2020届北京市清华大学高三中学生标准学术能力诊断性测试(11月)数学(理)word版

合集下载

精品解析:北京市清华大学中学生标准学术能力诊断性测试2020年11月测试高三英语试题(解析版)

精品解析:北京市清华大学中学生标准学术能力诊断性测试2020年11月测试高三英语试题(解析版)

中学生标准学术能力诊断性测试2020年11月测试英语试卷第一部分阅读理解(共两节,满分60分)第一节(共15小题;每小题3分,满分45分)阅读下列短文,从每题所给的A、B、C 和D 四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

AAutumn is great for European walking: paths are mud-free, temperatures are mild, crowds are few and beautiful colors abound.The following are four European adventures to walk your way through autumn.The unknown CilentoSouth of Italy’s Amalfi Coast hides a much less discovered wonderland.After stopping to view the marvelous Greek temple remains at Paestum, Sherpa’s next destination concentrates on the Cilento National Park — first following its rugged seashore past the occasional myrtle grove (小树林), and sandy beach, then leaving modernity behind and venturing inland to medieval (中世纪的) hilltop towns.Home-cooked dinners conclude exciting days of goat tracks and ghost villages before a scenic path leads back to the seaside.Four nights £630 half board, including transport, luggage transfers and walking st departure October 31.Turkish delightsFollow an impressive section of Turke y’s expansive Lycian Way, gradually moving from cliffs to coastline.You’ll begin in pine-filled peaks, typically on shaded paths to sea views, and stop at both a pool-boasting upscale hotel and one of the Yanartas region’s ever-burning flames — possibly fueled by a monster below.A fine fish restaurant comes next, then a mile-long sandy beach ahead of two days on lonely Cape Gelidonya, finishing by its lighthouse.Six nights £790, including ten other meals, transport, luggage transfers and walking st departure in early November.Carpathian clambersPoland and Slovakia are separated by the Carpathian Mountains and their large forest-filled valleys.Starting and ending in Krakow, this trip covers both countries.Some days include the option of climbing to snowy peaks or taking easier, lower-altitude options, and you’ll likely meet the Gorals — a culturally-distinct group known as “highlanders”.Most memorable activity will be walking along the 300m-high Dunajec River to spa town Szczawnica.Seven nights £630, including transport, luggage transfers and walking st departure October 24. Flowers and fetaGreece’s Pelion Peninsula is a place known as the “Land of the Centaurs (人首马身的怪物)” for its association with the mythological horse-human hybrids.Between villages of whitewashed, flower-decorated stone houses, walkers can follow old paths onto mountainsides, and wander through olive groves or beside the glittering Aegean Sea.Some days yield swimming opportunities, and others the chance to recharge in a local pub of some bean soup and feta-cheese bread.Seven nights £535, including transport, luggage transfers and walking st departure October 23.1. What can you do when you are in the unknown Cilento?A. Swim in a pool.B. Have a spa.C. Explore medieval towns.D. Walk through olive groves.2. Which destination is your best choice if you intend to travel to Europe after October?A. Turkey.B. Cilento.C. GreeceD. Krakow.3. Which of the following is true according to the passage?A. It is a monster that fuels the fire in Yanartas region.B. Meals are free when you are taking the first adventure.C. You can enjoy a spa from Gorals in the town Szczawnica.D. Bean soup can be served in the pub of Greece’s Pelion Peninsula.【答案】1. C 2. A 3. D【解析】这是一篇应用文。

精品解析:北京市清华大学中学生标准学术能力诊断性测试2020年11月测试高三英语试题(原卷版)

精品解析:北京市清华大学中学生标准学术能力诊断性测试2020年11月测试高三英语试题(原卷版)

中学生标准学术能力诊断性测试2020年11月测试英语试卷第一部分阅读理解(共两节,满分60分)第一节(共15小题;每小题3分,满分45分)阅读下列短文,从每题所给的A、B、C 和D 四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

AAutumn is great for European walking: paths are mud-free, temperatures are mild, crowds are few and beautiful colors abound.The following are four European adventures to walk your way through autumn.The unknown CilentoSouth of Italy’s Amalfi Coast hides a much less discovered wonderland.After stopping to view the marvelous Greek temple remains at Paestum, Sherpa’s next destination concentrates on the Cilento National Park — first following its rugged seashore past the occasional myrtle grove (小树林), and sandy beach, then leaving modernity behind and venturing inland to medieval (中世纪的) hilltop towns.Home-cooked dinners conclude exciting days of goat tracks and ghost villages before a scenic path leads back to the seaside.Four nights £630 half board, including transport, luggage transfers and walking st departure October 31.Turkish delightsFollow an impressive section of Turke y’s expansive Lycian Way, gradually moving from cliffs to coastline.You’ll begin in pine-filled peaks, typically on shaded paths to sea views, and stop at both a pool-boasting upscale hotel and one of the Yanartas region’s ever-burning flames — possibly fueled by a monster below.A fine fish restaurant comes next, then a mile-long sandy beach ahead of two days on lonely Cape Gelidonya, finishing by its lighthouse.Six nights £790, including ten other meals, transport, luggage transfers and walking st departure in early November.Carpathian clambersPoland and Slovakia are separated by the Carpathian Mountains and their large forest-filled valleys.Starting and ending in Krakow, this trip covers both countries.Some days include the option of climbing to snowy peaks or taking easier, lower-altitude options, and you’ll likely meet the Gorals — a culturally-distinct group known as “highlanders”.Most memorable activity will be walking along the 300m-high Dunajec River to spa town Szczawnica.Seven nights £630, including transport, luggage transfers and walking st departure October 24. Flowers and fetaGreece’s Pelion Peninsula is a place known as the “Land of the Centaurs (人首马身的怪物)” for its association with the mythological horse-human hybrids.Between villages of whitewashed, flower-decorated stone houses, walkers can follow old paths onto mountainsides, and wander through olive groves or beside the glittering Aegean Sea.Some days yield swimming opportunities, and others the chance to recharge in a local pub of some bean soup and feta-cheese bread.Seven nights £535, including transport, luggage transfers and walking st departure October 23.1. What can you do when you are in the unknown Cilento?A. Swim in a pool.B. Have a spa.C. Explore medieval towns.D. Walk through olive groves.2. Which destination is your best choice if you intend to travel to Europe after October?A. Turkey.B. Cilento.C. GreeceD. Krakow.3. Which of the following is true according to the passage?A. It is a monster that fuels the fire in Yanartas region.B. Meals are free when you are taking the first adventure.C. You can enjoy a spa from Gorals in the town Szczawnica.D. Bean soup can be served in the pub of Greece’s Pelion Peninsula.B Lou Gehrig (1903-1941) was a baseball player with the New York Yankees for 17 seasons. He was a powerfulhitter known as “The Iron Horse”. Gehrig was a strong, tough and very moral man. His father was often out-of-work because he was an alcoholic and his mother was a maid. His two sisters and only brother died young.As a young boy, Gehrig helped his mother with her work. However, he never let his tough start hold him back. He started playing for the Yankees in 1923 after attending Columbia University, setting many major league records during his career. This included the most consecutive games played (2130 games), a record only broken 56 years later in 1995.Sadly, at the age of 36, he started to tire mid-season and his speed and cooperation ability faded. He resigned. Soon after he was diagnosed with a form of motor neuron disease named amyotrophic lateral sclerosis (ALS). He delivered his farewell-to-baseball speech to his teammates and fans on 4 July of the same year at the Yankee Stadium.After his speech, the crowd stood and clapped for almost two minutes. The New York Times reported that it was“one of the most touching scenes ever witnessed on a ball field”. Gehrig died two years later of the disease. This increased awareness of the disease and its symptoms; in North America it is sti ll commonly known as “Lou Gehrig’s disease”. The Lou Gehrig Memorial Award is given each year to the Major League Baseball player who best exhibits Gehrig’s integrity and character.4. When did Lou Gehrig give his speech?A. in 1903.B. in 1923.C. in 1939.D. in 1940.5. Who are the audience for Lou’s speech?A. His family.B. His friends.C. His opponents.D. His supporters.6. Why is the illness known as “Lou Gehrig’s disease”?A. Lou Gehrig named the disease.B. This disease is related to playing baseball.C. People get to know the disease due to Lou Gehrig.D. The disease had never appeared before Lou Gehrig caught it.7. What word can best describe Lou Gehrig according to the passage?A. Determined and persistent.B. Emotional and patient.C. Wealthy and humorous.D. Gentle and generous.CWe know that the pandemic(流行病)has had a far-reaching impact on our minds — so much so that it may have changed the very fabric of our society altogether. Mental health professionals think that those with social anxiety will not emerge from the pandemic unaffected.Counselling Directory member Beverley Blackman says, “For people with social anxiety, lockdown will make them deeply anxious in one way, and yet a relief in another.” He added, “On one hand, a person with social anxiety may feel relieved that they no longer have to socialize in person, but they may also feel that they have lost the opportunity to socialize with the people they feel safe and secure spending time with, meaning that they feel a new level of isolation and a different level of anxiety about socializing in any form.Without the security of those they feel safe with, self-confidence may very well decrease rapidly.Lockdown may have had a negative impact on those with social anxiety.”Dr Daria J.Kuss, ass ociate professor in psychology at Nottingham Trent University, says: “Following the lockdown, people in this country were allowed to meet up again, which for individuals with social anxiety may have led to stress and worry.They may not be comfortable being expected to be ‘social’ again, especially when in larger groups, and may worry about saying the wrong things and asking the wrong questions as they are reintegrating into their offline social lives.” Furthermore, Beverley says our even bigger reliance on social media and digitalcommunication in the midst of lockdown could also have a negative impact on people with social anxiety.She says “For some people with social anxiety, communication by media can be even harder than communication in person.We know that words form only roughly 7-10% of the way in which we communicate and that we rely on body language, facial expression, tone of voice, and unconscious signals behind words to convey our thoughts and feelings.”When it comes to what people with social anxiety can do to feel better as the lockdown situation continues to shift, Dr.Kuss says “I recommend being open and honest with their social environments. Friends and family will empathize when the concerns are voiced openly.Engaging in focused breathing and relaxation may also help alleviate feelings of worry and discomfort.Finally, negative thinking (e.g., “I don’t know what to say”) may be replaced with positive ones (e.g., “I am good enough” and “My friends want to see me”).”8. Why do people with social anxiety feel relieved during the lockdown?A. There is no one disturbing their life.B. There is no need for them to socialize.C. They have increased their self-confidence.D. People can no longer communicate with each other.9. What does the underlined word mean in the third paragraph?A. Stimulate.B. Relieve.C. Begin.D. Develop.10. What can be the good advice for those with social anxiety during the lockdown?A. Stay at home alone.B. Communicate online.C. Open heart to strangers.D. Take a positive attitude.11. What can we learn from the passage?A. Stay with safe people can bring more confidence.B. Lockdown can help people overcome the feeling of anxiety.C. For people with social anxiety, lockdown is a double-edged sword.D. It is a suitable way for people of social anxiety to communicate by media.DMost of the 500 whales stranded (搁浅)off Tasmania have now died. Dozens more stricken whales have been found in Australia’s largest ever mass stranding.The estimated total now stands at around 500, wi th the majority of that number dead and a tenth rescued by authorities on the Island state of Tasmania. Experts believe all of the animals would have been part of one large group. Officials began working to rescue survivors among an estimated 270 whales found on Monday on a beach and two sandbars near the remote coastal town of Strahan. Then another 200 whaleswere spotted from a helicopter on Wednesday less than 10 kilometres (six miles) to the south.All 200 had been confirmed dead by late afternoon. They were among the 380 whales that have died overall, with estimates from earlier today suggesting that 30 that were alive but stranded and 50 had been rescued since Tuesday, Mr Deka, Wildlife Service manager explained. He added,“We’ll continue to work to free as many of the animals as we can.We’ll continue working as long as there are live animals.”It is not known what caused the animals to run aground. While stranding events are not unheard of, they are very rare in such large numbers. About 30 whales in the original stranding were moved from the sandbars to open ocean on Tuesday, but several got stranded again. About a third of the first group had died by Monday evening.Australia’s largest mass stranding had previously been 320 pilot whales near the Western Australian town of Dunsborough in 1996.This week’s incident is the first involving more than 500 whales in Tasmania since2009.Marine Conservation Programme wildlife biologist Kris Carlyon said the latest mass stranding was the biggest in Australia in terms of numbers stranded and died.Marine scientist Vanessa Pirotta said there were a number of potential reasons why whales might become beached, including navigational errors.She explained, “They do have a very strong social system; these animals are close ly bonded and that’s why we have seen so many in this case unfortunately in this situation.Rescuing them does not always work, because they are wanting to return back to the group, they might hear the sounds that the others are making, or they’re just diso riented and, in this case, extremely stressed, and just probably so exhausted that they in some cases don’t know where they are.” she added.12. What can be inferred from the first paragraph?A. 270 whales were rescued on Monday.B. 380 whales were found dead on Tuesday.C. 500 whales were found stranded and dead.D.200 whales spotted from a helicopter were dead. 13. Why did Kris Carlyon say this event is the biggest in Australia? A. Rescue work is not done in time. B. The number of the death is large. C. The cause of the event is still a mystery. D. There was no other similar event in recent years. 14. Which of the following is Not the cause of the stranding of the whales? A. Navigational errors.B.Overhunting of the human beings.C. Whales’ group living style.D. Whales’ confusion and exhaustion.15. Where does this passage possibly come from? A. A newspaper. B. A magazine. C. A textbook. D. A travel brochure.第二节(共5小题;每小题3分,满分15分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。

中学生标准学术能力诊断性测试 2023 年 11 月测试数学参考答案

中学生标准学术能力诊断性测试 2023 年 11 月测试数学参考答案

中学生标准学术能力诊断性测试2023年11月测试数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对但不全的得2分,有错选的得0分.三、填空题:本题共4小题,每小题5分,共20分.13.1 14.7215 16.35四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分) (1)2sin sin cos c B C b B =,所以由正弦定理得2sin sin sin sin cos C B CB B=, 1cos2B ∴=,得3B π= ············································································ 3分 ()tan tan tan tan 1tan tan A BC A B A B ++=−+=−==−−················5分(2)ABC ∆内切圆的面积为π,所以内切圆半径1r =,由圆的切线性质得3c a b b c a +−=∴=+−=···························· 7分 由余弦定理得222b c a ac =+−,(()222233c a ac a c ac ∴+=+−=+−,将3a c +=+代入,18sin 323ABC ac S ac ∆π∴=+∴== ·············································· 10分(或()1632ABC a b c S r a b c ∆∴++=+∴=⋅⋅++= ······················ 10分) 18.(12分)(1)过D 作AB 的垂线交AB 于H 点,设AC AB a ==,则),2,,12BC BD a HD HB BD AH BH BA a ======−=,AD ==,由题意得,二面角C SA D −−的平面角为CAD ∠, ········································· 2分cos DH CAD DA ∴∠===············································ 4分 (2)分别以AB ,AC ,AS 为x 轴,y 轴,z 轴建立直角坐标系,()()0,0,0,,0,0A B a ∴,()()0,,0,0,0,C a S h ,则()()()(),0,1,0,,1E a h F a h λλλλ−−,SB SC =且,SE SFSE SF SB SCλ==∴= ····················································· 6分 又,SAB SAC BSA CSA ∆∆∴∠=∠,那么SAESAF ∆∆,则AE AF =····························································································· 8分 故SEF ∆与AEF ∆都是等腰三角形,取EF 的中点G ,则SG 与AG 均垂直于EF ,()()111111,,1,,,,,,1222222G a a h SG a a h AG a a h λλλλλλλλλ⎛⎫⎛⎫⎛⎫−=−=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,平面AEF ⊥平面SBC 等价于SG AG ⊥ ················· 10分 ()22221044a a SG AG h h h λλλ∴⋅=+−−=,又260,,3SCB a h λ∠=︒∴=∴=························ 12分 19.(12分) (1)()1122,222n n n n a a a a ++=+∴−=−,即()11222n n aa +−=−,{}2n a ∴−是公比为12的等比数列 ······························································· 2分 111123,2322n n n n a a −−⎛⎫⎛⎫−=⋅∴=+⋅ ⎪⎪⎝⎭⎝⎭····················································· 4分(2)211211112312612222n n n n S a a a n n −⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++=+++++=+−⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦············································································································· 6分111266,266222023nnn n S n S n ⎛⎫⎛⎫∴−−=−⋅−−=⋅<⎪ ⎪⎝⎭⎝⎭, 即126069,n n −>∴取最小值14 ·································································· 8分 (3)()11212,133n n n n n C C n C nλ−++⎛⎫==< ⎪⎝⎭,得2n >, 即1n n C C +<,有345C C C >>,又1234,3C C C λλ===, 故{}n C 中最大项为23,C C ······································································· 10分 又{}m b 中最小值为()()2min max 7,3m n b C λ∴−>,即24733λλ−>, ()()3710λλ∴−⋅+>,又70,3λλ>∴>················································· 12分 20.(12分)(1)由题意可知:X 的所有可能取值为2.3,0.8,0.5,()1342.30.3245P X ==⋅⋅= ······································································ 1分 0.8X =包含的可能为“高低高”“低高高”“低低高”, ()1141341140.80.5245245245P X ==⋅⋅+⋅⋅+⋅⋅= ·········································· 2分 ()0.510.30.50.2P X ==−−= ··································································· 3分X 的分布列为:·············································································································· 4分 数学期望() 1.19E X = ················································································ 5分 (2)设升级后一件产品的利润为Y ,Y 的所有可能取值为2.3,0.8,0.5a a a −−− ····················································· 6分()36142.3245103P Y a b b ⎛⎫=−=+⋅⋅= ⎪⎭+⎝························································· 7分()1341141140.82452452450561P Y a b b b b⎛⎫⎛⎫⎛⎫=−=−⋅⋅++⋅⋅+−⋅⋅= ⎪ ⎪ ⎪⎝⎭−⎝⎭⎝⎭············· 8分()635610.5110105b b P Y a +−=−=−−= ························································ 9分 ()()()()()635612.30.80.5 1.190.910105b b E Y a a a b a +−=−⋅+−⋅+−⋅=+⋅− ············································································································ 11分()()0.90E Y E X b a >⇒⋅−>,即:[]()1100,0.429a b a >>∈(备注:12不写出不扣分) ······························· 12分 21.(12分)(1)11AB AF BF ++=2211AF BF AF BF +++=,又12122,4AF AF BF BF a a a +=+=∴=∴=······························· 2分又e =,1,12c c b a =∴=∴=, 故椭圆E 的方程是2212x y += ······································································ 4分 (2)依题意知直线BC 的斜率存在,设直线:BC y kx m =+,代入2212x y +=,得()2212x kx m ++=,即22212102k x kmx m ⎛⎫+++−=⎪⎝⎭①,()()22222124122402km k m m k ⎛⎫=−+−=−++> ⎪⎝⎭,即22210k m −+> ②,设()()1122,,,B x y C x y ,则()22,A x y −,122212km x x k −+=+ ③,2122112m x x k −=+ ④ ····················································· 6分2,,A F B 三点共线,()21,0F ,直线AB 不与坐标轴垂直,()()()()12211212,1111y y x kx m x kx m x x −∴=∴−+=−−+−−, ()()121212220kx x m x x k x x m ∴++−+−=,()222222212220111222k m km k m m k k k −∴−+−=+++,2222222220km k km k m m k m ∴−−+−−=,2,m k ∴=−∴直线():2BC y k x =−, 由②得:22212410,2kk k −+>∴<,12BC x =−,点()11,0F −到直线:20BC kx y k −−=的距离d =,1121322F BC S BC d k x x ∆∴==− ································································· 8分12x x −====,)10F BC S k ∆∴=≠,设2211k t +=>,则212t k−=,1F BC S ∆∴====·································································· 10分 所以当134t =时,即22441,21,336t k k =+==(符合题意),1F BC S ∆的最大值为4,所以当6k =±时,1F BC ∆的面积取最大值为4············································································································ 12分22.(12分) (1)定义域为()(),11,−∞−+∞,由题意知()()2ln 1x x x ax −−=,则()()1ln 1x x a −−=有三个不同的实数根,当1x >时,令()()()1ln 1g x x x =−−,()()()ln 11,g x x g x ∴'=−+∴'在()1,x ∈+∞上单调递增,又110e g ⎛⎫'+= ⎪⎝⎭,()g x ∴在11,1e x ⎛⎫∈+ ⎪⎝⎭上单调递减,在11,e x ⎛⎫∈++∞ ⎪⎝⎭上单调递增,()111e e g x g ⎛⎫∴≥+=− ⎪⎝⎭·············································································· 2分当1x <−时,令()()()1ln 1h x x x =−−−,()()()()()221123ln 1,1111x x h x x h x x x x x −+∴'=−−+''=+=++++, 又()30h ''−=,()h x ∴'在(),3−∞−上单调递减,在()3,1−−上单调递增,()()32ln 20h x h ∴'≥'−=+>,()h x ∴在(),1−∞−上单调递增 ····································································· 5分又()20h −=,当1x −→−时,()h x →+∞,当x →−∞时,()h x →−∞, 当1x +→时,()0g x −→,当x →+∞时,()g x →+∞,10ea ∴−<< ··························································································· 6分 (2)由已知可知()()1ln1ax x x−−=有3个零点123,,x x x , 不妨设123x x x <<,显然121x −<<−,由(1)中函数()g x 性质且11e 11e 11e ea −>>−++, 231112ex x ∴<<+<<,只需证2322e x x +>+,即3222ex x >+− ···················································· 8分 又()()()222222122211ln 11ln 10e e e g x g x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+−−=+−+−−−−< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,上面不等式证明如下: 令()()()2211ln 11ln 1,1,1e e e x x x x x x ϕ⎛⎫⎛⎫⎛⎫=+−+−−−−∈+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()21ln 1ln 12,1,1e e x x x x ϕ⎛⎫⎛⎫'=−+−−−−∈+ ⎪ ⎪⎝⎭⎝⎭()2ln 1120e x x ⎡⎤⎛⎫=+−−−> ⎪⎢⎥⎝⎭⎣⎦,()x ϕ∴在11,1e x ⎛⎫∈+ ⎪⎝⎭上单调递增,()110e x ϕϕ⎛⎫∴<+= ⎪⎝⎭··········································································· 10分又221211,21e e ex x −>−−+−>+,()22121e g x g x ⎛⎫⎛⎫∴+−< ⎪ ⎪⎝⎭⎝⎭,又显然有()()23g x g x <,23121e x x ⎛⎫∴+−< ⎪⎝⎭,2322ex x ∴+>+, 1232ex x x ∴++> ·················································································· 12分。

北京市清华大学2019-2020学年高三上学期11月中学生标准学术能力诊断性测试物理试题及答案解析

北京市清华大学2019-2020学年高三上学期11月中学生标准学术能力诊断性测试物理试题及答案解析

北京市清华大学2019-2020学年高三上学期11月中学生标准学术能力诊断性测试物理试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上。

第I 卷(选择题)一、单选题1.如图所示,ABC 是半径为R 的半圆弧,AC 是水平直径,半圆弧与地面相切于B 点,从A 点水平向右抛出一个可视为质点的小球,小球运动的轨迹与圆弧相交于D 点,C 、D 间的距离正好等于圆弧半径R ,重力加速度g =10m/s 2,不计空气阻力,则小球抛出时的初速度大小为( ) A.2m/s B .3m/sC .4m/sD .5m/s2.如图所示,在地面上固定的两根竖直杆a 、b 之间搭建两个斜面1、2,己知斜面1与a 杆的夹角为60,斜面2与a 杆的夹角为30.现将一小物块先后从斜面1、2的顶端(a 杆处)由静止释放,两次到达斜面底端(b 杆处)所用时间相等,若小物块与斜面1、2之间的动摩擦因数分别为µ1和µ2,则12μμ等于( ) A .2B .3C .12D .133.北京时间2019年4月10日21时,天文学家召开全球新闻发布会,宣布首次直接拍摄到黑洞的照片,如图所示.黑洞是宇宙空间内存在的一种密度极大,体积极小的天体,它的引力很大,连光都无法逃脱.若某黑洞表面的物体速度达到光速c 时.恰好围绕其表面做匀速圆周运动,己知该黑洞的半径为R ,引力常量为G ,则可推测这个黑洞的密度为( )A .2234c GR πB .2243c GR πC .34cRGπ D .43cRGπ4.如图所示电路中,电源内阻及线圈L 1的电阻均不计,当滑动变阻器的滑片自左端匀速向右滑动时,用丝线悬挂的闭合金属环的运动状态可能为( ) A .保持静止B .向左摆动C .向右摆动D .有向下运动趋势5.有一回旋加速器,两个D 形盒的半径为R ,两D 形盒之间的高频电压为U ,偏转磁场的磁感应强度为B .如果一个α粒子和一个氖核(31H ).都从加速器的中心开始被加速,则它们从D 形盒飞出的速度之比31αHv v 为( )ABC .32D .23二、多选题6.以下说法正确的是( )A .不同原子核的比结合能不同,某种原子核的结合能越大,该种原子核越稳定B .α射线、β射线、γ射线,都是由放射性元素的同一种原子核自发放出的C .半衰期由原子核内部因素决定,跟原子所处物理状态无关,与原子所处化学状态也无关D .入射光子的能量大于∞与基态之间能级差时,氢原子核外电子吸收该光子之后会挣脱氢原子核的束缚7.带正电的空心金属球壳置于绝缘座上,五个原不带电的金属球如图放置,用细轻金属杆将A 球与B 球相连,C 球与大地用导线相连,DE 两球用导线相连,且E 球置于空心金属球壳内并与其内壁紧紧贴在一起,当系统达到静电平衡时,下列说法正确的是()A.A球带正电,B球带负电,A球电势等于B球电势B.C球与大地相连,所以不带电C.D球带正电,E球不带电D.E球与D球用导线相连,二者均带电8.如图所示,粗糙的水平面上有一根右端固定的轻弹簧,其左端自由伸长到b点,质量为2kg的滑块从a点以初速度v0=6m/s开始向右运动,与此同时,在滑块上施加一个大小为20N,与水平方向夹角为53的恒力F,滑块将弹簧压缩至c点时,速度减小为零,然后滑块被反弹至d点时,速度再次为零,己知ab间的距离是2m,d是ab的中点,bc间的距离为0.5m,g取10m/s2,sin530.8cos530.6,,则下列说法中正确的==是()A.滑块运动至b点时,一接触弹簧就开始减速B.滑块从c点被反弹至d点的过程中因摩擦产生的热量为36JC.滑块与水平面间的摩擦因数为0.3D.弹簧的最大弹性势能为36J第II卷(非选择题)三、实验题9.某同学设计了如图甲所示的实验装置,来测量当地的重力加速度.质量未知的小钢球用一根不可伸长的细线与力传感器相连.力传感器能显示出细线上张力的大小,光电门安装在力传感器的正下方,调整光电门的位置,使小钢球通过光电门时,光电门的激光束正对小球的球心。

北京市清华大学2020届高三数学上学期11月中学生标准学术能力诊断性测试试题(二卷)理(含解析)

北京市清华大学2020届高三数学上学期11月中学生标准学术能力诊断性测试试题(二卷)理(含解析)

北京市清华大学2020届高三数学上学期11月中学生标准学术能力诊断性测试试题(二卷)理(含解析)本试卷共150分,考试时间120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,1,3,5,7,9U =-,{}1,5A =,{}1,5,7B =-,则()U C A B =U ( ) A. {}3,9B. {}1,5,7C. {}1,1,3,9-D.{}1,1,3,7,9-【答案】A 【解析】 【分析】根据集合并集的定义求出A B U ,根据集体补集的定义求出()U C A B U . 【详解】因为{}1,5A =,{}1,5,7B =-,所以{}=1,1,5,7A B ⋃-,又因为集合{}1,1,3,5,7,9U =-,所以{}3(),9U C A B =U ,故本题选A.【点睛】本题考查了集合的并集、补集运算,掌握集合的并集、补集的定义是解题的关键. 2.已知空间三条直线,,l m n ,若l 与m 异面,且l 与n 异面,则( ) A. m 与n 异面 B. m 与n 相交C. m 与n 平行D. m 与n 异面、相交、平行均有可能【答案】D 【解析】 【分析】根据题意作出图形,进行判断即可.【详解】解:空间三条直线l 、m 、n .若l 与m 异面,且l 与n 异面, 则可能平行(图1),也可能相交(图2),也m 与n 可能异面(如图3),故选D .【点睛】本题考查空间直线的位置关系,着重考查学生的理解与转化能力,考查数形结合思想,属于基础题.3.复数z 满足|||3|z i z i -=+,则||z ( ) A. 恒等于1B. 最大值为1,无最小值C. 最小值为1,无最大值D. 无最大值,也无最小值【答案】C 【解析】 【分析】设复数z x yi =+,其中x ,y R ∈,由题意求出1y =-,再计算||z 的值. 【详解】解:设复数z x yi =+,其中x ,y R ∈, 由|||3|z i z i -=+,得|(1)||(3)|x y i x y i +-=++,2222(1)(3)x y x y ∴+-=++, 解得1y =-;222||11z x y x ∴=++…,即||z 有最小值为1,没有最大值. 故选:C .【点睛】本题考查了复数的概念与应用问题,是基础题.4.某几何体的三视图如图所示(单位:cm ) ,则该几何体的表面积(单位:cm 2)是( )A. 16B. 32C. 44D. 64 【答案】B【解析】【分析】由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,PA⊥底面ABC.然后由直角三角形面积公式求解.【详解】解:由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,PA⊥底面ABC.⊥.则BC PC∴该几何体的表面积1(34543445)32S=⨯+⨯+⨯+⨯=.2故选:B.【点睛】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.5.已知0x y +>,则“0x >”是“||2222yx x y +>+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】 【分析】首先判断由0x >,能不能推出||2222yx x y +>+,而后再看由||2222yx x y +>+,能不能推出0x >,然后通过充分性、必要性的定义得出答案.【详解】由不等式||2222yx x y +>+,可以构造一个函数:2()2tf t t =+,可以判断该函数为偶函数且0t >时,函数单调递增.当0x >时,而0x y +>,这时y 可以为负数、正数、零,因此,x y 的大小关系不确定,因此由“0x >”不一定能推出“||2222yx x y +>+”.当||2222yx x y +>+成立时,利用偶函数的性质,可以得到:22()()0x y x y x y x y >⇒>⇒+->,而0x y +>,因此有0x y ->,所以有x y >-且x y >,如果0x ≤,则有0y <,所以0x y +<,这与0x y +>矛盾,故0x >,故本题选B.【点睛】本题考查了必要不充分条件的判断,构造函数,利用函数的性质和不等式的性质是解题的关键.6.函数y =ln |x |·cos (2π-2x )的图像可能是( ) A. B.C. D.【答案】D 【解析】 【分析】根据函数的奇偶性,和特殊值,可判断。

中学生标准学术能力诊断性测试2020年11月高三理科综合试卷 (word)

中学生标准学术能力诊断性测试2020年11月高三理科综合试卷 (word)

中学生标准学术能力诊断性测试 2020 年 11 月测试理科综合试卷(一卷)本试卷共 300 分,考试时间 150 分钟。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 Fe 56Co 59一、选择题:本题共 13 小题,每小题 6 分,共 78 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列叙述中可以正确区分出自养生物和异养生物的是A.只有异养生物需要环境中的化合物B.细胞呼吸为异养生物所特有的代谢C.只有异养生物的细胞中含有线粒体D.只有自养生物能依靠无机养分生活2.下列关于氨基酸和蛋白质的叙述错误的是A.蛋白质功能的不同可能取决于氨基酸的种类、数目和排序不同B.改变蛋白质的一个氨基酸可能改变整个蛋白质的空间结构C.氨基酸仅通过脱水缩合的方式就可以形成具有生物学功能的蛋白质D.脊椎动物中血红蛋白一条多肽链的氨基酸差异越小,亲缘关系越近3.同一个生物体内的细胞存在着形态、结构和功能上的差异,但所有体细胞的细胞核中的遗传物质都是相同的,其原因是A.细胞是生命活动的基本单位,细胞核是细胞生命活动的控制中心B.细胞核是遗传信息库,具有控制细胞代谢和遗传的功能C.经过有丝分裂将复制完的 DNA 精确均分的结果D.DNA 主要存在于细胞核内,细胞核是遗传物质贮存和复制的场所4.将 T2噬菌体感染大肠杆菌后立即合成的 RNA 分离出来,分别与 T2噬菌体和大肠杆菌的 DNA 进行分子杂交,结果发现这种 RNA 只能与 T2的 DNA 杂交形成杂种链,而不能和大肠杆菌的 DNA 杂交,下列说法错误的是A.分子杂交依据碱基互补配对原则B.新合成的 RNA 是以 T2噬菌体的 DNA 为模板合成的C.大肠杆菌被感染后,其自身的 RNA 合成停止D.新合成的 RNA 可以作为大肠杆菌合成自身蛋白质的模板5.多巴胺是脑神经细胞分泌的一种神经递质,使人产生兴奋愉悦的情绪,多巴胺发挥作用后由转运载体运回突触前神经元。

清华大学2020届中学生标准学术能力诊断性测试(11月)理综试题及答案

清华大学2020届中学生标准学术能力诊断性测试(11月)理综试题及答案

中学生标准学术能力诊断性测试2019 年11 月测试理科综合试卷(一卷) 可能用到的相对原子质量:H1 O16 Fe56 Cu64 S32 一、选择题:本题共13 小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 美国免疫学家詹姆斯·艾利森和日本免疫学家本庶佑因发现了用于治疗癌症的免疫调节抑制策略而获得了2018 年诺贝尔生理学或医学奖。

他们发现在T 细胞表面有CTLA -4 蛋白,在识别目标并接受启动信号时,使T 细胞活性降低,起到免疫刹车作用,从而减弱对癌细胞的攻击,以下理解错误的是A. CTLA -4的形成需要T 细胞内的核糖体、内质网、高尔基体参与B. 同一个体中的癌细胞与T 细胞的核基因是不同的C. 可通过注射CTLA -4 抗体的方式,使癌细胞逃脱免疫系统的监控D. 癌细胞被攻击清除主要依靠细胞免疫产生的效应T 细胞,此过程属于细胞凋亡2. 最新研究发现,“细胞外烟酰胺磷酸核糖转移酶” (eNAMPT ,蛋白质类)不仅能延长小鼠的寿命,还逆转了老鼠身体机能的衰老,这一研究可让人的“返老还童”成为可能。

有关酶的说法错误的是A. eNAMPT 可与双缩脲试剂反应产生紫色络合物,高温变性后仍能与该试剂变色B. eNAMPT 可降低反应的活化能,可在最适温度和最适pH 条件下保存C. eNAMPT 由基因控制合成,影响代谢进而控制生物的性状D. eNAMPT 的催化具有高效性和专一性,其作用的发挥离不开特定的空间结构3. 细胞信号转导是指细胞通过受体感受信息分子的刺激,经胞内信号转导系统转换,从而影响细胞生物学功能的过程。

下图表示两种细胞信号转导形式,有关叙述错误的是A. 甲图的激素可以表示性激素,以自由扩散的方式穿膜,与细胞膜的基本支架有关B. 甲图可说明信息分子可影响基因表达过程,②③的碱基互补配对方式不同C. 甲图中的 d 基本骨架为独特的双螺旋结构, e 为mRNA 可作为翻译的模板D. 乙图可以反应细胞膜具有细胞间的信息交流的功能,图中的受体化学本质为糖蛋白4. 下表为适宜浓度的α-萘乙酸(NAA) 和赤霉素(GA 3)溶液对燕麦胚芽鞘生长的影响,据表分析,下列说法错误的是A. 该实验的自变量为溶液种类不同,表中“?”处理方式为清水处理B. 若实验用的NAA 浓度为m,则改用低于m 浓度的NAA 时,胚芽鞘长度不一定减少C. NAA 与GA3 可调节植物基因表达,二者混合使用具有协同作用D. NAA 与GA3 是由植物产生,由产生部位运输到作用部位且具有微量而高效的特点5. 将果蝇的一个精原细胞放在3H 标记的胸腺嘧啶脱氧核酸的培养液中培养完成减数分裂产生精子。

2020届北京市清华大学高三中学生标准学术能力诊断性测试(11月)物理试卷及答案

2020届北京市清华大学高三中学生标准学术能力诊断性测试(11月)物理试卷及答案

2020届清华大学高三中学生标准学术能力诊断性测试(11月)物理试卷★祝考试顺利★本试卷共300分,考试时间150分钟。

二、选择题:本题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

14.如右图所示,ABC是半径为R的半圆弧,AC是水平直径,半圆弧与地面相切于B点,从A点水平向右抛出一个可视为质点的小球,小球运动的轨迹与圆弧相交于D点,C、D间的距离正好等于圆弧半径R,重力加速度g=10m/s2,不计空气阻力,则小球抛出时的初速度大小为A.2m/sB.3m/sC.4m/sD.5m/s15.如右图所示,在地面上固定的两根竖直杆a、b之间搭建两个斜面1、2,己知斜面1与a杆的夹角为600,斜面2与a杆的夹角为300。

现将一小物块先后从斜面1、2的顶端(a杆处)由静止释放,两次到达斜面底端(b杆处)所用时间相等,若小物块与斜面1、2之间的动摩擦因数分别为µ1和µ2,则12µµ等于1 2 D.1316.北京时间2019年4月10日21时,天文学家召开全球新闻发布会,宣布首次直接拍摄到黑洞的照片,如图所示。

黑洞是宇宙空间内存在的一种密度极大,体积极小的天体,它的引力很大,连光都无法逃脱。

若某黑洞表面的物体速度达到光速c 时。

恰好围绕其表面做匀速圆周运动,己知该黑洞的半径为R ,引力常量为G ,则可推测这个黑洞的密度为A.2234c GR πB.2243c GR πC.34cR G πD.43cR Gπ 17.如图所示电路中,电源内阻及线圈L 1的电阻均不计,当滑动变阻器的滑片自左端匀速向右滑动时,用丝线悬挂的闭合金属环的运动状态可能为A.保持静止B.向左摆动C.向右摆动D.有向下运动趋势18.有一回旋加速器,两个D 形盒的半径为R ,两D 形盒之间的高频电压为u ,偏转磁场的磁感应强度为B 。

中学生标准学术能力诊断测试(THUSSAT)2020年11月诊断性测试理科数学(一)卷试卷

中学生标准学术能力诊断测试(THUSSAT)2020年11月诊断性测试理科数学(一)卷试卷

第 1 页 共 4 页第 2 页 共 4 页222中学生标准学术能力诊断性测试 2020 年 11 月测试理科数学(一)卷本试卷共 150 分,考试时间 120 分钟。

一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合 A = {1, 2, 3, 4},B = {2, 4, 6},U = {1, 2, 3, 4, 5, 6} ,则 (C U A) (C U B ) =8. 已知 0 < a < 1,随机变量ξ 的分布列如下,当a 增大时 3ξ1 0 1Pa1a 23 3A. E (ξ ) 增大, D (ξ ) 增大B. E (ξ ) 减小, D (ξ ) 增大C. E (ξ ) 增大, D (ξ ) 减小D. E (ξ ) 减小, D (ξ ) 减小A. {5}B. {1, 3, 5, 6}C. {1, 3, 5}D. {2, 4, 6}9. 已知实数 x , y 满足 2x > y > 0 ,且 1 + 1= 1 ,则 x + y 的最小值为12. 已知双曲线的渐近线方程为 y =± 2x ,则其对应的双曲线方程不可能为A.3 + 2 3 5 2x y x + 2 yB. 4 + 2 3 5C. 2 + 4 3 5D.3 +4 35A. x y 2 = 1 4B. y 2x = 14C. x 2y = 14D. x 2 4 y 2 = 610. 已知点 P 是矩形 ABCD 所在平面外一点,且满足 PC = PD ,平面 PAD 平面 PBC = l ,设直线 CP 与直线 DP 所成角的大小为α ,直线 CP 与平面 PAD 所成角的大小为β ,二面角 A l B3. 设复数 z 满足方程 z ⋅ z + z ⋅ z = 4 ,其中 z 为复数z 的共轭复数,若 z 的实部为 2 ,则 z 为A.1B. 2C. 2D. 44. 已知函数 f (x ) 的局部图象如图所示,则 f (x ) 的解析式可以是的大小为γ ,则下列判断正确的是A. α ≥ β ≥ γC. α ≥ γ ≥ βB. γ ≥ α ≥ βD. β ≥ α ≥ γ(第 10 题图)1 A. f (x ) = e x⋅ s inπ x2 C. f (x ) = ln x ⋅ s inπ x 21 B. f (x ) = e x⋅ cos πx 2D. f (x ) = ln x ⋅ cosπ x2(第 4 题图)11. 已知函数 f (x ) = e x + ln x ax b ,则下列说法正确的是A.存在a ,b ∈ R ,函数 f (x ) 没有零点B.任意 b ∈ R ,存在 a > 0 ,函数 f (x ) 恰有1 个零点 5. (2x 3x )6的展开式中, x 4的系数是C.任意 a > 0 ,存在 b ∈ R ,函数 f (x ) 恰有 2 个零点 A. 20 B. 20 C.160D. 1606. 从 1~9 这 9 个数字中,选取 4 个数字,组成含有 1 对重复数字的五位数的种数有A. 30240B. 60480C.15120D. 630D.任意 b ∈ R ,存在 a > 0 ,函数 f (x ) 恰有3 个零点 112. 已知 a 1 , a 2 , a 3 , a 4 成等比数列,且 a + a + a + a = (a + a + a )2 ,若 a > 1 ,则 7.“x > 1”是“ln x > x ”的 x1 2 3 4 1 2 31 A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A. a 1 < a 3 , a 2 < a 4B. a 1 > a 3 , a 2 < a 4C. a 1 < a 3 , a 2 > a 4D. a 1 > a 3 , a 2 > a 4。

THUSSAT2020年11月诊断性测试理科数学(一)卷参考答案

THUSSAT2020年11月诊断性测试理科数学(一)卷参考答案

中学生标准学术能力测试诊断性测试2020年11月测试理科数学(一)卷答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本题共4小题,每小题5分,共20分. 14. [][)4,0,e −+∞15. 3 16.23 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.解:(1)()433cos sin +⎪⎭⎫⎝⎛+⋅=πx x x f =43sin 23cos 21sin +⎪⎪⎭⎫ ⎝⎛−x x x ……2分 =43sin 232sin 412+−x x =43432cos 432sin 41+−+x x =⎪⎭⎫⎝⎛+32sin 21πx ……4分 当⎥⎦⎤⎢⎣⎡∈2,0πx 时,⎥⎦⎤⎢⎣⎡∈+34,332πππx , ⎥⎦⎤⎢⎣⎡−∈⎪⎭⎫ ⎝⎛+1,2332sin πx ,()⎥⎦⎤⎢⎣⎡−∈21,43x f .()x f ∴的值域是⎥⎦⎤⎢⎣⎡−21,43.……6分(2)2132sin 214=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛πA A f , ⎪⎭⎫⎝⎛∈2,0πA ,可得3π=A ……8分设x DC =,则x AD 3=,x BD 7=,由余弦定理,()()21232723cos 222=⨯⨯−+=x xx A ,解得1=x 或2=x .……10分又11sin 2422ABC S AB AC A x ∆=⋅⋅=⨯⨯=, ∴ABC ∆的面积为32或34.……12分 18.解:(1)当1=n 时,11=a .当2≥n 时,()()12213211321+⋅−=−+⋅⋅⋅+++−−n n n a n a a a ①,……2分由()12132321+⋅−=+⋅⋅⋅+++nn n na a a a ②,②-①可得:12−⋅=n n n na ,()221≥=−n a n n ,……4分1201==a ,符合12−=n n a . 综上,12−=n n a .……5分(2)()2-111212222112n n n n S ⋅−=++++==−−……7分则⎪⎭⎫⎝⎛−+=−=−1211211221n n n n n S a ,当1≥n 时,有1212−≥−n n 成立, 所以有⎪⎭⎫ ⎝⎛+≤−121121n n n S a 1122n =+……10分 从而21-121-1212212121222211⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⋅⋅⋅+++≤+⋅⋅⋅++n n n n n n S a S a S a111222nn n ⎛⎫=+−≤+ ⎪⎝⎭,所以,122211+≤+⋅⋅⋅++n S a S a S a n n ,即证.……12分19.解:(1)连接DB ,在ABD ∆中,3cos 2222=∠⋅−+=DAB AB AD AB AD BD , 则3=BD .所以,222AB BD AD =+,即 2π=∠ADB ,DB AD ⊥.……2分又因为平面ABCD ⊥平面ABE ,平面ABCD 平面ABE AB =,且AB EB ⊥,所以⊥EB 平面ABCD .……3分因为⊂AD 平面ABCD ,所以AD EB ⊥.……4分由DB AD ⊥,AD EB ⊥,B EB DB = ,且⊂BE DB ,平面DBE , 所以有⊥AD 平面DBE ……5分因为⊂DE 平面DBE ,所以DE AD ⊥,又因为BC AD //,所以DE BC ⊥.…6分 (2)解法一:过C 点作CG AB ⊥交AB 的延长线于G ,连接EG ,//,,33AD BC DAB CBG ππ∠=∴∠=,由90CGB ∠=,可得:31sin 6023,cos 6021,22CG BC BG BC =⋅=⨯==⋅=⨯=901=∠=EBG ,BE ,EG ∴=平面ABCD ⊥平面ABE , 面ABCD 面ABE =AB , AB CG ⊥,∴CG ABE ⊥面,又EG ⊂平面ABE ,CG EG ∴⊥22290,5CGE CE CG GE ∴∠=∴=+=5=∴CE ,由(1)可知,DE AD ⊥,4222=−=∴AD AE DE ,即2=DE ,由(1)可知,⊥AD 平面DBE ,所以AD BD ⊥,BD ∴=BC AD // , BC BD ∴⊥2227,CD BD BC ∴=+=即7=CD ,可知:222cos 2DC CE DE DCE DC CE +−∠===⋅, 351935161sin =−=∠DCE , 21935195721sin 21=⨯⨯⨯=∠⨯⨯⨯=∆DCE CE DC S DCE .……9分 3312323131C =⨯⨯⨯=⨯⋅=∆−BE S V D B BCD E 由等体积:CDE B BCD E V V −−=,所以,=33,代入:h ⋅⋅=2193133, 解得1932=h ,设直线BC 与平面DCE 所成角为θ,则sin 19h BC θ===.……12分解法二:以B 为原点,分别以BE BA ,所在直线为y x ,轴,过B 作垂线为z 轴,建立空间直角坐标系B xyz −.过点C 作CG AB ⊥交AB 的延长线于点G ,过点D 作DF AB ⊥交AB 于点F ,//BC,3AD CBG DAB π∴∠=∠=,又1,2AD BC ==,sin1sin 2323DF CG ππ∴=⨯==⨯=,1cos 1,cos 21323AF BG ππ=⨯==⨯=,h S CDE ⨯⋅∆31又132,2,22AB BF AB AF =∴=−=−=(3,,0,,22C D ⎛⎫∴− ⎪ ⎪⎝⎭又()()()2,0,0,0,0,0,0,1,0A B E .()(531,1,3,,0,,22EC DC BC ⎛⎫∴=−−=−=− ⎪ ⎪⎝⎭.……8分设平面DCE 的法向量为()z y x ,,=,由,00⎪⎩⎪⎨⎧=⋅=⋅n EC 有⎪⎩⎪⎨⎧=+−=+−−0232503z x z y x ,令3=z , 则⎪⎭⎫⎝⎛=3,512,53n ……10分设直线BC 与平面DCE 所成角为θ,则sin cos =192n BC θn,BC n BC⋅===⋅⨯,即直线BC 与平面DCE 所成角的正弦值为1957.……12分 20.解:(1)由已知可知直线AB 的斜率必存在,设直线AB 的斜率为k (0k ≠),抛物线x y 42=的焦点()0,1F ,则()1−=x k :y l AB与抛物线相联立,()()0421422222=++−⇒⎩⎨⎧−==k x k x k x k y x y设()()2211,,,y x B y x A ,则⎪⎩⎪⎨⎧=⋅+=+142212221x x k k x x221442kx x AB +=++=……2分, 同理,244CD k =+,则四边形ACBD 的面积为()(),32228128141142121S 2222=+≥⎪⎭⎫ ⎝⎛++=+⋅⎪⎭⎫ ⎝⎛+⋅=⋅=k k k k CD AB 当且仅当1±=k 时,四边形ACBD 的面积的最小值为32……4分 (2)设点()()()()()()()()02,,02,,02,,02,4424332322221121<><>t t t D t t t C t t t B t t t A ,则43212,2t t k t t k CD AB +=+=.,考虑到点()B F A ,0,1,共线,则12221121−=+⇒=t tt t k k AF AB ,从而121−=t t ……6分 同理143−=t t .由于CD AB ⊥,从而,1224321−=+⋅+=⋅t t t t k k CD AB 故()().44321−=++t t t t 由于直线()12:43−+=x t t y CD ,则点⎪⎪⎭⎫ ⎝⎛+−−434,1t t N ,由于.42143t t t t +=+− 故()21,1t t N +−.……8分由于()12111212121211111112t t t t t t t t t t t k AN=++=+−=++−=,从而直线AN 的方程为()121121t t x t y +−=,即111y x t t =+,从而点Q 的横坐标为21t x Q −=. 由此211t FQ +=.又()1211121122222t t t t t t y y B A +=+=−=−,从而()()()222211111121111022AQB A B t t t S FQ y y t t t ∆+++=⋅−=⨯=>.……10分12211−=t t k AF由于()113112141122112121t t t t t t t t S ΔAQB++=++=+=,令()1131112t t t t f ++=,则()()()21212121214121211'113123123t t t t t t t t t f +−=−+=−+=, 可知()1t f 在⎪⎪⎭⎫⎝⎛+∞,33上单调递增,在⎪⎪⎭⎫⎝⎛330,上单调递减, 所以,当且仅当331=t 时,AQB ∆面积的最小值为9316……12分 21.解: (1)设()()()112ln 12ln 111>+−+=+−+−−=−x x x e x x x x f x h x()211'−+=∴−x e x h x ,()21''1x e x h x −=∴−1>x 110,121<<>∴−x e x ()0121''>−=∴−xe x h x ……2分 ()x h '∴在()+∞,1上单调递增,又()01'=h 1>∴x 时,()x h '()01'=>h ……4分()12ln 1+−+=−x x e x h x 在()+∞,1上单调递增,又()01=h 1>∴x 时,()()01=>h x h故当1>x 时,()12ln 11−+−>−−x x x x f , ∴()()132ln 112+−>−−−x x x x x f …6分(2) ()()2121+−=x a xe x g x∴()()()()()a e x x a e x x g xx−+=+−+=111'当0=a 时,易知函数()x g 只有一个零点,不符合题意:……7分当0<a 时,在()1,−∞−上,()0'<x g ,()x g 单调递减;在()+∞−,1上,()0'>x g ,()x g 单调递增;又()011<−=−eg ,且()021>−=a e g 不妨取4−<b 且()a b −<ln 时,()()()02122112122ln >⎪⎭⎫ ⎝⎛++−=+−>−b b a b a be b g a ()[]+∞→−∞→x g x ,或者考虑:当,所以函数()x g 有两个零点,0a ∴<符合题意.……9分当0>a 时,由()()()01'=−+=a e x x g x得1−=x 或a x ln =(i )当1ln −=a 即ea 1=时,在()+∞∞−,上,()0'≥x g 成立, 故()x g 在()+∞∞−,上单调递增,所以函数()x g 至多有一个零点,不符合题意.……10分 (ii )当1ln −<a 即ea 10<<时,在()a ln ,∞−和()+∞−,1上,()0'>x g ,()x g 单调递 增;在()1,ln −a 上,()0'<x g ,()x g 单调递减:又()011<−=−eg , 且()()()01ln 211ln 21ln ln 22<+−=+−=a a a a a a a g , 所以函数()x g 至多有一个零点()x g ,不符合题意.……11分 (iii )当ea a 11ln >−>即时,在()1,−∞−和()+∞,ln a 上()0'>x g ,()x g 单调递增; 在()a ln ,1−上()0'<x g ,()g x 单调递减又()011<−=−eg ,所以函数()x g 至多有一个零点,不符合题意. 综上所述,实数a 的取值范围是()0,∞−.……12分(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:极坐标与参数方程](10分)解: (1)22sin2,02cos2====ππy x ,∴P 的直角坐标为()2,0P ……2分 由⎩⎨⎧==ϕϕsin 2cos 3y x ,得2sin 3cos y ,x ==ϕϕ .∴曲线C 的普通方程为14922=+y x ……4分(2)将⎪⎪⎩⎪⎪⎨⎧+=−=ty t x 22222代入14922=+y x 36222922422=⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛−⇒t t , 化简得21336360t t +−=……6分 设A ,B 对应的参数分别为21,t t , 则1336,13362121−=⋅−=+t t t t ……8分 ∵P 点在直线l 上,∴()13221213364133642212212121=⨯+⎪⎭⎫⎝⎛=−+=−=+=+t t t t t t t t PB PA……10分23.[选修4—5:不等式选讲](10分)解:(1)0,,>c b a ,336316332abc abc c b a ≥⇒≥++∴……2分162131613=⎪⎭⎫ ⎝⎛≤∴abc ……4分当且仅当3132===c b a ,即91,61,31===c b a 时,abc 取到最大值为1621……5分 (2)013132>−−=+∴=++b a c b c b a ,()()()414114141141341−−−++=−−+−−−++=−−+++=++++∴ba b a b a b a b a b a b a b a c b b a b a ……7分()()[]()5114141411≥+−−+++−−=−⎪⎭⎫ ⎝⎛−−++−−++=b a b a b a b a b a b a b a b a ……9分 当且仅当()b a b a +=−−21,即31=+b a 时, ()cb b a b a 341++++取得最小值为5……10分.。

清华大学2020届中学生标准学术能力诊断性测试(11月) 理综试题及答案

清华大学2020届中学生标准学术能力诊断性测试(11月) 理综试题及答案

中学生标准学术能力诊断性测试2019年11月测试理科综合试卷(一卷)可能用到的相对原子质量:H1 O16 Fe56 Cu64 S32一、选择题:本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.美国免疫学家詹姆斯·艾利森和日本免疫学家本庶佑因发现了用于治疗癌症的免疫调节抑制策略而获得了2018年诺贝尔生理学或医学奖。

他们发现在T细胞表面有CTLA-4蛋白,在识别目标并接受启动信号时,使T细胞活性降低,起到免疫刹车作用,从而减弱对癌细胞的攻击,以下理解错误的是A.CTLA-4的形成需要T细胞内的核糖体、内质网、高尔基体参与B.同一个体中的癌细胞与T细胞的核基因是不同的C.可通过注射CTLA-4抗体的方式,使癌细胞逃脱免疫系统的监控D.癌细胞被攻击清除主要依靠细胞免疫产生的效应T细胞,此过程属于细胞凋亡2.最新研究发现,“细胞外烟酰胺磷酸核糖转移酶”(eNAMPT,蛋白质类)不仅能延长小鼠的寿命,还逆转了老鼠身体机能的衰老,这一研究可让人的“返老还童”成为可能。

有关酶的说法错误的是A.eNAMPT可与双缩脲试剂反应产生紫色络合物,高温变性后仍能与该试剂变色B.eNAMPT可降低反应的活化能,可在最适温度和最适pH条件下保存C.eNAMPT由基因控制合成,影响代谢进而控制生物的性状D.eNAMPT的催化具有高效性和专一性,其作用的发挥离不开特定的空间结构3.细胞信号转导是指细胞通过受体感受信息分子的刺激,经胞内信号转导系统转换,从而影响细胞生物学功能的过程。

下图表示两种细胞信号转导形式,有关叙述错误的是A.甲图的激素可以表示性激素,以自由扩散的方式穿膜,与细胞膜的基本支架有关B.甲图可说明信息分子可影响基因表达过程,②③的碱基互补配对方式不同C.甲图中的d基本骨架为独特的双螺旋结构,e为mRNA可作为翻译的模板D.乙图可以反应细胞膜具有细胞间的信息交流的功能,图中的受体化学本质为糖蛋白4.下表为适宜浓度的α-萘乙酸(NAA)和赤霉素(GA3)溶液对燕麦胚芽鞘生长的影响,据表分析,下列说法错误的是A.该实验的自变量为溶液种类不同,表中“?”处理方式为清水处理B.若实验用的NAA浓度为m,则改用低于m浓度的NAA时,胚芽鞘长度不一定减少C.NAA与GA3可调节植物基因表达,二者混合使用具有协同作用D.NAA与GA3是由植物产生,由产生部位运输到作用部位且具有微量而高效的特点5.将果蝇的一个精原细胞放在3H标记的胸腺嘧啶脱氧核酸的培养液中培养完成减数分裂产生精子。

2020届高三数学上学期11月第一次诊断性考试试题理(含解析)

2020届高三数学上学期11月第一次诊断性考试试题理(含解析)

2020届高三数学上学期11月第一次诊断性考试试题理(含解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则()A. B.C. D.【答案】C【解析】【分析】根据集合交集定义,即可得解.【详解】因为由交集定义可得故选:C【点睛】本题考查了集合交集的基本运算,属于基础题.2.复数()A. iB. -iC.D.【答案】A【解析】【分析】由复数代数形式的乘除运算化简得答案.【详解】∵.故选:A.【点睛】本题考查复数代数形式的乘除运算,是基础题.3.已知向量,若(λ∈R),则m=()A. -2B.C.D. 2【答案】C【解析】【分析】根据向量的坐标运算计算即可.【详解】∵向量,(λ∈R),∴=λ,∴,∴m=,故选:C.【点睛】本题考查了共线向量的坐标运算,属于基础题.4.已知等差数列的前n项和为,若,则()A. 7B. 14C. 21D. 42【答案】B【解析】【分析】由等差数列的性质可得:a4=2,而由求和公式可得S7=7a4,代入可得答案.【详解】由等差数列的性质可得:2a4=a2+a6,又,解得a4=2,而S77a4=14故选:B.【点睛】本题考查等差数列的性质和求和公式,属基础题.5.已知,则“”是“”的()A. 充分不必要条件B. 必要比充分条件C. 充要条件D. 既不充分又不必要条件【答案】A【解析】【分析】根据充分必要条件的定义分别判断其充分性和必要性即可.【详解】若,即0,∴或,即a,b同号时:a<b,a,b异号时:a>b,∴当a<b<0时,成立,但成立,不一定有a<b<0,所以“”是“”的充分不必要条件故选:A.【点睛】本题考查了充分必要条件,考查不等式问题,是一道基础题.6.执行右图所示的程序框图,则输出的()A 3 B. 4 C. 5 D. 6【答案】C【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】第一次执行循环体后,n=1,不满足退出循环的条件,第二次执行循环体后,n=2,不满足退出循环的条件,第三次执行循环体后,n=3,不满足退出循环的条件,第四次执行循环体后,n=4,不满足退出循环的条件,第四次执行循环体后,n=5,满足退出循环的条件,故输出的n值为5,故选:C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.已知,,,则()A. B. C. D.【答案】B【解析】【分析】容易得出,从而得出a,b,c的大小关系.【详解】;∴a>b>c.故选:B.【点睛】本题考查指数函数、对数函数的单调性,考查了比较大小的方法:中间量法.8.函数的图象大致是()A. B.C. D.【答案】D【解析】【分析】利用特殊值及函数的导数判断函数的单调性进行排除,即可得到函数的图象.【详解】当x<0时,f(x)0.排除AC,f′(x),令g(x)g′(x),当x∈(0,2),g′(x)>0,函数g(x)是增函数,当x∈(2,+∞),g′(x)<0,函数g(x)是减函数,g(0)=,g(3)=3>0, g(4)=<0,存在,使得g()=0,且当x∈(0,),g(x)>0,即f′(x)>0,函数f(x)是增函数,当x∈(,+∞),g(x)<0,即f′(x)<0,函数f(x)是减函数,∴B不正确,故选:D.【点睛】本题考查函数图象的判断,一般通过函数的定义域、值域、奇偶性、对称性、单调性、特殊点以及变化趋势判断.9.已知角的顶点在坐标原点O,始边与x轴的非负半轴重合,将的终边按顺时针方向旋转后经过点(3,4),则()A. B. C. D.【答案】B【解析】【分析】由题意利用任意角的三角函数的定义及二倍角的余弦公式,求得结果.【详解】∵角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边按顺时针方向旋转后经过点(3,4),∴,∴∴,故选:B.【点睛】本题主要考查任意角的三角函数的定义,二倍角的余弦公式,考查了逻辑思维能力,属于基础题.10.若函数的图象关于点对称,则的最小值为()A. B. C. D.【答案】C【解析】【分析】由正弦函数图象的性质可得φ=,(k∈z)再求解即可.【详解】由f(x)=sin(2x+φ),令2+φ=kπ,(k∈z)得:φ,(k∈z)又φ>0,所以k=1时则φmin,故选:C.【点睛】本题考查了正弦函数图象的性质,属简单题.11.已知向量=,.若,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】由题意得到,是夹角为,模为2的两个向量,设,,,利用向量加减法的几何意义求出C的轨迹,则可求得的取值范围.【详解】因为向量=可得,所以,是夹角为,模为2的两个向量,设,,,则A,B在以原点为圆心,2为半径的圆上,如图,不妨令A(2,0),则B(-1,),则,则,所以C在以D为圆心,1为半径的圆上,,即求以D为圆心,1为半径的圆上的动点C到(0,0)的距离的最值问题,又|OD|.所以∈[,]= [,],故选:D.【点睛】本题考查了向量加减法的几何意义的应用,考查了动点的轨迹问题,考查了转化思想,解题时我们要根据题目中已知的条件,选择转化的方向,属于中档题.12.定义在R上的可导函数满足,记的导函数为,当时恒有.若,则m的取值范围是()A. B. C. D.【答案】D【解析】【分析】令g(x)=f(x)x,求得g(x)=g(2﹣x),则g(x)关于x=1对称,再由导数可知g(x)在时为减函数,化f (m)﹣f(1﹣2m)≥3m﹣1为g(m)≥g(1﹣2m),利用单调性及对称性求解.【详解】令g(x)=f(x)x,g′(x)=f′(x)﹣1,当x1时,恒有f'(x)<1.∴当x1时,g(x)减函数,而g(2﹣x)=f(2﹣x)(2﹣x),∴由得到f(2﹣x)(2﹣x)=f(x)x∴g(x)=g(2﹣x).则g(x)关于x=1对称,由f(m)﹣f(1﹣2m)≥3m﹣1,得f(m)m≥f(1﹣2m)(1﹣2m),即g(m)≥g(1﹣2m),∴,即1.∴实数m的取值范围是[﹣1,].故选:D.【点睛】本题考查利用导数研究函数的单调性,构造函数是解答该题的关键,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分。

北京市清华大学2020届高三数学11月中学生标准学术能力诊断性测试试题理

北京市清华大学2020届高三数学11月中学生标准学术能力诊断性测试试题理

北京市清华大学2020届高三数学11月中学生标准学术能力诊断性测试试题 理本试卷共150分,考试时间120分钟。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.己知集合U ={-1,1,3,5,7,9},A ={1,5},B ={-1,5,7},则U ð(A ∪B )=A.{3,9}B.{I ,5,7}C.{-1,1,3,9}D.{-1,1,3,7,9}2.己知空间三条直线l ,m ,n ,若l 与m 垂直,l 与n 垂直,则A.m 与n 异面B.m 与n 相交C.m 与n 平行D.m 与n 平行、相交、异面均有可能3.复数z 满足|z -1|=|z +3|,则|z|A.恒等于1B.最大值为1,无最小值C.最小值为1,无最大值D.无最大值,也无最小值4.某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm 2)是A.16B.32C.44D.645.已知x +y>0,则“2|x|+x 2>2|y|+y 2”是“x>0”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.函数y =ln|x|·cos(2-2x)的图像可能是7·已知两个不相等的非零向量a ,b ,满足|a |与b -a 的夹角为60°,则|b |的取值范围是A.0,2⎛ ⎝⎭B.,12⎫⎪⎪⎣⎭C.2⎫+∞⎪⎪⎣⎭D.()1,+∞ 8.已知随机变量ξ的分布列为:则下列说法正确的是A.存在x ,y ∈(0,1),E(ξ)>12 B.对任意x ,y ∈(0,1),E(ξ)≤14C.对任意x ,y ∈(0,1),D(ξ)≤E(ξ)D.存在x ,y ∈(0,1),D(ξ)>14 9.设函数f(x)=ax 3+bx 2+cx +d(a ,b ,c ,d ∈R 且a≠0),若0<2f(2)=3f(3)=4f(4)<1,则f(1)+f(5)的取值范围是A.(0,1)B.(1,2)C.(2,3)D.(3,4) 10.已知F 1,F 2分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在双曲线右支上存在点P ,使得点F 2到直线PF 1的距离为a ,则该双曲线的离心率的取值范围是A.1,2⎛⎫ ⎪ ⎪⎝⎭ B.2⎛⎫+∞ ⎪ ⎪⎝⎭ C.( D.)+∞ 11.如图,在菱形ABCD 中,∠ABC =60°,E ,F 分别是边AB ,CD 的中点,现将△ABC 沿着对角线AC 翻折,则直线EF 与平面ACD 所成角的正切值最大值为3212.己数列{a n }满足a 1=1,a n +1=lna n +1n a +1,记S n =[a 1]+ [a 2]+···+[a n ],[t]表示不超过t 的最大整数,则S 2019的值为A.2019B.2018C.4038D.4037二、填空题:本大题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中学生标准学术能力诊断性测试2019年11月测试(二卷)
理科数学试卷
本试卷共150分,考试时间120分钟。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.己知集合U ={-1,1,3,5,7,9},A ={1,5},B ={-1,5,7},则U ð(A ∪B)=
A.{3,9}
B.{I ,5,7}
C.{-1,1,3,9}
D.{-1,1,3,7,9}
2.己知空间三条直线l ,m ,n ,若l 与m 垂直,l 与n 垂直,则
A.m 与n 异面
B.m 与n 相交
C.m 与n 平行
D.m 与n 平行、相交、异面均有可能
3.复数z 满足|z -1|=|z +3|,则|z|
A.恒等于1
B.最大值为1,无最小值
C.最小值为1,无最大值
D.无最大值,也无最小值
4.某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm 2)是
A.16
B.32
C.44
D.64
5.已知x +y>0,则“2|x|+x 2>2|y|+y 2”是“x>0”的
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
6.函数y =ln|x|·cos(2
-2x)的图像可能是
7·已知两个不相等的非零向量a r ,b r ,满足|a r |与b r -a r 的夹角为60°,则|b r |的取值范围是 A.30,2⎛⎫ ⎪ ⎪⎝⎭ B.3,12⎡⎫⎪⎢⎪⎣⎭ C.3,2⎡⎫+∞⎪⎢⎪⎣⎭
D.()1,+∞ 8.已知随机变量ξ的分布列为:
则下列说法正确的是
A.存在x ,y ∈(0,1),E(ξ)>
12 B.对任意x ,y ∈(0,1),E(ξ)≤14
C.对任意x ,y ∈(0,1),D(ξ)≤E(ξ)
D.存在x ,y ∈(0,1),D(ξ)>14 9.设函数f(x)=ax 3+bx 2+cx +d(a ,b ,c ,d ∈R 且a≠0),若0<2f(2)=3f(3)=4f(4)<1,则f(1)+f(5)的取值范围是
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
10.已知F 1,F 2分别为双曲线22
221(0,0)x y a b a b
-=>>的左、右焦点,若在双曲线右支上存在点P ,使得点F 2到直线PF 1的距离为a ,则该双曲线的离心率的取值范围是
A.51,2⎛⎫ ⎪ ⎪⎝⎭
B.5,2⎛⎫+∞ ⎪ ⎪⎝⎭
C.()1,5
D.
()
5,+∞ 11.如图,在菱形ABCD 中,∠ABC =60°,E ,F 分别是边AB ,CD 的中点,现将△ABC 沿着对角线AC 翻折,则直线EF 与平面ACD 所成角的正切值最大值为
2 B.21
3 C.33 D.22
12.己数列{a n }满足a 1=1,a n +1=lna n +
1n a +1,记S n =[a 1]+ [a 2]+···+[a n ],[t]表示不超过t 的最大整数,则S 2019的值为
A.2019
B.2018
C.4038
D.4037
二、填空题:本大题共4小题,每小题5分,共20分。

13.在[-2,2]上随机地取一个实数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率为。

14.如图,在△ABC中,AB>AC,BC=23,A=60°,△ABC的面积等于23,则角平分线AD的长等于。

15.已知数列{a n}满足a n+a n+1=15-2n,其前n项和为S n,若S n≤S8恒成立,则a1的取值范围为。

16.已知P为椭圆C:
22
1
43
x y
+=上一个动点,F1、F2是椭圆C的左、右焦点,O为坐标原点,O到椭圆C
在P点处的切线距离为d,若
1224 7
PF PF
⋅=,则d=。

三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:60分。

17.(12分)已知函数f(x)=sinx-3cosx
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若f(B)=3,b=3,求△ABC面积的最大值。

18.(12分)如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD//BC,BC=2AD,AD⊥CD,PD⊥平面ABCD,E为PB的中点。

(1)求证:AE//平面PDC;
(2)若BC=CD=PD,求直线AC与平面PBC所成角的余弦值。

19.(12分)已知甲盒内有大小相同的2个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各取2个球。

(1)求取出的4个球中恰有1个红球的概率;
(2)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望。

20.(12分)如图,斜率为k 的直线l 与抛物线y 2=4x 交于A 、B 两点,直线PM 垂直平分弦AB ,且分别交AB 、x 轴于M 、P ,已知P(4,0)。

(1)求M 点的横坐标;
(2)求△PAB 面积(用k 表示)。

21.(12分)已知函数ln (),x ax f x a R x
-=∈。

(1)若a =0,求函数f(x)的值域;
(2)设函数f(x)的两个零点为x 1,x 2,且x 1≠x 2,求证:x 1·x 2>e 2。

(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

作答时请写清题号。

22.[选修4-4:坐标系与参数方程](10分)
在平面直角坐标系xOy 中,曲线C 的参数方程为4cos 2sin x y αα=⎧⎨=⎩
(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点P 的极坐标为4,
3π⎛⎫ ⎪⎝⎭,直线l 的极坐标方程为2sin 96πρθ⎛⎫-= ⎪⎝⎭。

(1)求直线l 的直角坐标方程与曲线C 的普通方程;
(2)若Q 是曲线C 上的动点,M 为线段PQ 的中点,直线l 上有两点A ,B ,始终满足|AB|=4,求△MAB 面积的最大值与最小值。

23.[选修4-5:不等式选讲](10分)
已知a ,b ,c 为正实数,且满足a +b +c =3。

证明:
(1)ab +bc +ac ≤3; (2)222
3a b c b c a
++≥。

相关文档
最新文档