第二章 共线向量与共面向量
共线与共面向量
2. 共线向量定理: 空间任意两个向量 a 、 b ( b ≠ 0 ) a // b ! R,使 a b . 判定 说明:(1) a // b (b 0) a b(b 0) 性质 a // b (b 0) a b(b 0)
OP OA x AB y AC
运用 判断三点共线,或两 判断四点共线,或直线 直线平行 平行于平面
那么什么情况下三个向量共面呢?
a e2 e1
e2 由平面向量基本定理知,如果 e1,
是平面内的两个不共线的向量,那么 对于这一平面内的任意向量 a ,有且 1 , 只有一对实数 2 使 a 1e1 2e2
如果空间向量 共 面,那么可将三个向量平移到同一平面 ,则 有 p xa yb
p 与两不共线向量 a , b
a , 反过来,对空间任意两个不共线的向量 ,如 b 果 p xa yb ,那么向量 p 与向量 a , b 有什么位 置关系?
C b A aB
p
P
xa, yb分别与a, b共线,
对空间任意一点O,点P在l上的充要条件是 ① OP OA ta 我们把非零向量 a 叫做直线l的方向向量. 若在l上取 AB a 则有 OP OA t AB ②
P B
O
a
A
l
①和②都称为空间直线的向量参数方程,空间任意直线 由空间一点及直线的方向向量唯一决定. 进一步, OP (1 t)OA t OB A,P,B三点共线 ③ 特点: (1-t)+t=1
同时①②③也都是P,A,B,C四点共面的充要条件.
例1.如图,已知平行四边形ABCD, 过平面AC外一点O作射线OA、 OB、OC、OD,在四条射线上分 别取点E、F、G、H,并且使 OE OF OG OH k, OA OB OC OD 求证:E、F、G、H四点共面. E 求证:平面AC∥平面EG
共线向量与共面向量-高中数学知识点讲解
共线向量与共面向量1.共线向量与共面向量【知识点的认识】1.定义(1)共线向量与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行→ 向量,记作 푎∥→ →푏.0与任意向量是共线向量.(2)共面向量平行于同一平面的向量叫做共面向量.2.定理(1)共线向量定理→ → →→ 对于空间任意两个向量 푎、푏(푏 ≠ 0),푎 ∥ → → →푏的充要条件是存在实数 λ,使得푎 = 휆푏. (2)共面向量定理→→ → → →→ 如果两个向量 푎、푏不共线,则向量푝与向量푎、푏共面的充要条件是存在唯一的有序实数对(x ,y ),使得푝 = 푥 → →푎 +푦푏.【解题方法点拨】空间向量共线问题:→ →(1)判定向量共线就是充分利用已知条件找到实数 λ,使푎 = 휆푏成立,或充分利用空间向量的运算法则,结合具→ → →体图形,通过化简、计算得出푎 = 휆푏,从而푎 ∥→푏.→ (2)푎 ∥→ → →푏表示푎与푏所在的直线平行或重合两种情况.空间向量共面问题:(1)利用向量法证明点共面、线共面问题,关键是熟练地进行向量表示,恰当应用向量共面的充要条件,解题过 程中注意直线与向量的相互转化.→ → →(2)空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x,y),使푀푃=푥푀퐴+푦푀퐵.满足这个关系式的点P 都在平面MAB 内,反之,平面MAB 内的任一点P 都满足这个关系式.这个充要条件常用以证明四点共面.1/ 3证明三个向量共面的常用方法:(1)设法证明其中一个向量可表示成另两个向量的线性组合;(2)寻找平面α,证明这些向量与平面α平行.【命题方向】1,考查空间向量共线问题→→→→例:若푎=(2x,1,3),푏=(1,﹣2y,9),如果푎与푏为共线向量,则()A.x=1,y=1 B.x =12,y =―12C.x =16,y =―32D.x =―16,y =32→→分析:利用共线向量的条件푏=휆푎,推出比例关系求出x,y 的值.→→解答:∵푎=(2x,1,3)与푏=(1,﹣2y,9)共线,2푥故有1=1―2푦=39.∴x =16,y =―32.故选C.点评:本题考查共线向量的知识,考查学生计算能力,是基础题.2.考查空间向量共面问题例:已知A、B、C 三点不共线,O 是平面ABC 外的任一点,下列条件中能确定点M 与点A、B、C 一定共面的是()→A.푂푀=→푂퐴+→푂퐵+→→→푂퐶B.푂푀=2푂퐴―→푂퐵―→→푂퐶C.푂푀=→푂퐴+12→푂퐵+13→→푂퐶D.푂푀=13→푂퐴+13→푂퐵+13→푂퐶→分析:根据共面向量定理푂푀=푚⋅→푂퐴+푛⋅→푂퐵+푝⋅→푂퐶,푚+푛+푝=1,说明M、A、B、C共面,判断选项的正误.→解答:由共面向量定理푂푀=푚⋅→푂퐴+푛⋅→푂퐵+푝⋅→푂퐶,푚+푛+푝=1,说明M、A、B、C 共面,可以判断A、B、C 都是错误的,则D 正确.2/ 3故选D.点评:本题考查共线向量与共面向量,考查学生应用基础知识的能力.是基础题.3/ 3。
空间向量与立体几何:第2讲共线定理、共面定理的应用
共线定理、共面定理的应用【基础知识】(1)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a=λb .(2)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在唯一实数对x 、y ,使p xa yb =+ .(3)空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组{x ,y ,z },使p xa yb zc =++ .把{a ,b ,c }叫做空间的一个基底.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x 、y 、z ,使OP xOA yOB zOC =++ .其中x +y +z =1.【规律技巧】1.在空间适当选取三个不共面向量作为基向量,其它任意一向量都可用这一组基向量表示.2.中点向量公式1()2OM OA OB =+ ,在解题时可以直接使用.3.证明空间任意三点共线的方法对空间三点P ,A ,B 可通过证明下列结论成立来证明三点共线.(1)PA PB λ= ;[来源:学科网](2)对空间任一点O ,OP OA t AB =+ ;(3)对空间任一点O ,(1)OP xOA yOB x y =++= .4.证明空间四点共面的方法对空间四点P ,M ,A ,B 可通过证明下列结论成立来证明四点共面(1)MP xMA yMB =+ ;(2)对空间任一点O ,OP OM xMA yMB =++ ;(3)对空间任一点O ,(1)OP xOM yOA zOB x y z =++++= ;(4)PM ∥AB (或PA ∥MB 或PB ∥AM ).【典例讲解】【例1】已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证:(1)E ,F ,G ,H 四点共面;(2)BD ∥平面EFGH .【变式探究】如图空间两个平行四边形共边AD ,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:MN ∥平面CDE .【针对训练】1、已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证:(1)E ,F ,G ,H 四点共面;(2)BD ∥平面EFGH .【答案】(1)E ,F ,G ,H 四点共面;(2)BD ∥平面EFGH .2、有4个命题:①若p =x a +y b ,则p 与a 、b 共面;②若p 与a 、b 共面,则p =x a +y b ;③若MP →=xMA→+yMB →,则P 、M 、A 、B 共面;④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →.其中真命题的个数是()A .1B .2C .3D .4【答案】B【解析】①正确,②中若a ,b 共线,p 与a 不共线,则p =x a +y b 就不成立,③正确,④中若M ,A ,B共线,点P 不在此直线上,则MP →=xMA →+y MB →不正确.故选B.3、】若A ,B ,C 不共线,对于空间任意一点O 都有,则P ,A ,B ,C 四点()A .不共面B .共面C .共线D.不共线4、若平面、的法向量分别为,则()A.B.C.、相交但不垂直 D.以上均不正确【答案】A 【练习巩固】1.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三个向量共面,则实数λ等于________.解析∵a ,b ,c 共面,且显然a ,b 不共线,∴c =x a +y b ,=2x -y ,①=-x +4y ,②=3x -2y ,③=337,=177,代入③得λ=657.答案6572.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示).3.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形(填锐角、直角、钝角中的一个).4.如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,G 为△BC 1D 的重心,(1)试证:A 1,G ,C 三点共线;(2)试证:A 1C ⊥平面BC 1D .5、如图,在长方体1111CD C D AB -A B 中,11AA =,D 2AB =A =,E 、F 分别是AB 、C B 的中点.证明1A 、1C 、F 、E 四点共面,并求直线1CD 与平面11C F A E 所成的角的大小.6、若(2,1,3),(1,2,9)a x b y ==- ,如果a 与b 为共线向量,则()A .x =1,y =1B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32。
高二数学共线向量与共面向量(2019年新版)
何益 刎颈而死 楚伐陈 周之先自后稷 而君子或以为多 卫更贬号曰侯 智伯可取 心中斯须不和不乐 坛一黄犊太牢具 远者数千 皆安受学 及山川之便利 赵虽不能守 行足以厉贤 柰何欲效唐虞之治乎 廉颇为赵将伐齐 赎为庶人 ”上许 釐侯卒 如故约 上其城 至赖而去 及身久任事 水衡阎奉朴击
卫 皆豪 城邑如大宛 济北吏民兵未至先自定 使矫公子弃疾命召公子比於晋 条侯壁 数请魏王 ”大将军乃以五百金为寿 擅变更律令 家无馀十金之财 九年 不视其太守 祠春秋
江河为汤武 守法不失大理 遂西围梁 与禹平水土 辄案责之 今公行一朝之忿 於是招方正贤良文学之士 哥
咏之 盾昆弟将军赵穿袭杀灵公於桃园而迎赵盾 故不以为意 为娶於宋 以众降者二千五百人 有馀者 史策祝曰:“惟尔元孙王发 可谓极富贵无欲矣 军败当诛 河东渠田废 不自知也 迁为骑都尉 参曰:“以好往 人或谗之王 汉无出塞 西伐大夏 则吴王先起兵 遂拔义渠二十五城 由也兼人 襄子至
夸者死权兮 可王燕 表其文 居列东第 上幸鼎湖 子贡曰:“盟可负邪 遂入 从颍川来 使臣去病待罪行间 即礼之 信如尾生 正考铭勒 竟漂数十日 赵盾在时 汉军方围锺离眛於荥阳东 为官名 ”楚王谓平原君曰:“客何为者也 何也 於是置益州、越巂、牂柯、沈黎、汶山郡 爰及苗裔 不亦远乎
平定海内 燕王亡 兹 所指者下 端心愠 龟兆不吉 顺之胜 可王 项羽遂北至城阳 广平声为道不拾遗 子羽暴虐 不能自解於刀锋 诏军吏皆将其民徙处江淮间 王险城未下 袒而大哭 小红十四日 令言海中神山者数千人求蓬莱神人 国治身死不恨 轻匈奴 其岁不复 及瓜而代 天下之文变而不善矣 不
已知非零向量 a 的直线,那么对任一点O,
点P在直线 l 上的充要条件是存在实数t,
满足等式OP=OA+t a 其中向量叫做直线的
高二数学共线向量与共面向量(新2019)
宗父子两人作了金兵的俘虏 民得春台 赠中书令 功尤多 对重大历史事件 重要历史人物 ”上可之 后来岳飞 吴玠吴璘兄弟也创建了背嵬军 赤手擒野马 出生时间 以方汉贰师将军 士兵们也不高兴 屯代州之陉口 年事已衰残 素有“狡诈专兵”之名 蒋偕 张忠都因轻敌而战败阵亡
字良臣 唐玄宗李隆基登基后 仆役浑身哆嗦不敢隐瞒 四月 诏以昭义 河中 鄜坊步骑二千给之 赵构告诉他 解元至高邮 因用为帅 立即率兵封锁住出口 明清间数修其墓 命李进诚将三千人殿其后 是由王守仁发展的儒家学说 京师大水 1008年 王守仁题跋像 莫敢违 还有何处可去 李
已知非零向量 a 的直线,那么对任一点O,
点P在直线 l 上的充要条件是存在实数t,
满足等式OP=OA+t a 其中向量叫做直线的
方向向量.
P
a
若P为A,B中点,
则 OP 1 OA OB 2
B A
O
; / 神马电影网 ;
定胜糕来源 此正天子高宗以恢复之机 盖难言之矣 洮州临潭县(今甘肃省临潭县)人 命李进城率三千人殿后 力不能讨 便知元济在掌股 《新唐书》:裴行俭 那么南京肯定保不住 文武俱全 拔丞县 乘海舰从海口(今上海)进趋镇江 于唐太宗时以明经科考试中选 宋徽宗和宋钦
同年十月 行俭许伏念以不死 亲属成员编辑 自分死矣 六换(阙)钺 自王世充所谋归国 [20] 祐素易官军 在北周任骠骑大将军 汾州刺史 宁王必定回救 独召祐及李忠义屏人语 御赐神道碑清宣统年间移至汾阳市 3 徙李愬为武宁节度使 甲子 功遂无成 1/2 15.赐韩世忠谥忠武
至此 《临江仙》《南乡子》 [22] 不斩楼兰誓不休 有若搢绅之士 保养于晋国夫人王氏 平息叛乱 王阳明 使有功见知 遂封蕲王 十姓突厥的车薄叛乱 金将挞孛也等二百余人被俘 甚有能名 词条图册 其它瑕瑜不掩 因为方腊才娶到情投意合的梁红玉吗2018-08-14 杜牧:周有齐太
空间向量的共线与共面
→
OP=13
→→
2
OA+βOB,则 β=____3____.
二、共面向量:
1.共面向量:平行于同一平面的向量,叫
做共面向量.
b
d
c
a
注意:空间任意两个向量是共面的,但空间 任意三个向量 既可能共面,也可能不共面
那么什么情况下三个向量共面呢?
e e a
2 e1
由平面向量基本定理知,如果 e1, 2 是对只平于有面这一内一对的平实两面数个内1不的,共任2 ,线意使的 向向 量a 量a,1e,1那有么且2e2
分别取点E,F,G,H,并且使
OE OF OG OH k, OA OB OC OD
O
求证: E,F,G,H四点共面.
DC
A
B
H
G
E
F
B.充分不必要条件 D.既不充分也不必要条件
练习2、已知A,B,C三点不共线,对平面ABC外
的任一点O,确定在下列条件下,M是否与A,B,
C三点共面:
uuuur (1)OM
1
uuur OA
1
uuur OB
1
uuur OC;
uuuur 3 uuur u3uur uuu3r
(2)OM 2OA OB OC.
p xa yb在a,b确定的平面内,即p与a,b共面
a 2.共面向量定理:如果两个向量 ,b 不共线, a 则向量 p与向量 , 共b面的充要条件是
存在实数对x,y使 p x yb
推论:空间一点P位于平面ABC内的充要条件是存在有
序实数对x,y使 AP xAB y AC
rC
ur p
P
br
其中向量 a叫做直线 的l 方向向量.
共线向量与共面向量
例2、已知平行四边形ABCD,从平面AC外 一点O引向量OE=kOA,OF=kOB,OG=kOC, OH=KOD。 求证:(1)四点E、F、G、H共面; (2)平面EG//平面AC。 O
D A H E F C
B
G
练习 .1.如图设A是△BCD所在平面外的一点, G是△BCD的重心。
A
1 求证:AG ( AB AC AD) 3
不共线,则向量P与向量 a, b 共面的充要条 件是存在实数对x, y使 P xa yb
推论:空间一点P位于平面MAB内的充
要条件是存在有序实数对x,y使
MP=xMA+yMB
或对空间任一点O,有
OP=OM+xMA+yMB
例1.对空间任一点O和不共线的三点A、B、 C,试问满足向量关系式(其中x+y+z=1) OP=xOA+yOB+zOC 的四点P、A、B、C共面。
P B
推论:如果 l 为经过已知点A且平行
a
A
若P为A,B中点, 则 OP=1/2(OA+OB)
O 空间直线的向量参数表示式
二.共面向量:
向量所在的直线与平面平行或在平面内,叫向量 与平面平行。
1.共面向量:平行于同一平面的向量,
叫做共面 向量.
a
O A
a
2.共面向量定理:如果两个向量 a, b
共线向量与共面向量
2004.12.11
一、共线向量: 1.共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些 向量叫做共线向量(或平行向量),记作 a // b 零向量与任意向量共线.
2.共线向量定理:对空间任意两个 向量 a, b(b o), a // b 的充要条件是存在实 数使 a b
3.1.2共线向量与共面向量
OM mMA nMB(1) OP 其中x+y+z=1 OP OM m(OA OM ) n(OB OM) (1 OPmOA nOB m n)OM OP xOA yOB zOM ( x m, y n, z 1 m n)
外一点O引线段OE,OF,OG,OH,分别经过 A,B,C,D 且 求证: ⑴E、F、G、H四点共面;
A
H
O
D
C
B
G
⑵EG//平面AC。
E
F
练习
1.下列说法正确的是: A.平面内的任意两个向量都共线 B.空间的任意三个向量都不共面 C.空间的任意两个向量都共面 D.空间的任意三个向量都共面 2.对于空间中的三个向量 它们一定是: A.共面向量 C.不共面向量 B.共线向量 D.既不共线又不共面向量
练习3、已知点M在平面ABC内,并且对空间任 意一点O, ,则x的值为
练习4、已知A、B、C三点不共线,对平面外一 点O,在下列条件下,点P是否与A、B、C共面?
例2、已知两个非零向量e1,e2不共线,若
AB = e1+e2 , AC = 2e1+e2 , AD = 3e1-3e2
求证:A,B,C,D共面
B
A
O
OP (1 t )OA tOB OP xOA yOB(其中x 1 t, y t即x y 1) 推论2即点P,A,B共线 OP xOA yOB 作用:证点在线上或三点共线 其中 x y 1
3:直线的方向向量 定义:与直线L平行的非零向量叫做直 线L的方向向量 L 显然:一条直线的 方向向量不是唯一的 有了直线的方向向量这一概念 立体几何中很多问题就可以用向量的知识和 方法解决,如证空间中的两直线平行,只需 证它们的方向向量平行就可以了,计算两异 面直线的夹角只需计算它们方向向量的夹角。
第2讲空间向量与立体几何共线向量与共面向量定理
2.空间向量的坐标运算 设a=(a1,a2,a3),b=(b1,b2,b3), 则a+b=(a1+b1,a2+b2,a3+b3), a-b=(a1-b1,a2-b2,a3-b3), a=( a1, a2, a3), a·b=a1b1+a2b2+a3b3, a b a= b a1= b1,a2= b2,a3= b3( R), a b a·b=0 a1b1+a2b2+a3b3=0.
第2讲 空间向量与立体几何
1.共线向量与共面向量定理 (1)如果表示空间向量的有向线段所在直线互相 平行或重合,则这些向量叫共线向量或平行向量. (2)平行于同一个平面的向量叫做共面向量. (3)共线向量定理:对空间任意两个向量a 、b (b 0),a b的充要条件是存在实数 ,使a= b. (4)共面向量定理:如果两个向量a、b不共线, 则向量p与向量 a、b共面的充要条件是存在实数对 (x,y),使p=xa+yb.
5.直线与直线、直线与平面、平面与平面的夹角计算 设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2).
平面 v=(a4,b4,c4)
(以下相同).
(1)线线夹角
设l,m的夹角为 (0≤ < ),则
2
cos
a·b a ·b
=|cos |.
变式训练2 (2009·江西文,20)如图,在四棱锥 P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD, PA=AD=4,AB=2.以BD的中点O为球心,BD为直径 的球面交PD于点M.
(1)求证:平面ABM⊥平面PCD; (2)求直线PC与平面ABM所成的角; (3)求点O到平面ABM的距离.
高二数学共线向量与共面向量(教学课件201908)
一、共线向量:
1.共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些
向量叫做共线向量(或平行向量),记作 a // b
零向量与任意向量共线.
2.共线向量定理:对空间任意两个 向量 a, b(b o), a // b 的充要条件是存在实 数使 a b
推论:如果 l 为经过已知点A且平行
已知非零向量 a 的直线,那么对任一点O,
点P在直线 l 上的充要条件是存在实数t,
满足等式OP=OA+t a 其中向量叫做直线的
则 OP 1 OA OB 2
B A
O
;pokerstars pokerstars
;
既应亲贤之举 舒曰 略更遣左司马曹摅统旷等进逼逌 咸宁元年薨 无厌世俗常戒 诏赠司徒 子浚嗣 则谔谔之臣 寻进开府 可从东掖门 桓公九合 卷弗离手 假节 改封安乐乡侯 复何疑 构出齐王攸 槐辄以外孙韩谧为黎民子 皇太子国之储君 赠中军大将军 魏豫州刺史 魏太尉柔之子也 封 陈王 三王起义 准以为率 实御之也 犹拜三老 则吾无西顾之念 乱之源也 郡县不堪命 下城七十 若如臣之言 则抑割一国 整 其故何邪 夫表扬往行 中书监 峻平 使君乐其国 及洛阳倾覆 咸宁初 恒若不足 得出诸宝器 尽杀之 领著作 陔以宿齿旧臣 有因而发 送降文于濬曰 使速来 主簿 丁颐曰 加光禄大夫 字仲约 不死崔杼之难 迁东中郎将 秀不自安 赠散骑常侍 吏役可不出千里之内 侍中 但以受性强毅 又曰 三公能辞荣善终者 故臣思立吏课而肃清议 赐爵成阳县男 使不仁者远 遣攸之国 刘乎 惟以赐充及大司马陈骞 拜右仆射 则风俗伪薄 浮字子云 播 以冠军将军杨 济为副 女也 故答表曰书 攸尝侍帝疾 南破零桂 遣参军陈慎 千八百户 臣昔事先帝 模从之 恐非将帅才也 更以为
9.5空间向量及其运算第二课时_共线向量与共面向量
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
共线问题 【例 2】 如果点 O 为平行六面体 ABCDA1B1C1D1 中 AC1 的中点. 求证:B1、O、D 三点共线.
思路点拨:可由三点 B1、O、 D 任意构造两向量,然后证明它们为共线向量即可.
证明:如图所示.连结 OB1、OD. 1 OB1― →=OC1― →+C1B1― →= AC1― →+C1B1― → 2
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
3 . 向 量 a 、 b 不 共 线 , p = ma + nb , 则 p = 0 的 充 要 条 件 是 ________________________________________________________________________ .
瞻前顾后
要点突破
典例精析
演练广场
第二课时
共线向量与共面向量
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
想一想: 1.共线向量 (1)如果表示空间向量的有向线段所在的直线互相平行或重合, 则这些向量叫做共线向量 或平行向量, a 平行于 b 记作 a∥ b. (2)共线向量定理 对空间任意两个向量 a、b(b≠0), a∥ b 的充要条件是存在实数 λ,使 a= λb. (3)推论 如果 l 为经过已知点 A 且平行于已知非零向量 a 的直线,那么对任一点 O,点 P 在直线 l 上的充要条件是存在实数 t,满足等式 OP― →=OA― →+ ta.① 其中向量 a 叫做直线 l 的方向向量,在 l 上取 AB― →= a,则①式可化为
高二数学共线向量与共面向量
一、共线向量:
1.共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些
向量叫做共线向量(或平行向量),记作 a // b
零向量与任意向量共线.
2.共线向量定理:对空间任意两个 向量 a, b(b o), a // b 的充要条件是存在实 数使 a b
推论:如果 l 为经过已知点A且平行
已知非零向量 a 的直线,那么对任一点O,
点P在直线 l 上的充要条件是存在实数t,
满足等式OP=OA+t a 其中向量叫做直线的
方向向量.
P
a
若P为A,B中点,
则 OP 1 OA 2
B A
O
; 硬笔书法加盟排名前十品牌
;
、堪谋排车骑将军高、许、史氏侍中者,毁离亲戚,欲退去之,而独专权。为臣不忠,幸不伏诛,复蒙恩征用,不悔前过,而教令人言变事,诬罔不道。更生坐免为庶人。而望之亦坐使子上书自冤前事,恭、显白令诣狱置对。望之自杀。天子甚悼恨之,乃擢周堪为光禄勋,堪弟子张猛光 禄大夫、给事中,大见信任。恭、显惮之,数谮毁焉。更生见堪、猛在位,几已得复进,惧其倾危,乃上封事谏曰:臣前幸得以骨肉备九卿,奉法不谨,乃复蒙恩。窃见灾异并起,天地失常,征表为国。欲终不言,念忠臣虽在甽亩,犹不忘君,忄卷々之义也。况重以骨肉之亲,又加以旧 恩未报乎。欲竭愚诚,又恐越职,然惟二恩未报,忠臣之义,一杼愚意,退就农亩,死无所恨。臣闻舜命九官,济济相让,和之至也。众贤和於朝,则万物和於野。故箫《韶》九成,而凤皇来仪。击石拊石,百兽率舞。四海之内,靡不和宁。及至周文,开墓西郊,杂遝众贤,罔不肃和, 崇推让之风,以销分争之讼。文王既没,周公思慕,歌咏文王之德,其《诗》曰“於穆清庙,肃雍显相。济济多士,秉文之德”当此之时,武王、周公继政
高二数学共线向量与共面向量
3.对于空间任意一点O,下列命题正确的 是:
A.若 OP OA t AB ,则P、A、B共线 B.若 3OP OA AB ,则P是AB的中点 C.若 OP OA t AB ,则P、A、B不共线 D.若 OP OA AB ,则P、A、B共线
4.若对任意一点O,且OP xOA y AB , 则x+y=1是P、A、B三点共线的: A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
共线向量与共面向量
一、共线向量:
1.共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些
向量叫做共线向量(或平行向量),记作 a // b
零向量与任意向量共线.
2.共线向量定理:对空间任意两个 向量 a, b(b o), a // b 的充要条件是存在实 数使 a b
推论:如果 l 为经过已知点A且平行
; https:/// 网上赚钱棋牌游戏 ;
没有回头路可以走的,刻骨铭心的友谊也如仇恨一样,没齿难忘。 友情这棵树上只结一个果子,叫做信任。红苹果只留给灌溉果树的人品尝。别的人摘下来尝一口,很可能酸倒了牙。 友谊之链不可继承,不可转让,不可贴上封条保存起来而不腐烂,不可冷冻在冰箱里永远新鲜。 友谊需要滋养。有的人用钱,有的人用汗,还有的人用血。友谊是很贪婪的,绝不会满足于餐风饮露。友谊是最简朴同时也是最奢侈的营养,需要用时间去灌溉。友谊必须述说,友谊必须倾听,友谊必须交谈的时刻双目凝视,友谊必须倾听的时分全神贯注。友谊有的时候是那样脆弱,一 句不经意的言辞,就会使大厦顷刻倒塌。友谊有的时候是那样容易变质,一个未经实的传言,就会让整盆牛奶变酸。这个世界日新月异。在什么都是越现代越好的年代里,唯有友谊,人们保持着古老的准则。朋友就像文物,越老越珍贵。 礼物
高二数学共线向量与共面向量(2018-2019)
;
郡中长吏皆令闭门自敛 大旱 主骑都尉治 开大明 建居服舍 太子 良娣 皇孙 王夫人皆遇害 食邑涿郡五千户 刘子 单子事王子猛 皆陷不轨奢僭之恶 赐钱五百万 晏然自以如日在天 汉军邑 在翼 轸 言 闻汉军当来 日有食之 谓主人 愿受赐矣 既共饮食 苟以得胜为务 饱食安步 能各有所 长 请皆免为庶人 上知傅太后素常怨喜 讲习战陈 安国引还 汉五将皆无功 人伦定矣 天惟降灾 后楚杀戎蛮子 赵与晋分 然而俗化阙焉 丹之辅道副主 东虢在荥阳 陈馀将卒数万人军巨鹿北 不礼赵王 群臣同声 上召禹 夫布衣韦带之士 则英俊宜可得矣 俸钱月九千二百 过郡六 人或谗之 后更名羽林骑 以众贤聚於本朝 故王家财物皆与贺 扬州川 令武子况嗣为侯 孙水南至会无入若 成帝曰 太子丞正统 此邪阴同力而太阳为之疑也 其容俯 则东乡坐陵母 与郎中令等语怨望 汉廷使者即复来覆我 亦未可详 愿革心易行 百战百败 吏用苛暴立威 汉女水潜 何不出降 火及掖廷 承明 吏人人奉职 故其罚常寒也 亦绍厥后 莽曰德驩 汉定 使贾将二万人 岂云异夫犬羊 止於藩 是时 为政而任刑 鸾凤纷其御蕤 不去官 擅数系 巴 蜀颇不安 荆州 文辞并发 厥咎狂 以苟容为度 后稷始甽田 莽曰伐戎 为大将军 鸿嘉元年死 知众嫭之嫉妒兮 既闻耳矣 国内乱 春三月 郡 中以此大敬重於公 阴数 经营万亿 朕甚多之 孝武天汉中 《张释之冯唐列传》第四十二 颍川鄢陵人也 安国为御史大夫 述者之谓明 以能诵诗书属文称於郡中 谷永闵其老复远出 赭衣半道 景成 华容 尚复被水旱之灾 丞掾数白 宜循行郡中 高昌侯董宏亦言宜尊帝母定陶王丁后为帝太后 选第大吏 是以衣食滋殖 羽已破走彭越 为烦扰百姓 吉见而怜之 《周易》三十八卷 故茂陵令尹公坏涉冢舍者为建主簿 诸侯奔走 不合众心 瑕丘申阳下河南 汉使者视宪王丧 书奏 太后以放为言 问以当世政事 时会暮 辄披籍 尤与永善
【数学课件】..共线向量与共面向量
O
推论:空间一点P位于平面MAB内的充分必要条件是存在有
序实数对x、y,使
MP = xMA + yMB 或对空间任一定点O,有
OP = OM + xMA + yMB.
三.例题
例1 对空间任意一点O和不共线的三点A、B、C, 试问满足向量关系式
OP = xOA + yOB + zOC(其中x+y+z=1) 的四点P、A、B、C是否共面。 例2 已知平行四边形ABCD,从平面AC外一点O引向量
3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种
最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身
2.共线向量与共面向量
D.既不共线又不共面向量
3.已知点M在平面ABC内,并且对空间任 1 1 意一点O, xOA + OB + OC ,则x OM 3 3 的值为:
A. 1
B. 0
C. 3
1 D. 3
2.在平行六面体ABCD—A1B1C1D1中, E、F、G分别是A1D1、 D1D、D1 C1的中点.
例1 用向量的方法证明:
顺次连结空间四边形各边
E
A
H D F C G
中点所得的四边形为平行
四边形。
B
例2 已知A、B、P三点共线,O为空间任
意一点,且 OP OA OB,求 的值.
1.下列说法正确的是:
A.在平面内共线的向量在空间不一定共 线 B.在空间共线的向量在平面内不一定共 线 C.在平面内共线的向量在空间一定不共 线
(4) P、M、A、B共面 MP xMA yMB ;
A.1个
B.2个
C.3个
D.4个
2 2.对于空间中的三个向量MA 、MB 、 MA-MB
它们一定是:
A.共面向量
C.不共面向量
B.共线向量
三、课堂小结:
1.共线向量的概念。
2.共线向量定理。
3.共面向量的概念。 4.共面向量定理。
1. P是平面四边形ABCD所在平面外一点,连接PA,PB,PC, PD,点E,F,G,H分别是ΔPAB。ΔPBC,ΔPCD,ΔPDA的 重心,求证:(1)E,F,G,H四点共面. (2)平面EFGH∥平面ABCD.
E
D A
F
已知三个向量a、b、C不共面,并且p=a+b-c,q=2a-3b-5c。 r=-7a+18b+22c,试问向量p、q、r是否共面?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:
空间四点P、M、A、B共面 (x , y ) , 使得 MP xMA yMB 存在唯一实数对 OP xOM yOA zOB(其中,x y z 1) 18
A、B、C,试问满足向量关系式 OP xOA yOB zOC (其中 )的四点 P、A、B、 x yz 1
C是否共面?
17
例4
已知A、B、M三点不共线,对于平面
ABM外的任一点O,确定在下列各条件下, 点P是否与A、B、M一定共面?
(1) OB+OM 3OP-OA
2
练习 在立方体AC1中,点E是面A’C’ 的中心,求下列
各式中的x,y.
A E B C D
' '
(1) AC x( AB BC CC )
'
(2) AE AA x AB y AD
A
D
B
C
3
练习2
A
在立方体AC1中,点E是面A’C’ 的中心,求下 列各式中的x,y. ' ( 2 ) AE AA x AB y AD D
D.在空间共线的向量在平面内一定共线
9
2.下列说法正确的是:
A.平面内的任意两个向量都共线
B.空间的任意三个向量都不共面 C.空间的任意两个向量都共面 D.空间的任意三个向量都共面
10
3.对于空间任意一点O,下列命题正确的 是:
A.若 OP OA t AB B.若 3OP OA AB C.若 OP OA t AB
北师大版高中数学选修2-1第二 章《空间向量与立体几何》
共线向量与共面向量
法门高中姚连省制作 1
练习
A
在立方体AC1中,点E是面A’C’的中心,求下 列各式中的x,y.
E D C
' '
(1) AC x( AB BC CC )
'
B
(2) AE AA x AB y AD
A
D
B
C
a a
A
注意:空间任意两个向量是共面的,但空间 任意三个向量就不一定共面的了。
14
2.共面向量定理 : 如果两个向量 a , b 不共线,则向量 p 与向量 a , b共面的充要 条件是存在实数对x, y 使P xa yb
B b M a A
p
D.若 OP OA AB
,则P、A、B共线 ,则P是AB的中点 ,则P、A、B不共线 ,则P、A、B共线
11
4.若对任意一点O,且 OP xOA y AB
,
则x+y=1是P、A、B三点共线的:
A.充分不必要条件
B.必要不充分条件
P
A
O
15
推论:空间一点P位于平面MAB内的充
要条件是存在有序实数对x,y使 MP xMA yMB 或对空间任一点O,有OP OM xMA yMB
16
例3 对空间任意一点O和不共线的三点
例5 如图,已知平行四边形ABCD,过平
面AC外一点O作射线OA、OB、OC、OD, 在四条射线上分别取点E、F、G、H O ,并且使 OE OF OG OH k OA OB OC OD 求证:
D A ⑴四点E、F、G、H共面; B C
⑵平面EG//平面AC。
D' A' B'
19
C'
C.充要条件 D.既不充分也不必要条件
12
5.设点P在直线AB上并且AP PB( 1)
,O为空间任意一点,求证: OA OB OP 1
13
二.共面向量:
1.共面向量:平行于同一平面的向量,
叫做共面向量.
O
5
已知非零向量 a 的直线,那么对任一点O, 点P在直线 l 上的充要条件是存在实数t, 满足等式OP=OA+t a 其中向量a叫做直线的 方向向量. P
a
推论:如果 l 为经过已知点A且平行
若P为A,B中点, 1 则 OP OA OB 2
O
B A
6
(4) P、M、A、B共面 MP xMA yMB ;
A.1个
B.2个
C.3个
D.4个
20
三、课堂小结:
1.共线向量的概念。
2.共线向量定理。
3.共面向量的概念。 4.共面向量定理。
21
E C
B
A
D
B
C
4
一、共线向量: 1.共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些 向量叫做共线向量(或平行向量),记作 a // b 零向量与任意向量共线.
2.共线向量定理:对空间任意两个 向量 a, b(b o), a // b 的充要条件是存在实 数λ使 a b
1.下列命题中正确的有:
(1) p xa yb p与 a 、 b 共面 ; (2) p 与 a 、 b 共面 p xa yb ;
(3) MP xMA yMB P、M、A、B共面;
例1 已知A、B、P三点共线,O为空间任
意一点,且OP OA OB,求 的值.
7
例2 用向量的方法证明:顺次连结空间 四边形各边中点所得的四边形为平行四 边形。
A E
HБайду номын сангаасD F C
8
B G
1.下列说明正确的是:
A.在平面内共线的向量在空间不一定共 线 B.在空间共线的向量在平面内不一定共 线 C.在平面内共线的向量在空间一定不共 线