2009外校资格生数学试题及答案
2009宁波重点中学保送生招生考试数学试卷及答案
2009 宁波要点中学保送生招生考试数学试卷一、选择题(每题 3 分,共 36 分)1、如图是一个水平摆放的小正方体木块,图(2)、( 3)是由这样的小正方体木块叠放而成,依据这样的规律持续叠放下去,至第七个叠放的图形中,小正方体木块总数应是()D AOC B(1)(3)(2)(A)25(B)66(C)91(D)1202、有以下结论(1)有两边及一角对应相等的两个三角形全等;(2)菱形既是轴对称图形又是中心对称图形;(3)对角线相等的四边形是矩形;(4)均分弦的直径垂直于弦,而且均分弦所对的两条弧。
此中正确结论的个数为()(A)1 个( B)2 个( C)3 个( D)4 个3、在 1000 个数据中,用适合的方法抽取50 个作为样本进行统计,频数散布表中, 54.5~57.5 这一组的频次是 0.12,那么,预计整体数据落在 54.5~57.5 之间的约有()(A)6 个( B)12 个( C)60 个( D)120 个4、如图,⊙ O中,弦 AD ∥BC, DA = DC ,∠ AOC = 160 °,则∠ BCO 等于() .(A ) 20°(B ) 30°( C)40°( D) 50°5.若直角三角形的两条直角边长为a、b,斜边长为c,斜边上的高为h,则有()A、 ab=h ; B 、1+1=1; C、1+1=1; D 、 a2+b2=2h 2 a b h a 2 b 2h 26.如图是一个切去了一个角的正方体纸盒,切面与棱的交点 A 、 B 、C 均是棱的中点,现将纸盒剪睁开成平面,则睁开图不行能是A B C D7.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,察看图中每正方形(实线)四条边上的整点的个数,请你猜想由里向外第10 个正方形(实线)四条边上的整点的个数共有()A、35 个B、40个C、45个D、50个8.用三种边长相等的正多边形地砖铺地,其极点拼在一同,恰好能完整铺满地面.已知正多边形的边数为x、 y、 z,则111的值为()x y z( A)1(B)2(C)1(D)1 3239.13 个小朋友围成一圈做游戏,规则是从某一个小朋友开始按顺时针方向数数,数到第 13,该小朋友走开;这样持续下去 . ,直到最后剩下一个小朋友.小明是 1号,要使最后剩下的是小明自己,他应当建议从( )小朋友开始数起?A、7号 B 、8号 C 、13号 D、 2 号10、在 1+11+111++111111( 最后一项 2009个 1)的和之中 , 数字 1共出现了 ( )次.A、 224 B 、225 C 、1004 D 、 100511、一只船有一个破绽,水以平均速度进入船内。
2009考研数学(二)真题及参考答案
2009年研究生入学统一考试数学二试题与解析一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-.()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为1 ()f x -2 0 2 3x-1O则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . (10)已知+1k xe dx ∞=-∞⎰,则k = .(11)1n lime sin x nxdx -→∞=⎰.(12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .(13)函数2x y x =在区间(]01,上的最小值为 .(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,则T =βα .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.(16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2z x y∂∂∂.(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式. (21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.2009年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C 【解析】()3s i n x x f x xπ-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. 【答案】A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C . 另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排D .所以本题选A.(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.【答案】 D【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂ 2222221,0,1z z z zA B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂又在(0,0)处,0,0z zx y∂∂==∂∂ 210AC B -=>故(0,0)为函数(,)z f x y =的一个极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰【答案】C 【解析】222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-将其写成一块{}(,)12,14D x y y x y =≤≤≤≤- 故二重积分可以表示为2411(,)ydy f x y dx -⎰⎰,故答案为C.(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.【答案】 B【解析】由题意可知,()f x 是一个凸函数,即''()0f x <,且在点(1,1)处的曲率322|''|12(1('))y y ρ==+,而'(1)1f =-,由此可得,''(1)2f =-在[1,2] 上,'()'(1)10f x f ≤=-<,即()f x 单调减少,没有极值点. 对于(2)(1)'()1(1,2)f f f ζζ-=<- , ∈ , (拉格朗日中值定理)(2)0f ∴ <而 (1)10f =>由零点定理知,在[1,2] 上,()f x 有零点. 故应选(B ). (6)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为( )1 ()f x -2 0 2 3x-1O()A .()B .()C .()D .【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减. ②[]1,2x ∈时,()F x 单调递增. ③[]2,3x ∈时,()F x 为常函数.④[]1,0x ∈-时,()0F x ≤为线性函数,单调递增. ⑤由于F(x)为连续函数结合这些特点,可见正确选项为D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭()f x 0 2 3x1 -2-11()f x 02 3x1 -1 1()f x 02 3x1 -2-11()f x 0 2 3x1 -2 -11【答案】 B【解析】根据CC C E *=若111,C C C CC C*--*==分块矩阵00A B ⎛⎫⎪⎝⎭的行列式22012360A AB B⨯=-=⨯=()即分块矩阵可逆 111100066000100B BA A AB B BBAA A**---*⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭10023613002BB AA ****⎛⎫ ⎪⎛⎫== ⎪ ⎪ ⎪⎝⎭⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭【答案】 A【解析】122312312312100(,,)(,,)110(,,)(1)001Q E αααααααααα⎡⎤⎢⎥=+==⎢⎥⎢⎥⎣⎦,即:12121212122112(1)[(1)][(1)](1)[](1)100(1)010(1)002110100100210010010110110001002001002T T TT T Q PE Q AQ PE A PE E P AP E E E ===⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . 【答案】2y x =【解析】221222ln(2)22t dy t t t t dt t ==--⋅=--2(1)1(1)1t t dxe dt --==⋅-=- 所以 2dy dx= 所以 切线方程为2y x =.(10)已知+1k xe dx ∞=-∞⎰,则k = .【答案】2-【解析】1122lim bk xkxkxb e dx e dx e k +∞+∞-∞→+∞===⎰⎰因为极限存在所以0k <210k=-2k =-(11)1n lime sin x nxdx -→∞=⎰.【答案】0【解析】令sin sin cos x x xn I e nxdx e nx n e nxdx ---==-+⎰⎰2sin cos x xn e nx nenx n I --=---所以2cos sin 1xn n nx nx I e C n -+=-++即11020cos sin lim sin lim()1xx n n n nx nx e nxdx e n --→∞→∞+=-+⎰ 122cos sin lim()110n n n n ne n n -→∞+=-+++= (12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .【答案】3-【解析】对方程xy 1y e x +=+两边关于x 求导有''1y y xy y e ++=,得'1yyy x e -=+ 对''1y y xy y e ++=再次求导可得''''''22()0y y y xy y e y e +++=,得''2''2()yyy y e y x e +=-+ (*)当0x =时,0y =,'(0)0101y e -==,代入(*)得 ''20''032(0)((0))(0)(21)3(0)y y e y e +=-=-+=-+(13)函数2x y x =在区间(]01,上的最小值为 . 【答案】2ee-【解析】因为()22ln 2xy xx '=+,令0y '=得驻点为1x e =.又()22222ln 2xxy x x x x ''=++⋅,得21120e y e e -+⎛⎫''=> ⎪⎝⎭,故1x e=为2xy x =的极小值点,此时2e y e -=,又当10,x e ⎛⎫∈ ⎪⎝⎭时,()0y x '<;1,1x e ⎛⎤∈ ⎥⎝⎦时,()0y x '>,故y 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,1e ⎛⎫ ⎪⎝⎭上递增.而()11y =,()()002022ln limlim11lim 222ln 00lim lim 1x x x xx x xx xxx x x y x e eee++→→+→++--+→→======,所以2xy x =在区间(]01,上的最小值为21ey e e -⎛⎫= ⎪⎝⎭.(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫ ⎪⎪ ⎪⎝⎭,则T =βα .【答案】2【解析】因为T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,根据相似矩阵有相同的特征值,得到T αβ得特征值是2,0,0而T βα是一个常数,是矩阵T αβ的对角元素之和,则T 2002βα=++=三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.【解析】()[][]244001ln(1tan )1cos ln(1tan )2lim limsin sin x x x x x x x x x x→→-+--+= 22201ln(1tan )lim 2sin sin x x x x x x→-+=201ln(1tan )1lim 2sin 4x x x x →-+== (16)(本题满分10 分) 计算不定积分1ln(1)xdx x++⎰(0)x >. 【解析】 令1x t x+=得22212,1(1)tdtx dx t t -= =-- 22211ln(1)ln(1)1ln(1)11111x dx t d x t t dt t t t ++=+-+=---+⎰⎰⎰而22111112()11411(1)111ln(1)ln(1)2441dt dtt t t t t t t C t =---+-++--++++⎰⎰所以221ln(1)111ln(1)ln 1412(1)111ln(1)ln(1)2211111ln(1)ln(1)222x t t dx C x t t t x xx x x C x x x x x x x x x x C x ++++=+-+--++=++++-++++=+++++-++⎰ (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2zx y∂∂∂.【解析】123123zf f yf x zf f xf y∂'''=++∂∂'''=-+∂1231232111213212223331323331122331323()()1(1)1(1)[1(1)]()()z z dz dx dy x yf f yf dx f f xf dyzf f f x f f f x f y f f f x x yf f f xyf x y f x y f ∂∂∴=+∂∂''''''=+++-+∂'''''''''''''''''''=⋅+⋅-+⋅+⋅+⋅-+⋅++⋅+⋅-+⋅∂∂'''''''''''=+-++++-(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. 【解析】解微分方程20xy y '''-+=得其通解212122,y C x C x C C =++其中,为任意常数又因为()y y x =通过原点时与直线1x =及0y =围成平面区域的面积为2,于是可得10C =1112232220002()(2)()133C C y x dx x C x dx x x ==+=+=+⎰⎰从而23C =于是,所求非负函数223(0)y x x x =+ ≥又由223y x x =+ 可得,在第一象限曲线()y f x =表示为1131)3x y =+-(于是D 围绕y 轴旋转所得旋转体的体积为15V V π=-,其中552210051(131)9(23213)93918V x dy y dyy y dy ππππ==⋅+-=+-+=⎰⎰⎰395117518186V ππππ=-==. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.【解析】由22(1)(1)2x y -+-≤得2(sin cos )r θθ≤+,32(sin cos )4()(cos sin )04Dx y dxdy d r r rdr πθθθθθπ+∴-=-⎰⎰⎰⎰332(sin cos )14(cos sin )034r d πθθθθθπ⎡+⎤=-⋅⎢⎥⎣⎦⎰ 2384(cos sin )(sin cos )(sin cos )34d πθθθθθθθπ=-⋅+⋅+⎰ 3384(cos sin )(sin cos )34d πθθθθθπ=-⋅+⎰3344438814(sin cos )(sin cos )(sin cos )3344d πππθθθθθθπ=++=⨯+⎰83=-.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点-22ππ(,)的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式.【解析】由题意,当0x π-<<时,'xy y =-,即ydy xdx =-,得22y x c =-+, 又()22y ππ-=代入22y x c =-+得2c π=,从而有222x y π+=当0x π≤<时,''0y y x ++=得 ''0y y += 的通解为*12cos sin y c x c x =+ 令解为1y Ax b =+,则有00Ax b x +++=,得1,0A b =-=, 故1y x =-,得''0y y x ++=的通解为12cos sin y c x c x x =+- 由于()y y x =是(,)ππ-内的光滑曲线,故y 在0x =处连续于是由1(0),(0)y y c π-=± += ,故1c π=±时,()y y x =在0x =处连续 又当 0x π-<<时,有22'0x y y +⋅=,得'(0)0xy y-=-=, 当0x π≤<时,有12'sin cos 1y c x c x =-+-,得2'(0)1y c +=- 由'(0)'(0)y y -+=得210c -=,即 21c =故 ()y y x =的表达式为22,0cos sin ,0x x y x x x x ππππ⎧⎪-- -<<=⎨-+-≤<⎪⎩或22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩,又过点,22ππ⎛⎫- ⎪⎝⎭,所以22,0cos sin ,0x x y x x x x ππππ⎧⎪- -<<=⎨+-≤<⎪⎩.(21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aϕ-=----,易验证()x ϕ满足:()()a b ϕϕ=;()x ϕ在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aϕ-=--.根据罗尔定理,可得在(),a b 内至少有一点ξ,使'()0ϕξ=,即'()f ξ'()()0,()()()()f b f a f b f a f b a b aξ--=∴-=--(Ⅱ)任取0(0,)x δ∈,则函数()f x 满足;在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x ξδ∈⊂,使得()0'()(0)x f x f fx ξ-=-……()* 又由于()'lim x f x A +→=,对上式(*式)两边取00x +→时的极限可得:()()000000'''0000()00lim lim ()lim ()0x x x x x f x f f f f A x ξξξ++++→→→-====- 故'(0)f +存在,且'(0)f A +=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关. 【解析】(Ⅰ)解方程21A ξξ=()1111111111111,111100000211042202110000A ξ---------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-= 求特解,令120x x ==,得31x =故21101021k ξ⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中1k 为任意常数解方程231A ξξ=2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭()21111022012,2201000044020000A ξ-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭故有两个自由变量,令21x =-,由20A x =得131,0x x ==求特解21200η⎛⎫ ⎪ ⎪= ⎪ ⎪⎪⎝⎭故 321121000k ξ⎛⎫⎪⎛⎫ ⎪⎪=-+ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭ ,其中2k 为任意常数.(Ⅱ)证明:由于12121212122111121112(21)()2()(21)222210k k k k k k k k k k k k k -+--=+++-+-+-+102=≠ 故123,,ξξξ 线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+- (Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值. 【解析】(Ⅰ) 0101111a A aa ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭0110||01()1111111aaaE A aa a a λλλλλλλλ-----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a λλλλλλλλλλλλλλλλ=---+--+-=---+-=--++--=-+--=--+--123,2,1a a a λλλ∴==-=+(Ⅱ) 若规范形为2212y y +,说明有两个特征值为正,一个为0.则 1) 若10a λ==,则 220λ=-< ,31λ= ,不符题意2) 若20λ= ,即2a =,则120λ=>,330λ=>,符合3) 若30λ= ,即1a =-,则110λ=-< ,230λ=-<,不符题意 综上所述,故2a =.。
2009年第50届国际数学奥林匹克竞赛试题(中文版)与参考答案
综上所述,结论成立。
此题平均得分:4.804分
2、外接圆的圆心为O,分别在线段上,ABCΔ,PQ,CAAB,,KLM分别是,,BPCQPQ
的中点,圆过Γ,,KLM并且与相切。证明:OPPQOQ=。
KMLOBCAQP
证明:由已知MLKKMQAQP∠=∠=∠,MKLPMLAPQ∠=∠=∠,因此
ssMcbg=.=,故,所以mM=()nafn=也是等差数列。
此题平均得分:1.019分
2009年第50届IMO第二天试题解答
2009年7月16日
1、在中ABCΔABAC=,,ADBE分别是CAB∠和ABC∠的平分线。K是的内
心,假设,求所能取到的所有值。
APQMKLΔΔ~。所以
APMKBQAQMLCP==,故APCPAQBQ.=.(*)。
设圆O的半径为R,则由(*)有222ROPROQ.=.,因此OPOQ=。
不难发现OP也是圆Γ与相切的充分条件。 OQ=PQ
此题平均得分:3.710分
3、是严格递增的正整数数列,并且它的子数列和
证明:由于是一个严格递增的整值函数,所以对于任意f,xy均有
()()fxfyxy.≥.。
令{}{},nnbc的公差分别为,则有,de()()(1)()(1)(dffnffnfnfn=+.≥+.,
将可得()nfn→()()()1()0nndffnffncb≥+.=.,因此对于任意都有 kZ+∈
到最后一步,为倒数第二步,这样从目的地倒退两步都没遇到
0ianaM中的数,由于
,由归纳假设可以调整前
01kkikksaasm...<≤2k.步使得蚱蜢没遇到M中的数。
2009年普通高等学校招生全国统一考试(湖北卷)理科数学试题及答案
2009年普通高等学校招生全国统一考试(湖北卷)理科数学本试卷共4页,满分150分,考试时间120分钟。
祝考试顺利注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1、已知{|(1,0)(0,1),},{|(1,1)(1,1),P a a m m R Q b b n n R ==+Î==+-Î是两个向量集合,则P Q =IA .{〔1,1〕} B. {〔-1,1〕} C. {〔1,0〕} D. {〔0,1〕} 2.设a 为非零实数,函数11(,)1a xy x R x a x a -=ι-+且的反函数是A 、11(,)1a xy x R x a x a -=ι-+且 B 、11(,)1a xy x R x a xa +=ι--且 C 、1(,1)(1)x y x R x a x +=ι-且 D 、1(,1)(1)x y x R x a x -=ι-+且3、投掷两颗骰子,得到其向上的点数分别为m 和n,则复数(m+ni )(n-mi)为实数的概率为为实数的概率为A 、13B 、14C 、16D 、1124.函数c o s (2)26y x p =+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于可以等于 .(,2)6A p-- .(,2)6B p-.(,2)6C p - .(,2)6D p5.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为.1.188A .24B .30C .36D 6.设222212012122) (2)n n nn n x a a x a x a x a x --+=+++++(,则22024213521lim[(...)(...)]n n n a a a a a a a a -®¥++++-++++= .1A - .0B .1C 2.2D7.已知双曲线22122x y -=的准线过椭圆22214x y b+=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件是一个交点的充要条件是A. 11,22K éùÎ-êúëûB. 11,,22K æùéöÎ-¥-+¥ç÷úêèûëø C. 22,22K éùÎ-êúëû D. 22,,22K æùéöÎ-¥-+¥ç÷úêç÷èûëø8.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用。
2009年宁波外国语学校入学试题及答案
2009年外国语学校入学试题及答案一、填空题:31 满足下式的填法共有 种?口口口口-口口口=口口【答案】4905。
【解】由右式知,本题相当于求两个两位数a 与b 之和不小于100的算式有多少种。
a=10时,b 在9099之间,有10种;a=11时,b 在8999之间,有11种;……a=99时,b 在199之间,有99种。
共有10+11+12+……99=4905(种)。
【提示】算式谜跟计数问题结合,本题是一例。
数学模型的类比联想是解题关键。
34 在足球表面有五边形和六边形图案(见右上图),每个五边形与5个六边形相连,每个六边形与3个五边形相连。
那么五边形和六边形的最简整数比是_______ 。
【答案】3︰5。
【解】设有X 个五边形。
每个五边形与5个六边形相连,这样应该有5X 个六边形,可是每个六边形与3个五边形相连,即每个六边形被数了3遍,所以六边形有53X个。
5:3:53X X36 用方格纸剪成面积是4的图形,其形状只能有以下七种:如果用其中的四种拼成一个面积是16的正方形,那么,这四种图形的编号和的最大值是______.【答案】19.【解】为了得到编号和的最大值,应先利用编号大的图形,于是,可以拼出,由:(7),(6),(5),(1);(7),(6),(4),(1);(7),(6),(3),(1)组成的面积是16的正方形:显然,编号和最大的是图1,编号和为7+6+5+1=19,再验证一下,并无其它拼法.【提示】注意从结果入手的思考方法。
我们画出面积16的正方形,先涂上阴影(6)(7),再涂出(5),经过适当变换,可知,只能利用(1)了。
而其它情况,用上(6)(7),和(4),则只要考虑(3)(5)这两种情况是否可以。
40设上题答数是a,a的个位数字是b.七个圆填入七个连续自然数,使每两个相邻圆的数之和等于连线上的已知数,那么写A的圆应填入_______.【答案】A=6【解】如图所示:B=A-4,C=B+3,所以C=A-1;D=C+3,所以D=A+2;而A +D =14;所以A=(14-2)÷2=6.【提示】本题要点在于推导隔一个圆的两个圆的差,从而得到最后的和差关系来解题。
2009年全国各地数学模拟试卷(新课标)分章精编---数列解答题二
=
n +1 + n n + 2 + n +1
∵n∈ N ∴
∗
,
n +1 + n < n + 2 + n +1
∗
∴ aa
n +1 n
பைடு நூலகம்
<1
,∵ a
n
>0
∴a < a ,n∈ N 即a > a > a >⋯ > a > a >⋯ ∴数列{a } 有最大项,最大项为第一项 a = 2 − 1 。 〔解法 :由 a = n + 1 − n 知数列{a } 各项满足函数 f ( x) = x + 1 −
n n i =1 i i +1
+
1 2
1 1 1 + +⋯ + , a2 a3 a3 a4 an an +1
由(2)可得: =
1 1 1 1 1 1 cn = −1 + (−1) + [(1 − ) + ( − ) + ⋯ + ( − )] 2 3 3 5 2n − 5 2n − 3 1 1 4 − 3n −2 + (1 − )= 2 2 n − 3 2n − 3 − 3x −3(2 x − 3) − 2(4 − 3x) 1 对于函数 y = 4 ∵ y' = = 2x − 3 (2 x − 3) (2 x − 3)
102.
已知数列{a } 满足 a1 − a
n
n n
n
=2 n
,且 a
n
>0
。
(1)求数列{a } 的通项公式; 的通项公式;
厦门市2009年中招对外联合招生数学试卷(电子稿)
厦门市2009年中招对外联合招生考试数 学 试 卷(试卷满分:150分 考试时间:150分)考生须知:1、解答题一律写在答题卡上,否则不得分,交卷时只交答题卡,本卷由考场处理,考生请勿擅自带走.2、答题、画线一律用0.5毫米的黑色签字笔或钢笔一、选择题(本大题共7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项是正确的)1、如下图,圆柱的左视图是…………( )2、随机抽查某商场四月份中5天的营业额分别如下(单位:万元):3.4,, 29,3.0,3.1,2.6.请你估计这个商场四月份的营业额大约是…………( ) A 、90万元 B 、450万元 C 、3万元 D 、15万元3、如右图,若将△ABC 绕点C 顺时针旋转900后得到△A ‘B ’C ‘,则A 点的对应点A ‘的坐标是……………………( ) A 、(-3,-2) B 、(2,2) C 、(3,0) D 、(2,1)4、甲、乙、丙三家超市为了促销一种定价为m 元的商品,甲超市连续 两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%, 第二次降价10%,要购买这种商品最划算应到的超市是…………( ) A 、甲 B 、乙 C 、丙 D 、乙或丙5、如右图,一名考生步行前往考场,10分钟走了总路程的14,估计步 行不能准时到达,于是他改乘出租车赴往考场,他的行程与时间关系 如图所示(假定总路程为1),则他到达考场所花的时间 比一直步行提前了……………………( )A 、20分钟B 、22分钟C 、24分钟D 、26分钟6、如右图,△ABC 被一平行于BC 的矩形所截,AB 被截成三等分, 则图中阴影部分的面积是△ABC 的面积的………………………( ) A 、19 B 、13 C 、29 D 、497、如右图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1…叫做“正方形 的渐开线”.其中111DA B C 1111、A B 、、C D 的圆心依次按A 、B 、C 、D 循环,他们依次连接.取AB=2,曲线DA 1B 1…C 2D 2的长是………………( ) A 、34π B 、35π C 、36π D 、37π二、填空题(本大题共10小题,每小题4分,共40分) 8、分解因式:291x -= 9、写出函数y =中,自变量x 的取值范围10、计算:1001(tan30)22π-⎛⎫--++-= ⎪⎝⎭11、不等式组2(1)12122x x x --≥⎧⎪⎨-+≤⎪⎩的解集是12、△ABC 为O 的内接三角形,AB 为O 的直径,点D 在O 上,∠BAC=350,则∠ADC= 度13、如图,将半径为2cm 的O 分割成十个区域,其中弦AB 、CD 关于点O 对称,EF 、GH 关于点O 对称,连接PM ,则图中阴影部分的面积是 cm 2(结果用π表示)14、如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为xcm ,△ABP 的面积为ycm 2,如果一关于x 的函数图象如图所示,则矩形ABCD 的面积是 cm 2.15、如图,D 是AB 边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC 边上F 处,若∠B=500,则∠BDF= 度.16、如下图,四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”.如果小正方形面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么sin θ= .17、如下图,Rt △ABC 中,∠C=900,BC=6cm,CA=8cm.动点P 从点C 出发,以2cm/s 的速度沿CA 、AB 移动到B ,则P 点出发 秒时,可使14BCP ABC S S ∆∆=.三、解答题(本大题共9小题,共89分) 18、(本题满分7分)请你依据下图框中的寻宝游戏规则, 探究“寻宝游戏”的奥秘:(1)用树状图表示出所以可能的寻宝情况; (2)求在寻宝游戏中胜出的概率.19、(本题满分7分)已知113x y -=,求代数式21422x xy yx xy y----的值. 20、(本题满分8分)已知四边形ABCD ,对角线AC 、BD 交于点O ,现给出4个条件:①AC=BD ;②AC 平分对角线BD ;③A D ∥BC ;④∠OAB+∠OBA=900.请你以其中的三个条件作为命题的题设,以“四边形ABCD 为矩形”作为命题的结论. (1)写出一个真命题,并给予证明;(2)写出一个假命题,并举出一个反例说明. 21、(本题满分8分)某数学兴趣小组,利用树影测量树高.已测出树AB 的影长AC 为6米,并测出此时太阳光线与地面成300夹角. (1)求出树高AB ;(2)假设因水土流失,此时树AB 绕点A 沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变,试求在倾倒过程中树影的最大长度.(计算结果精确到0.1 1.414≈ 1.732≈)22、(本题满分10分)为了美化环境净化空气,某住宅小区计划购进并种植杨树,丁香树和柳树三种树苗,共500株,其中购买柳树和丁香树的数量相等.某树苗公司提供如下信息:设住宅小区向该树苗公司购买杨树和柳树分别为x 株和y 株. (1)用含x 的代数式表示y ;(2)假设所种树苗的成活率为100%.若购买这三种树苗的总费用为w 元,要使得这500株树苗两年后对该住宅小区的空气净化指数之和不低于120,试求w 的取值范围. 23、(本题满分10分)如图所示,O 的直径AB=4,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C,连结AC.(1)若∠CPA=300,求PC 的长;(2)若点P 在AB 的延长线上运动,∠CPA 的平分线交AC 于点M.你认为∠CMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP 的大小.24、(本题满分11分)如图1,已知O 为线段BC 上的一点,分别以OB,OC 为边,在BC 同侧作R t △AOB 和R t △COD ,使∠ABO=∠CDO=300,CA 的延长线交线段BD 于点E ; (1)求证:CE ⊥BD;(2)若O 为BC 中点,且将△AOB 绕点O 逆时针旋转600,连结AC 、BD 相交于点E ,如图2所示,求线段CE 的长.25、(本题满分14分)在△ABC 中,∠C=900,AC=4cm,BC=5cm ,点D 在BC 上,且CD=3cm ,现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以1cm/s 的速度,沿AC 向终点C 移动;点Q 以1.25cm/s 的速度沿BC 向终点C 移动.过点P 作PE ∥BC 交AD 于点E,连结EQ.设动点运动时间为x 秒.(1)用含x 的代数式表示AE 、DE 的长度;(2)当点Q 在BD (不含点B 、D )上移动时,设△EDQ 的面积为y (cm 2),求y 与x 的函数关系式, 并写出自变量x 的取值范围;(3)当x 为何值时,△EDQ 为直角三角形.26、(本题满分14分)如图1,在平面直角坐标系中,已知点A (0,,点B 在x 轴的正半轴上,且∠ABO=300.动点P 在线段AB 上从点A 向终点B 设运动时间为t 秒.在x 轴上取两点M 和N 作等边△PMN. (1)求直线AB 的解析式;(2)求等边△PMN 的边长(用含t 的代数式表示);(3)如果取OB 的中点D ,以OD 为边在Rt △AOB 内部作如图2所示的矩形ODCE ,点C 在线段AB 上.设等边△PMN 和矩形ODCE 重叠部分的面积为S ,求当02t ≤≤时S 与t 的函数关系式,并求出S 的最大值.2009厦门对外招生考试数学试卷答题卡8、;9、;10、;11、;12、;13、;14、;15、;16、;17、。
2009高考数学全国卷及答案理
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[()u A B I 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}A B =,{4,7,9}(){3,5,8}U A B C A B =∴=故选A 。
也可用摩根律:()()()U U U C A B C A C B =(2)已知1iZ +=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈解:验x=-1即可。
江西省2009年中等学校招生考试数学试题及答案(word版)
江西省2009年中等学校招生考试数 学 试 题 卷友情提示:一、认真对待每一次复习及考试。
.二、遇到不懂的题目或者知识点就是并解决它就是进步的机会。
三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效. 四、请仔细审题,细心答题,相信你一定会有出色的表现!说明:1.本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共10小题,每小题3分,共30分) 1.2-的绝对值是( ) A .2-B .2C .12D .12-2.化简()221a a -+-的结果是( ) A .41a -- B .41a - C .1 D.1-3.如图,直线m n ∥,︒∠1=55,︒∠2=45, 则∠3的度数为( ) A .80︒ B .90︒ C .100︒ D .110︒4.方程组233x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩,.B .21x y =⎧⎨=⎩,. C .11x y =⎧⎨=⎩,.D .23x y =⎧⎨=⎩,.5.在下列四种图形变换中,本题图案不包含的变换是( ) A .位似 B .旋转 C .轴对称 D .平移 6A .1516, B .1515, C .1515.5, D .1615, 7.如图,已知AB AD =,那么添加下列一个条件后, 仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠3mn21(第3题)ACD(第5题)8.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,A 的半径为2.下列说法中不正..确.的是( ) A .当5a <时,点B 在A 内 B .当15a <<时,点B 在A 内 C .当1a <时,点B 在A 外 D .当5a >时,点B 在A 外9.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )A .2个或3个B .3个或4个C .4个或5个D .5个或6个10.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( )A .()60.051263%x +=B .()60.051263x +=C .()260.05163%x +=D .()260.05163x +=二、填空题(本大题共6小题,每小题3分,共18分) 11.写出一个大于1且小于4的无理数 .12.选做题(从下面两题中只选做一题,如果做了两题的,只按第(........................1.)题评分....). (Ⅰ)方程0251x =.的解是 .3142.≈ .(结果保留三个有效数字)13.用直径为80cm 的半圆形铁皮围成一个圆锥的侧面(不计接缝部分),则此圆锥的底面半径是 cm . 14.不等式组23732x x +>⎧⎨->-⎩,的解集是 .15.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离16cm AB BC ==,则1=∠ 度.16.函数()()1240y x x y x x==>≥0,的图象如图所示,则结论:①两函数图象的交点A 的坐标为()22,;②当2x >时,21y y >; ③当1x =时,3BC =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大主视图俯视图(第9题)4x1(第15题) A B C而减小.其中正确结论的序号是 . 三、(本大题共3个小题,第17小题6分,第18、19小题各7分,共20分) 17.计算:()()()223523---⨯-.18.先化简,再求值:232224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.19.某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A 、B 、C 表示)和三个化学实验(用纸签D 、E 、F 表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个. (1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B 和化学实验F (记作事件M )的概率是多少? 四、(本大题共2个小题,每小题8分,共16分)20.经市场调查,某种优质西瓜质量为(5±0.25)kg 的最为畅销.为了控制西瓜的质量,农科所采用A 、B 两种种植技术进行试验.现从这两种技术种植的西瓜中各随机抽取20颗,记录它们的质量如下(单位:kg ):A :4.1 4.8 5.4 4.9 4.7 5.0 4.9 4.8 5.8 5.2 5.0 4.8 5.2 4.9 5.2 5.0 4.8 5.2 5.1 5.0B :4.5 4.9 4.8 4.5 5.2 5.1 5.0 4.5 4.7 4.9 5.4 5.5 4.6 5.3 4.8 5.0 5.2 5.3 5.0 5.3(1)若质量为(5±0.25)kg 的为优等品,根据以上信息完成下表:(2)请分别从优等品数量、平均数与方差三方面对A 、B 两种技术作出评价;从市场销售的角度看,你认为推广哪种种植技术较好.21.某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB 、OB 分别表示父、子俩送票、取票过程中,离体育馆的路程.......S (米)与所用时间t (分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变): (1)求点B 的坐标和AB 所在直线的函数关系式; (2)小明能否在比赛开始前到达体育馆?五、(本大题共2小题,第22小题8分,第23小题9分,共17分)22.如图,已知线段()20AB a a M=>,是AB的中点,直线1l AB⊥于点A,直线2l AB⊥于点M,点P是1l左侧一点,P到1l的距离为()2b a b a<<.(1)作出点P关于1l的对称点1P,并在1PP上取一点2P,使点2P、1P关于2l对称;(2)2PP与AB有何位置关系和数量关系?请说明理由.23.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式222156208260+=).(第22题)F六、(本大题共2个小题,第24小题9分,第25小题10分,共19分) 24.如图,抛物线223y x x =-++与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为m ;①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?②设BCF △的面积为S ,求S 与m 的函数关系式.25.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.(第24题)A D E F AD EF A D E BF C图1 图2A DEBF C PNM图3 A D EBFCPNM (第25题)江西省2009年中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本参考答案不同,可根据试题的主要考查内容参照评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅;当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.11.如π 12.(Ⅰ)4x =;(Ⅱ)0.46413.20 14.25x << 15.120 16.①③④(说明:1。
2009年中考数学试题参考答案
2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。
2009年数学试题及解答
2009年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题8分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。
(1)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-等价无穷小,则() (A )11,6a b ==-(B )11,6a b ==(C )11,6a b =-=- (D )11,6a b =-=【解析与点评】考点:无穷小量比阶的概念与极限运算法则。
【答案】A2222sin sin 1cos sin limlimlimlimln(1)()36x x x x x ax x ax a x a ax x bx x bx bxbx→→→→---===----23sin lim166.x a ax ab baxa →==-=-36a b =-意味选项B ,C 错误。
再由21cos lim 3x a ax bx→-=-存在,故有1cos 0(0)a ax x -→→,故a=1,D 错误,所以选A 。
(2)如图,正方形{(,)|||1,||1}x y x y ≤≤被其对角线划分为四个区域,(1,2,3,4),cos KK K D D k I y xdxdy ==⎰⎰,则14max{}KK I≤≤=()【解析与点评】本题利用二重积分区域的对称性及被积函数的奇偶性。
24,D D 关于x 轴对称,而cos y x -即被积函数是关于y 的奇函数,所以2413;,I I D D =两区域关于y 轴对称,cos()cos y x y x -=即被积函数是关于x 的偶函数,由积分的保号性,13{(,)|,01}{(,)|,01}2cos 0,2cos 0x y y x x x y y x x I y xdxdy I y xdxdy ≥≤≤≤-≤≤=>=<⎰⎰⎰⎰,所以正确答案为A 。
(3)设函数()y f x =在区间[-1,3]上的图形为则函数0()()x F x f t dt =⎰为()【解析与点评】考点:函数与其变限积分函数的关系、函数与其导函数之间的关系,变限积 分函数的性质(两个基本定理),定积分的几何意义。
09年全国初中数学联赛试题及答案
09年全国初中数学联赛试题及答案第一篇:09年全国初中数学联赛试题及答案09年全国初中数学联赛试题及答案时间:2009-6-3 14:33:52 点击:15833 2009年全国初中数学联合竞赛试题参考答案第一试一、选择题(本题满分42分,每小题7分)1.设,则.D.().A.24.B.25.C.2.在△ABC中,最大角∠A是最小角∠C的两倍,且AB=7,AC=8,则BC=()A.3.用表示不大于的最大整数,则方程的解的个数.B..C..D..为()A.1.B.2.C.3.D.4.4.设正方形ABCD的中心为点O,在以五个点A、B、C、D、O为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为()A..B..C..D..5.如图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则CBE=(D)A..B..C..D..16.设是大于1909的正整数,使得A.3.B.4.C.5.D.6.为完全平方数的的个数是()二、填空题(本题满分28分,每小题7分)1.已知是实数,若则是关于的一元二次方程的两个非负实根,的最小值是____________.2.设D是△ABC的边AB上的一点,作DE//BC交AC 于点E,作DF//AC交BC于点F,已知△ADE、△DBF的面积分别为3.如果实数满足条件,和,则四边形DECF的面积为______.,则______.4.已知_____对.是正整数,且满足是整数,则这样的有序数对共有第一试答案: ACCBDB;-3,第二试(A)一.(本题满分20分)已知二次函数别为A、B,与,-1,-7的图象与轴的交点分轴的交点为C.设△ABC的外接圆的圆心为点P.轴的另一个交点为定点.,求和的值.,设,则,.(1)证明:⊙P与(2)如果AB恰好为⊙P的直径且解:(1)易求得点设⊙P与的坐标为轴的另一个交点为D,由于AB、CD是⊙P的两条相交弦,它们的交点为点O,所以OA×OB=OC×OD,则因为,所以点在轴的负半轴上,从而点D在.轴的正半轴上,所以点D为定点,它的坐标为(0,1).(2)因为AB⊥CD,如果AB恰好为⊙P的直径,则C、D关于点O对称,所以点的坐标为即.,又,所以,解得.、分别是二.(本题满分25分)设CD是直角三角形ABC的斜边AD上的高,△ADC、△BDC的内心,AC=3,BC=4,求解作E⊥AB于E,F⊥AB 于F...在直角三角形ABC中,AC=3,BC=4,又CD⊥AB,由射影定理可得,故,.因为连接DDA=∠E为直角三角形ACD的内切圆的半径,所以、D,则D、D=.DC=∠D,分别是∠ADC和∠BDC的平分线,所以∠D=90°,所以DC=∠DB=45°,故∠D⊥.同理,可求得,.所以=.三.(本题满分25分)已知为正数,满足如下两个条件:①②证明:以为三边长可构成一个直角三角形.证法1 将①②两式相乘,得,即,即,即,即,即,即,即,即所以.因此,以或,或,即或或为三边长可构成一个直角三角形.证法2 结合①式,由②式可得,变形,得又由①式得,即③,代入③式,得.,即 4,所以或或或.或.结合①式可得因此,以为三边长可构成一个直角三角形.第二试(B)一.(本题满分20分)题目和解答与(A)卷第一题相同.二.(本题满分25分)已知△ABC中,∠ACB=90°,AB边上的高线CH与△ABC的两条内角平分线AM、BN分别交于P、Q两点.PM、QN的中点分别为E、F.求证:EF∥AB.解因为BN是∠ABC的平分线,所以又因为CH⊥AB,所以,因此.,因此C、F、H、B.又F是QN的中点,所以CF⊥QN,所以四点共圆.又,所以FC =FH,故点F在CH的中垂线上.同理可证,点E在CH的中垂线上.因此EF⊥CH.又AB⊥CH,所以EF∥AB.三.(本题满分25分)题目和解答与(A)卷第三题相同.第二试(C)一.(本题满分20分)题目和解答与(A)卷第一题相同.二.(本题满分25分)题目和解答与(B)卷第二题相同.三.(本题满分25分)已知为正数,满足如下两个条件:①②是否存在以为三边长的三角形?如果存在,求出三角形的最大内角.解法1 将①②两式相乘,得,即,即,即,即,即,即,即,即,所以.因此,以或或,即或或为三边长可构成一个直角三角形,它的最大内角为90°.解法2 结合①式,由②式可得,变形,得又由①式得,即③,代入③式,得.,即所以或或或.或.结合①式可得因此,以下载附件:为三边长可构成一个直角三角形,它的最大内角为90°.中国教育学会中学数学教学专业委员会“《数学周报》杯”2010年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若,则的值为().(A)(B)(C)(D)解:由题设得.2.若实数a,b满足,则a的取值范围是().(A)a≤(B)a≥4(C)a≤ 或a≥4(D)≤a≤4 解.C 因为b是实数,所以关于b的一元二次方程的判别式≥0,解得a≤ 或a≥4.3.如图,在四边形ABCD中,∠B=135°,∠C=120°,AB=,BC=,CD=,则AD边的长为().(A)(B)(第3题)(C)(D)解:D 如图,过点A,D分别作AE,DF垂直于直线BC,垂足分别为E,F.由已知可得(第3题)BE=AE=,CF=,DF=2,于是 EF=4+.过点A作AG⊥DF,垂足为G.在Rt△ADG中,根据勾股定理得AD =.4.在一列数……中,已知,且当k≥2时,(取整符号表示不超过实数的最大整数,例如,),则等于((A)1(B)2(C)3(D)4 解:B 由和可得,,,,).……因为2010=4×502+2,所以 =2.5.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B 旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,……,重复操作依次得到点P1,P2,…,则点P2010的坐标是().(第5题)(A)(2010,2)(B)(2010,)(C)(2012,)(D)(0,2)解:B由已知可以得到,点,的坐标分别为(2,0),(2,).记,其中.根据对称关系,依次可以求得:,,.令,同样可以求得,点的坐标为(),即(),由于2010=4 502+2,所以点的坐标为(2010,).二、填空题6.已知a=-1,则2a3+7a2-2a-12 的值等于.解:0 由已知得(a+1)2=5,所以a2+2a=4,于是2a3+7a2-2a-12=2a3+4a2+3a2-2a-12=3a2+6a-12=0.7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t分钟,货车追上了客车,则t=.解:15 设在某一时刻,货车与客车、小轿车的距离均为S千米,小轿车、货车、客车的速度分别为(千米/分),并设货车经x分钟追上客车,由题意得,①,② .③ 由①②,得,所以,x=30.故(分).(第8题8.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l的函数表达式是.(第8题)解:如图,延长BC交x轴于点F;连接OB,AF CE,DF,且相交于点N.由已知得点M(2,3)是OB,AF的中点,即点M为矩形ABFO 的中心,所以直线把矩形ABFO分成面积相等的两部分.又因为点N (5,2)是矩形CDEF的中心,所以,过点N(5,2)的直线把矩形CDEF分成面积相等的两部分.于是,直线即为所求的直线.设直线的函数表达式为,则解得,故所求直线的函数表达式为.(第9题)9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN于点F,C,过点C作AM的垂线CD,垂足为D.若CD=CF,则.解:见题图,设.因为Rt△AFB∽Rt△ABC,所以.又因为FC=DC=AB,所以即,解得,或(舍去).又Rt△ ∽Rt△,所以,即 = .10.对于i=2,3,…,k,正整数n除以i所得的余数为i-1.若的最小值满足,则正整数的最小值为.解:因为为的倍数,所以的最小值满足,其中表示的最小公倍数.由于,因此满足的正整数的最小值为.三、解答题(共4题,每题20分,共80分)11.如图,△ABC为等腰三角形,AP是底边BC上的高,点D是线段PC上的一点,BE和CF分别是△ABD和△ACD的外接圆直径,连接EF.求证:(第12A题).(第12B题)(第11题)(第12B题)证明:如图,连接ED,FD.因为BE和CF都是直径,所以ED⊥BC,FD⊥BC,因此D,E,F三点共线.…………(5分)连接AE,AF,则(第11题),所以,△ABC∽△AEF.…………(10分)作AH⊥EF,垂足为H,则AH=PD.由△ABC∽△AEF可得,从而,所以.…………(20分)12.如图,抛物线(a 0)与双曲线相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a,b,k的值;(2)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求所有满足△EOC∽△AOB的点E的坐标.(第12题)解:(1)因为点A(1,4)在双曲线上,所以k=4.故双曲线的函数表达式为.设点B(t,),AB所在直线的函数表达式为,则有解得,.于是,直线AB与y轴的交点坐标为,故,整理得,解得,或t=(舍去).所以点B的坐标为(,).因为点A,B都在抛物线(a 0)上,所以解得…………(10分)(2)如图,因为AC∥x轴,所以C(,4),于是CO=4.又BO=2,所以.13(第12题)设抛物线(a 0)与x轴负半轴相交于点D,则点D的坐标为(,0).因为∠COD=∠BOD=,所以∠COB=.(i)将△ 绕点O顺时针旋转,得到△.这时,点(,2)是CO的中点,点的坐标为(4,).延长到点,使得=,这时点(8,)是符合条件的点.(ii)作△ 关于x轴的对称图形△,得到点(1,);延长到点,使得=,这时点E2(2,)是符合条件的点.所以,点的坐标是(8,),或(2,).…………(20分)13.求满足的所有素数p和正整数m..解:由题设得,所以,由于p是素数,故,或.……(5分)(1)若,令,k是正整数,于是,故,从而.所以解得…………(10分)(2)若,令,k是正整数.当时,有,故,从而,或2.由于是奇数,所以,从而.于是这不可能.当时,;当,无正整数解;当时,无正整数解.综上所述,所求素数p=5,正整数m=9.…………(20分)14.从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?解:首先,如下61个数:11,,…,(即1991)满足题设条件.…………(5分)另一方面,设是从1,2,…,2010中取出的满足题设条件的数,对于这n个数中的任意4个数,因为,所以.因此,所取的数中任意两数之差都是33的倍数.…………(10分)设,i=1,2,3,…,n.由,得,所以,即≥11.…………(15分)≤,故≤60.所以,n≤61.综上所述,n的最大值为61.…………(20分)第二篇:95-08全国初中数学联赛试题2001年全国初中数学联合竞赛试题及答案2002年全国初中数学联合竞赛试题及答案2003年全国初中数学联合竞赛试题及答案2005年全国初中数学联合竞赛试题及答案2005年全国初中数学联合竞赛决赛试题及答案2006年全国初中数学联合竞赛决赛试题及答案答案:2007年全国初中数学联合竞赛决赛试题及答案答案:2008年全国初中数学联合竞赛一试试题及答案答案:2008年全国初中数学联合竞赛二试试题及答案答案:第三篇:初中数学联赛模拟试题全国初中数学联赛模拟试题(3)(考试时间2小时,满分120分)一、选择题(每小题5分,共30分)1.已知t>0,则的最大值是()2.的整数部分是a,小数部分是b,则的值为()(A)(B)(C)(D)3.在凸四边形ABCD中,AB=CD,AC为对角线,∠DAC>∠BCA,且∠DAC与∠BCA互补,∠BAC>∠ACD,且么∠BAC与∠ACD互余,则∠B等于()(A)300(B)600(C)450(D)5004.半径为1的圆的外切直角三角形的面积的最小值为()5.某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱,为满足上述要求,至少应该有货物的箱数是()(A)966(B)975(C)16984(D)170096.已知⊙O1与⊙O2的半径分别为3和5,O1O2=10,则两圆的两条内公切线与一条外公切线所围成的三角形面积为()二、填空题(每小题5分,共30分)7.100人共有1000元人民币,其中任意10个人共有的钱不超过190元.那么,钱最多的人最多能有____元.8.如图,AB为半圆D的直径,AC、AD都是弦,∠CAD=∠DAB.则AC+AB与2AD的大小关系是____.9.非等腰△ABC中,D、E分别是边AB、AC上的点(不含端点).在△ABC的平面上存在点F,使△DEF与△ABC相似,则满足条件的点F有____个.10.如图,两圆同心,半径为与矩形ABCD的边AB、CD为两圆的弦.当矩形面积取最大值时,它的周长等于____.11.的最小值是.12.已知a为正整数,存在一个以a为首项系数的一元二次整系数的多项式,它有两个小于l的不同的正根.那么,a的最小值是.三、解答题(每小题20分,共60分)13.如图,在大小为4×4正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上.能否在图中画出△A1B1C1,使△A1B1C1∽△ABC(相似比不为1)且A1、B1、C1都在单位正方形的顶点上;若能,满足以上条件的相似三角形能找出几种,并说明其理由,14.如图,开口向下的抛物线与x轴交于A、B两点(点A在点B 的左侧),抛物线上另有一点C在第一象限,且使△OCA∽△OBC.(1)求OC的长及的值;(2)设直线BC与y轴交于P,当C是BP的中点时,求直线BP和抛物线的解析式。
2009年第50届国际数学奥林匹克竞赛试题(中文版)与参考答案
2009年第50届国际数学奥林匹克竞赛试题(中文版)与参考答案2009年第50届IMO解答2009年7月15日1、是一个正整数,是n12,,...,(2)kaaak≥{}1,2,...,n中的不同整数,并且1(1iinaa+.对于所有都成立,证明:1,2,...,1ik=1(1kaa.不能被n整除。
证明1:由于12(1naa.,令1(,)nap=,nqp=也是整数,则npq=,并且1pa,21qa.。
因此,由于2(,)1qa=23(1npqaa=.,故31qa.;同理可得41qa.,。
,因此对于任意都有2i≥1iqa.,特别的有1kqa.,由于1pa,故1(1knpqaa=.(*)。
若结论不成立,则1(1knpqaa=,与(*)相减可得1(knaa.,矛盾。
综上所述,结论成立。
此题平均得分:4.804分2、外接圆的圆心为O,分别在线段上,ABCΔ,PQ,CAAB,,KLM分别是,,BPCQPQ的中点,圆过Γ,,KLM并且与相切。
证明:OPPQOQ=。
*****QP证明:由已知*****QP∠=∠=∠,*****PQ∠=∠=∠,因此APQMKLΔΔ~。
所以*****QMLCP==,故*****Q.=.(*)。
设圆O的半径为R,则由(*)有222ROPROQ.=.,因此OPOQ=。
不难发现OP也是圆Γ与相切的充分条件。
OQ=PQ此题平均得分:3.710分3、是严格递增的正整数数列,并且它的子数列和都是等差数列。
证明:是一个等差数列。
123,,,...SSS123,,,...SSSSSS*****,,,.SSSSSS+++123,,,...SSS问题等价于::fZZ+→是一个严格递增的函数。
()()nbffn=是一个等差数列,也是一个等差数列。
证明:(()1ncffn=()nafn=也是等差数列。
证明:由于是一个严格递增的整值函数,所以对于任意f,xy均有()()fxfy xy.≥.。
令{}{},nnbc的公差分别为,则有,de()()(1)()(1)(dffnffnfnfn=+.≥+.,将可得()nfn→()()()1()0nndffnffncb≥+.=.,因此对于任意都有kZ+∈()()*****kkdcbcbkde++≥.=.+.故只能有,也即两个等差数列公差相等,故可设de=nncbg.=是一个为常数。
2009年考研数一真题及答案
2009年全国硕士研究生入学统一考试数学一试题答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. 【答案】 A【解析】2()sin ,()ln(1)f x x ax g x x bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a ax g x x bx x bx bx bx →→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C 。
另外201cos lim 3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排D 。
所以本题选A 。
(2)如图,正方形(){},1,1x y x y ≤≤四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=()A 1I .()B 2I . ()C 3I .()D 4I .【答案】A【解析】本题利用二重积分区域的对称性及被积函数的奇偶性。
24,D D 两区域关于x 轴对称,而(,)cos (,)f x y y x f x y -=-=-,即被积函数是关于y 的奇函数,所以240I I ==;13,D D 两区域关于y 轴对称,而(,)cos()cos (,)f x y y x y x f x y -=-==,即被积函x数是关于x 的偶函数,所以{}1(,),012cos 0x y y x x I y xdxdy ≥≤≤=>⎰⎰;{}3(,),012cos 0x y y x x I y xdxdy ≤-≤≤=<⎰⎰.所以正确答案为A.(3)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为()A ()B()C ()D【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征:①[]0,1x ∈时,()0F x ≤,且单调递减。
普陀区2009学年度第二学期九年级数学试卷(附答案)2010.4
2009学年度第二学期普陀区初三质量调研数学试卷(时间:100分钟,满分:150分)考生注意:所有答案务必按照规定在答题纸上完成,写在试卷上不给分一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列二次根式中,是同类二次根式的是………………………………………().(A) ;(B) ;(C) ;(D) .2. 两条对角线互相垂直平分的四边形是………………………………………………().(A) 等腰梯形;(B) 菱形;(C) 矩形;(D) 平行四边形.3.下列条件中,能判定两个等腰三角形相似的是……………………………………(). (A)都含有一个30°的内角;(B)都含有一个45°的内角;(C)都含有一个60°的内角;(D)都含有一个80°的内角.4.如果一元二次方程220x x k-+=有两个不相等的实数根,那么k的取值范围是().(A) 1k≥;(B) 1k≤;(C) 1k>;(D) 1k<.5.如右图,△ABC中,D是边BC的中点,BA a=,AD b=,那么BC等于…(). (A)a+b;(B)12(a+b);(C)2(a+b);(D)—(a+b).6. 气象台预报“本市明天降水概率是80%”,对此消息,下面几种说法正确的是…().(A) 本市明天将有80%的地区降水;(B) 明天降水的可能性比较大;(C) 本市明天降有80%的时间降水;(D) 明天肯定下雨.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.计算:23(2)a a⋅= .8.生物学家发现一种病毒的长度约为0.0043mm,用科学记数法表示为= mm .9.当a=2时,1a-= .ADB C第5题第21题10.不等式组24,50x x >-⎧⎨-<⎩的解集是 .11.一元二次方程20(0)ax bx c a ++=≠有一根为零的条件是 . 12.将图形(右)绕中心旋转180°后的图形是 (画出图形). 13.函数y =的定义域是 . 14. 已知一次函数3y kx =+的图像与直线2y x =平行,那么此一次函数的解析式为 . 15.梯形ABCD 中,AD ∥BC ,如果∠A=5∠B ,那么∠B= 度.16. 在四边形ABCD 中,如果AB ∥CD ,AB=BC ,要使四边形ABCD 是菱形,还需添加一个条件,这个条件可以是 .17.如果一斜坡的坡度为i =1,某物体沿斜面向上推进了10米,那么物体升高了米.18.中心角是40°的正多边形的边数是 .三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分, 满分78分) 19.化简:1(1)11a a a -÷++. 20.解方程组:2224,2 1.x y x xy y +=⎧⎨-+=⎩21.如图,在平行四边形ABCD 中,点G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,如果AB=m ,CG =12BC , 求:(1)DF 的长度;(2)三角形ABE 与三角形FDE 的面积之比.22. 如图所示,已知在△ABC 中,AB=AC ,AD 是∠BAC的平分线,交BC 于点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E , (1)求证:四边形ADCE 是矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?请加以证明.第12题23. 为了引导学生树立正确的消费观,某机构随机调查了一所小学100名学生寒假中使用零花钱的情况(钱数取整数元),根据调查制成了频率分布表,如下: (1) 补全频率分布表;(2) 使用零化钱钱数的中位数在第 组; (3) 此机构认为,应对消费200元以上的学生提出 勤俭节约的建议,那么应对该校800名学生中约 名学生提出此项建议.24. 如图,在平面直角坐标系中,点O 为原点,已知点A 的坐标为(2,2),点B 、C 在x 轴上,BC =8,AB=AC ,直线AC 与y 轴相交于点D . 1)求点C 、D 的坐标;2)求图象经过B 、D 、A 三点的二次函数解析式 及它的顶点坐标.25.如图,已知Sin ∠ABC=13,⊙O 的半径为2,圆心O 在射线BC 上,⊙O 与射线BA 相交于 E 、F 两点,EF=(1) 求BO 的长;(2) 点P 在射线BC 上,以点P 为圆心作圆,使得⊙P 同时与⊙O 和射线BA 相切, 求所有满足条件的⊙P 的半径.BC 上2009学年度第二学期普陀区九年级质量调研数学试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(A) ; 2.(B) ; 3.(C); 4.(D) ; 5.(C) ; 6.(B) .二、填空题:(本大题共12题,每题4分,满分48分) 7. 45a ; 8. 34.310-⨯; 9. 1;10. 25x -<<; 11. c =0; 12. ;13.2x ≠; 14.23y x =+; 15. 30; 16.AB =CD 等; 17.5 ; 18. 9. 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.解: 原式=1()(1)11a a a a a +-+++…………………………………………………………4′(各2分)=(1)a a -+ …………………………………………………………………………………2′=1a a -- ……………………………………………………………………………………2′=1-. ………………………………………………………………………………………2′ 20.2224,(1)2 1.(2)x y x xy y +=⎧⎨-+=⎩解:由(2)式得到:2()1x y -=,…………………………………………………………………………1′再得到1x y -=或者1x y -=-,……………………………………………………………1′与(1)式组成方程组:24,1.x y x y +=⎧⎨-=⎩或24,1.x y x y +=⎧⎨-=-⎩……………………………………………3′第21题解得:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………………………………4′ 经检验,原方程组的解是:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………1′ 21.解:(1)∵四边形ABCD 是平行四边形,∴AB=CD=m ,AB ∥CD . ………………………………2′∵CG =12BC , ∴CG =13BG ,………………………………………………1′∵AB ∥CD ,∴CF CGAB BG=.…………………………………………………………………………………1′ ∴13CF m =, …………………………………………………………………………………1′∴23DF m =.…………………………………………………………………………………1′ (2)∵AB ∥CD , ∴△ABE ∽△FDE ,………………………………………………………………………………2′∴239()24ABE FDE S S ∆∆==. …………………………………………………………………………2′ ∴ 三角形ABE 与三角形FDE 的面积之比为9∶4.22.证明:(1) ∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC , ………………………………………1′∴∠ADC =90°.∵AD 是∠BAC 的平分线,∴∠1=12∠BAC ,…………………………………1′ 同理:∠2=12∠MAC .…………………………………1′∵∠BAC +∠MAC=180°. ∴∠1+∠2=90°.即∠EAD =90°. …………………………………1′∵CE ⊥AN , ∴∠AEC =90°. …………………………………1′ ∴四边形ADCE 是矩形.…………………………1′(2)当△ABC 是等腰直角三角形时,四边形ADCE 是一个正方形.……………………………1′证明:∵∠BAC =90°,AB=AC ,AD 是∠BAC 的平分线,∴AD 是斜边BC 上的中线,∴AD=DC .……………………………………………………………………………………1′ ∵四边形ADCE 是矩形, …………………………………………………………………1′∴四边形ADCE 是正方形.…………………………………………………………………1′23.解:(1)见右,每个数1分,共8分;(2) 3;…………………………………………2′ (3)120.…………………………………………2′24.解:(1)过点A 作AE ⊥x 轴,垂足为点E .…………1′ ∵点A 的坐标为(2,2), ∴点E 的坐标为(2,0).……………………1′ ∵AB=AC ,BC =8,∴BE=CE , ……………………………………1′ 点B 的坐标为(-2,0), ……………………1′ 点C 的坐标为(6,0).………………………1′A B CD EM N第22题12设直线AC 的解析式为:y kx b =+(0k ≠), 将点A 、C 的坐标代入解析式,得到: 132y x =-+.………………………1′ ∴点D 的坐标为(0,3). …………………1′(2)设二次函数解析式为:2y ax bx c =++(0a ≠), ∵ 图象经过B 、D 、A 三点, ∴4230,423 2.a b a b -+=⎧⎨++=⎩…………………………………………………………………………2′ 解得:1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩…………………………………………………………………………1′∴此二次函数解析式为:211322y x x =-++. …………………………………………1′顶点坐标为(12,138). ……………………………………………………………………1′25.(1)解:联接EO ,过点O 作OH ⊥BA 于点H . ………………2′∵EF=EH.………………………………1′∵⊙O 的半径为2,即EO =2,∴OH=1. …………………………………………………1′在Rt △BOH 中,∵Sin ∠ABC=13,………………………………………1′ ∴BO=3. …………………………………………………1′(2) 当⊙P 与直线相切时,过点P 的半径垂直此直线. …………………………………………1′(a )当⊙P 与⊙O 外切时,①⊙P 与⊙O 切于点D 时,⊙P 与射线BA 相DCFABO第25题E GH切,…………………………………………………1′ Sin∠ABC=113P P r r =-,得到:14P r =;………………………………………………………1′ ②⊙P 与⊙O 切于点G 时,⊙P 与射线BA 相切, Sin∠ABC=133P P r r =+,得到:52P r =. ……………………………………………………1′ (b ) 当⊙P 与⊙O 内切时,①⊙P 与⊙O 切于点D 时,⊙P 与射线BA相切,…………………………………………………1′Sin∠ABC=113P P r r =+,得到:12P r =;…………………………………………………1′ ②⊙P 与⊙O 切于点G 时,⊙P 与射线BA 相切, Sin∠ABC=153P P r r =-,得到:54P r =. ………………………………………………………1′ 综上所述:满足条件的⊙P的半径为14、52、12、54.……………………………………………1′。
2009年普通高等学校招生全国统一考试数学卷(全国Ⅰ.理)含详解
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u AB I 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}A B = ,{4,7,9}(){3,5,8}U A B C A B =∴= 故选A 。
也可用摩根律:()()()U U U C A B C A C B =(2)已知????i 则复数z ??(B ??)w w w k s ??u c o m ?????????????? (A )????i?????????? B??????i?????????????????? C????i?????????????????? D????i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
哈尔滨市2009年中考数学试卷及答案
哈尔滨市2009 年初中升学考试数学试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,满分30分.第Ⅱ卷为填空题和解答题,满分90分.本试卷共28道试题,满分120分,考试时间为120分钟.八区各学校的考生,请按照《哈尔滨市2009年初中升学考试选择题答题卡》上的要求做选择题(1~10小题,每小题只有一个正确答案).每小题选出正确答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,否则无效.填空题第16小题和第*16小题为考生根据所学内容任选其一作答题.县(市)学校的考生,请把选择题(1~10 小题,每小题只有一个正确答案)中各题表示正确答案的字母填在题后相应的括号内.填空题第16小题和第*16小题为考生根据所学内容任选其一作答题. 第Ⅰ卷 选择题(共30分)(涂卡) 一、选择题(每小题 3分,共计 30分) 1.-2的相反数是( )(A )2 (B )一2 (C )21 (D )一21 2.下列运算正确的是( ).(A )3a 2-a 2=3 (B )(a 2)3=a 5 (C )a 3.A 6=a 9 (D )(2a )2=2a 2 3.下列图形中,既是轴对称图形,又是中心对称图形的是().4.36的算术平方根是( ).(A )6 (B )±6 (C )6 (D )±6 5.点P (1,3)在反比例函数y =xk(k ≠0)的图象上,则k 的值是( ).(A )31 (B )3 (C )一31(D )一3 6.右图是某一几何体的三视图,则这个几何体是( ).(A )长方体 (B )圆锥(C )圆枉 (D )正三棱柱7.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于4的概率为( ). (A )61 (B )31 (C )21 (D )328.圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为( ).(A )36л (B )48л (C )72л (D )144л 9.如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A ´处,若∠A ´BC =20°,则∠A ´B D 的度数为( ). (A )15° (B )20° (C ) 25° (D )30°10.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的 路程s(单位:千米)与时间t(单位:分)之间的函数关系如图所示。
2014外高资格生考试数学真题.pdf
2014外校资格生考试试卷一、填空题:1.设5151+-的整数部分为x,小数部分为y ,则2212x xy y ++的值为.2.若关于x,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组111122534534a x b y c a x b y c +=⎧⎨+=⎩的解为3.学生玩游戏,他们按以下规则轮流在黑板上写数,规则①:每人每次各选一个从1~10中的数轮流写在黑板上;规则②:不能写已写在黑板上的数的约数。
比如,黑板上写着“9”,那么以后不能写1、3、9,;规则③:不能弃权不写。
最后,没有可写的数的人失败,在这个游戏中,如何巧妙地选数,那么先写的人必胜。
则1~10的数中最先可以写的数是.4.某城堡的围墙围成如下图PQRS 的形状,其中PQ=40m ,QR=45m ,RS=20m ,SP=20m ,且090PSR ∠=。
有一名卫兵在城墙外,依顺时针方向沿着与城墙最近的距离保持2m 的路径巡逻,绕一圈回到出发点,则他总共走了米.5.数x,y,z 满足方程9744x y z x x +-++-+=,则()2014533x y z +-的末位数字为.6.模型赛车手遥控一辆赛车,先前进1米,然后,原地逆时针方向旋转角α(000180 <<),被称为一次操作,若五次操作后,发现赛车回到出发点,则角α为.7.直角坐标系中,正方形11122211,,...,n n n n A B C O A B C C A B C C -按下图所示的方式放置。
其中点12,,...,n A A A 都在一次函数y kx b =+的图像上,点12,,...,n C C C 都在x 轴上,已知点1B 的坐标为(1,1),点2B 的坐标为(3,2),则点n B 的坐标为.8.如图,锐角三角形ABC 内接于半径为R 的O ,H 是三角形ABC 的垂心,AO 的延长线与BC 交于点M ,若OH 垂直AO ,BC=10,OA=6,则OM 的长为.9.满足不等式2003005n 的最大整数n 等于.10.条件下在某的汽车测试中,驾驶员在一次加满油后的连续行驶过程中从汽车仪表盘得到如下信息:注:油耗=,可继续行驶距离=,平均油耗=.从上述信息可以推断在10:00﹣11:00这1小时内(填上所有正确判断的序号).①向前行驶的里程为80公里;②向前行驶的里程不足80公里;时间耗油(升/100公里)可继续行驶距离(公里)10:009.530011:009.6220④平均油耗恰为9.6升/100公里;⑤平均车速超过80公里/小时.二.解答题:11.数x,y.z,t 满足不等式()()222224x y z t x y z t +++≥+++。
2009外校资格生数学试题及答案.doc
武汉外国语学校2009年自主招生考试数学试题一:填空1:如图,甲乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲按顺时针方向环行,乙按逆时针方向环行,若乙的速度是甲的速度的4倍,则他们2000次相遇在正方形的____边上.1题图2题图2把左图的矩形折叠,B,C两点恰好重合落在AD边上的P点(如右图),已知角MPN=90度,PM=3.PN=4.那么矩形纸片ABCD的面积为_____3:若方程组a1x+b1y=c1 , a2x+b2y=c2.的解是x=3.y=4,则方程组3a1x+2b1y=5c1 , 3a2x+2b2y=5c2.的解是______4:如图,直线与x轴交于点A,与y轴交于点B,点A与点A1关于y 轴对称,过点A1作A1C垂直AB于点C,则点C的坐标是_______4题图5题图5:已知圆O的半径是1,以O为原点,建立如图所示的直角坐标系.有一个等边三角形ABC,顶点B的坐标为(-2,0),顶点A在X轴上方,顶点C在圆O上运动,设等边三角形的面积为S,则S的最大值为______6:将一矩形纸片ABCD和一个足够大的直角三角形纸片EFG按照如图所示的方式叠放在一起,直角边EF,EG分别经过点A,C.连结BE,BD.比较BE与BD的大小关系得BE____BD6题图7题图7:对于三个数a,b,c用max{a,b,c}这三个数中最大的数,例如:max{-3,1,2}=2,观察y=x+1,y=3-x,y=-x2+2x+3在同一坐标系中的图象,可以得max{x+1.-x2+2x+3,3-x}的最小值为________8:在代数式(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的系数是______9:电子钟一天显示的时间是从00:00到23:50,每一时刻都由四个数字组成,则一天中,任意时刻时钟显示的四个数字之和为23的概率为______10:如图,点M为正五边形边BC上一点,BM/CM=2,连AM.,作角AMN=900,MN交CD于点N,则CN/ND=_________10题图11题图11:已知三角形ABC的三个顶点A(3,6),B(1,4),C(1,0),则(1)中三角形ABC外接圆的圆心到弦AC的距离是___,(2)以BC为旋转轴,将三角形ABC旋转一周所得几何体的表面积之和为_________12已知对所有的实数x,恒成立,则m的最大值为____13:把正五边形ABCDE的五个顶点染上红,黄,蓝,绿四中颜色中的一种,要求相邻顶点所染颜色不同,且四种颜色都要用到,则不同的染色方法一共有_____种14当时,函数的函数值的取值范围是___________15:已知抛物线y=ax2+bx+c经过点(1,2),且abc=4.,,则=___ 二、解答题16四位数的百位数字是0,取掉0得到三位数,若x9=,则称这个四位数为"灵巧数",所有四位"灵巧数"的和是多少?17:如图,直线y=(3/4)x+3与x轴交于点B,与y轴交于点A,半径为r的9个等圆依次外切,且圆O1与AO,AB相切,圆O9与BO,BC相切,圆O2,圆O3........圆O8均与AB相切,则r的值得是多少18.如图ABCD为正方形,以C为圆心,CD为半径的圆,与以AD为直径的半圆交于另一点M,连结BM,则ta n∠ABM的值是多少?19:善于思考的小刚发现:半径为a,圆心在原点的圆,如果固定直径AB,把圆内所有与y 轴平行的弦都压缩到原来的b/a 倍,就得到一种新的图形---椭圆.他手刘徽"割圆术"的启发,采用"化整为零,积零为整","化曲为直,以直代曲"的方法,正确地求出了椭圆的面积,他求得的结果是多少?(2)小刚把图2中的椭圆绕x 轴旋转一周,得到一个"鸡蛋型"的椭圆,已知半径为a的球的体积为34πa 3则此椭圆的体积为多少?答案一、 填空题1.AD2.144/53.x=5,y=104. (-6/5,8/5)5.93/46.<7. 38.-159.1/36010.2/7 11.(4+42}12. 513.第一个顶点有4种颜色可染第二个顶点有3种颜色可染第三个顶点有3种颜色可染第四个顶点有3种颜色可染第五个顶点有2种颜色可染4×3×3×*3×*2=72种14.0≦y≦415.解:⑴由题意,a+b+c=2,∵a=1,∴b+c=1抛物线顶点为A(-b2,c-b24)设B(x1,0),C(x2,0),∵x1+x2=-b,x1x2=c,△=b2-4c>0 ∴|BC|=| x1-x2|=| x1-x2|2=(x1+x2)2-4 x1x2=b2-4c∵△ABC为等边三角形,∴b24 -c=32b2-4c即b2-4c=23•b2-4c,∵b2-4c>0,∴b2-4c=23∵c=1-b,∴b2+4b-16=0,b=-2±25所求b值为-2±25⑵∵a≥b≥c,若a<0,则b<0,c<0,a+b+c<0,与a+b+c=2矛盾. ∴a>0.∵b+c=2-a,bc=4a∴b、c是一元二次方程x2-(2-a)x+4a=0的两实根.∴△=(2-a)2-4×4a≥0,∴a3-4a2+4a-16≥0,即(a2+4)(a-4)≥0,故a≥4.∵abc>0,∴a、b、c为全大于0或一正二负.①若a、b、c均大于0,∵a≥4,与a+b+c=2矛盾;②若a、b、c为一正二负,则a>0,b<0,c<0,则|a|+|b|+|c|=a-b-c=a-(2-a)=2a-2,∵a≥4,故2a-2≥6当a=4,b=c=-1时,满足题设条件且使不等式等号成立.故|a|+|b|+|c|的最小值为6.16.1215017.r=5/2118.ta n∠ABM=1/319.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉外国语学校2009年自主招生考试数学试题
一:填空
1:如图,甲乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲按顺时针方向环行,乙按逆时针方向环行,若乙的速度是甲的速度的4倍,则他们2000次相遇在正方形的____边上.
1题图2题图
2把左图的矩形折叠,B,C两点恰好重合落在AD边上的P点(如右图),已知角MPN=90度,PM=3.PN=4.那么矩形纸片ABCD的面积为_____
3:若方程组a1x+b1y=c1 , a2x+b2y=c2.的解是x=3.y=4,则方程组
3a1x+2b1y=5c1 , 3a2x+2b2y=5c2.的解是______
4:如图,直线与x轴交于点A,与y轴交于点B,点A与点A1关于y 轴对称,过点A1作A1C垂直AB于点C,则点C的坐标是_______
4题图5题图
5:已知圆O的半径是1,以O为原点,建立如图所示的直角坐标系.有一个等边三角形ABC,顶点B的坐标为(-2,0),顶点A在X轴上方,顶点C在圆O上运动,设等边三角形的面积为S,则S的最大值为______
6:将一矩形纸片ABCD和一个足够大的直角三角形纸片EFG按照如图所示的方
式叠放在一起,直角边EF,EG分别经过点A,C.连结BE,BD.比较BE与BD的大小关系得BE____BD
6题图7题图
7:对于三个数a,b,c用max{a,b,c}这三个数中最大的数,例如:max{-3,1,2}=2,观察y=x+1,y=3-x,y=-x2+2x+3在同一坐标系中的图象,可以得max{x+1.-x2+2x+3,3-x}的最小值为________
8:在代数式(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的系数是______
9:电子钟一天显示的时间是从00:00到23:50,每一时刻都由四个数字组成,则一天中,任意时刻时钟显示的四个数字之和为23的概率为______
10:如图,点M为正五边形边BC上一点,BM/CM=2,连AM.,作角AMN=900,MN交CD于点N,则CN/ND=_________
10题图11题图
11:已知三角形ABC的三个顶点A(3,6),B(1,4),C(1,0),则(1)中三角形ABC外接圆的圆心到弦AC的距离是___,(2)以BC为旋转轴,将三角形ABC旋转一周所得几何体的表面积之和为_________
12已知对所有的实数x,恒成立,则m的最大值为
____
13:把正五边形ABCDE的五个顶点染上红,黄,蓝,绿四中颜色中的一种,要求相邻顶点所染颜色不同,且四种颜色都要用到,则不同的染色方法一共有_____种
14当时,函数的函数值的取值范围是___________
15:已知抛物线y=ax2+bx+c经过点(1,2),且abc=4.,,则=___ 二、解答题
16四位数的百位数字是0,取掉0得到三位数,若x9=,则称这个四位数为"灵巧数",所有四位"灵巧数"的和是多少?
17:如图,直线y=(3/4)x+3与x轴交于点B,与y轴交于点A,半径为r的9个等圆依次外切,且圆O1与AO,AB相切,圆O9与BO,BC相切,圆O2,圆O3........圆O8均与AB相切,则r的值得是多少
18.如图ABCD为正方形,以C为圆心,CD为半径的圆,与以AD为直径的半圆交于另一点M,连结BM,则ta n∠ABM的值是多少?
19:善于思考的小刚发现:半径为a,圆心在原点的圆,如果固定直径AB,把圆内所有与y 轴平行的弦都压缩到原来的b/a 倍,就得到一种新的图形---椭圆.他手刘徽"割圆术"的启发,采用"化整为零,积零为整","化曲为直,以直代曲"的方法,正确地求出了椭圆的面积,他求得的结果是多少?
(2)小刚把图2中的椭圆绕x 轴旋转一周,得到一个"鸡蛋型"的椭圆,已知半径为a 的球的体积为34
πa 3则此椭圆的体积为多少?
答案 一、 填空题
1.AD
2.144/5
3.x=5,y=10
4. (-6/5,8/5)
5.9
3/4 6.< 7. 3 8.-15 9.1/360
10.2/7 11. (4+42} 12. 5
13. 第一个顶点有4种颜色可染 第二个顶点有3种颜色可染 第三个顶点有3种颜色可染 第四个顶点有3种颜色可染 第五个顶点有2种颜色可染 4×3×3×*3×*2=72种
14.0≦y≦4
15.
解:⑴由题意,a+b+c=2,∵a=1,∴b+c=1
抛物线顶点为A(-b2,c-b24)
设B(x1,0),C(x2,0),∵x1+x2=-b,x1x2=c,△=b2-4c>0 ∴|BC|=| x1-x2|=| x1-x2|2=(x1+x2)2-4 x1x2=b2-4c
∵△ABC为等边三角形,∴b24 -c=32b2-4c
即b2-4c=23•b2-4c,∵b2-4c>0,∴b2-4c=23
∵c=1-b,∴b2+4b-16=0,b=-2±25
所求b值为-2±25
⑵∵a≥b≥c,若a<0,则b<0,c<0,a+b+c<0,与a+b+c=2矛盾. ∴a>0.
∵b+c=2-a,bc=4a
∴b、c是一元二次方程x2-(2-a)x+4a=0的两实根.
∴△=(2-a)2-4×4a≥0,
∴a3-4a2+4a-16≥0,即(a2+4)(a-4)≥0,故a≥4.
∵abc>0,∴a、b、c为全大于0或一正二负.
①若a、b、c均大于0,∵a≥4,与a+b+c=2矛盾;
②若a、b、c为一正二负,则a>0,b<0,c<0,
则|a|+|b|+|c|=a-b-c=a-(2-a)=2a-2,
∵a≥4,故2a-2≥6
当a=4,b=c=-1时,满足题设条件且使不等式等号成立.
故|a|+|b|+|c|的最小值为6.
16.12150
17.r=5/21
18.ta n∠ABM=1/3
19.。