1cos 3θθ⎧=⎪⎪⎨⎪=-⎪⎩,当sin 0θ=,cos 1θ=时, 2sin 1cos 110sin 22cos 22θθθθ+--==----;当sin θ=1cos 3θ=-时,112sin 1cos 4sin 22cos θθθθ+++-==----故选:C. 9.D 【分析】利用任意角的三角函数定义计算即可得解.因角α的终边过点()3,4,由任意角的正切函数定义得:4tan 3α=, 所以4tan 3α=. 故选:D 10.D 【分析】由同角三角函数基本关系的平方关系结合θ为锐角,求出cos θ的值,再由sin tan cos θθθ=即可求解. 【详解】 因为1sin 3θ=,且θ为锐角,所以cos θ=所以1sin tan cos θθθ== 故选:D. 11.B 【分析】根据诱导公式即可化简求值. 【详解】 解:623πππαα⎛⎫-=-+ ⎪⎝⎭, 1cos cos sin 62333ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,即1sin 33πα⎛⎫+= ⎪⎝⎭.故选:B. 12.B 【分析】利用诱导公式和同角三角函数的基本关系,即可得到答案;2222sin 10sin102sin 20sin 20201cos 1602sin 2s 0s 6in in 110===+---+-,故选:B. 13.43-【分析】 由3cos 5α=求出sin α的值,进而可得结果. 【详解】由于3cos 5α=,(),2αππ∈,所以4sin 5α=-,即sin tan s 43co ααα==-, 故答案为:43-.14.35【分析】由三角函数定义即可得到答案. 【详解】因为,t >0,所以333sin 5||55t t t t α--====-. 故答案为:35.15【分析】利用诱导公式化简后,即可求出结果. 【详解】因为cos α=所以()3sin sin cos cos cos cos cos 22ππααπααααα⎛⎫⎛⎫+--++=+-== ⎪⎪⎝⎭⎝⎭故答案为:【分析】令()()3sin g x x x x R =+∈,已知()g x 为奇函数,进而根据奇函数的性质求解即可.【详解】解:令()()3sin g x x x x R =+∈,因为()()()()33sin sin g x x x x x g x -=-+-=--=-,所以函数()()3sin g x x x x R =+∈为奇函数,因为()sin 9f x =,即()()sin sin 59f x g x =+=,所以()sin 4g x =, 所以()()()()sin sin sin 5sin 5451f x f x g x g x π+=-=-+=-+=-+=⎡⎤⎣⎦. 故答案为:117.(1)a =b =-(2)【分析】(1)由题意知2b a =,2225a b +=,进而解方程即可得答案; (2)根据诱导公式化简得cos α,进而结合(1)求解即可得答案. 【详解】解:(1)由三角函数定义知tan 2baα==,∴2b a =,又5OP ==,∴222525a b a +==,又0a <,∴a =从而2b a ==-(2)原式()()2222sin cos sin cos cos sin sin tan cos tan cos cos cos ααααααααααααα⋅-⋅===⋅⋅-⋅⋅, 由(1)知cos a OP α==.故原式=.18.(1)310-;(2. 【分析】(1)把已知等式两边平方,整理即可求得sin cos αα⋅的值;(2)由已知结合角α的范围求得cos sin αα-的值,通分后即可求得11sin cos αα-的值. 【详解】(1)解:由sin cos αα+=,两边平方得()22sin cos αα⎛+= ⎝⎭即212sin cos 5αα+=,则3sin cos 10αα=-. (2)因为()2616cos sin 12sin cos 11010αααα-=-=+=, 所以cos sinαα-=, 因为ππ2α<<, 所以sin 0α>,cos 0α<,则:cos sin αα-=11cos sin sin cos sin cos αααααα--==19.(1)sin cos αα-;(2)1. 【分析】(1)首先化简根式,再利用α是第二象限角,进一步化简函数;(2)利用公式22sin cos 1αα+=化简求值.【详解】(1)cos sincos sin αα= 1sin 1cos cos sin cos sin αααααα--=⋅+⋅ (α是第二象限角) 1sin 1cos cos sin cos sin αααααα--=⋅+⋅-1sin 1cos αα=-++-sin cos αα=-(2)4222sin sin cos cos αααα++ ()2222sin sin cos cos αααα=++22sin cos αα=+1=20.(1)611;(2)25;(3)4. 【分析】(1)在分式的分子和分母中同时除以cos α,利用弦化切的思想进行计算;(2)在代数式sin cos αα⋅上除以22sin cos αα+,化简弦的二次分式齐次式,然后在分式的分子和分母中同时除以2cos α,利用弦化切思想来进行计算.(3)将代数式22sin 5sin cos cos αααα++除以22sin cos αα+,化简弦的二次分式齐次式,然后在分式的分子和分母中同时除以2cos α,利用弦化切思想来进行计算,最后再加1得结果.【详解】(1)由sin 2cos 0,2k k Z παααπ⎛⎫-=≠+∈ ⎪⎝⎭得tan 2α= 4sin 2cos 4tan 25cos 3sin 53tan αααααα--=++ 611= (2)22sin cos sin cos sin cos αααααα⋅⋅=+ 2tan 2tan 15αα==+ (3)222222sin 5sin cos cos sin 5sin cos cos 11sin cos αααααααααα+++++=++ 22tan 5tan 114tan 1ααα++=+=+ 21.存在,,46ππαβ== 【分析】根据诱导公式,结合同角的三角函数关系式进行求解即可.【详解】()sin 3sin (1)2ππαβαβ⎛⎫-=-⇒= ⎪⎝⎭, ()()(2)απβαβ-=+=, 因为22ππα⎛⎫∈- ⎪⎝⎭,,所以cos 0α>,因此02πβ⎛⎫∈ ⎪⎝⎭,,22(2)(1)+得,2221sin 3cos 2cos 2ααα+=⇒=,因为22ππα⎛⎫∈- ⎪⎝⎭,,所以4πα=±, 当4πα=时,1sin sin 42πββ=⇒=,因为02πβ⎛⎫∈ ⎪⎝⎭,,所以6πβ=; 当4πα=-时,1sin sin 42πββ⎛⎫-=⇒=- ⎪⎝⎭,因为02πβ⎛⎫∈ ⎪⎝⎭,,所以1sin 2β=-不成立, 因此存在角()022ππαβαβπ⎛⎫∈-∈ ⎪⎝⎭,,,,,,使等式()sin 32ππαβ⎛⎫-- ⎪⎝⎭,()()απβ-=+同时成立,此时,46ππαβ==. 22【分析】利用诱导公式化简可求值.【详解】 解:原式=cos(18030)cos(36060)tan(36030)tan(36030)sin(72030)cos(720180)︒︒︒︒︒︒︒︒︒︒︒︒+⋅--⋅-+⋅+⋅+ =()cos30cos60tan30tan30sin30cos180︒︒︒︒︒-⋅⋅-⋅⋅1((⨯⨯。
任意角的三角函数练习题及参考答案
任意角的三角函数练习题一.选择题1.已知角α的终边过点P (-1,2),cos α的值为 ( ) A .-55 B .- 5 C .552 D .252.α是第四象限角,则下列数值中一定是正值的是 ( ) A .sin α B .cos α C .tan α D .cot α3.已知角α的终边过点P (4a ,-3a )(a <0),则2sin α+cos α的值是 ( ) A .25 B .-25 C .0 D .与a 的取值有关4.α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α=42x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 5.函数x x y cos sin -+=的定义域是()A .))12(,2(ππ+k k ,Z k ∈B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈D .[2k π,(2k+1)π],Z k ∈ 6.若θ是第三象限角,且02cos<θ,则2θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知sin α=54,且α是第二象限角,那么tan α的值为 ()A .34- B .43- C .43D .34 8.已知点P (ααcos ,tan )在第三象限,则角α在()A .第一象限B .第二象限C .第三象限D .第四象限二.填空题1.已知sin αtan α≥0,则α的取值集合为 .2.角α的终边上有一点P (m ,5),且)0(,13cos ≠=m mα,则sin α+cos α=______. 3.已知角θ的终边在直线y =33x 上,则sin θ= ;θtan = . 4.设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 .三.解答题1.求43π角的正弦.余弦和正切值.2.若角α的终边落在直线y x 815=上,求ααtan sec log 2-.3.(1)已知角α的终边经过点P(4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零), 求2sin α+cos α的值.参考答案一. 选择题ABAA BBAB 二.填空题1.⎭⎬⎫⎩⎨⎧∈+<<+-Z k k k ,2222|ππαππα; 2.12=m 时,1317cos sin =+αα;12-=m 时,137cos sin -=+αα. 3.21sin ±=θ;33tan =θ.4.4745πθπ<<.三.解答题1.2243sin=π;2243cos -=π;143tan -=π. 2.(1)取)15,8(1P ,则17=r ,2815817log tan sec log 22-=-=-αα; (2)取)15,8(2--P ,则17=r ,2815817log tan sec log 22=--=-αα. 3.(1)∵3,4-==y x ,∴5=r ,于是:5254532cos sin 2-=+-⋅=+αα. (2)∵a y a x 3,4-==,∴a r 5=,于是:当0>a 时,5254532cos sin 2-=+-⋅=+αα 当0<a 时,5254532cos sin 2=-+⋅=+αα(3)若角α终边过点()3,4P ,则254532cos sin 2=+⋅=+αα; 若角α终边过点()3,4-P ,则5254532cos sin 2=-+⋅=+αα; 若角α终边过点()3,4--P ,则254532cos sin 2-=-+-⋅=+αα; 若角α终边过点()3,4-P ,则5254532cos sin 2-=+-⋅=+αα.。
高中数学三角函数公式练习(答案)
高中数学三角函数公式练习(答案)1.sin(29π/6)的值为()A。
-1133B。
-C。
D。
2222答案】C解析】考点:任意角的三角函数2.已知sin(α-π/4)=7/√5301,cos2α=71/2525,sinα=5/13,求cosα的值。
A。
-/6662B。
-1025/4433C。
-727/5555D。
5555/2553答案】D解析】考点:两角和与差的三角函数,二倍角公式3.cos690°的值为()A。
-1133B。
C。
-2222D。
-答案】C解析】考点:三角函数的诱导公式4.tan(π/3)的值为()A。
-33B。
C。
3D。
-333答案】C解析】考点:三角函数的求值,诱导公式5.若-π<β<α<π,且cos(β+π/4)=5/√5301,则cos(α+β)的值为()A。
-B。
-3399C。
D。
-答案】C解析】考点:诱导公式,三角函数的化简求值。
6.若角 $\alpha$ 的终边在第二象限且经过点 $P(-1,3)$,则$\sin\alpha$ 等于 $\dfrac{3}{2}$。
7.$\sin7^\circ\cos37^\circ-\sin83^\circ\cos53^\circ$ 的值为$-\dfrac{1}{3}$。
8.已知 $\cos(-x)=\dfrac{\sqrt{3}}{2}$,那么 $\sin2x=-\dfrac{1}{2}$。
9.已知 $\sin\dfrac{5\pi}{2}+\alpha=\dfrac{1}{23}$,则$\cos2\alpha=-\dfrac{5}{9}$。
10.已知 $\sin(\dfrac{\pi}{2}+a)=\dfrac{1}{27}$,则$\cos2a=-\dfrac{1}{9}$。
11.已知点 $P(\tan\alpha,\cos\alpha)$ 在第三象限,则角$\alpha$ 在第二象限。
12.已知 $\alpha$ 是第四象限角,$\tan\alpha=-\dfrac{5}{22}$,则 $\sin\alpha=-\dfrac{12}{13}$。
三角函数习题及答案
任意角的三角函数一、选择题:1.使得函数有意义的角在()(A)第一,四象限(B)第一,三象限(C)第一、二象限(D)第二、四象限2.角α、β的终边关于У轴对称,(κ∈Ζ)。
则(A)α+β=2κπ(B)α-β=2κπ(C)α+β=2κπ-π(D)α-β=2κπ-π3.设θ为第三象限的角,则必有()(A)(B)(C)(D)4.若,则θ只可能是()(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角5.若且,则θ的终边在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限二、填空题:6.已知α是第二象限角且则2α是第▁▁▁▁象限角,是第▁▁▁象限角。
7.已知锐角α终边上一点A的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。
8.设则Y的取值范围是▁▁▁▁▁▁▁。
9.已知cosx-sinx<-1,则x是第▁▁▁象限角。
三、解答题:10.已知角α的终边在直线上,求sinα及cot的值。
11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sinβ=0。
12.已知,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值。
同角三角函数的基本关系式及诱导公式一、选择题:1.化简结果是()(A)0 (B)(C)22.若,且,则的值为()或3. 已知,且,则的值为()4. 已知,并且是第一象限角,则的值是()5. 化简的结果是()6. 若且,则角所在的象限是()(A)一、二象限(B)二、三象限(C)一、三象限(D)一、四象限填空题:7.化简▁▁▁▁▁▁。
8.已知,则的值为▁▁▁▁▁▁。
9.=▁▁▁▁▁。
10.若关于的方程的两根是直角三角形两锐角的正弦值,则▁▁▁▁。
解答题:11.已知:,求的值。
12.已知,求证:13.已知,且,求的值。
14.若化简:两角和与差的三角函数1.“”是“”的()(A)充分必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件2.已知且为锐角,则为()或非以上答案3.设则下列各式正确的是()4.已知,且则的值是()二、填空题:5.已知则的值为6.已知且则7.已知则8.在中,是方程的两根,则三、解答题:9.求值。
任意角的三角函数练习题及参考答案
任意角的三角函数练习题及参考答案一、选择题1.已知角α的终边过点P(-1,2),cosα的值为()。
A.-2555 B.-5 C.D.552答案:B.-52.α是第四象限角,则下列数值中一定是正值的是()。
A.sinα B.cosα C.tanα D.cotα答案:B.cosα3.已知角α的终边过点P(4a,-3a)(a<0),则2sinα+cosα的值是()。
A.22 B.- C.0 D.与a的取值有关答案:A.224.α是第二象限角,P(x,5)为其终边上一点,且cosα=x/2,则sinα的值为()。
A. B. C.D.-4444答案:D.-44445.函数y=sinx cosx的定义域是()。
A.(2k,(2k1)),k Z B.[2k2,(2k1)],k Z C.[k,(k1)],k Z D.[2kπ,(2k+1)π],k Z答案:B.[2k/2,(2k1)]6.若θ是第三象限角,且cosθ=1/2,则是()。
A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角答案:B.第二象限角7.已知sinα=3/4,且α是第二象限角,那么tanα的值为()。
A. B. C.334 D.344答案:A.8.已知点P(tanα,cosα)在第三象限,则角α在()。
A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:D.第四象限二、填空题1.已知sinαtanα≥1/2,则α的取值集合为()。
答案:(2kπ+π/4,2kπ+3π/4),k∈Z2.角α的终边上有一点P(m,5),且cosα=m/13,则sinα+cosα=______。
答案:12/133.已知角θ的终边在直线y=3x上,则sinθ=______;tanθ=______。
答案:sinθ=3/√10,tanθ=3/√74.设θ∈(0,2π),点P(sinθ,cos2θ)在第三象限,则角θ的范围是()。
答案:(5π/6,2π)三、解答题1.求角的正弦、余弦和正切值。
高三数学:三角函数练习题--任意角的三角函数
数学:三角函数练习题--任意角的三角函数一、选择题:1.已知sin α=54,且α是第二象限角,那么tan α的值为 ( )A .34- B .43- C .43 D .342.已知α的终边经过P (ππ65cos ,65sin ),则α可能是( )A .π65B .6πC .3π-D .3π3.函数|tan |tan cos |cos ||sin |sin x xx x x x y ++=的值域是( )A .{1}B .{1,3}C .{-1}D .{-1,3} 4.若θ是第三象限角,且02cos <θ,则2θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角5.函数x x y cos sin -+=的定义域是()A .))12(,2(ππ+k k ,Z k ∈B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈D .[2k π,(2k+1)π],Z k ∈二、填空题:6.sin600o=________________.7.若θ为第二象限角,则sin(cos θ) sec3的符号是_________________.8.角α的终边上有一点P (m ,5),且)0(,13cos ≠=m mα,则sin α+cos α=______. 9.已知锐角α的终边上一点坐标为)43cos 2,43sin 2(ππ-,则角α的弧度数是________.10.设),2(ππα∈,函数322)(sin )(--=x x x f α的最大值为43,则α=_____________.三、解答题:11.已知角α终边上的一点P ,P 与x 轴的距离和它与y 轴的距离之比为3 :4,且0si n<α求:cos α和tan α的值.12.已知角α的终边在直线y = - x 上,试求角α的各三角函数值.一、选择题:1.A2.C3.D4.B5.B 二、填空题: 6.23- 7.正号 8.13171317-或 9.4π10.32π 三、11.设P(x ,y),则依题意知|y| :|x| =3 :4∵sin α<0∴α终边只可能在第三、四象限或y 轴负半轴上 若P 点位于第三象限,可设P (-4k ,-3k ),(k>0) ∴r=5k ,从而54cos -=α,43tan =α 若P 点位于第四象限,可设P (4k ,-3k ),(k>0) ∴r=5k ,从而54cos =α,43tan -=α 又由于|y| :|x| =3 :4,故α的终边不可能在y 轴的负半轴上 综上所述:知cos α的值为5454-或,tan α的值为4343或- 12.解:∵直线y = - 2x 经过第二、四象限,所以应分两种情况讨论 (1)当α终边在第二象限时,设P (a,-2a ),(a<0)a a a r 5)2(22-=-+=∴2tan ,55cos ,552sin -=-==ααα 25csc ,5sec ,21cot =-=-=ααα (2)当α终边在第四象限时,设P (a,-2a ),(a>0)a a a r 5)2(22=-+=∴2tan ,55cos ,552sin -==-=ααα25csc ,5sec ,21cot -==-=ααα。
任意角三角函数练习题
任意角三角函数练习题在学习三角函数的过程中,我们经常遇到各种各样的练习题。
这些练习题旨在帮助我们强化对任意角三角函数的理解和应用。
本篇文章将以一系列练习题的形式呈现,通过解答这些题目,我们可以更好地掌握任意角三角函数的概念和计算方法。
1. 计算下列各式的值:(1) sin(45°)(2) cos(120°)(3) tan(60°)(4) sec(30°)(5) csc(150°)(6) cot(75°)解答:(1) sin(45°) = √2 / 2(2) cos(120°) = -1 / 2(3) tan(60°) = √3(4) sec(30°) = 2 / √3(5) csc(150°) = 2 / √3(6) cot(75°) = -√32. 根据给定的正弦、余弦或正切值,求角的大小:(1) sinA = 1/2,求A的度数。
(2) cosB = -√3/2,求B的度数。
(3) tanC = 2,求C的度数。
解答:(1) sinA = 1/2,A = 30°或150°。
(2) cosB = -√3/2,B = 150°或210°。
(3) tanC = 2,C = 63.4°或243.4°。
3. 解下列方程:(1) sinx = 1/2(2) cos2x = -3/4(3) tan(2x + 30°) = -1解答:(1) sinx = 1/2,x = 30°或150°。
(2) cos2x = -3/4,2x = 135°或225°,x = 67.5°或112.5°。
(3) tan(2x + 30°) = -1,2x + 30° = 135°或315°,x = 52.5°或142.5°。
(完整版)任意角的三角函数练习题及标准答案详解
随意角的三角函数一、选择题1.以下四个命题中,正确的选项是( )A.在定义域内,只有终边同样的角的三角函数值才相等B.{|= k +, k∈ Z }≠{|= - k +, k∈ Z }6 6C.若是第二象限的角,则 sin2 < 0 D .第四象限的角可表示为{| 2k +3<< 2k , k∈ Z }22.若角的终边过点 (- 3,- 2),则 ( )A . sin tan > 0B . cos tan > 0 C.sin cos > 0 D . sin cot > 0 3.角的终边上有一点P(a, a), a∈R ,且 a≠ 0,则 sin 的值是 ( )A .2 2 2D . 1 2B . - C.±2 224.α是第二象限角,其终边上一点P( x,5),且 cos α=4x,则 sin α的值为()10 6 2 10A.4 B.4 C.4 D.- 4 5. 使 lg ( cos θ·tan θ)存心义的角θ是()A.第一象限角B.第二象限角C .第一或第二象限角D.第一、二象限角或终边在y 轴上6. 设角α是第二象限角,且|cos 2 |=-cos 2 ,则角 2 是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角7.已知会合E={θ|cos θ< sin θ,0≤θ≤2π},F={θ|tan θ< sin θ},那么 E∩F 是区间 ( )1 / 6二、填空题1.已知角的终边落在直线y= 3x 上,则 sin = ________.2.已知 P(- 3 ,y)为角的终边上一点,且sin =13,那么y的值等于________.133.已知锐角终边上一点P(1, 3 ),则的弧度数为________.4.( 1) sin 9tan7_________4 35.三、解答题1.已知角的终边过P(- 3 , 4),求的三角函数值2.已知角的终边经过点P(x,- 3 )(x>0).且cos=x,求sin、cos、tan的值.23.(1)已知角α 终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值;4.一个扇形的周长为 l ,求扇形的半径、圆心角各取何值时,此扇形的面积最大.9 . 化简或求值:三角函数的引诱公式一、选择题(本大题共12 个小题,每题 5 分,共 60 分 . 在每题给出的四个选择中,只 有一项为哪一项切合题目要求的 .) 1 、与- 463°终边同样的角可表示为( )A .k ·360°+ 436°( k ∈ Z )B .k ·360°+ 103°( k ∈ Z )C .k ·360°+ 257°( k ∈ Z )D .k ·360°- 257°( k ∈ Z ) 2、以下四个命题中可能建立的一个是( )A 、 sin1且 cos1 B 、 sin0且cos122C 、 tan1且 cos1 D 、 是第二象限时, tansiacos43、若 sin,且是第二象限角,则 tan 的值为()54 33 4C 、A 、B 、4D 、3434、若 sin cos2 ,则 tancot 等于( )A 、 1B 、 2C 、 -1D 、-21、 tan 300 sin 450 的值为( )A 、 13 B 、 13 C 、 1 3D 、1 35、若 A 、B 、 C 为△ ABC 的三个内角,则以下等式建立的是( )A 、 sin(BC ) sin AB 、 cos(BC ) cos AC 、 tan(B C ) tan AD 、 cot( BC ) cot A6、 12 sin( 2) cos(2) 等于()A . sin2- cos2B .cos2- sin2C . ±( sin2-cos2)D . sin2+cos27 、 sin α cos =α 1 , 且< α < , 则 cos α - sin α 的 值 为842( )3 3 3 3 A .B .C .D .22442 8、在△ ABC 中,若最大角的正弦值是2,则△ ABC 必是( )A 、等边三角形B 、直角三角形C 、钝角三角形D 、锐角三角形4 / 69、以下不等式中,不建立的是()A 、 sin 130 sin 140B 、 cos130 cos140C 、 tan130 tan140D 、cot 130 cot 14010、已知函数 f ( x)cos x,则以下等式建立的是()2A 、 f (2 x) f ( x)B 、C 、 f (x)f ( x)D 、 f ( 2 x) f ( x)f ( x)f ( x)11sin 、 cos 是对于 x 的方程 4x 22mx m 0的两个实根,则 m 值为( )、若A 、 m4,0B 、 m 15C 、 m 15D 、 m 15312、 已 知 f (x) a sin( x )b cos( x) 4 ( a, b, ,为非零实数),f (2011) 5则 f (2012) ( )A .1B . 3C . 5D .不可以确立二、填空题(本大题共4 个小题 ,每题5 分,共 20 分 .将答案填在题中横线上)13、化简 sin 2sin 2 sin 2 sin 2cos 2 cos 2 .14、若 sin3 cos0 ,则 cos2 sin 的值为.3sin2 cos15、 cos( 945 ).16、 tan 1tan 2 tan 3tan 89.三、解答题(本大题共6 道小题,共 70 分 .解答应写出文字说明 ,证明过程或演算步骤)17、求值 sin 2 120cos180 tan45 cos 2( 330 ) sin( 210 )sin 2 () cos( ).18、 化简:) cos 3 (tan(2 ) tan()19、已知sin( ) 1) cos 的值.,求 sin( 2) tan(220、已知sin 4和 tan 的值 .. 求cos51 sin 1 sin21、( 10 分)已知α是第三角限的角,化简sin 1 sin122、已知sin() 1,求证tan(2) tan0。
121.3任意角的三角函数习题
,
求
4.角的终边在直线3 x 4 y 0上, 求2sin cos
把以上六种函数都看成是以角为自变量, 以比值为函数值的函数,统称叫三角函数.
二.(1)三个三角函数的定义域
三角函数 定义域(角为弧度制)
an 2 (2)三个三角函数的在各象限的符号
4、设角
sin x
)
属于第二象限角,且
B.二 C .三 D.四
cos
2
, cos
2
则角
2
属于第 象限角?
A.一
一.复习: 1.任意角的三角函数的(代数表示)-----定义 设 为任意角, p ( x , y )是 终边上任意一点, 记 | op | r x 2 y 2
y
o
把以上六种函数都看成是以角为自变量,以比值为函 数值的函数,统称叫三角函数.
y 余割: csc P (x, y) 正弦: sin r 余弦: cos x 正割: sec x r 正切: tan y 余切: cot x
M
MP AT tan AT AT是正切线 OM OA
1.设的终边与单位圆交于点P(x,y),
2.过点P作x轴的垂线,垂足为M 3.过点A(1,0)作圆的切线,交终边或其反向延长线于T
例.已知是锐角,用三角函数线证明:sin+cos 1 技巧:运用两边之和大于第三边。
r csc 5 12 y 1.已知点( P 512,)在角 5 的终边上,则 sin =____,cos =_____ 13 13 12 13 13 12 5 12 tan=____,cot =____,sec =_____,csc =_____ 5
【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)
第一章 三角函数1.2.1 任意角的三角函数一、选择题1.已知sin α+cos α=–15,α∈(0,π),则tan α的值为A .–43或–34B .–43C .–34D .34【答案】C【解析】∵sin α+cos α=–15,α∈(0,π),∴α为钝角,结合sin 2α+cos 2α=1,∴sin α=35,cos α=–45,则tan α=sin cos αα=–34,故选C . 2.若点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,则sin α的值为A .12-B .12C .3D 3 【答案】C【解析】因为点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,即点132⎛- ⎝⎭,在角α的终边上,则3sin α=,故选C .3.若角α的终边过点P (3,–4),则cos α等于A .35B .34-C .45-D .45【答案】A【解析】∵角α的终边过点P (3,–4),∴r =5,∴cos α=35,故选A .4.如果角θ的终边经过点(3,–4),那么sin θ的值是A .35B .35-C .45D .45-【答案】D【解析】∵角θ的终边经过点(3,–4),∴x =3,y =–4,r 22x y +,∴sin θ=y r=–45,故选D .5.若sinαtanα<0,且costanαα<0,则角α是A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】∵sinαtanα<0,可知α是第二或第三象限角,又costanαα<0,可知α是第三或第四象限角.∴角α是第三象限角.故选C.6.已知点P(x,3)是角θ终边上一点,且cosθ=–45,则x的值为A.5 B.–5 C.4 D.–4 【答案】D【解析】∵P(x,3)是角θ终边上一点,且cosθ=–45,∴cosθ=29x+=–45,∴x=–4.故选D.7.若点P(sinα,tanα)在第三象限,则角α是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】∵点P(sinα,tanα)在第三象限,∴sinα<0,tanα<0.∴角α是第四象限角.故选D.8.如果角α的终边过点(2sin60°,–2cos60°),则sinα的值等于A.12B.–12C.–3D.–3【答案】B【解析】角α的终边过点(2sin60°,–2cos60°),即(31-,),由任意角的三角函数的定义可知:sinα=()()221 231=-+-.故选B.9.若角120°的终边上有一点(–4,a),则a的值是A.43B.43-C.43±D.310.已知4sin5α=,并且P(–1,m)是α终边上一点,那么tanα的值等于A .43-B .34-C .34D .43【答案】A 【解析】∵4sin5α=,并且P (–1,m )是α45=,∴m =43,那么tan α=1m-= –m =–43,故选A . 11.已知sin α<0,且tan α>0,则α的终边所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵sin α<0,∴α的终边在第三、第四象限或在y 轴负半轴上,∵tan α>0,∴α的终边在第一或第三象限,取交集可得,α的终边所在的象限是第三象限角.故选C . 12.若角α终边经过点P (sin2π2πcos 33,),则sin α=A .12BC .12-D . 【答案】C【解析】∵角α终边经过点P (sin 2π2πcos 33,),即点P ,–12),∴x ,y =–12,r =|OP |=1,则sin α=y r=y =–12,故选C .13.已知角α的终边过点12P ⎛ ⎝⎭,,则sin α=A .12B C D . 【答案】C【解析】由题意可得,x =12,y ,r =|OP |=1,∴sin α=y r,故选C .14.已知角α的终点经过点(–3,4),则–cos α=A .35B .–35C .45D .–45【答案】A【解析】∵角α的终点经过点(–3,4),∴x =–3,y =4,r =|OP |=5,则–cos α=–35x r =,故选A . 二、填空题15.若角α的终边与单位圆交于P (–35,45),则sin α=45;cos α=___________;tan α=___________.【答案】45;35-;43- 【解析】∵角α的终边与单位圆交于P (–35,45),|OP |=223455⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=1,∴由任意角的三角函数的定义可知:sin α=44515=,同理可得cos α=35-;tan α=445335=--;故答案为:45;35-;43-.16.已知23cos 4a x a-=-,x 是第二、三象限角,则a 的取值范围是__________.17.已知角α的终边经过点P (–2,4),则sin α–cos α的值等于__________.35【解析】∵角α的终边经过点P (–2,4),∴x =–2,y =4,r =|OP 5,∴sin α=25y r =,cos α=xr= 5,则sin α–cos α3535. 18.适合条件|sin α|=–sin α的角α是__________.【答案】[2k π–π,2k π],k ∈Z【解析】∵|sin α|=–sin α,∴–sin α≥0,∴sin α≤0,由正弦曲线可以得到α∈[2k π–π,2k π],k ∈Z ,故答案为:[2k π–π,2k π],k ∈Z .19.若角α的终边经过点(–1,–2),则tan α=___________.【答案】2【解析】∵角α的终边经过点(–1,–2),∴由三角函数定义得tan α=21--=2.故答案为:2. 20.已知角θ的终边经过点P (x ,2),且1cos 3θ=,则x =___________.2 【解析】∵角θ的终边经过点P (x ,2),且21cos 34x θ==+,解得x 22.21.若sinθ<0,cosθ>0,则θ在第___________象限.【答案】四【解析】由sinθ<0,可知θ为第三、第四象限角或终边在y轴负半轴上的角.由cosθ<0,可知θ为第一、第四象限角或终边在x轴正半轴上的角.取交集可得,θ在第四象限.故答案为:四.三、解答题22.已知点P(3m,–2m)(m<0)在角α的终边上,求sinα,cosα,tanα.【解析】因为点P(3m,–2m)(m<0)在角α的终边上,所以x=3m,y=–2m,r=–13m,sinα=21313yr==,cosα=31313xr=-=-,tanα=32yx=-.23.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6.24.已知角α的终边在直线y=2x上,分别求出sinα,cosα及tanα的值.【解析】当角α的终边在第一象限时,在角α的终边上任意取一点P(1,2),则x=1,y=2,r=|OP5,∴sinα=255yr==cosα=55xr=,tanα=yx=2;当角α的终边在第三象限时,在角α的终边上任意取一点P(–1,–2),则x=–1,y=–2,r=|OP|=5,∴sinα=yr=5=25,cosα=xr=5=5,tanα=yx=2.25.已知角α的终边上一点P (m )(m ≠0),且sin α=4,求cos α,tan α的值.【解析】设P (x ,y ).由题设知x=y=m ,所以r 2=|OP|2=(2+m 2(O 为原点),,所以sin α=mr =4,所以=,3+m 2=8,解得当r=,x=所以cos =,tan当m=r=,x=y=所以cos =,tan26.已知角α终边上一点P (m ,1),cos α=–13.(1)求实数m 的值; (2)求tan α的值.【解析】(1)角α终边上一点P (m ,1),∴x =m ,y =1,r =|OP∴cos α=–13,解得m =.(2)由(1)可知tan α=1m。
任意角的三角函数练习题及答案详解
任意角的三角函数练习题及答案详解任意角的三角函数一、选择题1.以下四个命题中,正确的是()A.在定义域内,只有终边相同的角的三角函数值才相等B.{α|α=kπ,k∈Z}≠{β|β=-kπ,k∈Z}C.若α是第二象限的角,则sin2α<0D.第四象限的角可表示为{α|2kπ+π<α<2kπ,k∈Z}2.若角α的终边过点(-3,-2),则()A.sinαtanα>0B.cosαtanα>0C.sinαcosα>0D.sinαcotα>03.角α的终边上有一点P(a,a),a∈R,且a≠0,则sinα的值是()A.√2/2B.-√2/2C.±√2/2D.1/24.α是第二象限角,其终边上一点P(x,5),且cosα=4x,则sinα的值为()sinα=√(1-cos^2α)=√(1-(16x^2/25))=√((9-16x^2)/25)5.使XXX(cosθ·tanθ)有意义的角θ是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一、二象限角或终边在y轴上6.设角α是第二象限角,且|cos2α|=-cos2α,则角2α是()cos2α<0,所以2α是第二或第三象限角,又|cos2α|=-cos2α,所以cos2α=0,即2α=π/2+kπ,k∈Z,所以2α是第二象限角。
7.点P是角α终边上的一点,且tanα=5/12,则b的值是()tanα=y/x=5/12,所以y=5x/12,又a^2+b^2=x^2+y^2,代入得a^2+b^2=x^2+(25/144)x^2,所以b=√(119/144)x。
8.在△ABC中,若最大的一个角的正弦值是1/2,则△ABC是()最大角的正弦值为1/2,所以最大角为π/6,所以△ABC 是等边三角形。
9.若α是第四象限角,则sin(α+π)是()sin(α+π)=sinαcosπ+cosαsinπ=-sinα10.已知sinα=4/5,且α为第二象限角,那么tanα的值等于()cosα=√(1-sin^2α)=3/5,所以tanα=sinα/cosα=4/3.二、填空题12.已知角α的终边落在直线y=3x上,则sinα=3/√10.因为直线y=3x的斜率为3,所以α的终边与x轴夹角为arctan3,所以sinα=sin(arctan3)=3/√10.13.已知P(-3,y)为角α的终边上一点,且sinα=13/√218,那么y的值等于-9/√218.因为sinα=y/√(x^2+y^2)=13/√218,且终边过点(-3,y),所以x=-3,代入得y=-9/√218.14.已知锐角α终边上一点P(1,3),则α的弧度数为arctan(3/1)。
任意角的三角函数练习题
任意角的三角函数练习题任意角的三角函数练习题三角函数是数学中的重要概念,它们在几何、物理和工程等领域中都有广泛的应用。
对于任意角的三角函数,我们需要熟练地掌握其定义、性质和计算方法。
本文将通过一些练习题来帮助读者巩固对任意角三角函数的理解和应用。
练习题一:求解三角函数值1. 求解sin(π/4)的值。
解析:根据三角函数的定义,sin(π/4)等于直角三角形中斜边与直角边的比值。
而在一个45度的直角三角形中,斜边与直角边的比值为√2/2。
因此,sin(π/4)的值为√2/2。
2. 求解cos(π/3)的值。
解析:根据三角函数的定义,cos(π/3)等于直角三角形中邻边与斜边的比值。
在一个60度的直角三角形中,邻边与斜边的比值为1/2。
因此,cos(π/3)的值为1/2。
3. 求解tan(π/6)的值。
解析:根据三角函数的定义,tan(π/6)等于直角三角形中对边与邻边的比值。
在一个30度的直角三角形中,对边与邻边的比值为1/√3。
因此,tan(π/6)的值为1/√3。
练习题二:求解三角函数的周期性1. 求解sin(π/6)的周期。
解析:根据三角函数的周期性,sin(x)的周期为2π。
因此,sin(π/6)的周期为2π。
2. 求解cos(π/4)的周期。
解析:根据三角函数的周期性,cos(x)的周期为2π。
因此,cos(π/4)的周期为2π。
3. 求解tan(π/3)的周期。
解析:根据三角函数的周期性,tan(x)的周期为π。
因此,tan(π/3)的周期为π。
练习题三:求解三角函数的正负性1. 求解sin(3π/4)的正负性。
解析:根据三角函数的定义,sin(x)在第二象限和第三象限为正值,而在其他象限为负值。
因此,sin(3π/4)为正值。
2. 求解cos(5π/6)的正负性。
解析:根据三角函数的定义,cos(x)在第四象限为正值,而在其他象限为负值。
因此,cos(5π/6)为负值。
3. 求解tan(7π/4)的正负性。
(完整版)三角函数公式练习(答案)
三角函数公式练习题(答案)1.1.( )29sin6π=A .B .C .D 12-12【答案】【解析】C试题分析:由题可知,;2165sin )654sin(629sin ==+=ππππ考点:任意角的三角函数2.已知,,( )10274(sin =-πα257cos2=α=αsin A .B .C .D .5454-53-53【答案】D 【解析】试题分析:由①,7sin()sin cos 45πααα-=⇒-= 2277cos2cos sin 2525ααα=⇒-=所以②,由①②可得 ③,()()7cos sin cos sin 25αααα-+=1cos sin 5αα+=-由①③得, ,故选D3sin 5α=考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式3.( )cos 690= A .B .C .D .2121-2323-【答案】C 【解析】试题分析:由,故选C ()()cos 690cos 236030cos 30cos30=⨯-=-==考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值4.的值为π316tanA. B. C. D.33-3333-【答案】 C 【解析】试题分析tanπ=tan(6π﹣)=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值.5.若,,202παβπ<<<<-1cos()43πα+=cos()42πβ-=cos()2βα+=A .B .C .D .3333-93596-【答案】C.【解析】试题分析:因为,,所以,且202παβπ<<<<-1cos()43πα+=4344παππ<+<;又因为,所以322)4sin(=+απcos(42πβ-=02<<-βπ,且.又因为,所以2244πβππ<-<3624sin(=-βπ24()4(2βπαπβα--+=+)24sin()4sin(24cos()4cos()]24()4cos[(2cos(βπαπβπαπβπαπβα-++-+=--+=+.故应选C .935363223331=⨯+⨯=考点:1、同角三角函数的基本关系;2、两角差的余弦公式.6.若角α的终边在第二象限且经过点(P -,则等于sin αA ..12- D .12【答案】A 【解析】试题分析:由已知,故选A .23sin 2,3,1==⇒=∴=-=r y r y x α考点:三角函数的概念.7.sin70Cos370- sin830Cos530的值为( )A . B . C . D .21-212323-【答案】A 【解析】试题分析:sin70Cos370- sin830Cos530()()3790sin 790cos 37cos 7sin ---=()()2130sin 377sin 37sin 7cos 37cos 7sin -=-=-=-= 考点:三角恒等变换及诱导公式;8.已知,那么=( )53)4cos(=-x πsin 2x (A ) (B ) (C ) (D )25182524±257-257【答案】C 【解析】试题分析:sin2x =cos (-2x )=2cos 2(-x )-1=2×2π4π237(1525-=-考点:二倍角公式,三角函数恒等变形9.已知,那么 ( ) 51sin()25πα+=cos α=A . B . C . D .25-15-1525【答案】C 【解析】试题分析:由=,所以选C .51sin()25πα+=sin()cos 2a a π+=考点:三角函数诱导公式的应用10.已知,则的值为( )31)2sin(=+a πa 2cos A . B . C . D .3131-9797-【答案】D 【解析】试题分析:由已知得,从而,故选D.31cos =α971921cos 22cos 2-=-=-=αα考点:诱导公式及余弦倍角公式.11.已知点()在第三象限,则角在 ( ) P ααcos ,tan αA .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B 【解析】试题分析:由已知得,,故角在第二象限.tan 0,cos 0αα<⎧⎨<⎩α考点:三角函数的符号.12.已知是第四象限角,,则( )α125tan -=α=αsin A . B . C . D .5151-135135-【答案】D 【解析】试题分析:利用切化弦以及求解即可.,1cos sin 22=+αα125cos sin tan -==ααα又是第四象限角,,故,16925sin 1cos sin 222=∴=+αααα135sin ,0sin -=<αα选:D.考点:任意角的三角函数的定义 ωπω2sin ==T x y .13.化简得到( )2cos (4πα--2sin ()4πα-A .α2sin B .α2sin - C .α2cos D .α2cos -【答案】A 【解析】试题分析:απαπαπαπααππα2sin )22cos()4(2cos 4(sin )4(cos )4(sin )4(cos 2222=-=-=---=---考点:三角函数的诱导公式和倍角公式.14.已知,则3cos ,05ααπ=<<tan 4πα⎛⎫+= ⎪⎝⎭A.B. C. D.15171-7-【答案】D 【解析】试题分析:由可知,因此,053cos ,0>=<<απα20πα<<54sin =α,由和角公式可知,故答案34tan =α713411344tan tan 14tantan )4tan(-=⨯-+=⋅-+=+παπαπα为D 。
任意角的三角函数
任意角的三角函数A.基础训练1.设25πα-= ,则ααtan ,sin 的值分别为( ) A .-1;不存在 B.1;不存在 C. -1;0 D.1;02.已知0tan >α,且0cos sin >+αα,那么角α是( )A .第一象限角 B.第二象限 C.第三象限 D.第四象限3.下列各式为正号的是( )A .2sin 2cos - B. 2sin 2cos ∙ C.2cos 2tan ∙ D.2tan 2sin ∙4.设角α属于第二象限,且2cos 2cos αα-=,则2α是第( )象限角 A .一 B.二 C. 三 D. 四B.能力培养5.函数xx x x x x x x y cot cot tan tan cos cos sin sin +++=的值域是 . 6.已知角α的终边上一点P 的坐标为(-),3y ()0≠y ,且y 42sin =α.且ααtan ,cos7.函数xx x y tan cos lg sin +=的定义域为 . 8.若ABC ∆的两内角βα,满足0cos cos <βα,则此三角形为( )A .锐角三角形 B.钝角三角形 C.直角三角形 D.以上情况均有可能C.综合提高9.下列命题:①终边相同的角的同名三角函数值相等;②终边不同的角的同名三角函数值不等;③若,0sin >α则α是第一、二象限角; ④若α是第二象限的角,且),(y x P 是其终边上的一点,则22cos y x x+-=α.其中正确的命题个数是( )A. 1B.2C. 3D.410.求下列函数的定义域: ①x x y tan sin ⋅=; ② 292sin lg x x y -+=;③x x x y tan cos sin +=④x x y sin cos +-=11.若点)3,4(a a P -()0≠a 为角α终边上一点,求αααtan ,cos ,sin .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5.2 任意角的三角函数
班级 姓名 评价
一、归纳基础知识:
1.弧度与角度的换算公式:360o =______rad; πrad=_______;
2.三角函数的定义:设α是一个任意角,点P(x,y)是角α终边
上的任意一点,|OP|=r (r ≠0),则2
2y x r +=
α的正弦sin α=______, α的余弦cos α=______,
α的正切tan α=______.
3.三角函数值的符号:按象限记忆(口诀):_________,_________,_________,_________.
按函数记忆(口诀):_____________,____________,_____________。
4.特殊角的三角函数值:将特殊角0o , 30o ,45o ,60o ,90o ,120o ,135o ,150o ,180o ,270o ,360o 的正弦、余弦、正切值填入下表:
5.同角三角函数的基本关系式:αα2
2cos sin +=__________,
α
cos =_________. 二、举例示范解题: 例1.(2010北京文数)(15)(本小题共13分)
已知函数2()2cos 2sin f x x x =+(Ⅰ)求()3
f π
的值;
例2.(2007北京文、理) 已知0tan cos <⋅θθ,那么角θ是( )
A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 例3.已知角α的终边过点()3,4-P ,则ααcos sin 2+= 。
例4.已知α是第二象限角,且5
sin ,cos 13
αα=
=则( ) (A )
1312 (B )13
12- (C )135 (D )135
-
例5.已知 3tan -=α,则α
αα
α2cos sin cos 2sin +-=________, αααcos 3sin 4sin 2-=_________.
三、巩固挑战高考:
1. (2009北京文)若4
sin ,tan 05
θθ=-
>,则cos θ= . 2. (2001全国理) 若0cos sin >θθ,则θ在( )
(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限
3. (2008全国Ⅱ卷文).若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角
4. 已知角α的终边经过点P(3, -4) ,则sin α=_____ , cos α=______ , tan α=______. 5.“︒=30α”是“2
1
sin =
α”的( )条件。
A 充分不必要 B 必要不充分 C 充要 D 既不充分也不必要
6.已知(
,0)2x p ?,4
cos 5
x =,则tan ___________x =。
7.已知51
cos sin =+αα,则α为第 象限角。
8.已知 54cos sin =+αα ,且
παπ
22
3 ,则=-ααcos sin _______________. 9.已知21tan =α,则α
αcos sin 1
⋅的值是
10.(2007全国Ⅰ理)a 是第四象限角,5
tan ,sin 12
αα=-=则( )
(A )
5
1 (B )5
1-
(C )
13
5 (D )13
5-
11.(2009辽宁卷文)已知tan 2θ=,则22
sin sin cos 2cos θθθθ+-=
(A )4
3
-
(B )
54 (C )34- (D )4
5
12.(2011广东文)已知函数1()2sin()36
f x x π
=-,x ∈R .(1)求(0)f 、。