七年级数学下册期末调研测试题_2
七年级下数学期末综合测试(2)
七年级下数学期末综合测试(2)(满分100分,时间90分钟)姓名一、选择题(每小题3分,共30分)1. 若点P (0,m -4)在y 轴的正半轴上,则有( ) A.m<4 B.m<-4 C m>-4 D. m>42. 如图,AB ∥CD ,点E 在BC 上,且∠CDE =∠CED =74°,则∠B 的度数为 ( ) A .68° B .32° C .22° D .16° 3. 下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-44. 若1x y k =⎧⎨=⎩是二元一次方程23x y -=的一个解,则k 的值是( )A .-1B .0C .1D .25. 实数,,a b c 在数轴上对应的点如图所示,则下列式子中正确的是( ) A.a c b c ->- B. a c b c +<+ C.ac bc > D.a cb b <6. 若不等式2x a +>的解集是3x >,则a 的值为( ) A. 3 B. 5 C. 1 D. -17. 实验中学七年级进行了一次数学测验,参考人数共540人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是( ) A.抽取前100名同学的数学成绩 B.抽取后100名同学的数学成绩 C.抽取(1)、(2)两班同学的数学成绩D.抽取各班学号为3号的倍数的同学的数学成绩8.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( ) (8题图)A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 29. 若方程组2,3,x y m x y +=⎧⎨+=⎩的解是2,,x y n =⎧⎨=⎩则m 、n 表示的数分别是( )A . 5,1B .1,4C . 2,3D .2,410. 若方程335x m m x -=+-的解是负数,则m 的取值范围是( ) A. 45->m B. 45-<m C. 45>m D. 45<m 二、填空题(每小题3分,共24分)11.49的平方根是________,算术平方根是______,-8的立方根是_____.12.在二元一次方程5316x y -=中,若x 、y 互为相反数,则x = ,y = . 13. 如图,有一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果∠1=18°,那么∠2的度数是 .abc x()5第题图E D C B A 第2题图(13题图)(18题图)14. 小鸣的妈妈叫他到农贸市场买猪肉,到了市场后他发现妈妈给的钱,若买1千克猪肉,则少4元;若买0.5千克猪肉,则余8元.那么猪肉每千克元,妈妈给他的钱是元.15.已知点A(m,-2),B(3,m-1),且直线AB//x轴,则m的值是.16.在一个样本中,40个数据分别落在4个组内,已知第一、二、四组数据个数分别为5,12,8,则第三组的频数为.17. 已知关于x的不等式组420x ax->⎧⎨-≥⎩的整数解共有3个,则a的取值范围.18. 如图,l1// l2,则∠1+∠2-∠3=.三、计算题19.将下列的值求出来(每小题4分,共8分)(1)3331632700.1251464---++-(2)()327364x-=-20.解方程组和不等式组(每小题5分,共10分)(1)()3155(1)3(5)x yy x-=+⎧⎪⎨-=+⎪⎩(2)⎪⎩⎪⎨⎧+<-≥--215124)2(3xxxx四、解答题 21.(6分)如下图,某校7年级的学生从学校O 点出发,要到某地P 处进行探险活动,他们先向正西方向走8km 到A 处,又往正南方向走4km 到B 处,又折向正东方向走6km 到C 处,再折向正北方向走8km 到D 处,最后又往正东方向走4km 才到探险地P ;取点O 为原点,取点O 的正东方向为x 轴的正方向,取点O 的正北方向为y 轴的正方向,以2km 为一个单位长度建立平面直角坐标系。
2022-2023学年人教版七年级下册期末达标测数学试卷(二)(含详细解析)
期末达标测试卷(二)时间:90分钟 分值:120分 得分:__________分一、选择题(本大题10小题,每小题3分,共30分)1.下列图形中,∠1与∠2互为对顶角的是( )2.下列各数中,是无理数的是( )A .-5B .12C .16D .3.143.若{x =1,y =2是关于x ,y 的方程x +ay =3的一个解,则a 的值为( )A .1B .-1C .3D .-34.下列计算正确的是( )A .9=±3B .3-27=-3C .(-4)2=-4D .32+22=55.如图,将三角形ABC 沿BC 所在的直线向右平移得到三角形DEF ,已知∠ABC =90°,则下列结论中,错误的是( )第5题图A .EC =CFB .∠A =∠DC .AC ∥DFD .∠DEF =90°6.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的扇形统计图,已知甲类书籍有30本,则丙类书籍的数量是( )第6题图A .200本B .144本C .90本D .80本7.已知|x+y+1|+2x-y=0,则x-y的值为( )A.-13B.-1C.13D.18.在平面直角坐标系中,点P(2x-6,x-5)在第三象限,则x的取值范围是( )A.x<5B.x<3C.x>5D.3<x<59.如图,两面平面镜OA,OB形成∠AOB,从OB上一点E射出的一条光线经OA上一点D反射后的光线DC恰好与OB平行,已知∠AOB=35°,∠ODE=∠ADC,则∠DEB的度数是( )第9题图A.35°B.60°C.70°D.85°10.如图,在平面直角坐标系中,A,B,C,D四点的坐标分别是A(1,3),B(1,1),C(3,1),D(3,3),动点P从点A出发,在正方形边上按照A→B→C→D→A→…的方向不断移动,已知P的移动速度为每秒1个单位长度,则第2 023秒,点P的坐标是( )第10题图A.(1,2)B.(2,1)C.(3,2)D.(2,3)二、填空题(本大题5小题,每小题3分,共15分)11.若8点时室外温度为2 ℃,记作(8,2),则21点时室外温度为零下3 ℃,记作__________.1216-|-52|=__________.13.小刚在期中测试中,数学得了95分,语文得了83分,要使三科的平均分不低于90分,则英语至少得__________分.14.如图,直线AB与CD相交于点O,∠AOC-2∠AOE=20°,射线OF平分∠DOE,若∠BOD =60°,则∠AOF=__________.第14题图15.定义:对于实数a,[a]表示不大于a的最大整数,例如:[5.71]=5,[5]=5,[-π]=-4.如果[x+12]=-2,那么x可取的整数值之和为__________.三、解答题(一)(本大题3小题,每小题8分,共24分)16.解方程组:{3x+4y=9,x+y=1.17.当x取何值时,代数式x+43与3x-12的差的值大于1?18.已知2a+1的平方根是±3,3a+2b+4的立方根是-2,求4a-5b+5的算术平方根.四、解答题(二)(本大题3小题,每小题9分,共27分)19.如图,AC∥EF,∠1+∠3=180°.(1)求证:AF∥CD;(2)若AC⊥EB于点C,∠2=40°,求∠BCD的度数.第19题图20.某校组织七年级学生参加汉字听写大赛,并随机抽取部分学生的成绩作为样本进行分析,绘制成如下不完整的统计图表:七年级抽取部分学生成绩的频数分布表成绩x/分频数百分比(%)第1段50≤x<6024第2段60≤x<70612第3段70≤x<809b第4段80≤x<90a36第5段90≤x≤1001530第20题图请根据所给信息,解答下列问题:(1)a=__________,b=__________,并补全频数分布直方图.(2)已知该年级有500名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?(3)请你根据学生的成绩情况提一条合理的建议.21.一家玩具店购进二阶魔方和三阶魔方共100个,花去1 800元,这两种魔方的进价、售价如下表:二阶魔方三阶魔方进价(元/个)1520售价(元/个)2030(1)求购进二阶魔方和三阶魔方的数量;(2)如果将销售完这100个魔方所得的利润全部用于公益捐赠,那么这家玩具店捐赠了多少钱?五、解答题(三)(本大题2小题,每小题12分,共24分)22.如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向向左平移3个单位长度,平移后的线段为CD.(1)点C的坐标为__________,线段BC与线段AD的位置关系是__________.(2)在四边形ABCD中,点P从点A出发,沿AB→BC→CD方向运动,到点D停止.若点P 的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①直接写出点P在运动过程中的坐标(用含t的式子表示);②当5<t<7时,若在某一时刻四边形ABCP的面积为4,求此时点P的坐标.第22题图23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射出的光线自AM顺时针旋转至AN便立即回转,灯B射出的光线自BP 顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a,b满足|a-3b|+(a+b-4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)a=__________,b=__________.(2)若灯B先转动20秒,灯A才开始转动,在灯B射出的光线到达BQ之前,灯A转动多长时间时,两灯射出的光线互相平行?第23题图期末达标测试卷(二)1.D2.A3.A4.B5.A6.D7.C8.B9.C 10.D 11.(21,-3) 12.-21 13.92 14.70° 15.-916.解:{3x +4y =9, ①x +y =1. ②②×3,得3x +3y =3.③①-③,得y =6.把y =6代入②,得x +6=1.解得x =-5.所以这个方程组的解为{x =-5,y =6.17.解:根据题意,得 x +43-3x -12>1.去分母,得2(x +4)-3(3x -1)>6.去括号,得2x +8-9x +3>6.移项,得2x -9x >6-8-3.合并同类项,得-7x >-5.系数化为1,得x <57.18.解:∵2a +1的平方根是±3,∴2a +1=9.解得a =4.∵3a +2b +4的立方根是-2,∴3a +2b +4=-8,即12+2b +4=-8.解得b =-12.当a =4,b =-12时,4a -5b +5=4×4-5×(-12)+5=81.∴4a -5b +5的算术平方根为9.19.(1)证明:∵AC ∥EF ,∴∠1+∠2=180°.又∠1+∠3=180°,∴∠2=∠3.∴AF ∥CD .(2)解:∵AC ⊥EB ,∴∠ACB =90°.又∠3=∠2=40°,∴∠BCD =∠ACB -∠3=90°-40°=50°.20.解:(1)18 18.补全频数分布直方图如答图所示.第20题答图(2)500×0.3=150(人).答:估计该年级成绩为优的有150人.(3)由统计图可知,有34%的学生的成绩低于80分,应鼓励学生多阅读书籍,增强学生识字能力.(答案不唯一,合理即可)21.解:(1)设购进二阶魔方x 个,三阶魔方y 个.依题意,得{x +y =100,15x +20y =1 800.解得{x =40,y =60.答:购进二阶魔方40个,三阶魔方60个.(2)(20-15)×40+(30-20)×60=800(元).答:这家玩具店捐赠了800元.22.解:(1)(-4,2) 平行.(2)①当0≤t <2时,P (-1,t );当2≤t ≤5时,P (-t +1,2);当5<t ≤7时,P (-4,7-t ).②由题意,得AB =2,AD =3,PD =7-t .∴S 四边形ABCP =S 四边形ABCD -S △ADP =AB ·AD -12AD ·PD =2×3-12×3(7-t )=4.解得t =173.∴7-t =7-173=43.∴此时点P 的坐标为(-4,43).23.解:(1)3 1.(2)设灯A 转动t 秒时,两灯射出的光线互相平行(记灯A 射出的光线为AM ′,灯B 射出的光线为BP ′).∵PQ ∥MN ,∠BAN =45°,∴∠MAB =∠ABP =135°.①当0<t ≤60时,此时BP ′在AB 右侧.若AM ′∥BP ′,则AM ′在AB 左侧,且∠M ′AB =∠P ′BA ,即135-3t=135-(20+t)×1.解得t=10.②当60<t<115时,此时BP′在AB右侧.若AM′∥BP′,则AM′在AB左侧,且∠M′AB=∠P′BA,即135-(3t-180)=135-(20+t)×1.解得t=100.③当115≤t≤120时,该情况不存在.④当120<t≤160时,BP′在AB左侧.若AM′∥BP′,则AM′在AB右侧,且∠M′AB=∠P′BA,即3t-360-135=(20+t)×1-135.解得t=190>160(不合题意,舍去).综上所述,当t=10秒或100秒时,两灯的光束互相平行.。
人教版数学七年级第二学期期末考试试卷及答案二
人教版数学七年级第二学期期末考试试卷及答案一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×1083.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.54.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是20005.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a46.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.010.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣611.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=1012.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.2513.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x215.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.816.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=.18.计算:199×201=.19.已知10x=2,10y=5,则10x+y=.20.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为.三.解答题(共8小题)21.(1);(2);22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为人;(2)被调查的学生人数为人,A组人数为人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=2﹣1 ⑦×=2﹣1(2)写出你猜想的第n个等式(用含n的式子表示);(3)请你验证猜想的正确性.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①图②;(2)比较两图的阴影部分面积,可以得到乘法公式:(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为.参考答案与试题解析一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A.要了解一批节能灯的使用寿命适合抽样调查,原调查方式不合适;B.为保证“神舟9号”的成功发射,对其零部件进行检查采用全面调查,原调查方式不合适;C.对乘坐某班次客车的乘客进行安检,采用普查的方式,原调查方式不合适;D.调查本班同学的视力,采用普查的方式,原调查方式合适;故选:D.2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:23 000 000=2.3×107.故选:B.3.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.5【分析】直接利用二元一次方程的解法得出答案.【解答】解:∵是方程mx﹣y=2的解,则3m﹣1=2,解得:m=1.故选:C.4.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是2000【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A.这4万名考生的数学成绩是总体,此选项错误;B.每个考生的数学成绩是个体,此选项错误;C.2000名考生的数学成绩是总体的一个样本,此选项错误;D.样本容量是2000,此选项正确;故选:D.5.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a4【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.【解答】解:A、x2•x3=x5,原题计算正确,不合题意;B、(x3)2=x6,原题计算正确,不合题意;C、a+2a=3a,原题计算正确,不合题意;D、a8÷a2=a6,原题计算错误,符合题意.故选:D.6.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b【分析】由大正方形面积=两个小正方形面积+2个长方形面积,可得(a+b)2=a2+2ab+b2【解答】解:∵大正方形面积=两个小正方形面积+2个长方形面积∴(a+b)2=a2+2ab+b2故选:A.7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%【分析】首先根据表格,计算其总人数;再根据频率=频数÷总数进行计算.【解答】解:优胜者的频率是18÷(1+19+22+18)=0.3=30%,故选:B.8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个【分析】将x看做已知数求出y,找出正整数解即可.【解答】解:∵x+2y=11,∴y=,则:当x=1时,y=5;当x=3时,y=4;当x=5时,y=3;当x=7时,y=2;当x=9时,y=1;故选:C.9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.0【分析】直接利用负整数指数幂的性质以及有理数的乘方运算法则分别化简得出答案.【解答】解:∵﹣12=﹣1,(x﹣3.14)0=1,2﹣1=,0,∴最小的数是:﹣12.故选:A.10.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣6【分析】直接利用乘法公式结合整式的混合运算法则分别计算得出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,故原题计算错误;B、(﹣x﹣y)2=x2+2xy+y2,故原题计算正确;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(a﹣2)(a+3)=a2+a﹣6,故原题计算错误;故选:B.11.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=10【分析】先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加即可得出答案.【解答】解:∵(x+5)(2x﹣3)=2x2﹣3x+10x﹣15=2x2+7x﹣15,又∵(x+5)(2x﹣3)=2x2+mx﹣15,∴m=7;故选:A.12.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.25【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.13.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x2【分析】表示出阴影部分的长与宽,计算即可得到面积.【解答】解:根据题意得:(a﹣x)(b﹣x)=ab﹣ax﹣bx+x2,故选:A.15.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.8【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x﹣y)中即可求出结论.【解答】解:依题意得:,解得:,∴x﹣y=8﹣2=6.故选:C.16.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4【分析】表示出长方形的面积,利用多项式乘以多项式法则计算,即可确定出需要C类卡片的张数.【解答】解:(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,则需要C类卡片张数为3.故选:C.二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=2x﹣1.【分析】把x看做已知数求出y即可.【解答】解:方程2x﹣y=1,移项得:﹣y=1﹣2x,解得:y=2x﹣1.故答案为:2x﹣1.18.计算:199×201=39999.【分析】先变形为原式=(200﹣1)×(200+1),然后利用平方差公式计算.【解答】解:原式=(200﹣1)×(200+1)=2002﹣12=40000﹣1=39999.故答案为39999.19.已知10x=2,10y=5,则10x+y=10.【分析】根据同底数幂的乘法法则计算即可.【解答】解:∵10x=2,10y=5,∴10x+y=10x•10y=2×5=10.故答案为:1020.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为5.【分析】设小矩形的长为x,宽为y,根据矩形的对边相等已经大矩形的长为5,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(5×4﹣5xy)中即可求出结论.【解答】解:设小矩形的长为x,宽为y,依题意,得:,解得:,∴5×4﹣5xy=5×4﹣5×3×1=5.故答案为:5.三.解答题(共8小题)21.(1);(2);【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:2(2y﹣3)+3y=8,解得:y=2,把y=2代入①得:x=1,则方程组的解为;(2),①×2+②得:5x=15,解得:x=3,把x=3代入①得:y=﹣4,则方程组的解为.22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);【分析】(1)根据同底数幂的乘法和同底数幂的除法求出即可;(2)先算乘方,再合并即可;(3)根据单项式乘以单项式法则求出即可.【解答】解:(1)a5•a3÷a2=a5+3﹣2=a6;(2)(﹣2m)3﹣(m3)2=﹣8m3﹣m6;(3)(﹣2a2b)•(abc)=﹣a3b2c.23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;【分析】(1)直接利用单项式乘以多项式以及多项式乘以多项式运算法则计算得出答案;(2)直接利用负整数指数幂的性质以及零指数幂的性质、积的乘方运算法则分别计算得出答案.【解答】解:(1)5x(2x+1)﹣(x+3)(5x﹣1)=10x2+5x﹣(5x2+14x﹣3)=10x2+5x﹣5x2﹣14x+3=5x2﹣9x+3;(2)(π﹣2020)0+()﹣2﹣2101×()100=1+9﹣(2×)100×2=1+9﹣2=8.24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.【分析】(1)根据完全平方公式可知:(a+2)2=a2+2a+1,可作判断;(2)先根据整式的混合运算顺序和法则化简原式,再代入求值可得.【解答】解:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;故答案为:②;(2)(a+2)2+3(a+1)(a﹣1)=a2+2a+1+3(a2﹣1)=a2+2a+1+3a2﹣3=4a2+2a﹣2,当x=﹣1时,原式=4×1+2×(﹣1)﹣2=4﹣2﹣2=0.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为4人;(2)被调查的学生人数为50人,A组人数为3人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.【分析】(1)根据B、E两组发言人数的比和E组所占的百分比,求出B组所占的百分比,再根据B组的人数求出样本容量,从而求出E组的人数;(2)用(1)求出的样本容量乘以A组人数所占的百分比,求出A组的人数,用总人数乘以C组人数所占的百分比得出C组的人数,从而补全统计图;(3)用360°乘以“B”所占的百分比即可;(4)用总人数乘以发言次数不少于12次的人数所占的百分比即可.【解答】解:(1)∵B、E两组发言人数的比为5:2,E占8%,∴B组所占的百分比是20%,∵B组的人数是10,∴样本容量为:10÷20%=50,∴E组人数为:50×8%=4(人);故答案为:4;(2)被调查的学生人数为50,A组人数为:50×6%=3(人),C组的人数是50×30%=15(人),补全频数分布直方图如下:故答案为:50,3;(3)“B”所对应的圆心角的度数是:360°×20%=72°;(4)F 组所占的百分比是×100%=10%,则全年级在这天里发言次数不少于12次的人数有:1500×(10%+8%)=270(人).26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?【分析】(1)设需要购买的消毒液x瓶,酒精y瓶,根据从北国超市购买消毒液和酒精共40瓶需花费900元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出从北国超市购买这些物品所需费用,用900减去该值即可得出结论.【解答】解:(1)设需要购买的消毒液x瓶,酒精y瓶,根据题意得:,解得:.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元),节省的钱数为900﹣770=130(元).答:从北国超市购买这些物品可节省130元.27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=72﹣1 ⑦7×9=82﹣1(2)写出你猜想的第n个等式(用含n的式子表示)n(n+2)=(n+1)2+1;(3)请你验证猜想的正确性.【分析】(1)由规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,进行解答;(2)把规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,用n的等式表示出来;(3)运用整数的混合运算顺序和运算法则对等式左右两边进行计算便可.【解答】解:(1)由题中前面6个算式可知,两个相差2的两个整数的积等于两个数的平均数的平方与1的差,所以,⑥6×8=72﹣1,⑦7×9=82﹣1,故答案为:7;7;9;8;(2)由规律可知:n(n+2)=(n+1)2﹣1,故答案为:n(n+2)=(n+1)2﹣1;(3)∵左边=n(n+2)=n2+2n,右边=n2+2n+1﹣1=n2+2n,∴左边=右边,∴n(n+2)=(n+1)2﹣1.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①a2﹣b2图②(a+b)(a﹣b);(2)比较两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为12;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为264﹣1.【分析】(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2,而图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,可表示出面积为(a+b)(a﹣b).(2)由由图①与图②的面积相等,可以得到乘法公式;①利用公式将4m2﹣n2写成(2m﹣n)(2m+n)进而求出答案,②连续两次利用平方差公式进行计算即可,将原式转化为(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),再连续使用平方差公式,得出最后的结果.【解答】解:(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2;图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,其面积为(a+b)(a﹣b).故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图①与图②的面积相等,可以得到乘法公式,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;①4m2﹣n2=(2m﹣n)(2m+n)=3×4=12,故答案为:12;②(x﹣3)(x+3)(x2+9)=(x2﹣9)(x2+9)=x4﹣81;(2+1)(22+1)(24+1)(28+1)…(232+1),=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),=(22﹣1)(22+1)(24+1)(28+1)…(232+1),=(24﹣1)(24+1)(28+1)…(232+1),=(28﹣1)(28+1)…(232+1),=264﹣1.。
七年级下册数学科期末模拟检测题2
F ED CBA七年级下册数学科期末模拟检测题2姓名_________班级_________学号_________A.112x -=B.210x -=C.23x y -=D.132x -=2.下列图形,既是轴对称图形,又是中心对称图形的是( ) A 、 B 、 C 、 D 、3.下列不等式中,解集是1x >的不等式是( )A.33x >-B.43x +>C.235x +>D.235x -+>4.一个三角形的一个角等于其他两个角的差,则这个三角形一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形5.如右图所示,数轴上所表示的不等式组的解集是( ) A.12x -<≤ B.12x -≤≤ C.1x >- D.2x ≤6.如图3,四边形EFGH 是由四边形ABCD 平移得到的,已知AD=5,∠B=700,则A. EH=5, ∠F=700B. FG=5, ∠G=700C. EF=5, ∠F=700D. EF=5. ∠E=7007.已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米.设长江、黄河的长分别是x 千米,y 千米,则下列方程组中正确的是( )A.836651284x y y x -=⎧⎨-=⎩B.836651284y x y x -=⎧⎨-=⎩C.836561284x y x y -=⎧⎨-=⎩D.836561284y x x y -=⎧⎨-=⎩ 8.如右图,∠A =32°,∠B =45°,∠C =38°,则∠DFE 等于( ) A.105° B.110° C.115° D.120°9.已知2a x =+,1b x =-,且3a b >>,则x 的取值范围是( ) A.1x > B.4x < C.1x >或4x < D.14x <<A B CDC B A 10.在一张挂历上,任意圈出一个竖列上相邻3个数的和不可能是( ) A.60 B.39 C.40 D.5711.一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于( ) A .90° B .105° C .130° D .120°12、如图2,已知:在△ABC 中,AB=AC ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( ) A .50° B .65° C .70° D .75° 13、如图8,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地. 根据图中数据,计算耕地的面积为( )A.600m 2B.551m 2C.550 m 2D.500m 214、如图4,将正方形ABCD 的一角折叠,折痕为AE ,∠B ′AD 比∠B ′AE 大48°, 设∠B ′AE 和∠B ′AD 的度数分别为x 、y ,那么x 、y 所适合的一个方程组是( )A .4890y x y x -=⎧⎨+=⎩B .482y x y x -=⎧⎨=⎩C .48290y x y x -=⎧⎨+=⎩D .48290x y y x -=⎧⎨+=⎩二、填空题(每小题3分,共12分)15.用正三角形和_____________能铺满地面;16.等腰三角形两边长分别为4cm 和5cm ,则这个三角形的周长是___________;17.如图4,已知△ABC ≌△ADC ,∠BAC=60°,∠ACD=21°则∠D=______度.18.如图5,在△ABC 中,AB =AC ,BD 是∠ABC 的平分线,若∠ADB =93°,则∠A =______;BA C D图4 图5A B C FED 图2E 图4 图8三、解答题(共46分) 19. 解方程(组)(本题满分10分,第(1)小题4分,第(2)小题6分)1. 827x x =-2. 4239x y x y +=⎧⎨+=⎩20、(8分) 求不等式组255256715x xx x -<-⎧⎨-≥-⎩的解集,并将不等式组的解集在数轴上表示出来.21.(8)(1)如图7,在10×6的正方形网格中,每个小正方形的边长均为单位1,将ABC ∆向右平移4个单位,得到'''A B C ∆,再把'''A B C ∆绕点'A 逆时针旋转090,得到"""A B C ∆,请你画出'''A B C ∆和"""A B C ∆;(2)在下列网格中画出四边形ABCD 关于点O 成中心对称的四边形''''A B C D ;22.(10分)某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案?并简述购货方案.23.((10分)四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=7,AB=11,求(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?试说明理由。
人教版七年级数学下册期末综合素质评价含答案 (2)
人教版七年级数学下册期末综合素质评价一、选择题(每题3分,共30分)1.【教材P 140练习T 3变式】下列调查中,适宜采用全面调查方式的是( )A .调查春节晚会的收视情况B .调查一批新型节能灯泡的使用寿命C .调查我校某班学生喜欢上数学课的情况D .调查某类烟花爆竹燃放的安全情况2.【教材P 61复习题T 6变式】在实数π,-227,9,38中,是无理数的是( )A .πB .9C .-227D .383.【2022·广东】如图,直线a ∥b ,∠1=40°,则∠2=( )A .30°B .40°C .50°D .60°4.已知a ,b 两个实数在数轴上的对应点的位置如图所示,则下列各式一定成立的是( )A .a -1>b -1B .3a >3bC .-a >-bD .a +b >a -b5.【2022·梧州】不等式组⎩⎨⎧x >-1,x <2的解集在数轴上表示为( )6.【教材P 86复习题T 9变式】如图,将四边形ABCD 先向左平移3个单位长度,再向下平移3个单位长度,那么点D 的对应点D ′的坐标是( )A .(0,1)B .(6,1)C .(6,-1)D .(0,-1)7.盲盒近来火爆,这种不确定的“盲抽”模式受到了大家的喜爱,一服装厂用某种布料生产玩偶A 与玩偶B 组合成一批盲盒,一个盲盒搭配1个玩偶A 和2个玩偶B ,已知每米布料可做1个玩偶A 或3个玩偶B ,现计划用135米这种布料生产这批盲盒(不考虑面料的损耗),设用x 米布料做玩偶A ,用y 米布料做玩偶B ,使得恰好配套,则下列方程组正确的是( )A.⎩⎨⎧x +y =135x =3yB.⎩⎨⎧x +y =135x =2×3yC.⎩⎨⎧x +y =1353x =yD.⎩⎨⎧x +y =1352×x =3y 8.若关于x 的不等式组⎩⎪⎨⎪⎧2x <3(x -3)+1,3x +24>x +a 有四个整数解,则a 的取值范围是( ) A .-114<a ≤-52 B .-114≤a <-52 C .-114≤a ≤-52 D .-114<a <-529.某校现有学生1 800人,为了增强学生的法律意识,学校组织全体学生进行了一次普法测试.现抽取部分测试成绩(得分取整数)作为样本,进行整理后分成五组,并绘制成频数分布直方图(如图).根据图中提供的信息,下列判断不正确的是( )A .样本容量是48B .估计本次测试全校在90分以上的学生约有225人C .样本中70.5~80.5分这一分数段内的人数最多D .样本中50.5~70.5分这一分数段内的人数所占百分比是25%10.已知方程组⎩⎨⎧x +y =1-a ,x -y =3a +5的解x 为正数,y 为非负数,给出下列结论:①-1<a ≤1;②当a =-53时,x =y ;③当a =-2时,方程组的解也是方程x +y =5+a 的解.其中正确的是( )A .①②B .②③C .①③D .①②③二、填空题(每题3分,共24分)11.-5的绝对值是________,116的算术平方根是________.12.下列命题:①不相交的直线是平行线;②同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④对顶角相等.其中是真命题的有________(填序号).13.已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P 的坐标是________.14.某冷饮店一天售出各种口味雪糕量的扇形统计图如图所示,其中售出红豆口味的雪糕200支,那么售出水果口味的雪糕________支.15.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是________.16.【教材P31习题T6变式】如图是一块长方形场地,AB=18米,AD=11米,A,B两个入口处的小路的宽都为1米,两小路汇合处的路宽为2米,其余部分种植草坪,则草坪面积为________平方米.17.【2022·贺州】若实数m,n满足|m-n-5|+2m+n-4=0,则3m+n=________.18.杭州市将举办亚运会,为加强学校体育工作,某学校决定购买一批篮球和足球共100个.已知篮球和足球的单价分别为120元和90元,根据需求,篮球购买的数量不少于40个.学校可用于购买这批篮球和足球的资金最多为10 260元,则有________种购买方案.三、解答题(19~21题每题10分,22~24题每题12分,共66分)19.【教材P57习题T5变式】计算下列各题:(1)35+23-|35-23|;(2)(-2)2-327+|3-2|+ 3.20.解方程组或不等式组:(1)⎩⎨⎧6x +5y =31,①3x +2y =13;② (2)⎩⎪⎨⎪⎧3(x +2)+5(x -4)<2,①2(x +2)≥5x +63+1.②21.如图,已知AD ⊥BC 于点D ,点E 在AB 上,EF ⊥BC 于点F ,∠1=∠2,试说明DE ∥AC .22.【2022·武汉】为庆祝中国共青团成立100周年,某校开展四项活动:A 项参观学习,B 项团史宣讲,C 项经典诵读,D 项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动,该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如图所示两幅不完整的统计图.(1)本次调查的样本容量是________,B 项活动所在扇形的圆心角的大小是________,条形统计图中C 项活动的人数是________;(2)若该校约有2 000名学生,请估计其中意向参加“参观学习”活动的人数.23.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点分别为A(3,2),B(-3,1),C(2,-2),则“水平底”a=6,“铅垂高”h=4,“矩面积”S=ah=24.根据所给定义解决下列问题:(1)若已知点D(1,2),E(-2,1),F(0,6),则这三点的“矩面积”S=________;(2)若点D(1,2),E(-2,1),F(0,t)三点的“矩面积”S为18,求点F的坐标.24.某冬奥会纪念品专卖店计划同时购进“冰墩墩”和“雪容融”两种毛绒玩具,据了解,8只“冰墩墩”和10只“雪容融”的进价共计2 000元;10只“冰墩墩”和20只“雪容融”的进价共计3 100元.(1)求“冰墩墩”和“雪容融”两种毛绒玩具每只进价分别是多少元.(2)该专卖店计划恰好用3 500元购进“冰墩墩”和“雪容融”两种毛绒玩具(两种均购买),求专卖店共有几种采购方案.(3)若“冰墩墩”和“雪容融”两种毛绒玩具每只的售价分别是200元,100元,则在(2)的条件下,请选出利润最大的采购方案,并求出最大利润.答案一、1.C 2.A 3.B 4.C 5.C6.D 点拨:由题图可知D 点的坐标为(3,2),向左平移3个单位长度,再向下平移3个单位长度,即横坐标减3,纵坐标减3,∴即D ′(0,-1),故选D .7.D8.B 点拨:先解不等式组,得8<x <2-4a .在这个解集中,要包含四个整数,在数轴上表示如图.则这四个整数解为9,10,11,12.从图中可知12<2-4a ≤13.即-114≤a <-52.9.D10.B 点拨:解方程组得⎩⎨⎧x =3+a ,y =-2a -2.①由题意得,3+a >0,-2a -2≥0,解得-3<a ≤-1,①不正确;②当a =-53时,x =3+a =43,y =-2a -2=43,∴x =y ,②正确;③当a =-2时,x +y =1-a =3,5+a =3,③正确.二、11.5;14 12.④ 13.(-3,2) 14.150 15.35°16.160 点拨:由题图可知,长方形ABCD 中去掉小路后,草坪正好可以拼成一个新的长方形,且它的长为(18-2)米,宽为(11-1)米.所以草坪的面积应该是长×宽=(18-2)×(11-1)=160(平方米).17.7 18.3三、19.解:(1)原式=35+23-35+23=4 3.(2)原式=2-3+2-3+3=1.20.解:(1)②×2,得6x +4y =26,③①-③,得y =5.将y =5代入①,得6x +25=31,则x =1.所以原方程组的解为⎩⎨⎧x =1,y =5.(2)解不等式①,得x <2;解不等式②,得x ≥-3.所以原不等式组的解集为-3≤x <2.21.解:因为AD ⊥BC 于点D ,EF ⊥BC 于点F ,所以∠EFB =∠ADB =90°,所以AD ∥EF ,所以∠1=∠ADE .又因为∠1=∠2,所以∠2=∠ADE ,所以DE ∥AC .22.解:(1)80;54°;20;(2)2 000×3280=800(人).答:该校意向参加“参观学习”活动的人数约为800人.23.解:(1)15(2)由题意可得“水平底”a =1-(-2)=3.当t >2时,“铅垂高”h =t -1,则3(t -1)=18,解得t =7,故点F 的坐标为(0,7);当1≤t ≤2时,“铅垂高”h =2-1=1,此时“矩面积”S =3≠18,故此种情况不符合题意;当t <1时,“铅垂高”h =2-t ,则3(2-t )=18,解得t =-4,故点F 的坐标为(0,-4).综上所述,点F 的坐标为(0,7)或(0,-4).24.解:(1)设“冰墩墩”毛绒玩具每只进价为x 元,“雪容融”毛绒玩具每只进价为y元,由题意得⎩⎨⎧8x +10y =2 000,10x +20y =3 100解得⎩⎨⎧x =150,y =80.答:“冰墩墩”毛绒玩具每只进价为150元,“雪容融”毛绒玩具每只进价为80元.(2)设购进“冰墩墩”毛绒玩具m 只,购进“雪容融”毛绒玩具n 只,由题意得150m +80n =3 500,整理得15m +8n =350.因为m ,n 为正整数,所以⎩⎨⎧m =2,n =40或⎩⎨⎧m =10,n =25或⎩⎨⎧m =18,n =10.所以专卖店共有3种采购方案.(3)当m =2,n =40时,利润为2×(200-150)+40×(100-80)=900(元);当m =10,n =25时,利润为10×(200-150)+25×(100-80)=1 000(元); 当m =18,n =10时,利润为18×(200-150)+10×(100-80)=1 100(元). 因为900<1 000<1 100,所以利润最大的采购方案为购进“冰墩墩”毛绒玩具18只,购进“雪容融”毛绒玩具10只,最大利润为1 100元.。
北师大版七年级数学下册期末学情评估附答案 (2)
北师大版七年级数学下册期末学情评估一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个是符合要求的)1.下面的四个汉字可以看作是轴对称图形的是( )2.已知水星的半径约为2 440 000米,用科学记数法表示为( )米.A.0.244×107B.2.44×106C.2.44×107D.24.4×1053.下列计算正确的是( )A.x2+3x2=4x4B.x2y·2x3=2x6yC.6x2y2÷3x=2x D.(-3x)2=9x24.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④∠B+∠BAD=180°,其中能推出AB∥DC的是( )A.①②B.①③C.②③D.②④(第4题) (第6题)5.已知(m-n)2=10,(m+n)2=2,则mn的值为( )A.10 B.-6 C.-2 D.26.某学习小组做“用频率估计概率的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能是( )A.掷一枚质地均匀的正方体骰子,出现1点朝上B.任意写一个整数,它能被2整除C.不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球D.从一副扑克牌中抽取1张,抽到的牌是“黑桃”7.如图,E,B,F,C四点在一条直线上,且EB=CF,∠A=∠D,增加下列条件中的一个仍不能说明△ABC≌△DEF,这个条件是( )A.DF∥AC B.AB=DEC.∠E=∠ABC D.AB∥DE(第7题) (第9题)8.若线段AM,AN分别是△ABC的BC边上的高和中线,则( ) A.AM>AN B.AM≥ANC.AM<AN D.AM≤AN9.如图,在△ABC中,D是AB上一点,DF交AC于点E,AE=EC,DE=EF,则下列结论:①∠ADE=∠EFC;②∠ADE+∠ECF+∠FEC=180°;③∠B+∠BCF =180°;④S△ABC=S四边形DBCF.其中正确的结论有( )A.4个B.3个C.2个D.1个10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B 时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为( )二、填空题(本题共6小题,每小题4分,共24分)11.已知a m+1·a2m-1=a9,则m=________.12.小明爸爸开车带小明去福州游玩,一路上匀速前行,小明记下了如下数据,从9点开始,记汽车行驶的时间为t (h)(即9点时,t =0),汽车离福州的距离为s (km),则s 关于t 的关系式为________. 观察时刻 9:00 9:30 10:00 (注:“福州120 km ”表示该路牌所在位置离福州的距离为120 km)路牌内容福州 120 km福州 80 km福州 40 km13. 如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是________.(第13题) (第14题)14.如图,BD 平分∠ABC ,DE ⊥AB 于点E ,DF ⊥BC 于点F ,AB =6,BC =8.若S △ABC=21,则DE =________.15.珠江流域某江段水流方向经过B ,C ,D 三点拐弯后与原来相同,如图,若∠ABC =120°,∠BCD =80°,则∠CDE =________.(第15题) (第16题)16.如图,小虎用10块高度都是3 cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离为________.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算: (1)(-1)2 023+⎝ ⎛⎭⎪⎫-13-2-⎝ ⎛⎭⎪⎫9200+16×2-3;(2)(2a3b2-4a4b3+6a5b4)÷(-2a3b2).18.(8分)先化简,再求值:[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y =2.19.(8分)如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?请说明理由.20.(12分)如图,在一条河的同岸有两个村庄A和B,两个村庄要在河上合修一座便民桥,解决两个村庄的通行问题.(利用尺规作图,请保留作图痕迹)(1)请在图①中找出桥的位置P,使得桥到两个村庄的距离之和最短;(2)请在图②中找出桥的位置Q,使得桥到两个村庄的距离相等.21.(8分)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式.若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对小张更合算?请通过计算加以说明.22.(8分)如图,在四边形ABCD中,AB∥CD,∠1=∠2,DB=DC.(1)试说明:△ABD≌△EDC;(2)若∠A=135°,∠BDC=30°,求∠BCE的度数.23.(10分)如图,在△ABC中,AB=AC,点D,E,F分别在三边上,且BE=CD,BD=CF,G为EF的中点.(1)若∠A=40°,求∠B的度数;(2)试说明:DG垂直平分EF.24.(10分)某医药研究所研制一种新药,在做药效试验时发现,如果成人按规定剂量服用,那么服药后,每毫升血液中含药量y(μg)随时间t(h)的变化图象如图所示,根据图象回答:(1)服药后几时血液中含药量最高?此时每毫升血液中含药量是多少微克?(2)在服药几时内,每毫升血液中含药量逐渐升高?在服药几时后,每毫升血液中含药量逐渐下降?(3)服药后14 h时,每毫升血液中含药量是________μg.(4)如果每毫升血液中含药量为4 μg及以上时,治疗疾病有效,那么有效时间为几时?25.(14分)如图①,在等边三角形ABC中,点D是AB边上的动点,以CD为一边,向上作等边三角形CDE,连接AE.(1)△DBC和△EAC全等吗?请说明理由.(2)试说明:AE∥BC.(3)如图②,若动点D运动到边BA的延长线上,所作三角形CDE仍为等边三角形,请问是否仍有AE∥BC?请说明理由.答案一、1.A 2.B 3.D 4.B 5.C6.C 7.B 8.D 9.A 10.B二、11.3 12.s=120-80t13.1214.315.20°16.30 cm三、17.解:(1)原式=(-1)+9-1+2=9.(2)原式=2a3b2÷(-2a3b2)-4a4b3÷(-2a3b2)+6a5b4÷(-2a3b2)=-1+2ab-3a2b2.18.解:原式=[](x2-4y2)-(x2+8xy+16y2)÷4y=(x2-4y2-x2-8xy-16y2)÷4y=(-20y2-8xy)÷4y=-5y-2x.当x=-5,y=2时,原式=-5×2-2×(-5)=-10+10=0.19.解:AB和CD平行.理由如下:因为∠1=∠2=70°,所以∠D=180°-∠1-∠2=40°.又因为∠3=40°,所以∠D=∠3,所以AB∥CD.20.解:(1)如图①.(2)如图②.21.解:(1)因为转盘被等分成了12个扇形,其中有6个扇形能得到优惠,所以P(得到优惠)=12 .(2)选择转动转盘1能优惠[(1-0.7)×300+(1-0.8)×300×2+(1-0.9)×300×3]÷12=25(元), 选择转动转盘2能优惠40×24=20(元).因为25>20,所以选择转动转盘1对小张更合算. 22.解:(1)因为AB ∥CD ,所以∠ABD =∠BDC .在△ABD 和△EDC 中,⎩⎨⎧∠ABD =∠BDC ,DB =CD ,∠1=∠2,所以△ABD ≌△EDC (ASA). (2)由(1)得 ∠ABD =∠BDC .因为∠A =135°,∠BDC =30°,所以∠1=180°-∠A -∠ABD =∠180°-∠A -∠BDC =15°, 所以∠2=∠1=15°. 因为DB =DC ,所以∠DCB =(180°-∠BDC )÷2=75°, 所以∠BCE =∠DCB -∠2=75°-15°=60°.23.解:(1)因为AB =AC ,所以∠C =∠B .因为∠A =40°,所以∠B =180°-40°2=70°. (2)连接DE ,DF . 在△BDE 和△CFD 中,⎩⎨⎧BD =CF ,∠B =∠C ,BE =CD ,所以△BDE ≌△CFD (SAS). 所以DE =DF . 因为G 为EF 的中点,所以DG ⊥EF .所以DG 垂直平分EF .24.解:(1)服药后2 h 血液中含药量最高,此时每毫升血液中含药量是6 μg.(2)在服药2 h 内,每毫升血液中含药量逐渐升高,在服药2 h 后,每毫升血液中含药量逐渐下降.(3)2 (4)8-43=203(h),即有效时间为203h.25.解:(1)△DBC 和△EAC 全等.理由:因为△ABC 和△CDE 均为等边三角形,所以∠ACB =∠ECD =60°,BC =AC ,CD =CE . 又因为∠ACB =∠BCD +∠ACD , ∠ECD =∠ECA +∠ACD , 所以∠BCD =∠ECA . 在△DBC 和△EAC 中,⎩⎨⎧BC =AC ,∠BCD =∠ACE ,DC =EC ,所以△DBC ≌△EAC (SAS). (2)因为△DBC ≌△EAC , 所以∠EAC =∠B .又因为∠ACB =∠B =60°, 所以∠EAC =∠ACB , 所以AE ∥BC . (3)仍有AE ∥BC .理由:因为△ABC 和△CDE 均为等边三角形, 所以∠ACB =∠ECD =60°,BC =AC ,CD =CE , 所以∠BCA +∠ACD =∠ACD +∠DCE , 即∠BCD =∠ACE , 在△DBC 和△EAC 中,⎩⎨⎧BC =AC ,∠BCD =∠ACE ,DC =EC ,所以△DBC≌△EAC(SAS),所以∠EAC=∠B.又因为∠ACB=∠B=60°,所以∠EAC=∠ACB,所以AE∥BC.北师大版七年级数学下册期中学情评估一、选择题(每题3分,共30分)1.计算:(-3)-1=( )A.-3 B.3 C.13D.-132.下列各图中,∠1与∠2是对顶角的是( )3.某颗粒物的直径约为0.000 001 8米,用科学记数法表示该颗粒物的直径为( )A.0.18×10-5米B.1.8×10-5米C.1.8×10-6米D.18×10-5米4.下列运算正确的是( )A.(a2)3=a6B.a3·a4=a12C.a8÷a4=a2D.(-3a2)2=6a45.如图,点E在BC的延长线上,下列条件不能判断AB∥CD的是( )A.∠BAC=∠ACDB.∠DCE=∠BC.∠B+∠BCD=180°D.∠B+∠BAD=180°6.下列算式不能运用平方差公式计算的是( )A.(x+a)(x-a)B.(x+2a)(-2a+x)C.(a+b)(-a-b)D.(-x-b)(x-b)7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间关系的图象大致为( )8.已知在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下表的关系,下列说法不正确的是( )x/kg0123 4y/cm2022242628A.x与y都是变量,且x是自变量,y是因变量B.所挂物体的质量为2 kg时,弹簧的长度为24 cmC.弹簧不挂物体时的长度为0 cmD.在弹性限度内,所挂物体的质量每增加1 kg,弹簧的长度增加2 cm 9.观察如图所示的图形,下列说法正确的个数是( )①过点A有且只有一条直线与直线BD平行;②平面内,过点A有且只有一条直线AC垂直于直线BD;③线段AC的长是点A到直线BD的距离;④线段AB、AC、AD中,线段AC最短,根据是两点之间,线段最短.A.1个B.2个C.3个D.4个(第9题) (第10题)10.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=n°,则下列结论:①∠COE=90°-12n°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的有( )A.①②③B.①②④C.①③④D.①②③④二、填空题(每题3分,共15分)11.小明家离学校3千米,上学时小明骑自行车以10千米/时的速度骑了x小时,这时离学校还有y千米.写出y与x之间的关系式:__________________.12.一个角的补角与这个角的余角的差是 ______ °.13.已知2x=6,4y=7,那么2x+2y的值是______.14.若代数式x2-6x+k是完全平方式,则k=______.15.如图①,在某个底面积为20 cm2的盛水容器内,有一个实心圆柱体铁块,现在匀速持续地向容器内注水,容器内水的高度y(cm)和注水时间x(s)之间的关系满足如图中的图象,则水流速度是______cm3/s.三、解答题(一)(每题8分,共24分)16.先化简,再求值:[(ab+2)(ab-2)-2a2b2+4]÷2ab,其中a=1,b=-2.17.如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C =∠D.(1)BD和CE平行吗?请说明理由;(2)∠A和∠F相等吗?请说明理由.18.作图题(保留作图痕迹,不写作图过程):(1)在如图所示的方格纸中不用量角器与三角尺,仅用直尺.①经过点P,画直线PQ平行于AB所在直线.②过点C,画直线CN垂直于CB所在直线.(2)尺规作图:已知∠ACB,求作:∠A′C′B′,使∠A′C′B′=∠ACB.四、解答题(二)(每题9分,共27分)19.亮亮计算一道整式乘法的题(3x-m)·(2x-5),由于亮亮在解题过程中,抄错了第一个多项式中m前面的符号,把“-”写成了“+”,得到的结果为6x2-5x-25.(1)求m的值;(2)计算这道整式乘法的正确结果.20.为了解某种品牌汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:(1)根据上表的数据,请你写出Q与t的关系式;(2)该品牌汽车的油箱有50L油,若以100km/h的速度匀速行驶,该车最多能行驶多远?21.小明骑单车上学,当他骑了一段路后,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次上学所用的时间与离家距离的关系示意图.根据图中的信息回答下列问题:(1)小明家到学校的距离是______米;(2)小明在书店停留了______分钟;(3)本次上学途中,小明一共行驶了____米,一共用了______分钟;(4)若骑单车的速度超过300米/分就超过了安全限度.在整个上学途中小明的最快车速是多少米/分?速度是否在安全限度内?五、解答题(三)(每题12分,共24分)22.如图①的两个长方形可以按不同的形式拼成图②和图③两个图形.(1)在图②中的阴影部分的面积S1可表示为____________;(写成多项式乘法的形式);在图③中的阴影部分的面积S2可表示为______;(写成两数平方差的形式)(2)比较图②与图③的阴影部分面积,可以得到的等式是______;A.(a+b)2=a2+2ab+b2B.(a+b)(a-b)=a2-b2C.(a-b)2=a2-2ab+b2(3)请利用所得等式解决下面的问题:①已知4m2-n2=12,2m+n=4,则2m-n=______;②计算(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1的值,并写出该值的个位数字是多少.23.【阅读理解】两条平行线间的拐点问题经常可以通过作一条直线的平行线进行转化.例如:如图①,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.试说明:∠CAB=∠MCA+∠PBA.解:如图①,过点A作AD∥MN,因为MN∥PQ,AD∥MN,所以AD∥MN∥PQ,所以∠MCA=∠DAC,∠PBA=∠DAB,所以∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即∠CAB=∠MCA+∠PBA.【类比应用】若直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图②,若∠A=50°,∠D=150°,求∠APD的度数;(2)如图③,设∠PAB=∠α、∠CDP=∠β,则∠α、∠β、∠P之间的数量关系为__________________;【联系拓展】如图④,直线AB∥CD,P为平面内一点,连接PA、PD.AP⊥PD,DN平分∠PDC,若∠PAN+12∠PAB=∠P,运用(2)中的结论,直接写出∠N的度数.答案一、1.D 2.B 3.C 4.A 5.D 6.C 7.D 8.C 9.C 10.A二、11.y =3-10x 12.90 13.42 14. 915.403提示:由题图可知,5s 时,水面刚好到达实心圆柱体铁块顶端,5s 后水面高度不受实心圆柱体铁块影响, 则水流速度为(15-11)×2011-5=403(cm 3/s).故答案为403. 三、16.解:原式=(a 2b 2-4-2a 2b 2+4)÷2ab=(-a 2b 2)÷2ab =-12ab .当a =1,b =-2时,原式=-12×1×(-2)=1.17.解:(1)平行.理由:因为∠1=∠2,∠2=∠3,所以∠1=∠3,所以BD ∥CE .(2)相等.理由:因为BD ∥CE ,所以∠C =∠DBA , 又因为∠C =∠D ,所以∠DBA =∠D , 所以DF ∥AC ,所以∠A =∠F . 18.解:(1)如图.(2)如图.四、19.解:(1)根据题意可得,(3x+m)(2x-5)=6x2-15x+2mx-5m=6x2-(15-2m)x-5m,所以-5m=-25,解得m=5.(2)(3x-5)(2x-5)=6x2-15x-10x+25=6x2-25x+25. 20.解:(1)由题意得汽车每行驶1h,油量减少6L,则剩余油量为Q=100-6t.(2)50÷6×100=2 5003(km),答:该车最多能行驶2 5003km.21.解:(1)1 500 (2)4 (3)2 700;14(4)当时间在0~6分钟内时,速度为1 200÷6=200(米/分),当时间在6~8分钟内时,速度为(1 200-600)÷(8-6)=300(米/分),当时间在12~14分钟内时,速度为(1 500-600)÷(14-12)=450(米/分),因为450>300>200,所以在整个上学途中小明的最快车速为450米/分,速度不在安全限度内.五、22.解:(1)(a+b)(a-b);a2-b2(2)B(3)①3②原式=(2-1)(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1=(22-1)(22+1)(24+1)(28+1)+…+(232+1)+1=(24-1)(24+1)(28+1)+…+(232+1)+1=…=264-1+1=264,而21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,其个位数字2,4,8,6重复出现,而64÷4=16,于是“2,4,8,6”经过16次循环,因此264的个位数字为6.23.解:(1)如图①,过点P作PE∥AB,因为AB∥CD, PE∥AB,所以AB∥PE∥CD,所以∠APE=∠A=50°,∠DPE+∠D=180°,所以∠DPE= 180°-150°=30°.所以∠APD=∠APE+∠DPE= 50°+30°=80°.(2)∠α+∠β-∠P=180°【联系拓展】∠N的度数为45°. 提示:如图②,设PD交AN于点O,因为AP⊥PD,所以∠APO=90°,所以∠POA+∠PAN= 90°,因为∠PAN+12∠PAB=∠APD,所以∠PAN+12∠PAB= 90°,所以∠POA=12∠PAB,因为∠POA=∠NOD,所以∠NOD=12∠PAB,因为DN平分∠PDC,所以∠ODN=12∠PDC,所以∠AND= 180°-∠NOD-∠ODN= 180°-12(∠PAB+∠PDC),由(2)得∠CDP+∠PAB-∠APD= 180°,所以∠CDP+∠PAB= 180°+∠APD,所以∠AND= 180°-12(∠PAB+∠PDC)= 180°-12(180°+∠APD)= 180°-12(180°+90°)= 45°.21。
七年级下学期数学学科期末教学质量调研试带答案
ED CBA七年级数学学科期末教学质量调研试题一、选择题(每小题3分,共18分) 1.3的算术平方根是( ) A .±3B .3C .±√3D .√32.在平面直角坐标系中,点N (-1,a 2+1)一定在() A.第一象限B.第二象限 C. 第三象限D. 第四象限3.不等式组{x >−2,x <1的解集在数轴上表示正确的是( )A B C D4.如图,点E 在AD 的延长线上,下列条件中能判断AB ∥CD 的是( ) A .∠CBD =∠BDA B .∠A+∠ABC=180° C .∠ABD =∠BDC D .∠C=∠CDE5.下列调查中,适宜采用全面调查(普查)方式的是( ) A .对某品牌服装质量的调查 B .对我市九年级学生视力现状的调查 C .对某品牌烟花爆竹燃放安全的调查 D .对一枚运载火箭各零部件的检查 6.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A.{x +y =35,2x +2y =94.B. {x +y =35,4x +2y =94.C.{x +y =35,4x +4y =94.D.{x +y =35,2x +4y =94.二、填空题(每空3分,共21分)7. -125的立方根是. 8.不等式2x +4≤0的解集为.9. 在一个样本中,40个数据分别落在5个小组内,第1,2,3,5小组的频数分别是2,8,15,5,则第4小组的频数是.10.在平面直角坐标系中,点M (7,-4)到x 轴的距离是.-3-23210-1(第3题)(第4题)QN F C11.把命题“角平分线上的点到角的两边距离相等”改写成“如果……那么……”的形式为.12.某校组织开展了“防疫从我做起”知识竞赛,共有20道题.答对一题加10分,答错(或不答)一题扣5分,如果小华参加本次竞赛得分要不低于140分,那么他最多答错(或不答)的题数为.13.如图,将一个等腰直角∆ABC 的直角顶点A 和另一个顶点B 放在直线EF 和PQ 上,AB 和直线MN 交于点D ,且EF ∥MN ∥PQ .若∠PBC =12º,则∠ADN 的大小为.三、解答题(14、15题各10分,16、17、18题各5分,共35分) 14.解方程组:⑴{y =7−5x ,4x −3y =17;⑵{2a +b =0,4a +3b =16.15.(1)解不等式,并把不等式的解集表示在数轴上:2(5x+3)≤x −3(1−2x );(2)解不等式组:{5x +8≥2(x +1),x <x −12+1.(第13题)N F E D CB A 16.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度.17. 完成下面的证明:已知:如图,E 是∠CDF 平分线上一点,BE ∥DF 交CD 于点N ,AB ∥CD .求证:∠ABE ﹦2∠E. 证明:∵ BE ∥DF∴∠CNE =∠,() ∠E=∠, ( ) ∵DE 平分∠CDF . ∴∠CDF=2∠EDF ; ∴∠CNE=2∠E. 又∵ AB ∥CD , ∴∠ABE =∠,∴∠ABE ﹦2∠E .18.某同学解不等式63x +≥42x -出现了错误,解答过程如下:解:移项,得34x x -≥26--,(第一步) 合并同类项,得x -≥8-,(第二步)系数化为1,得x ≥8. (第三步)(1)该同学的解答过程在第步出现了错误,错误原因是;(2)写出此题正确的解答过程.(第17题)xyCBAO四、解答题(19、20每小题6分,21、22每小题7分,共26分) 19.△ABC 在方格中,位置如图,A 点的坐标为(﹣3,1). (1)写出B 、C 两点的坐标;(2)把△ABC 向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A 1B 1C 1;(3)在x 轴上存在点D ,使△DB 1C 1的面积等于3,直接写出满足条件的点D 的坐标.20.随着信息技术的迅猛发展,人们购物的支付方式更加多样、便捷,某校七年级数学 兴趣小组就此进行了抽样调查,调查结果显示,支付方式有:A 微信;B 支付宝; C 现金;D 其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查购买者的人数是; (2)请补全两幅统计图;(3)若该超市这一周内大约有4000名购买者,请你估计使用C 和D 两种支付方式的购买者大约共有多少名?(第20题)(第19题)(第21题)FEDCBA21.如图,AD ∥BC ,∠F AD=∠C ,∠B=60°. (1)则∠C=°;(2)如果DE 是∠ADC 的平分线,那么DE 与AB 平行吗?请说明理由.22.阅读材料:善于思考的小明在解方程组{4x +10y =6 ①8x +22y =10 ②时,采用了一种“整体代换”的解法,解法如下:解:将方程②变形为8x+20y+2y=10, 则2(4x+10y )+2y=10③,把方程①代入③得, 2×6+2y=10,则 y=﹣1;把y =﹣1代入①得,x=4,所以方程组的解为:{x =4y =−1请你解决以下问题:(1)试用小明的“整体代换”的方法解方程组:{2x −3y =7 ①6x −5y =11 ②(2)已知x 、y 、z ,满足{3x −2z +12y =47 ①2x +z +8y =36②,则z 的值为.五、解答题(每小题10分,共20分)23.已知长方形OABC ,A (0,2),C (-8,0).动点P 从原点O 出发,沿O →A →B →A 的方向以每秒2个单位长度的速度移动到点A 停止,设点P 移动的时间为x(s). (1)点B 的坐标为;(2)当点P 首次移动到点A 时,有一条垂直于x 轴的直线l 开始从BC 位置出发,以每秒1个单位长度的速度沿x 轴正方向平行移动,当点P 停止时直线l 也随之停止.在移动过程中,求当点P 在直线l 上时x 的值; (3)当x =时,∆OBP 的面积为2.24. 为庆祝建党100周年,某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大巴车和5辆中巴车恰好全部坐满,已知每辆大巴车的座位数比中巴车多17个,每辆大巴车和中巴车的租金分别为700元和350元. (1)求每辆大巴车和每辆中巴车的座位数;(2)经学校统计,实际参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,共有多少种租车方案(两种车辆均租用)?(3)在(2)的条件下,为使本次活动租金最少,该如何选用方案?此时最少租金是多少?请直接写出租金最少方案和最少租金.七年级数学学科期末教学质量调研试题 参考答案一、选择题(每小题3分,共18分)1. D2.B3.A4.C5.D6.D 二、填空题(每空3分,共21分)7.-5 8. x ≤-29. 1010.4 11. 如果一个点在角的平分线上,那么这个点到这个角的两边的距离相等 12.4 13. 147°三、解答题(14、15题各10分,16、17、18题各5分,共35分) 14. ⑴{y =7−5x ,①4x −3y =17;②解:把①代入②,得 4 x -3(7-5 x )= 17, ……2分∴ x =2, ……3分把x =2代人①,得y =-3, ……4分 所以这个方程组的解是 {x =2y =−3. ……5分⑵{2a +b =0,①4a +3b =16. ②解:①×3-②,得 2a=-16 , ……2分∴a=-8 ……3分②-①×2, 得 b=16, ……4分所以这个方程组的解是{a =−8,b =16.……5分(注:其它解法参照给分)15.(1) 2(5x+3)≤x −3(1−2x );解:去括号,得 10x +6≤x-3+6x , ……1分移项,得 10x-7x ≤-3- 6 ,……2分合并同类项,得3x ≤-9……3分1系数化为1,得 x ≤-3.……4分 把解集表示在数轴上:.……5分(2) {5x +8≥2(x +1),①x <x −12+1. ②解:解不等式①,得 x ≥−2,……2分 解不等式②,得 x <1,……4分把不等式①和②的解集在数轴上表示出来所以原不等式组的解集为−2≤x <1 ……5分16. 解:设隧道累计长度为xkm ,桥梁累计长度为ykm . 根据题意,得 ……1分 {x +y =342,2x −y =36.……3分 解得{x =126,y =216 ……5分答:隧道累计长度为126km ,桥梁累计长度为216km . 17. CDF 两直线平行,同位角相等 ……2分EDF 两直线平行,内错角相等 ……4分CNE ……5分18. (1)三 ; ……1分不等式性质3用错; ……2分 (2)解:移项,得34x x -≥26--,……3分 合并同类项,得x -≥8-,……4分 系数化为1,得x ≤8. ……5分四、解答题(19、20每小题6分,21、22每小题7分,共26分)19.(1)B (-2,4),C(1,1) ……2分(2)如图……4分(3)D (1,0)或(5,0) ……6分22304060(第21题)FEDCBA20. (1)200;……1分(2)如图;……5分(3)(22%+20%)×4 000=1680(人)……6分答:使用C 和D 两种支付方式的购买者大约共有1680人.21.解:(1)60……1分(2)AB ∥DE ,理由如下:……2分∵AD ∥BC∴∠ADC +∠C =180° ……3分 ∵∠C = 60°∴∠ADC = 120° ……4分 ∵DE 平分∠A DC∴∠ADE=∠EDC=60º……5分 ∵∠F AD =∠C=60º ∴∠F AD =∠ADE ……6分 ∴AB ∥DE ……7分22. 解:(1){2x −3y =7 ①6x −5y =11 ②将方程②变形得 3(2x-3y )+4y=11 ③……2分 把①代入③得 3×7+4y=11……3分 ∴y=-52……4分 把y=-52代入①得 x=-14(19题图)(第20题)∴{x =−14y =−52……5分(2)2……7分五、解答题(每小题10分,共20分) 23.(1)(-8,2);……1分(2)①当1≤x ≤5(或点P 由A 向B 运动)时:2(x -1)+x -1=8∴x =113……4分②当5<x ≤9(或点P 由B 向A 运动)时: 2(x -1)-8=x -1 ∴x =9……7分(3)14 或4或6……10分24.解:(1)设每辆中巴车有x 个座位,每辆大巴车有y 个座位,……1分根据题意,得{5x +6y =300,y =x +17.……3分 解得:{x =18,y =35.……4分答:每辆大巴车有35个座位,每辆中巴车有18个座位. (2)设学校租用中巴车a 辆,则租用大巴车(11-a )辆,根据题意,得18a +35(11-a )≥300+30.……5分∴a ≤3417.……6分又∵a ≥1,且a 是正整数 ∴a =1,2,3……7分即共有3种租车方案.……8分(3)最少租金方案为:租3辆中巴车和8辆大巴车;……9分最少租金为6 650元.……10分第11页(共6页)。
七年级下册数学期末试题 二
第1页 (共8页)xx 县20 —20 学年度第二学期期末教学质量检测义务教育七年级数 学 试 卷(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分120分,考试时间120分钟。
) 题号 Ⅰ Ⅱ总分 总分人一 二三 17 18 19 20 21 22 23 24 25 得分第Ⅰ卷(选择题 共30分)一、选择题(本大题10个小题,每小题3分,共30分。
请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里。
)1.方程4x -3=x 的解是( )A .x = 34B .x = 43 C .x =1 D .x =-12.已知a >b ,且c 为有理数,则下列关系一定成立的是( )A .ac >bcB .c -a >c -bC .ac 2>bc 2D .c +a >c +b3.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能铺成一个平面图案的是( ) A .正方形和正六边形 B .正三角形和正方形C .正三角形和正六边形D .正三角形、正方形和正六边形4.下列图案既是中心对称图形又是轴对称图形的是( ).A .B .C .D .5.现有5cm ,6cm ,11cm ,13cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成不同的三角形的个数是( ) A .1个 B .2个 C .3个 D .4个得 分 评 卷 人///////////密///////封///////线///////内///////不///////要///////答///////题///////////学校 班级 姓名 考号第2页 (共8页)6.若⎩⎨⎧==23y x 是方程3x -ay =0的一个解,则a 的值为( )A .3B .4C .4.5D .67.如图1所示,△ABC 是等腰直角三角形,点D 是斜边BC 的中点,△ABD 绕点A 旋转到△ACE 的位置,恰好与△ACD 组成正方形ADCE ,则△ABD 所经过的旋转是( )A .顺时针旋转225°B .逆时针旋转45°C .顺时针旋转315°D .逆时针旋转90°8.雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x 千米/时和y 千米/时,则下列方程组正确的是( ) A .⎩⎨⎧=-=+705.25.24205.25.2y x y x B .⎩⎨⎧=+=-4205.25.270y x y xC . ⎩⎨⎧=-=+4205.25.270y x y x D .⎩⎨⎧=+=+4205.25.270y x y x 9.下列判断正确的是( )A .方程(x -3)(y +1)=0的解是⎩⎨⎧-==13y xB .方程2x -4y =8的解必是方程组⎩⎨⎧=+=-753842y x y x 的解C .t 可以取任意数时,⎩⎨⎧+=+=2345t y t x 都是方程3x -5y =2的解D . 二元一次方程组一定只有一组解10.若不等式组⎪⎪⎩⎪⎪⎨⎧++≥++≥++a x a x x x )1(343450312恰有三个整数解,则a 的取值范围为( )第3页 (共8页)A .12≤a ≤1B .12<a ≤1C .1≤a <32D .1≤a ≤32第Ⅱ卷(非选择题 共90分)二、填空题(本大题6个小题,每小题3分,共18分。
2022—2023年人教版七年级数学(下册)期末调研卷及答案
2022—2023年人教版七年级数学(下册)期末调研卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°3.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°4.4的算术平方根是( )A .-2B .2C .2±D .25.如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°6.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤77.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A .4B .4-或10C .10-D .4或10-10.如图所示的几何体的主视图是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.若2x =5,2y =3,则22x+y =________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.64的立方根是___________.6.若一个多边形内角和等于1260°,则该多边形边数是________.三、解答题(本大题共6小题,共72分)1.解不等式组513(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.2.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围.3.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE .4.如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?5.“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、B5、C6、A7、C8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、752、-4π3、0.4、40或805、26、9三、解答题(本大题共6小题,共72分)1、24x -<≤,数轴见解析.2、-4≤a<-3.3、略4、(1)略(2)成立5、(1)答案见解析(2)36°(3)4550名6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
七年级下学期期末调研测试数学试题(II)
2019-2020年七年级下学期期末调研测试数学试题(II)本试卷由选择题、填空题和解答题三部分组成,共28题,满分100分,考试时间120分钟.注意事项:1.答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;2.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上) 1.下列运算正确的是A.a3·a2=a6B.(x3)3=x6C.x5+x5=x10D.(-ab)5÷(-ab)2=-a3b32.下列命题中,属于真命题的是A.同位角相等B.多边形的外角和小于内角和C.若=,则a=b D.如果直线l1∥l2,直线l2∥l3,那么l1∥l3.3.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是A.5 B.6 C.11 D.164.代数式ax2-4ax+4a分解因式,正确的是A.a(x-2)2B.a(x+2)2C.a(x-4)2D.a(x-2)(x+2)5.如图,点D是△ABC的边AB的延长线上一点,BE∥AC,若∠C=50°,∠DBE=60°,则∠CBD的度数等于A.120°B.110°C.100°D.70°6.若方程组的解满足x+y=0,则a的取值是A.a=-1 B.a=1 C.a=0 D.不能确定7.若代数式x2-6x+b可化为(x-a)2-1,则b-a的值A.3 B.4 C.5 D.68.根据以下对话,可以求得小红所买的笔和笔记本的价格分别是A.0.8元/支,2.6元/本 B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.1.2元/支,3.6元体9.若关于x的不等式组有解,则a的取值范围是A.a≤3 B.a<3 C.a<2 D.a≤210.已知关于x,y的方程组,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x+y=4-a的解;②当a=-2时,x、y的值互为相反数;③若x<1,则1≤y≤4;④是方程组的解,其中正确的结论有A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分,请将答案填在答题卡相应的位置上)11.用科学记数法,我们可以把0.000005写成5×10-n,则n=▲.12.如果一个多边形的内角和是720°,那么这个多边形的边数是▲.13.命题“相等的角是对顶角”的逆命题是▲.14.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于▲.15.把二元一次方程化为y=kx+b的形式,得▲.16.已知x-y=4,x-3y=1,则x2-4xy+3y2的值为▲.17.不等式的正整数解是▲.18.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文3a+b,2b+c,2c+d,2d.例如,明文1,2,3,4对应密文5,7,10,8.当接收方收到密文14,9,24,28时,则解密得到的明文四个数字之和为▲.三、解答题(本大题共64分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(本题满分8分,每小题4分)计算:(1) (2)20.(本题满分8分,每小题4分)解方程组:(1) (2)74 322953yxx y⎧+=⎪⎪⎨++⎪=⎪⎩21.(本题满分8分,每小题4分)因式分解:(1)x3-4x;(2)(3a-b)(x-y)+(a+3b)(y-x).22.(本题满分5分)如图,EF//AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.∵EF∥AD,∴∠2=▲(▲)又∵∠1=∠2,∴∠1=∠3( ▲ )∴AB∥▲(▲)∴∠BAC+▲=180°( ▲ )∵∠BAC=80°,∴∠AGD=▲.23.(本题满分4分)解不等式组()3202111 32x xxx⎧--≥⎪⎨->-⎪⎩24.(本题满分6分)(1)解不等式:5(x-2)<6(x-1)+7;(2)若(1)中的不等式的最小整数解是方程2x-ax=3的解,求a的值.25.(本题满分5分)如图,在四边形ABCD中,∠B=∠D=90°,AE、CF分别平分∠BAD和∠BCD.求证:AE∥CF.26.(本题满分6分)我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过作差、变形,并利用差的符号来确定它们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N.若M-N=0,则M=N.若M -N<0,则M<N.请你用“作差法”解决以下问题:(1)如图,试比较图①、图②两个矩形的周长C1、C2的大小(b>c);(2)如图③,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形的面积之和S1与两个矩形面积之和S2的大小.27.(本题满分6分)如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角平分线交于A1.(1)当∠A为70°时,∠A1=▲°;(2)如图2,∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4,请写出∠A与∠A4的数量关系▲;(3)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,试求∠Q与∠A1的数量关系.28.(本题满分8分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为▲(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.31936 7CC0 糀gp29535 735F 獟23006 59DE 姞39358 99BE 馾38911 97FF 響 ETq D29173 71F5 燵N。
七年级数学(下)期末调研测试卷二套
七年级数学(下)期末调研测试卷(一)一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.为了描述温州市某一天气温变化情况,应选择()A.扇形统计图B.折线统计图C.条形统计图D.直方图3.利用数轴确定不等式组的解集,正确的是()A.B.C.D.4.若a>b,则下列不等式变形错误的是()A.a+1>b+1 B.C.3a﹣4>3b﹣4 D.4﹣3a>4﹣3b5.已知正方形的面积是17,则它的边长在()A.5与6之间B.4与5之间C.3与4之间D.2与3之间6.将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为()A.30°B.45°C.50°D.60°7.点A(﹣3,﹣2)向上平移2个单位,再向右平移2个单位到点B,则点B的坐标为()A.(1,0)B.(1,﹣4)C.(﹣1,0)D.(﹣5,﹣1)8.如图,一个60°的角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A.120 °B.180°C.240°D.300°9.以下五个条件中,能得到互相垂直关系的有()①对顶角的平分线;②邻补角的平分线;③平行线截得的一组同位角的平分线;④平行线截得的一组内错角的平分线;⑤平行线截得的一组同旁内角的平分线.A.1个B.2个C.3个D.4个10.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y(其中x>y)表示小矩形的长与宽,请观察图案,指出以下关系式中不正确的是()A.x+y=7 B.x﹣y=2 C.x2﹣y2=4 D.4xy+4=49二、填空题(本题共6题,每小题4分,共24分)11.化简:=.12.不等式2x+5>4x﹣1的正整数解是.13.已知,若B(﹣2,0),A为象限内一点,且点A坐标是二元一次方程x+y=0的一组解,请你写出一个满足条件的点A坐标(写出一个即可),此时△ABO 的面积为.14.如图,直线l1∥l2,∠A=125°,∠B=105°,则∠1+∠2=°.15.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.16.一个三角形内有n个点,在这些点及三角形顶点之间用线段连接起来,使得这些线段互不相交,且又能把原三角形分割为不重叠的小三角形.如图:若三角形内有1个点时此时有3个小三角形;若三角形内有2个点时,此时有5个小三角形.则当三角形内有3个点时,此时有个小三角形;当三角形内有n个点时,此时有个小三角形.三、解答题(6×3+7×3=39)17.计算:+4×+(﹣1).18.解方程组:.19.求不等式组的整数解.20.如图,将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A′B′C′,请画出平移后的图形,写出△A′B′C′各顶点的坐标,并求出△ABC的面积.21.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为多少厘米?22.某文具店有单价为10元、15元和20元的三种文具盒出售,该商店统计了2014年3月份这三种文具盒的销售情况,并绘制统计图(不完整)如下:(1)这次调查中一共抽取了多少个文具盒?(2)求出图1中表示“15元”的扇形所占圆心角的度数;(3)在图2中把条形统计图补充完整.五、解答题(3×9=27分)23.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD 于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.24.某公式为了扩大生产,决定购进6台机器,但所用资金不能超过68万元,现有甲、乙两种机器供选择,其中甲种机器每台14万元,乙种机器每台10万元,现按该公司要求有哪几种购买方案,并说明理由.25.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D;(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD 的度数;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B 有怎样的数量关系?并说明理由.(3)如果点F在△ABC外部,如图3,此时∠EFD 与∠C﹣∠B的数量关系是否会发生变化?请说明理由.七年级数学(下)期末调研测试卷(二)一、选择题(3×15=45) 1.下列说法正确的是( )A .有且只有一条直线与已知直线平行B .垂直于同一条直线的两条直线互相平行C .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D .在平面内过一点有且只有一条直线与已知直线垂直 2.如图。
七年级数学第二学期期末调研测试
初一数学(时间100分钟,满分100分)一、填空题(每小题2分,共20分)1.若4x a =,4y b =,则4x y +=______________.2.若a+b=4,则222a ab b ++的值是___________.3.把代数式32246x x x --分解因式为:____________________.4.近期墨西哥等地接连爆发新型甲型HlNl 流感病毒痰隋,并迅速蔓延至全球多个国家和地区,造成多人死亡.流感病毒的直径为0.00000008m ,用科学记数法表示为_____m .5.已知一个凸五边形的4个内角都是100°,则第5个内角的度数是_________.6.不等式2x -1<3的正整数解是____________.7.将一副三角板摆成如图所示,图中∠1=_________.8.将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2等于______.9.如图,在△ABC 中,BC=AC ,∠C=90°,AD 平分∠CAB ,AB=10 cm ,DE ⊥AB ,垂足为点E .那么△BDE 的周长是____________cm .10.若关于x 的不等式2m 一1<x<m+l 无解,则m 的取值范围是__________.二、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中只有一项是符合题目要求的,把正确的答案前的字母填在下表中)11.下列事件中,必然事件是A .某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖B .今天考试小明能得满分C .早晨的太阳从东方升起D .中秋节晚上一定能看到月亮12.下面四个图形中,线段BD 是△ABC 的高的是13.如果0(2009)a =-,1(0.1)b -=-,23()2c =-,那么a 、b 、c 三个数的大小为 A .a>b>c B .c>a>b C .a>c>b D .c>b>a14.如图AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是A .9015x y x y +=⎧⎨=-⎩B .90215x y x y +=⎧⎨=-⎩C .90152x y x y +=⎧⎨=-⎩D .290215x x y =⎧⎨=-⎩ 15.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,9l ,93,100,102,11l ,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是A .0.1B .0.2C .0.3D .0.716.一个口袋中装有4个白球,1个红球,7个黄球,除颜色外.完全相同.充分搅匀后随机摸出一球,恰好是白球的概率是A .12B .13C .14D .1717.给出下列命题①三条线段组成的图形叫三角形,②三角形的三条高相交于三角形内同一点,③任何一个三角形都有三条中线,④三角形的内角和等于外角和,⑤多边形的内角和大于外角和,⑥三角形的三条角平分线相交=j 二三角形内同一点.其中正确的有A .4个B .3个C .2个D .1个18.如图,与左边正方形图案属于全等的图案是19.实验中学初一年级进行了一次数学测验,参考人数为540人,为了了解这次数学测验的成绩情况,下列所抽取的样本中较为合理的是A .抽取前180名学生的数学成绩B .抽取后180名学生的数学成绩C .抽取(1)(2)(3)三个班学生的数学成绩D .抽取各班学号为3的倍数的同学的数学成绩20.如图,点P 是AB 上任意一点,∠ABC=∠ABD ,还应补充一个条件,才能推出△APC≌△APD .从下列条件中补充一个条件,不一定能推出△APC ≌△APD 的是A .BC=BDB .AC=ADC .∠ACB=∠ADBD .∠CAB=∠DAB三、解答题(本大题共60分)21.(本题有3小题,每小题4分,共12分)(1)计算:20321()(3)(5)(5)3π--+-+-÷- (2)分解因式: 22222()4x y x y +-(3)先化简再求值:28(2)(31)2(1)(1)x x x x x --+-+-,其中2x =-。
初一数学下册期末调研测试题
初一数学下册期末调研测试题一、选择题(本大题共12小题,每小题3分,共36分)1.已知二元一次方程3x-y=1,当x=2时,y等于( )A.5B.-3C.-7D.73.点P(1,-2)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,直线AB与直线CD相交于点O,OEAB,垂足为O,EOD=AOC,则BOC=( )A.150B.140C.130D.1205.以下各组线段为边,可组成三角形的是( )A.a=15cm,b=30cm,c= 45cmB.a=30cm,b=30cm,c= 45cmC.a=30cm,b= 45cm,c= 75cmD.a=30cm,b=45cm,c= 90cm6.在平面直角坐标系中,线段AB两端点的坐标分别为A(1,0),B(3,2). 将线段AB平移后,A、B的对应点的坐标可以是( )A.(1,-1),(-1,-3)B.(1,1),(3,3)C.(-1,3),(3,1)D.(3,2),(1,4)7.一个多边形的内角和比它的外角和的3倍少180,则这个多边形的边数为( )A.5B.6C.7D.88.小明在计算一个多边形的内角和时,由于粗心少计算了一个内角,结果得1345,则未计算的内角的大小为( )A.80B.85C.95D.1009.如图,下列条件中,不能判断直线AB∥CD的是( )A.HEG =EGFB.EHF +CFH =180C.AEG =DGED.EHF =CFH10.如图,A +B +C +D +E +F等于( )A.180B.360C.540D.72011.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打( )单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
七年级下期末调研测试--数学
第二学期期终教学质量调研测试初一数学一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上) 1.下列计算正确的是( )A. 235+=a a aB. 2(24a a =) C. 235=a a a g D. 235()=a a 2.己知三角形的两边分别为4和9,则此三角形的第三边可能是( ) A. 13 B. 9 C. 5 D. 4 3.一个多边形内角和是1080°,则这个多边形是( )A.六边形B.七边形C.八边形D.九边形 4.计算(3)(3)a b a b +--等于( )A. 2296a ab b --B. 2296a ab b ---C. 229a b -D. 229b a -5.如图,直线//AB CD ,70A ∠=︒,40C ∠=︒, 则E ∠等于( )A. 30°B. 40°C. 60°D. 70°6.若22(2)(2)50x y x y z z ++-+-=,则x 的值为( )A. 1-B.C. 2D. 2- 7.如果0(0.1)a =-,1(0.1)b -=-,25()3c -=-那么,,a b c 的大小关系为( ) A. a b c << B. b a c << C. c a b << D. b c a <<8.如图,点C 是BAD ∠内一点,连CB 、CD ,80A ∠=︒,30B ∠=︒,40D ∠=︒,则 BCD ∠的度数是( )A. 110°B. 120°C. 130°D. 150°9.若(3)(5)M x x =--,(2)(6)N x x =--,则M 与N 的关系为( ) A. M N = B. M N >C. M N <D. M 与N 的大小由x 的取值而定 10.若正整数x 、y 满足226x y -=,则这样的数对(,)x y 个数是( ) A. 1 B. 2 C. 3 D. 4二、填空题(本大题共8小题,每小题3分,共24分,将答案填在答题纸相对应的位置上) 11.人体血液中红细胞的直径约为0. 0 000 077米,数据0. 0 000 077用科学记数法表示为 .12.因式分解: 224m n -= . 13.已知:3,12a b ab +==,化简(2)(2)a b --的结果是 . 14.如图,120ACD ∠=︒,20B ∠=︒,则A ∠的度数是 °.15.命题“当2k =时,二次三项式22x kxy y ++是完全平方式”的逆命题是 命题,(填“真”或“假”).16.如图ABC ∆的中线AD 、BE 相交于点F ,若ABF ∆的面积为1,则四边形FDCE 的面积是 . 17.如图,AOB ∆和COD ∆都是等腰三角形,且,,OA OB OC OD ==AOB COD ∠=∠ 35=︒连接AC 、BD 交与点P .则APD ∠的度数为 .18.对于任意三个实数,,a b c ,用{}min ,,a b c 表示这三个数中最小的数.例如:{}min 1,2,31=;{}1(1)min 1,2,(1)a a a a -≥-⎧-=⎨<-⎩如果{}min 2,2,422x x +-=,那么x 的取值范围为 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题纸相应的位置上,解答时应写出必要的计箕过程、推演步骤或文字说明).19.(本题满分6分)计算:(1)22014()3(3)2----÷-; (2)2(2)(2)(1)a a a -+++.20.(本题满分6分)把下列各式因式分解:(1)224()4()a a b c b c ++++; (2) 3245a a a --21.(本题满分6分) 解不等式组233(1)(5)0x x x x -<⎧⎨---≥⎩①②,并把它的解集在数轴上表示出来.22.(本题满分6分)如图,点D 是ABC 的BA 边的延长线上一点,有以下三项:B C ∠=∠,12∠=∠,//AE BC ,请把其中两项作为条件,填入下面的“己知”栏中,另一项作为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程.己知: . 求证: . 证明:23.(本题满分8分)如图,//AF BC ,点D 是AF 上一点,BF 与CD 交于点E ,点E 是CD 的中点.(1)求证: BCE FDE ∆≅∆;(2)连结BD ,CF ,则BDE ∆和FCE ∆全等吗?为什么?24.(本题满分8分)己知3,1a b ab +==,分别求: 22a b +,33a b +,44a b +的值.25.(本题满分8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种...不同的购买方案.26.(本题满分8分)如图,在ABC ∆中,100A ∠=︒,40ABC ∠=︒,BD 是ABC ∠的平分线,延长BD 至E ,使DE AD =.求证:BC AB CE =+.27.(本题满分10分) 已知关于,x y 的方程组24221x y mx y m +=⎧⎨+=+⎩ (实数m 是常数).(1)若1x y +=,求实数m 的值; (2)若15x y -≤-≤,求m 的取值范围; (3)在(2)的条件下,化简:223m m ++-.28.(本题满分10分)如图,己知ABC ∆中,24AB AC ==厘米,ABC ACB ∠=∠,16BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点以a 厘米/秒的速度向A点运动.设运动的时间为秒.(1)CP的长为厘米(用含的代数式表示);(2)若以D、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.∆三边运(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC∆的何处相遇?动.则点P与点Q会不会相遇?若相遇,求出经过多长时间点P与点Q第一次在ABC。
初中七年级数学第二学期期末调研测试
第二学期期末调研测试七年级数学试题(全卷共五个大题满分150分考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.方程20x=的解是A.2x=-B.0x=C.12x=-D.12x=2.以下四个标志中,是轴对称图形的是A.B.C.D.3.解方程组⎩⎨⎧=+=-②①,ΛΛΛΛ.102232yxyx时,由②-①得A.28y=B.48y=C.28y-=D.48y-=4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为A.2B.3C.7D.165.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是A.x>3 B.x≥3 C.x>1 D.x≥6.将方程31221+=--xx去分母,得到的整式方程是A.()()12231+=--xx B.()()13226+=--xxC.()()12236+=--xx D.22636+=--xx7.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形8.已知x m=是关于x的方程26x m+=的解,则m的值是A.-3 B.3 C.-2 D.29.下列四组数中,是方程组20,21,32x y zx y zx y z++=⎧⎪--=⎨⎪--=⎩的解是5题图。
·432-1 118题图AD BCP QA .1,2,3.x y z =⎧⎪=-⎨⎪=⎩B .1,0,1.x y z =⎧⎪=⎨⎪=⎩C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 . 17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.解方程组:,.202321x y x y -=⎧⎨+=⎩20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩…A BECDF10题图12题图ABCB ′′15题图DEABC四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数. ADBCE23题图21题图24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.(1)方程|x +3|=4的解为 ; -21-1342-20 1226.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2度二学期期末调研测试七年级数学试题参考答案及评分意见一、选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BABCACBDAADC13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩………………………………………………………7分 20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 (1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ······························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································· 8分 (3)在数轴上找出|x -3|+|x +4|=9的解.A M PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····························································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分由(2)知:A M ∠=∠21,又由轴对称性质知:∠M =∠N ,………………………………………8分………………………………………6分。
2023年人教版七年级数学(下册)期末调研卷及答案
2023年人教版七年级数学(下册)期末调研卷及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.8的相反数的立方根是()A.2 B.12C.﹣2 D.12-4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0 6.当1<a<2时,代数式|a-2|+|1-a|的值是()A.-1 B.1 C.3 D.-37.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( )A .1个B .2个C .3个D .4个9.如图,在△ABC 中,P 为BC 上一点,PR ⊥AB,垂足为R,PS ⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP ∥AR;③△BRP ≌△CSP.其中正确的是( )A .①②B .②③C .①③D .①②③10.2020的相反数是( )A .2020B .2020-C .12020D .12020- 二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为________.5.如果一个角的补角是150°,那么这个角的余角的度数是________度.6.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为________.三、解答题(本大题共6小题,共72分)1.按要求解下列方程组.(1)124x y x y +=⎧⎨-=-⎩(用代入法解) (2)34225x y x y +=⎧⎨-=⎩(用加减法解)2.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求a b m cd m +++的值.3.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示);(3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.4.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.5.我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)扇形统计图中D所在扇形的圆心角为;(3)将上面的条形统计图补充完整;(4)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.6.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、C5、A6、B7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x (x+2)(x ﹣2)2、60°或120°3、70.4、55、606、36°或37°.三、解答题(本大题共6小题,共72分)1、(1)12x y =-⎧⎨=⎩;(2)21x y =⎧⎨=-⎩. 2、(1)a+b=0,cd=1,m=±2;(2)3或-13、(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由略. 4、(1)略(2) ∠AEB=15°(3) 略5、(1)120;(2)54°;(3)详见解析(4)200.6、(1) 自变量是时间,因变量是距离;(2) 10时他距家10千米,13时他距家30千米;(3) 12:00时他到达离家最远的地方,离家30千米;(4)13千米;(5) 12:00~13:00休息并吃午餐;(6) 15千米/时。
2022-2023学年第二学期期末调研七年级数学试卷
七年级数学一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.计算a6÷a2的结果是A .a2B .a3C .a4D .a62.某红外线遥控器发出的红外线波长为0.0000009米,用科学记数法表示这个数是 A .9×10-7B .9×10-8C .0.9×10-7D .0.9×10-83.已知a >b ,则下列不等关系中正确的是 A .ac >bcB .a +c >b +cC .a -1>b +1D .ac2>bc24.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数是A .35°B .45°C .50°D .65°5.如图,已知CB ∥DF ,则下列结论成立的是D 12 3BC(第5题)AFE(第4题)B A Cab12A .∠1=∠2B .∠2=∠3C .∠1=∠3D .∠1+∠2=180º6.下列命题是真命题的是A .如果a2=b2,那么a =bB .如果两个角是同位角,那么这两个角相等C .相等的两个角是对顶角D .平面内,垂直于同一条直线的两条直线平行7. 《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉;下禾五秉,益实一斗,当上禾二秉. 问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打岀来的谷子. 问上等、下等稻子每捆打多少斗谷子?设上等稻子每捆打x 斗谷子,下等稻子每捆打y 斗谷子,根据题意可列方程组为 A.⎩⎨⎧3y +6=10x ,5x +1=2y B.⎩⎨⎧3x -6=10y ,5y -1=2x C.⎩⎨⎧3x +6=10y ,5y +1=2x D.⎩⎨⎧3y -6=10x ,5x -1=2y8.关于x 的不等式x -a ≥1.若x =1是不等式的解,x =-1不是不等式的解,则a 的范围为二、填空题(本大题共8小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 9.计算:20=▲,()-3=▲.10.若三角形有两边长分别为2和5,第三边为a ,则a 的取值范围是▲.11.命题“两直线平行,同旁内角互补”的逆命题是▲. 12.分解因式:a3-a =▲.13.已知⎩⎨⎧x =1,y =-2是方程2x -ay =3的一个解,那么a 的值是▲.14.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角.若∠A =120°,则∠1+∠2+∠3+∠4=▲°.15.已知2a =3,4b =5,则2a+2b 的值是▲. 16.若a -b =3,ab =1,则a2+b2= ▲ .12 34A B CDE (第14题) ABC DE(第18题)O17.已知不等式组⎩⎨⎧x <1,x >n有3个整数解,则n 的取值范围是▲.18.如图,C 是线段AB 上一点,∠DAC =∠D ,∠EBC =∠E ,AO 平分∠DAC ,BO 平分∠EBC .若∠DCE =40°,则∠O =▲°.三、解答题(本大题共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)计算(1) (-t)5÷(-t)3·(-t)2;(2)(2a -b)(a -2b).20 (6分)分解因式(1)m3-4m2+4m ;(2)a(a -1)+a -1.21.(6分)先化简,再求值:(2a -b)2-(2a -3b)(2a +3b),其中,a =12,b =1.22.(5分)解方程组⎩⎪⎨⎪⎧x + 3y =-1,3x -2y =8.23.(10分)(1)解不等式3x +12-5x -14≤1,并把解集在数轴上表示出来.(2)解不等式组⎩⎨⎧3-x >0,5x +12+1≥x ,并写出它的所有整数解.24.(6分)如图,在△ABC 中,BE 是AC 边上的高,DE ∥BC ,∠ADE =48°,∠C =62°,求∠ABE 的度数.AD EBC12345-5 -4 -3 -2 -125.(6分)如图,已知AB ∥CD ,AE 平分∠BAD ,DF 平分∠ADC ,EF 交AD 于点O , 求证∠E =∠F .26.(9分)新冠肺炎疫情期间,某口罩厂为了满足疫情防控需求,决定拨款456万元购进A 、B 两种型号的口罩机共30台.两种型号口罩机的单价和工作效率如下表:单价/万元工作效率/(只/h )A 种型号 16 4 000B 种型号14.83 000ABEFCD (第24题) O(1)求购进A 、B 两种型号的口罩机各多少台;(2)现有200万只口罩的生产任务,计划安排口罩机共15台同时进行生产.若工人每天工作8 h ,若要在5天内完成任务,则至少安排A 种型号的口罩机多少台?27.(10分) 【概念认识】如图①,在∠ABC 中,若∠ABD =∠DBE =∠EBC ,则BD ,BE 叫做∠ABC 的“三分线”.其中,BD 是“邻AB 三分线”,BE 是“邻BC 三分线”.①②③【问题解决】ABCA BCPA BCD E(1)如图②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分线BD 交AC于点D,则∠BDC=▲°;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,且BP⊥CP,求∠A的度数;【延伸推广】(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°,∠B=n°,直接写出∠BPC的度数.(用含m、n的代数式表示)七年级数学参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共8小题,每小题2分,共16分)二、填空题(本大题共8小题,每小题2分,共16分)9.1,8 10.3<a<7 11.同旁内角互补,两直线平行114.300 15.15 16.11 12.a(a+1)(a-1) 13.217.-3≤n<-2 18.125三、解答题(共68分) 19.(本题6分)(1)解:原式=(-t)5-3+22分=(-t)4=t4.3分(2)解:原式=2a2-4ab -ab +2b22分=2a2-5ab +2b2.3分20.(本题6分)(1)解:原式=m (m2-4m +4)2分=m(x -2)23分(2)解:原式=a2-a +a -11分=a2-12分 =(a +1)(a -1).3分21.(本题6分)解:原式=4a2-4ab +b2-4a2+9b22分=-4ab +10b24分当a =21,b =1时,原式=8.6分22.(本题5分)解方程组⎩⎪⎨⎪⎧x + 3y =-1,3x -2y =8.解:①×3,得3x +9y =-3.③③-②,得11y =-11.解这个方程,得y =-1.………2分 把y =-1代入①,得x =2.………4分∴原方程组的解为21x y =⎧⎨=-⎩,.………5分23.(本题10分)(1)(4分)解:2(3x +1)-(5x -1)≤4 …………………………1分 6x +2-5x +1≤4…………………………2分 x ≤1 …………………………3分(数轴表示略)…………………………4分 (2)(6分)解:由①得:x <3 …………………………2分由②得:x ≥-1 ………………………………4分不等式组的解集是-1≤x <3……………………………5分 ∴所有整数解是-1.0,1,2.…………6分24.(本题6分)解:∵DE ∥BC ,∠ADE =48°,∴∠ABC =∠ADE =48°,…………2分 ∵BE 是AC 边上的高, ∴∠BEC =90°, ∵∠C =62°,∴∠EBC =90-∠C =28°,…………4分∴∠ABE =∠ABC -∠EBC =48°-28°=20°.…………6分25. (本题6分) 证明:∵AB ∥CD∴∠BAD =∠ADC …………2分 ∵AE 平分∠BAD ,DF 平分∠ADC∴∠EAD =21∠BAD ,∠FAD =21∠ADC …………4分 ∴∠EAD =∠FAD …………5分 ∴AE ∥FD∴∠E =∠F …………6分26. (本题9分)解:(1)设购进A 种型号的口罩生产线x 台,B 种型号的口罩生产线y 台.根据题意,得:⎩⎪⎨⎪⎧x +y =3016x +14.8y =456,3分解得:⎩⎪⎨⎪⎧x =10y =20.5分答:购进A 种型号的口罩生产线10台,B 种型号的口罩生产线20台.(2)设租用A 种型号的口罩机m 台,则租用B 种型号的口罩机(15-m )台,根据题意,得:5×8×[4 000m +3 000(15-m )]≥2 000 000,7分解得:m ≥5.8分答:至少购进A 种型号的口罩机5台.9分 27.(10分)解:(1)85或100;2分(2)∵BP ⊥CP , ∴∠BPC =90°,∴∠PBC +∠PCB =90°,3分又∵BP 、CP 分别是∠ABC 邻AB 三分线和∠ACB 邻AC 三分线, ∴∠PBC =23∠ABC ,∠PCB =23∠ACB ,∴23∠ABC +23∠ACB =90°, ∴∠ABC +∠ACB =135°,4分在△ABC 中,∠A +∠ABC +∠ACB =180° ∴∠A =180°-(∠ABC +∠ACB )=45°.5分 (3)(每个图形及结论1分,不画图形不扣分)·············································································································· 10分①②情况一:∠BPC =23∠A =23m ;情况二:∠BPC =13∠A =13m ;ABCDPABCDPP③④情况三:∠BPC =23∠A +13∠ABC =23m +13n ;情况四:①当m >n 时,∠B P C =13∠A -ABC DP13∠ABC=13m-13n;AB C DP⑤②当m <n 时,∠P =13∠ABC -13∠A =13n -13m。
2022-2023学年度第二学期七年级数学期末调研测试
{{{{2022-2023 学年度第二学期期末调研测试七年级数学试卷2023.6(卷面总分:150 分;考试时间:120 分钟)【.提.示.】.:.请.在.答.题.卡.上.作.答.,.在.本.试.卷.上.作.答.无.效.!.一.选择题(本大题共 8 小题,每小题 3 分,共 24 分.在给出的四个选项中,恰有一项是符合要求的,请将正确的选项前的字母代号用 2B 铅笔填涂在答题卡相应位置上)1.下列运算正确的是( ▲ )A .a +a 2=a 3B .(a ﹣b )2=a 2﹣b 2C .a 6÷a 3=a 2D .(a 2)3=a 62.多项式 3a 3b 2+9a 3bc 分解因式时,应提取的公因式是( ▲ )A .3a 3b 2B .9a 3b 2cC .3a 3b 3D .3a 3b 3.若 a <b ,则下列不等式一定成立的是( ▲ )A .ma <mbB .a 2<b 2C .﹣a +3>﹣b +3D .2﹣a <2﹣b《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人 6 两少 6 两, 每人半斤多半斤;试问各位善算者,多少人分多少银?(注:这里的斤是指市斤,1 市斤= 10 两)设共有 x 人,y 两银子,下列方程组中正确的是(▲ )A . 6 + 6 = 5x − 5 = yB . 6 + 6 = 5 + 5 =C . 6x − 6 = y5x − 5 = y D . 6x − 6 = y5 + 5 = 如图,数轴上 A ,B 两点到原点的距离是三角形两边的长,则该三角形第三边长不.可.能. 是 ( ▲ )第 5 题图A .3B .4C .5D .6 6.一个多边形的内角和的度数可能是( ▲ )A .2700°B .2800°C .2900°D .3000°7.下列命题中,真命题有( ▲ )个.①两直线平行,同旁内角相等;②若三角形三边为长为 a 、b 、c ,则 a 、b 、c 一定满足 a +b >c ;③不平行的两条直线被第三条直线所截,同位角一定不相等;④三角形的三条角平分线都在三角形内部.2.1个B .2 个C .3 个D .4 个8.如果 x n =y ,那么我们规定(x ,y )=n .例如:因为 32=9,所以(3,9)=2.记(m ,12)=a ,(m ,8)=b ,(m ,96)=c .则 a 、b 和 c 的关系是 ( ▲ )A .ab =cB .a b =cC .a +b =cD.无法确定{{二.填空题(本大题共 8 小题,每小题 3 分,共 24 分.不需要写出解答过程,请用 0.5 毫米黑色墨水签字笔将答案直接写在答题卡相应位置上)9.2022 年北京冬奥会赛事场地之一的张家口万龙滑雪场的雪几乎都是人造雪,人造雪的制造过程为:首先用直径为 0.00003~0.00007 米的水滴制造微小的冰晶,它们就是晶核, 接着向外喷射晶核,让水雾和晶核接触,形成雪花.数据 0.00003 用科学记数法表示为 ▲ .10.已知 a m =6,a n =3,则a m−n = ▲ .11.已知 x 2+mx +16 能用完全平方公式因式分解,则 m 的值为 ▲ .12.已知 a ,b 满足方程组 2 + =9 + 2 = 3,则 a +b 的值为 ▲ .13.433▲522(填“>”、“=”或“<”).14.不等式组 x > m恰好有 3 个整数解,则 m 的取值范围是 ▲.x ≤ 415.如图,已知△ABC 中,∠A =70°,∠B =30°,将∠C 按照如图所示折叠,则∠1+∠2=▲ °.A C'2 F1BGC第 15 题图第 16 题图16.如图,在△ABC 中,AD 、CE 是中线,若四边形 BDFE 的面积是 4,则△ABC 的面积为▲ .三.解答题(本大题共 11 小题,共 102 分.请用 0.5 毫米黑色墨水签字笔在答题卡指定区域作答,解答时应写出必要的文字说明或演算步骤)17.(本题 8 分)计算:18.(本题 8 分)分解因式:(1)3x 3-12x ;(2)−2a 2 − 4a − 2.19.(本题8分)解不等式组: 并求出它的整数解.20.(本题 8 分)先化简,再求值:(3x +y )2-(x+y )(5x -y )-(2x +y )(2x -y ), 其中 x =1,y2=2.21.(本题 8 分)如图是由边长为 1 的小正方形组成的网格,每个小正方形的顶点叫做格点.△ABC 的三个顶点都是格点.(1)图 1 中△ABC 面积为▲;(2)仅.用.无.刻.度.的.直.尺.在给定网格中完成作图.① 在图 1 中,作 AC 边上的高 BE ;② 在图 2 中,把△ABC 先向右平移 6 格,再向上平移 2 格,得到△A 1B 1C 1;③ 在图 2 中,点 D 在边 AB 与格线相交的位置,请在 AC 上找一点 F ,使得 DF ∥BC .图 1图 2NN22.(本题 8 分)已知∠ABC 的两边与∠DEF 的两边分别垂直,即 AB ⊥DE ,BC ⊥EF ,垂足分别为点 M 和 N ,试探究:(1)如图 1,∠B 与∠E 的数量关系是▲;(2)如图 2,写出∠B 与∠E 的数量关系,并说明理由;(3)根据上述探究,请归纳概括出一个真命题.图 1图 223.(本题 8 分)如图,已知 DE ∥AB ,∠1=∠2.(1)求证:BD 平分∠ABC ;(2)若∠1=25°,∠C =30°,求∠CDE 的度数.24.(本题 10 分)某校计划租用甲、乙两种客车送 530 名师生去西游乐园.已知租用 1 辆甲型客车和 2 辆乙型客车共需 2300 元,租用 2 辆甲型客车和 3 辆乙型客车共需 3800 元.甲型客车每辆可坐 45 名师生,乙型客车每辆可坐 55 名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用 10 辆客车,怎样租车可使总费用最少?25.(本题 10 分)定义一种新运算“a *b ”:当 a ≥b 时,a *b =a +3b ;当 a <b 时,a *b =a -3b .例如:3*(-4)=3+(-12)=-9,(-2)*5=-2-15=-17.(1)填空:4*(-3)=▲ ,(-4)*3=▲;(2)若(3x -4)*(x +6)=(3x -4)-3(x +6),则 x 的取值范围为 ▲ ;(3) 已知(3x -7)*4<-6,求 x 的取值范围.26.(本题 12 分)【知识生成】我们已经知道,对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式,例如由图 1 可以得到(a +b )(a +b )=a 2+2ab +b 2,请解答下列问题:(1)写出图 2 中所表示的数学等式▲;(2)利用(1)中所得到的结论,解决下面的问题:已知 a +b +c =13,ab +bc +ac =46,求 a 2+b 2+c 2 的值;(3)小明同学用图 3 中 x 张边长为 a 的正方形,y 张边长为 b 的正方形,z 张宽、长分别为 a 、b 的长方形纸片拼出一个面积为(2a +3b (a +2b )的长方形,则 x +y +z = ▲ ;【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图 4①表示的是一个棱长为 x 的正方体挖去一个棱长为 y 的小正方体,小明由图 2 操作得到启发,请你根据分割如图 4②的操作,写出一个数学等式: ▲;【解决问题】 (5)分解因式:a 3-8= ▲.图 3图 1图 2x图 4①图4②x27.(本题 14 分)【定义】在一个三角形中,如果有一个角是另一个角的 3 倍,我们称这两个角互为“和谐角”,这个三角形叫做“和谐三角形”.例如:在△ABC 中,∠A =75°,∠B =25°,则∠A 与∠B 互为“和谐角”,△ABC 为“和谐三角形”.【理解】(1)若△ABC 为和谐三角形,∠A =140°,则这个三角形中最小的内角为▲°;(2)若△ABC 为和谐三角形,∠A =90°,则这个三角形中最小的内角为 ▲°;(3)已知∠A 是和谐△ABC 中最小的内角,并且是其中的一个和谐角,试确定∠A 的取值范围,并说明理由;【应用】(4)如图,△ABC 中,∠A=∠ABC ,∠EBC=1∠ABC ,∠ECD=1∠ACD ,EB33交 AC 于点 F ,若∠BCF 是和谐△BCF 中的一个和谐角,求∠E 的度数.EBAFCD。
人教版七年级数学下册期末学情评估 附答案 (2)
人教版七年级数学下册期末学情评估一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.在平面直角坐标系中,点A (2,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.为了表示某种食品中钙、维生素、糖等物质的含量的百分比,应选用( )A .扇形统计图B .条形统计图C .折线统计图D .以上都可以3.如图,AB ∥CD ,∠C =70°,BE ⊥BC ,则∠ABE 等于( )A .60°B .35°C .30°D .20° 4.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行. A .5个 B .4个 C .3个 D .2个5.已知⎩⎨⎧x =2,y =1是方程组⎩⎨⎧ax +by =5,bx +ay =1的解,则a -b 的值是( )A .-1B .2C .3D .4 6.与3+24最接近的整数是( )A .6B .7C .8D .97.已知表示实数a ,b 的点在数轴上的位置如图所示,下列结论错误的是( )A.||a <1<||b B .1<-a <b C .1<||a <b D .-b <a <-18.如图,线段AB 经过平移得到线段A 1B 1,其中A ,B 的对应点分别为A 1,B 1,若线段AB 上有一点P (a ,b ),则点P 在A 1B 1上的对应点P 1的坐标为( )A .(a -4,b +2)B .(a -4,b -2)C .(a +4,b +2)D .(a +4,b -2)9.某次数学测验,抽取部分同学的成绩(得分为整数)整理制成频数分布直方图,如图所示.根据图示信息,下列描述不正确的是( )A .共抽取了50人B .90分以上的有12人C .80分以上的所占的百分比是60%D .60.5~70.5分这一分数段的频数是1210.不等式组⎩⎪⎨⎪⎧x -13-12x <-1,2(x -1)≤x -a有3个整数解,则a 的取值范围是( ) A .-6≤a <-5 B .-6<a ≤-5 C .-6<a <-5 D .-6≤a ≤-5二、填空题(本题共6小题,每小题4分,共24分) 11.比较大小:5-15________15(填“>”“<”或“=”). 12.不等式-3x +1>-8的正整数解是__________.13.从学校七年级抽取100名学生,调查学校七年级全体学生双休日用于做数学作业的时间,调查中的总体是____________________________,个体是________________________,样本容量是__________.14.已知一本书上写着方程组⎩⎨⎧x +my =2,x +y =1的解是⎩⎨⎧x =0.5,y =■.其中y 的值被墨渍盖住了,则m =________.15.如图,已知AB ∥CD ,BC ∥DE ,若∠A =20°,∠C =120°,则∠AED 的度数是________.16.在平面直角坐标系中,对于点P (x ,y ),我们把P 1(y -1, -x -1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,这样依次得到各点.若点A 2 024的坐标为(-3,2),设点A 1的坐标为(x ,y ),则x +y 的值是________.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算: (1)214+0.01-3-8;(2)3-0.125+|3-2|-3-34+|3|-(-2)2.18.(8分)解下列方程组或不等式组: (1)⎩⎨⎧3x -2y =-1,3x -4y =-5;(2)⎩⎨⎧x -2≤14-3x ,5x +2≥3(x -1).19.(8分)已知(2x +5y +4)2+|3x -4y -17|=0,求4x -2y 的平方根.20.(8分)如图,∠BAP+∠APD=180°,∠BAE=∠CPF,求证:AE∥PF.21.(8分)如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7 ∶11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.22.(10分)央视热播节目《朗读者》激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书.学校组织学生会随机抽取部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查结果进行了统计,并绘制了如图不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了________名学生;(2)被调查的学生中,最喜爱丁类图书的有________人,最喜爱甲类图书的人数占本次被调查人数的________%;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍.若这所学校共有学生1 500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.23.(10分)某小区计划安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元.(2)该小区至少需要安装48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少元?24.(12分) 如图,长方形ABCD 的各边与坐标轴都平行,点A ,C 的坐标分别为(-1,1),(3,-2 3). (1)直接写出点B ,D 的坐标.(2)一动点P 从点A 出发,沿长方形的边AB ,BC 运动至点C 停止,运动速度为每秒3个单位长度,设运动时间为t s. ①当t =1 时,求点P 的坐标; ②当t =3 时,求三角形PDC 的面积.25.(14分) 发现问题:已知⎩⎨⎧3x +2y =4,①2x -y =6,②求4x +5y 的值.方法一:先解方程组,得出x ,y 的值,再代入,求出4x +5y 的值. 方法二:将①×2-②,求出4x +5y 的值. 提出问题:怎样才能得到方法二呢?分析问题:为了得到方法二,可以将①×m +②×n ,可得(3m +2n )x +(2m -n )y =4m +6n .令等式左边(3m +2n )x +(2m -n )y =4x +5y ,比较系数可得⎩⎨⎧3m +2n =4,2m -n =5,求得⎩⎨⎧m =2,n =-1. 解决问题:(1)请你选择一种方法,求4x +5y 的值;(2)对于方程组⎩⎨⎧3x +2y =4,2x -y =6,利用方法二的思路,求7x -7y 的值;迁移应用:(3)已知⎩⎨⎧1≤2x +y ≤2,4≤3x +2y ≤7,求x -3y 的取值范围.答案一、1.D 2.A 3.D 4.D 5.D 6.C 7.A 8.A 9.D 10.B二、11.> 12.1,213.学校七年级全体学生双休日用于做数学作业的时间;学校七年级每名学生双休日用于做数学作业的时间;100 14.3 15.80° 16.3三、17.解:(1)原式=32+0.1+2=3.6.(2)原式=-0.5+2-3-32+3-2=-2. 18.解:(1)⎩⎨⎧3x -2y =-1,①3x -4y =-5,②①-②,得2y =4,解得y =2. 把y =2代入①,得x =1. 所以这个方程组的解是⎩⎨⎧x =1,y =2.(2)⎩⎨⎧x -2≤14-3x ,①5x +2≥3(x -1),② 由①,得x ≤4,由②,得x ≥-52, 所以原不等式组的解集为-52≤x ≤4.19.解:由题意得⎩⎨⎧2x +5y +4=0,3x -4y -17=0,解得⎩⎨⎧x =3,y =-2.∴4x -2y =16=4.∴4x -2y 的平方根为±2. 20.证明:∵∠BAP +∠APD =180°,∴AB ∥CD ,∴∠BAP =∠CP A . 又∵∠BAE =∠CPF , ∴∠P AE =∠APF , ∴AE ∥PF .21.解:(1)∵∠AOC +∠AOD =180°,∠AOC ∶∠AOD =7 ∶11,∴∠AOC =70°,∠AOD =110°,∴∠BOD =∠AOC =70°,∠COB =∠AOD =110°. ∵OE 平分∠BOD ,∴∠BOE =12∠BOD =35°, ∴∠COE =∠COB +∠BOE =145°. (2)∵OF ⊥OE ,∴∠EOF =90°.∵OE 平分∠BOD ,∴∠DOE =12∠BOD =35°, ∴∠DOF =90°-∠DOE =55°, ∴∠COF =180°-∠DOF =125°. 22.解:(1)200 (2)15;40(3)设最喜爱丙类图书的男生人数为x 人,则女生人数为1.5x 人,由题意,得 x +1.5x =1 500×20%,解得x =120.则1.5x =180.答:估计该校最喜爱丙类图书的女生和男生分别有180人,120人. 23.解:(1)设温馨提示牌的单价是x 元,垃圾箱的单价是y 元.根据题意,得⎩⎨⎧2x +3y =550,y =3x ,解得⎩⎨⎧x =50,y =150.答:温馨提示牌的单价是50元,垃圾箱的单价是150元. (2)设购买垃圾箱m 个,则购买温馨提示牌(100-m )个.由题意得 ⎩⎨⎧150m +50(100-m )≤10 000,m ≥48, 解得48≤m ≤50.∵m 为整数,∴m =48,49或50. 购买方案如下:综上可知,方案一所需资金最少,为9 800元. 24.解:(1)B (3,1),D (-1,-2 3).(2)①当t =1时,AP =3,∴点P 的坐标是(3-1,1). ②当t =3时,点P 运动的路程为33,此时PC =AB +BC -3 3=(1+3)+(1+2 3)-3 3=2,∴S 三角形PDC =12DC ·PC =12×(1+3)×2=1+3, 即三角形PDC 的面积为1+3.25.解:(1)利用方法二来求4x +5y 的值.由题意可知:2(3x +2y )-(2x -y )=6x +4y -2x +y =4x +5y ,即4x +5y =2×4-6=2.(也可选择用方法一求解) (2)⎩⎨⎧3x +2y =4,①2x -y =6,②由①×a +②×b 可得:(3a +2b )x +(2a -b )y =7x -7y ,则⎩⎨⎧3a +2b =7,③2a -b =-7,④由③+2×④可得:7a =-7,解得a =-1.将a =-1代入④可得b =5, ∴⎩⎨⎧a =-1,b =5,则7x -7y =-(3x +2y )+5(2x -y )=-1×4+5×6=26. (3)已知⎩⎨⎧1≤2x +y ≤2,4≤3x +2y ≤7,易得:x -3y =11(2x +y )-7(3x +2y ), 11≤11(2x +y )≤22,-49≤-7(3x +2y )≤-28, ∴-38≤x -3y ≤-6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册期末调研测试题
七 年 级 数 学 试 卷
一、选择题(本大题共12小题,每小题3分,共36分) 1.已知二元一次方程3x -y =1,当x =2时,y 等于( ) A .5 B .-3 C .-7 D .7 2.不等式组⎩⎨
⎧-≥-≥2
3
x x 的解集在数轴上表示正确的是( )
A
B
C
D
3.点P (1,-2)在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 4.如图,直线AB 与直线CD 相交于点O ,O
E ⊥AB ,垂足为O ,∠EOD=
2
1
∠AOC ,则∠BOC=( ) A .150° B .140° C .130° D .120° 5.以下各组线段为边,可组成三角形的是( )
A .a =15cm ,b =30cm ,c = 45cm
B .a =30cm ,b =30cm ,c = 45cm
C .a =30cm ,b = 45cm ,c = 75cm
D .a =30cm ,b =45cm ,c = 90cm 6.在平面直角坐标系中,线段AB 两端点的坐标分别为A (1,0),B (3,2). 将线段AB 平移后,A 、B 的对应点的坐标可以是( ) A .(1,-1),(-1,-3) B .(1,1),(3,3) C .(-1,3),(3,1) D .(3,2),(1,4)
7.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数为( ) A .5 B .6 C .7 D .8
8.小明在计算一个多边形的内角和时,由于粗心少计算了一个内角,结果得1345°,则未计算的内角的大小为( )
A .80°
B .85°
C .95°
D .100° 9.如图,下列条件中,不能判断直线AB ∥CD 的是( )
A .∠HEG =∠EGF
B .∠EHF +∠CFH =180°
C .∠AEG =∠DGE
D .∠EHF =∠CFH 10.如图,∠A +∠B +∠C +∠D +∠
E +∠
F 等于( )
A .180°
B .360°
C .540°
D .720°
11.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打( )
A .六折
B .七折
C .八折
D .九折
12.如图,周长为34cm 的长方形ABCD 被分成7个形状大小完全相同的小长方形,则长方形ABCD 的面积为( ) A .49cm 2 B .68cm 2 C .70cm 2 D .74cm 2
O
E D
C
B
A
E
D
C
B
A
H
F G
E
D
C
B A
F
D
C
B
A
第4题图 第9题图 第10题图 第12题图
二、填空题(本大题共4小题,每小题3分,共12分)
13.调查某种家用电器的使用寿命,合适的调查方法是___________调查(填“抽样”或“全面”). 14.如图,已知AB 、CD 、EF 互相平行,且∠ABE =70°,∠ECD = 150°,则∠BEC =________. 15.点P (3a + 6,3-a )在x 轴上,则a 的值为___________.
16.把m 个练习本分给n 个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n 的值为___________.
三、解答题(共10小题,共72分) F
D C B
A
17.(本题6分)解方程组⎩⎨⎧=-=+3
511
43y x y x .
18.(本题6分)解不等式组⎩⎨
⎧+>+->-5
31122
573x x x x ,并将解集在数轴上表示出来.
19.(本题7分)在平面直角坐标系中,四边形ABCD 的顶点坐标分别为A (1,0),B (5,0),C (3,3),D (2,4),求四边形ABCD 的面积.
20.(本题6分)如图,在△ABC 中,AD 是高线,点M 在AD 上,且∠BAD =∠DCM ,求证:CM ⊥AB .
D
C
B
M
A
21.(本题7分)某种水果的价格如表:
张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元. 张欣第一次、第二次分别购买了多少千克这种水果?
22.(本题7分)学习了统计的有关知识后,数学王老师对本班同学的上学方式进行了调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题: ⑴ 该班共有___________名学生,a = ___________,b = ___________ . ⑵ 将条形统计图补充完整.
23.(本题7分)已知:4x -3y -6z = 0,x + 2y -7z = 0(xyz ≠0),求
z
y x z
y x 75632++++的值.
24.(本题8分)平面内,四条线段AB 、BC 、CD 、DA 首尾顺次相接,∠ABC =24°,∠ADC = 42°. ⑴∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小;
⑵ 点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 的平分线交于点N (如图2),则∠ANC =______.
M D
C
B
A
图1
N
D
C
B
A
图2
E
25.(本题8分)在△ABC 中,∠A >∠B >∠C ,且∠A = 4∠C ,求∠B 的范围.
26.(本题10分)已知关于x 的不等式组⎩
⎨⎧-><+50
3x m x 的所有整数解的和为-9,求m 的取值范围.
七年级数学试卷·答案
一、选择题 A A D D B B ,C C D B B C 二、填空题
13.抽样; 14.40°; 15.a=3; 16.41或42 . 三、解答题
17.⎩⎨⎧==2
1y x 18.625<<-x
19.分别过C 、D 向x 轴作垂线,四边形ABCD 的面积为8 .5 .
20.提示:∠DCM +∠B=∠BAD +∠B=90°.
21.设张欣第一次、第二次购买了这种水果的量分别为x 千克、y 千克,则x <12.5<y ,
当x ≤10时,⎩⎨⎧=+=+1325625y x y x ,解得⎩
⎨⎧==187
y x ;
当10<x <12.5时,⎩⎨
⎧=+=+132
5525
y x y x ,此方程组无解。
答:张欣第一次、第二次购买了这种水果的量分别为7千克、18千克 22.⑴ 该班共有50名学生,a =24%,b =36% . ⑵ 略。
23.求得x=3z ,y=2z ,原式=10
9. 24.⑴ 易证得∠AMC=
2
1
(∠ABC +∠ADC)=33°; ⑵ 设∠BAD 和∠BCD 的角平分线交于点M ,则易证AM ⊥AN ,∴∠ANC =∠NAM +∠AMC=123°.
25.由∠A = 4∠C ,及∠A+∠B+∠C=180°,得1805C -∠B ∠= ,4(1805
-∠B)
∠A = ,
∵∠A >∠B >∠C ,∴4(1805-∠B) >∠B >1805
-∠B
,∴30°<∠B <80°.
26.∵不等式组有解,∴不等式组的解集为3
5m
x -
<<-,∵不等式组的所有整数解的和为-9,∴不等式组的整数解为-4、-3、-2,或-4、-3、-2、-1、0、1。
当不等式组的整数解为-4、-3、-2时,有13
2-≤-<-m
,m 的取值范围为3≤m <6; 当不等式组的整数解为-4、-3、-2、-1、0、1时,有23
1≤-<m
,m 的取值范围为-6≤m <-3。