有机人名反应之Rosenmund 还原

合集下载

有机人名反应

有机人名反应

有机人名反应有机人名反应1.Baeyer-Villiger氧化:酮过酸氧化成酯迁移规则:叔>仲>环己基>苄>伯>甲基>氢2.Corey-Kim 氧化:醇在NCS/DMF作用后,碱处理氧化成醛酮3.Criegee邻二醇裂解:邻二醇由Pb(OAc)4氧化成羰基化合物4.Criegee臭氧化:烯烃臭氧化后水解成醛酮5.Dakin反应:对羟基苯甲醛由碱性H2O2氧化成对二酚6.Dess-Martin过碘酸酯氧化:仲醇由过碘酸酯氧化成酮7.Fleming氧化:硅烷经过酸化,过酸盐氧化,水解以后形成醇8.Hooker氧化:2-羟基-3烷基-1,4-醌被KMnO4氧化导致侧链烷基失去一个亚甲基,同时羟基和烷基位置互变9.Moffatt氧化(Pfitzner-Moffatt)氧化:用DCC和DMSO氧化醇,形成醛酮10.Oppenauer氧化:烷氧基催化的仲醇氧化成醛酮11.Riley氧化:活泼亚甲基(羰基α位等)被SeO2氧化成酮12.Rubottom氧化:烯醇硅烷经过m-CPBA和K2CO3处理后α-羟基化13.Sarett氧化:CrO3?Py络合物氧化醇成醛酮14.Swern氧化:用(COCl)2,DMSO为试剂合Et3N淬灭的方法将醇氧化成羰基化合物15.Tamao-Kumada氧化:烷基氟硅烷被KF,H2O2,KHCO3氧化成醇16.Wacker氧化:Pd催化剂下,烯烃氧化成酮1..Barton-McCombie去氧反应:从相关的硫羰基体中间用n-Bu3SnH,AIBN试剂经过自由基开裂发生醇的去氧作用2.Birch 还原:苯环由Na单质合液胺条件下形成环内二烯烃(带供电子基团的苯环:双键连接取代基;带吸电子基团的苯环,取代基在烯丙位。

)3.Brown硼氢化:烯烃和硼烷加成产生的有机硼烷经过碱性H2O2氧化得到醇4.Cannizzaro歧化:碱在芳香醛,甲醛或者其他无α-氢的脂肪氢之间发生氧化还原反应给出醇和酸5.Clemmensen还原:用锌汞齐和氯化氢将醛酮还原为亚甲基化合物6.Corey-Bakshi-Shibata(CBS)还原:酮在手性恶唑硼烷催化下的立体选择性还原7.Gribble吲哚还原:用NaBH4直接还原会导致N-烷基化,NaBH3CN在冰醋酸当中还原吲哚双键可以解决8.Gribble二芳基酮还原:用NaBH4在三氟乙酸中还原二芳基酮和二芳基甲醇为二芳基甲烷,也可以应用于二杂芳环酮和醇的还原9.Luche还原:烯酮在NaBH4-CeCl3下发生1,2-还原形成烯丙位取代烯醇10.McFadyen-Stevens还原:酰基苯磺酰肼用碱处理成醛11.Meerwein-Ponndorf-Verley还原:用Al(OPr’)3/Pr’OH体系将酮还原为醇12.Midland还原:用B-3-α-蒎烯-9-BBN对酮进行不对称还原13.Noyori不对称氢化:羰基在Ru(II)BINAP络合物催化下发生不对称氢化还原14.Rosenmund还原:用BaSO4/毒化Pd催化剂将酰氯氢化成醛,如催化剂未被毒化,会氢化为醇15.Wolff-Kishner-黄鸣龙还原:用碱性肼将羰基还原为亚甲基C成烯反应1.Boord反应:β-卤代烷氧基与Zn作用生成烯烃2.Chugaev消除:黄原酸酯热消除成烯3.Cope消除:胺的氧化物热消除成烯烃4.Corey-Winter olefin烯烃合成:邻二醇经1,1-硫代羰基二咪唑和三甲氧基膦处理转化为相应的烯5.Doering-LaFlamme丙二烯合成:烯烃用溴仿以及烷氧化物处理以后生成同碳二溴环丙烷再反应生成丙二烯6.Horner-Wadsworth-Emmons反应:从醛合磷酸酯生成烯烃.副产物为水溶性磷酸盐,故以后处理较相应的Witting反应简单的多7.Julia-Lythgoe成烯反应:从砜合醛生成(E)-烯烃8.Peterson成烯反应:从α-硅基碳负离子合羰基化合物生成烯烃.也成为含硅的Witting 反应9.Ramberg-Backlund烯烃合成:Α-卤代砜用碱处理生成烯烃10.Witting反应:羰基用膦叶立德变成烯烃11.Zaitsev消除:E2消除带来更多取代的烯烃D偶联反应1.Cadiot-Chodkiewicz偶联:从炔基卤和炔基酮合成双炔衍生物2.Castro-Stephens偶联:芳基炔合成,同Cadiot-Chodkiewicz偶联3.Eglinton反应:终端炔烃在化学计量(常常过量)Cu(Oac)2促进下发生的氧化偶联反应4.Eschenmoser偶联:从硫酰胺和烷基卤生成烯胺5.Glaser偶联:Cu催化终端炔烃的氧化自偶联6.Gomberg-Bachmann偶联:碱促进下芳基重氮盐和一个芳烃之间经自由基偶联生成二芳基化合物7.Heck反应:Pb催化的有机卤代物或者三氟磺酸酯和烯烃之间的偶联反应8.杂芳基Heck反应:发生在杂芳基受体上的Pd(Ph3P)4,Ph3P,CuI,Cs2CO3催化下的分子内或者分子间Heck反应9.Hiyama交叉偶联反应:Pb催化有机硅和有机卤代物或者三氟磺酸酯等在诸如F-或者OH-之类的活化剂Pd(Ph3P)4,TBAF催化剂存在下发生的交叉偶联反应10.Kumada交叉偶联(Kharasch交叉偶联):Ni和Pd催化下,格氏试剂和一个有机卤代物或者三氟磺酸酯之间的交叉偶联11.Liebeskind-Srogl偶联:硫酸酯和有机硼酸之间经过Pd催化发生交叉偶联生成酮12.McMurry 偶联:羰基用低价Ti,如TiCl3/LiAlH4产生的Ti(0)处理得到双键,反应是一个单电子过程13.Negishi交叉偶联:Pd催化的有机Zn和有机卤代物,三氟磺酸酯等之间发生的交叉偶联反应14.Sonogashira反应:Pd/Cu催化的有机卤和端基炔烃之间的交叉偶联反应15.Stille偶联:Pd催化的有机Sn和有机卤,三氟磺酸酯之间的交叉偶联反应16.Stille-Kelly偶联:双Sn试剂进行Pd催化下二芳基卤代物的分子交叉偶联17.Suzuki偶联:Pd催化下的有机硼烷和有机卤,三氟磺酸酯在碱存在下发生的交叉偶联18.Ullmann反应:芳基碘代物在Cu存在下的自偶联反应19.Wurtz反应:烷基卤经Na或Mg金属处理后形成碳碳单键20.Ymada偶联试剂:用二乙基氰基磷酸酯(EtO)2PO-CN活化羧酸E缩合反应:21.Aldol缩合:羰基和一个烯醇负离子或一个烯醇的缩合22.Blaise反应:腈和α-卤代酯和Zn反应得到β-酮酯23.Benzoin 缩合:芳香醛经CN-催化为安息香(二芳基乙醇酮)24.Buchner-Curtius-Schlotterbeck反应:羰基化合物和脂肪族重氮化物反应给出同系化的酮25.Claisen缩合:酯在碱催化下缩合为β-酮酯26.Corey-Fuchs反应:醛发生一碳同系化生成二溴烯烃,然后用BuLi处理生成终端炔烃27.Darzen缩水甘油酸酯缩合:碱催化下从α-卤代酯和羰基化合物生成α,β-环氧酯(缩水甘油醛)28.Dieckmann缩合:分子内的Claisen缩合29.Evans aldol反应:用Evans手性鳌合剂,即酰基恶唑酮进行不对称醇醛缩合30.Guareschi-Thorpe缩合(2-吡啶酮合成):氰基乙酸乙酯和乙酰乙酸在氨存在下生成2-吡啶酮31.Henry硝醇反应:醛和有硝基烷烃在碱作用下去质子化产生氮酸酯32.Kharasch加成反应:过渡金属催化的CXCl3对于烯烃的自由基加成33.Knoevenagel缩合:羰基化合物和活泼亚甲基化合物在胺的催化下缩合34.Mannnich缩合(羰基胺甲基化):胺,甲醛,和一个带有酸性亚甲基成分的化合物之间的三组分反应发生胺甲基化35.Michael加成:亲核碳原子对α,β-不饱和体系的共扼加成36.Mukaiyama醇醛缩合:Lewis酸催化下的醛和硅基烯醇醚之间的Aldol缩合37.Nozaki-Hiyama-KIshi反应:Cr-Ni双金属催化下的烯基卤对于醛的氧化还原加成38.Pechmann缩合(香豆素合成):Lewis酸促进的酸和β-酮酯缩合成为香豆素39.Perkin反应:芳香醛和乙酐反应合成肉桂酸40.Prins反应:烯烃酸性条件下对于甲醛的加成反应41.Reformatsky反应:有机Zn试剂(从α-卤代酯来)对羰基的亲核加成反应42.Reimer-Tiemann反应:从碱性介质当中从酚和氯仿合成邻甲酰基苯酚43.Schlosser对Witting反应的修正:不稳定的叶立德和醛发生的Witting反应生成Z-烯烃,而改进的Schlosser反应可以得到E-烯烃44.Stetter反应(Michael-Stetter反应):从醛和α,β-不饱和酮可以得到1,4-二羰基衍生物。

100种有机化学人名反应

100种有机化学人名反应

100种有机化学人名反应1. Arndt-Eistert反应醛、酮与重氮甲烷反应,失去氮并重排成多一个CH2基的相应羰基化合物,这个反应对于环酮的扩环反应很重要。

O+CH2N22. Baeyer-Villiger氧化由樟脑生成内酯:-OO+-N2CH2NN重排应用过氧酸使酮氧化成酯。

反应中在酮的羰基和相邻的碳原子之间引人一个氧原子。

如OCH3CH3CH3 OOCH3CH3H2SO5有时反应能生成二或多过氧化物,但环状酮转变为内酯能得到单一的预期产物。

合适的酸为过硫酸(Caro’s 酸)、过氧苯甲酸、三氟过氧乙酸。

除环酮外,无环的脂肪、芳香酮也可发生此反应。

二酮生成酸酐类、α、β-不饱和酮得到烯醇酯类。

3.Bechamp还原(可用于工业制备)在铁、亚铁盐和稀酸的作用下,芳香族硝基化合物能还原成相应的芳香胺。

C6H5-NO2 + 2Fe + 6HClC6H5-NH2 + 2FeCl3 + 2H2O。

当某些盐(FeCl2、FeCl3、FeSO4、CaCl2等)存在时,所用酸无论是过量还是少量,甚至在中性溶液中都能够进行这种还原。

此方法适用于绝大部分各种不同结构的芳香族化合物,有时也用来还原脂肪族硝基化合物。

4.Beckmann重排醛肟、酮肟用酸或路易斯酸处理后,最终产物得酰胺类。

单酮肟重排仅得一种酰胺,混酮肟重排得两种混合酰胺。

但一般质子化羟基的裂解和基团R的转移是从相反的位置同OR OH ORR'NRN时进行的。

R'NHR' R' OH NHR无论酯酮肟和芳酮肟都会发生此反应。

环酮肟重排得内酰胺,这在工业生产上很重要,利用此反应可帮助决定异构酮肟的结构。

5.Beyer喹啉类合成法芳香伯胺与一分子醛及一分子甲基酮在浓盐酸或ZnCl2存在下,反应生成喹啉类化合物。

HHNN R'HClNH2R'-H2+ R'CHO+RCOCH3RR这是对Doebner-Miller喹啉合成法的改进。

有机人名反应(pdf版)

有机人名反应(pdf版)

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:
反应实例
14
参考文献
[1] [2] [3] [4] E. Beckmann, Ber., 1886, 19,988; 1887, 20, 1507. W. Z. Heldt, Org. Reactions, 1960, 11, 1~156. J. Kenyonn, A. Campbell, J. Chem. Soc., 1946, 25. J. Kenyonn, D. P. Young, J. Chem. Soc., 1941, 263.
Bucherer 反应
反应机理
20
反应实例
参考文献
[1] [2] [3] [4] [5] [6] [7] H. T. Bucherer, J. Prakt. Chem ., 1904, 69(2), 49. H. T. Bucherer, J. Prakt. Chem ., 1904, 70(2), 345. H. T. Bucherer, J. Prakt. Chem ., 1907, 75(2), 249. H. T. Bucherer, J. Prakt. Chem ., 1905, 75(2), 433. N. L. Drake, Org. Reactions, 1942, 1, 105. A. Rieche, H. Seeboth, Ann., 1960, 638, 66, 43, 76. H. Seeboth, Angew. Chem. Int. Ed., Engl., 1967, 6, 307-317.
X
Y Yurev 反应
Z
Zeisel 甲氧基测定法
Arbuzov 反应
亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:

基础有机化学人名反应

基础有机化学人名反应

基础有机化学人名反应第四章狄尔斯–阿尔德反应(Diels–Alder reaction)(140)1921年,狄尔斯和其研究生巴克(Back)研究偶氮二羧酸二乙酯(半个世纪后因光延反应而在有机合成中大放光芒的试剂)与胺发生的酯变胺的反应,当他们用2-萘胺做反应的时候,根据元素分析,得到的产物是一个加成物而不是期待的取代物。

狄尔斯敏锐地意识到这个反应与十几年前阿尔布莱希特做过的古怪反应的共同之处。

这使他开始以为产物是类似阿尔布莱希特提出的双键加成产物。

狄尔斯很自然地仿造阿尔布莱希特用环戊二烯替代萘胺与偶氮二羧酸乙酯作用,结果又得到第三种加成物。

通过计量加氢实验,狄尔斯发现加成物中只含有一个双键。

如果产物的结构是如阿尔布莱希特提出的,那么势必要有两个双键才对。

这个现象深深地吸引了狄尔斯,他与另一个研究生阿尔德一起提出了正确的双烯加成物的结构。

1928年他们将结果发表。

这标志着狄尔斯-阿德尔反应的正式发现。

他们也因此获得1950年的诺贝尔化学奖。

含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双烯体)发生1,4-加成,生成六员环状化合物:这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状化合物的一个非常重要的方法。

带有吸电子取代基的亲双烯体和带有给电子取代基的双烯体对反应有利。

常用的亲双烯体有:下列基团也能作为亲双烯体发生反应:常用的双烯体有:a.反应机理这是一个协同反应,反应时,双烯体和亲双烯体彼此靠近,互相作用,形成一个环状过渡态,然后逐渐转化为产物分子:反应是按顺式加成方式进行的,反应物原来的构型关系仍保留在环加成产物中。

例如:正常的Diels-Alder反应主要是由双烯体的HOMO(最高已占轨道)与亲双烯体的LUMO(最低未占轨道)发生作用。

反应过程中,电子从双烯体的HOMO“流入”亲双烯体的LUMO。

也有由双烯体的LUMO与亲双烯体的HOMO作用发生反应的。

b.反应实例本反应具有很强的区域选择性,当双烯体与亲双烯体上均有取代基时,主要生成两个取代基处于邻位或对位的产物:当双烯体上有给电子取代基、亲双烯体上有不饱和基团如:第五章1.傅克反应(Friedel-Crafts reaction)(159)芳烃在Lewis酸(无水氯化铝、氯化锌、三氯化铁、三氟化硼等)存在下发生的酰基化和烷基化反应。

人名反应(类型整理)

人名反应(类型整理)

人名反应1氧化:1.Baeyer-Villiger氧化:酮过酸氧化成酯迁移规则:叔>仲>环己基>苄>伯>甲基>氢2.Corey-Kim 氧化:醇在NCS/DMF作用后,碱处理氧化成醛酮3.Criegee邻二醇裂解:邻二醇由Pb(OAc)4氧化成羰基化合物4.Criegee臭氧化:烯烃臭氧化后水解成醛酮5.Dakin反应:对羟基苯甲醛由碱性H2O2氧化成对二酚6.Dess-Martin过碘酸酯氧化:仲醇由过碘酸酯氧化成酮7.Fleming氧化:硅烷经过酸化,过酸盐氧化,水解以后形成醇8.Hooker氧化:2-羟基-3烷基-1,4-醌被KMnO4氧化导致侧链烷基失去一个亚甲基,同时羟基和烷基位置互变9.Moffatt氧化(Pfitzner-Moffatt)氧化:用DCC和DMSO氧化醇,形成醛酮10.Oppenauer氧化:烷氧基催化的仲醇氧化成醛酮11.Riley氧化:活泼亚甲基(羰基α位等)被SeO2氧化成酮12.Rubottom氧化:烯醇硅烷经过m-CPBA和K2CO3处理后α-羟基化13.Sarett氧化:CrO3·Py络合物氧化醇成醛酮14.Swern氧化:用(COCl)2,DMSO为试剂合Et3N淬灭的方法将醇氧化成羰基化合物15.Tamao-Kumada氧化:烷基氟硅烷被KF,H2O2,KHCO3氧化成醇16.Wacker氧化:Pd催化剂下,烯烃氧化成酮还原:1..Barton-McCombie去氧反应:从相关的硫羰基体中间用n-Bu3SnH,AIBN 试剂经过自由基开裂发生醇的去氧作用2.Birch 还原:苯环由Na单质合液胺条件下形成环内二烯烃(带供电子基团的苯环:双键连接取代基;带吸电子基团的苯环,取代基在烯丙位。

)3.Brown硼氢化:烯烃和硼烷加成产生的有机硼烷经过碱性H2O2氧化得到醇4.Cannizzaro歧化:碱在芳香醛,甲醛或者其他无α-氢的脂肪氢之间发生氧化还原反应给出醇和酸5.Clemmensen还原:用锌汞齐和氯化氢将醛酮还原为亚甲基化合物6.Corey-Bakshi-Shibata(CBS)还原:酮在手性恶唑硼烷催化下的立体选择性还原7.Gribble吲哚还原:用NaBH4直接还原会导致N-烷基化,NaBH3CN在冰醋酸当中还原吲哚双键可以解决8.Gribble二芳基酮还原:用NaBH4在三氟乙酸中还原二芳基酮和二芳基甲醇为二芳基甲烷,也可以应用于二杂芳环酮和醇的还原9.Luche还原:烯酮在NaBH4-CeCl3下发生1,2-还原形成烯丙位取代烯醇10.McFadyen-Stevens还原:酰基苯磺酰肼用碱处理成醛11.Meerwein-Ponndorf-Verley还原:用Al(OPr’)3/Pr’OH体系将酮还原为醇12.Midland还原:用B-3-α-蒎烯-9-BBN对酮进行不对称还原13.Noyori不对称氢化:羰基在Ru(II)BINAP络合物催化下发生不对称氢化还原14.Rosenmund还原:用BaSO4/毒化Pd催化剂将酰氯氢化成醛,如催化剂未被毒化,会氢化为醇15.Wolff-Kishner-黄鸣龙还原:用碱性肼将羰基还原为亚甲基成烯反应:1.Boord反应:β-卤代烷氧基与Zn作用生成烯烃2.Chugaev消除:黄原酸酯热消除成烯3.Cope消除:胺的氧化物热消除成烯烃4.Corey-Winter olefin烯烃合成:邻二醇经1,1-硫代羰基二咪唑和三甲氧基膦处理转化为相应的烯5.Doering-LaFlamme丙二烯合成:烯烃用溴仿以及烷氧化物处理以后生成同碳二溴环丙烷再反应生成丙二烯6.Horner-Wadsworth-Emmons反应:从醛合磷酸酯生成烯烃.副产物为水溶性磷酸盐,故以后处理较相应的Witting反应简单的多7.Julia-Lythgoe成烯反应:从砜合醛生成(E)-烯烃8.Peterson成烯反应:从α-硅基碳负离子合羰基化合物生成烯烃.也成为含硅的Witting反应9.Ramberg-Backlund烯烃合成:Α-卤代砜用碱处理生成烯烃10.Witting反应:羰基用膦叶立德变成烯烃11.Zaitsev消除:E2消除带来更多取代的烯烃人名反应2偶联反应:Cadiot-Chodkiewicz偶联:从炔基卤和炔基酮合成双炔衍生物Castro-Stephens偶联:芳基炔合成,同Cadiot-Chodkiewicz偶联Eglinton反应:终端炔烃在化学计量(常常过量)Cu(Oac)2促进下发生的氧化偶联反应Eschenmoser偶联:从硫酰胺和烷基卤生成烯胺Glaser偶联:Cu催化终端炔烃的氧化自偶联Gomberg-Bachmann偶联:碱促进下芳基重氮盐和一个芳烃之间经自由基偶联生成二芳基化合物Heck反应:Pb催化的有机卤代物或者三氟磺酸酯和烯烃之间的偶联反应杂芳基Heck反应:发生在杂芳基受体上的Pd(Ph3P)4,Ph3P,CuI,Cs2CO3催化下的分子内或者分子间Heck反应Hiyama交叉偶联反应:Pb催化有机硅和有机卤代物或者三氟磺酸酯等在诸如F -或者OH-之类的活化剂Pd(Ph3P)4,TBAF催化剂存在下发生的交叉偶联反应Kumada交叉偶联(Kharasch交叉偶联):Ni和Pd催化下,格氏试剂和一个有机卤代物或者三氟磺酸酯之间的交叉偶联Liebeskind-Srogl偶联:硫酸酯和有机硼酸之间经过Pd催化发生交叉偶联生成酮McMurry 偶联:羰基用低价Ti,如TiCl3/LiAlH4产生的Ti(0)处理得到双键,反应是一个单电子过程Negishi交叉偶联:Pd催化的有机Zn和有机卤代物,三氟磺酸酯等之间发生的交叉偶联反应Sonogashira反应:Pd/Cu催化的有机卤和端基炔烃之间的交叉偶联反应Stille偶联:Pd催化的有机Sn和有机卤,三氟磺酸酯之间的交叉偶联反应Stille-Kelly偶联:双Sn试剂进行Pd催化下二芳基卤代物的分子交叉偶联Suzuki偶联:Pd催化下的有机硼烷和有机卤,三氟磺酸酯在碱存在下发生的交叉偶联Ullmann反应:芳基碘代物在Cu存在下的自偶联反应Wurtz反应:烷基卤经Na或Mg金属处理后形成碳碳单键Ymada偶联试剂:用二乙基氰基磷酸酯(EtO)2PO-CN活化羧酸缩合反应:Aldol缩合:羰基和一个烯醇负离子或一个烯醇的缩合Blaise反应:腈和α-卤代酯和Zn反应得到β-酮酯Benzoin 缩合:芳香醛经CN-催化为安息香(二芳基乙醇酮)Buchner-Curtius-Schlotterbeck反应:羰基化合物和脂肪族重氮化物反应给出同系化的酮Claisen缩合:酯在碱催化下缩合为β-酮酯Corey-Fuchs反应:醛发生一碳同系化生成二溴烯烃,然后用BuLi处理生成终端炔烃Darzen缩水甘油酸酯缩合:碱催化下从α-卤代酯和羰基化合物生成α,β-环氧酯(缩水甘油醛)Dieckmann缩合:分子内的Claisen缩合Evans aldol反应:用Evans手性鳌合剂,即酰基恶唑酮进行不对称醇醛缩合Guareschi-Thorpe缩合(2-吡啶酮合成):氰基乙酸乙酯和乙酰乙酸在氨存在下生成2-吡啶酮Henry硝醇反应:醛和有硝基烷烃在碱作用下去质子化产生氮酸酯Kharasch加成反应:过渡金属催化的CXCl3对于烯烃的自由基加成Knoevenagel缩合:羰基化合物和活泼亚甲基化合物在胺的催化下缩合Mannnich缩合(羰基胺甲基化):胺,甲醛,和一个带有酸性亚甲基成分的化合物之间的三组分反应发生胺甲基化Michael加成:亲核碳原子对α,β-不饱和体系的共扼加成Mukaiyama醇醛缩合:Lewis酸催化下的醛和硅基烯醇醚之间的Aldol缩合Nozaki-Hiyama-KIshi反应:Cr-Ni双金属催化下的烯基卤对于醛的氧化还原加成Pechmann缩合(香豆素合成):Lewis酸促进的酸和β-酮酯缩合成为香豆素Perkin反应:芳香醛和乙酐反应合成肉桂酸Prins反应:烯烃酸性条件下对于甲醛的加成反应Reformatsky反应:有机Zn试剂(从α-卤代酯来)对羰基的亲核加成反应Reimer-Tiemann反应:从碱性介质当中从酚和氯仿合成邻甲酰基苯酚Schlosser对Witting反应的修正:不稳定的叶立德和醛发生的Witting反应生成Z-烯烃,而改进的Schlosser反应可以得到E-烯烃Stetter反应(Michael-Stetter反应):从醛和α,β-不饱和酮可以得到1,4-二羰基衍生物。

rosenmund 还原法

rosenmund 还原法

rosenmund 还原法Rosenmund还原法是一种重视流程法的解决办法,它可以有效地解决不同类型的化学反应。

它也可以用于精炼新的生物分子、精制已经合成出来的科学研究成果、调整生物合成体系中的特定细胞特性和调节生物体中的元素光谱特性。

一、Rosenmund还原法简介Rosenmund还原法(也称为Rosenmund气相还原法)是一种重视流程的高纯制备反应法,用于各种化学反应,尤其是硫醇还原和醇还原,也用于环氧化反应及其它反应。

它是以低温、低压的气体状态完成的,这使得整个反应稳定而更加高效。

另外,由于它是所述流程,使操作更加简单。

二、Rosenmund还原法的原理Rosenmund还原法的实质是流程中几个关键步骤:首先,将有机反应物放入催化剂中,反应温度通常低于50℃;其次,在催化反应过程中,用压缩空气将混合物搅拌至粉碎;最后,经过一段时间后,进行精炼步骤,去除不需要的反应产物,在恒定的温度、压力和反应时间条件下完成精炼。

三、Rosenmund还原法的操作步骤1. 准备工作:根据反应类型,准备好所需催化剂、反应温度等并进行混合;2. 加热:将反应体〔混合物〕加热至反应温度;3. 进行形式化学反应:在加热的条件下,通过催化剂的作用完成有机反应;4. 搅拌:用压缩空气将混合物搅拌,使其更好地分散在一起,最终形成一个稳定的反应体;5. 精炼步骤:此步骤通常需要恒定的温度、压力和反应时间条件进行精炼,以去除不需要的反应产物。

四、Rosenmund还原法的优点1. 反应效率高:Rosenmund还原法在低温和低压情况下完成,能有效提高反应效率,保证反应均衡;2. 操作简单:根据反应物本身的性质,Rosenmund还原法可以简单快捷地实现反应;3. 生成物洁净:Rosenmund还原法反应本身是在低温、低压及特殊流程条件下完成,因此生成物质质量很高,具有良好的稳定性,而且具有较高的纯净度;4. 制备灵活:Rosenmund还原法的制备过程可以灵活配置,被广泛应用于燃料电池,金属氧化物及聚苯胺等合成物的制备工作。

rosenmund reduction

rosenmund reduction

罗森蒙德还原反应(rosenmund reduction)总反应及反应机理:)作用下用氢气进行还原,得到相应的醛。

酰氯在部分失活的钯催化剂(Pd/BaSO4反应由德国化学家 Karl Wilhelm Rosenmund (1884-1965) 首先报道。

该反应是通氢气于悬浮有催化剂的酰氯溶液中来进行。

是从羧酸合成醛的方法之一,一般应用于制备一元脂肪醛和一元芳香醛。

反应的副产物有醇、烷烃、酸酐和酯。

用三叔丁氧基氢化铝锂也可以将酰氯还原为醛。

此外,芳香酰氯也可在钯络合物催化下用聚甲基氢硅氧烷(PMHS)还原为芳醛。

亦可用三丁基氢化锡来进行或在氢供体存在下用光照射来还原。

一般需要使催化剂中毒以防止进一步的还原作用,最常用的中毒剂是硫-喹啉(由硫在喹啉中回流来制备)和硫脲。

除了硫酸钡,其他活性调节剂,如2,6-二甲基吡啶(Pd/C)也可使用。

参考文献:1^ Rosenmund, K. W.. Über eine neue Methode zur Darstellung von Aldehyden. 1. Mitteilung. Chemische Berichte. 1918, 51: 585–593.doi:10.1002/cber.19180510170.2^Rosenmund, K. W., Zetzsche, F. Über die Beeinflussung der Wirksamkeit von Katalysatoren, 1. bis 5.. Chemische Berichte. 1921, 54: 425–437; 638–647; 1092–1098; 2033–2037; 2038–2042.3^ Mosettig, E.; Mozingo, R. Org. React.1948, 4, 362.(综述)4^ Herbert C. Brown, Richard F. McFarlin. The Reaction of Lithium Aluminum Hybride with Alcohols. Lithium Tri-t-butoxyaluminohydride asa New Selective Reducing Agent. J. Am. Chem. Soc. 1958, 80 (20): 5372–5376. doi:10.1021/ja01553a013.5^ Kyoungsoo Lee and Robert E. Maleczka, Jr. Pd(0)-Catalyzed PMHS Reductions of Aromatic Acid Chlorides to Aldehydes. Org. Lett. 2006, 8 (9): 1887–1888.doi:10.1021/ol060463v.6在催化剂作用下,氢气将酰氯还原为醛的反应,反应中使用的催化剂称为罗森蒙德催化剂(Rosenmund catalyst),是附着在硫酸钡(BaSO₄)上的钯粉并加入中毒剂(2,6-二甲基吡啶、喹啉-硫等)制成。

有机化学人名反应51-100

有机化学人名反应51-100

51. Kucherov 反应乙炔在Hg2+盐和稀硫酸存在下直接水合生成乙醛,单取代乙炔可生成甲基酮。

52. Lebedeff 合成法在高温下(400~500℃)乙醇与特种催化剂硅酸盐、Al2O3、ZnO 混合物作用,脱氢脱水得1,3-丁二烯。

丁二烯的产率大约为20%,其他副产物如戊烷、己烷、己烯、己二烯、丁醇、醛、酮都有,所以此反应制备意义不大。

53. Leuckart 反应在甲酸(甲酰胺、甲酸铵)作还原剂的情况下,加热胺和羰基化合物,就发生胺的烷基化反应。

通过这种反应可使伯胺、仲胺及氨发生烷基化反应,但以叔胺为最妥。

因为伯胺、仲胺总是有多烷基化副产物形成。

特别是很活泼的甲醛,同时总是生成完全甲基化的胺。

高沸点芳香醛和酮产物为40~90%,低分子量脂肪醛和酮不能得到满意大结果。

反应中由少量MgSO4 或MgCl2 催化,起还原作用的甲酸经常是过量,每摩尔羰基化合物需2~4mol 甲酸。

54. Lieben 碘仿试验P28955. Lossen 降解氧肟酸或其酰基衍生物,在惰性溶剂或最好在亚硫酰氯、乙酸酐、P2O5 存在下加热分解而得到异氰酸酯。

56. Mannich 反应这是具有α-活泼氢化合物的胺甲基化反应。

一般是甲醛与胺及具有α-活泼氢化合物同时反应,胺甲基取代一个α-活泼氢:反应一般在水、醇或醋酸溶液中进行。

甲醛可以是甲醛溶液、三聚或多聚甲醛,胺一般是仲胺盐酸盐,如二甲胺、六氢吡啶等等盐酸盐,反应中生成单一产物。

伯胺或氨副产物多不常使用。

此反应合成范围广,不但醛和酮的活泼氢可以进行反应,其他化合物如羧酸、酯、酚或其他杂环化合物(如噻吩、吡咯、吲哚等)的活泼氢也都可以,特别值得注意的是在合成体系及氨基酸方面的应用。

57. Meerwein-Ponndorf-Veriey 还原醛、酮与醇镁或醇铝反应,醛酮被还原成醇,而醇盐则被氧化成相应的羰基化合物。

反应中,醇盐与加入的醇处于平衡状态,当催化量的醇盐存在时,用醇作还原剂也可发生反应,醇铝溶于有机溶剂,在蒸馏时不被分解。

有机化学人名反应大全

有机化学人名反应大全

一、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R′I >R′Br >R′Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。

除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理2 进行的分子内重排反应:一般认为是按 SN反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

反应实例三、Baeyer----Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。

有机人名反应

有机人名反应

Beckmann 重排(贝克曼重排)肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例Birch还原没学过反应机理反应实例Cannizzaro 反应(康尼扎罗反应)反应机理反应实例Chichibabin反应(齐齐巴宾反应)反应机理反应实例吡啶类化合物不易进行硝化,用硝基还原法制备氨基吡啶甚为困难。

本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应Claisen酯缩合反应(克莱森酯缩合反应)二元羧酸酯的分子内酯缩合见Dieckmann 缩合反应。

反应机理反应实例Claisen重排(克莱森重排)烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。

当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。

对位、邻位均被占满时不发生此类重排反应。

交叉反应实验证明:Claisen重排是分子内的重排。

采用 γ-碳 14C 标记的烯丙基醚进行重排,重排后 γ-碳原子与苯环相连,碳碳双键发生位移。

两个邻位都被取代的芳基烯丙基酚,重排后则仍是α-碳原子与苯环相连。

反应机理Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。

从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]σ迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]σ迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]σ迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。

有机人名反应

有机人名反应

有机人名反应oppenaue氧化欧芬脑尔氧化法:在异丙醇铝或叔丁醇铝存在下,仲醇和丙酮反应,仲醇氧化成酮,丙酮转化为转换成醇。

pinacol重排频哪醇重排,相等于碳正离子重排。

williamson制备法威廉姆逊合成法卤代烃和醇钠作用生成醚的方法。

friedel-crafts反应傅克反应(烷基化,酰基化)但苯环上甘胺喷电子基团例如硝基等时,无法出现反应。

haloformreaction卤仿反应:乙醛、甲基酮、乙醇和α-碳上连有甲基的仲醇与次卤酸盐反应生成卤仿和少一个碳的羧酸。

aldolcondensation羟醛酯化:两分子所含α-氢的醛在酸或碱催化剂下,相互融合构成β-羟基醛的反应。

claisen-schmidt反应克莱森-许密特反应:由芳香醛和含有α-氢的脂肪醛或酮进行交叉羟醛缩合生成α,β-不饱和醛或酮的反应。

mannich反应曼尼希反应:所含α-开朗氢的酮与甲醛及胺反应,可以在酮的α位导入一个胺甲基。

clemmensen还原法克莱门森还原法:醛、酮与锌汞魏和浓盐酸流入反应,羰基被转换成亚甲基黄鸣龙还原法:醛、酮在肼、氢氧化钠(或氢氧化钾)的水溶液中,与二缩乙二醇回流反应,被转换成亚甲基。

meerwein-ponndorf还原麦尔外因-彭杜尔夫还原成:在异丙醇铝-异丙醇的促进作用下,醛、酮可怕转换成醇,异丙醇转变成丙酮。

cannizzaro反应:康尼查罗反应:无α-氢的醛在浓碱作用下发生分子间反应,一分子醛被还原成醇,另一分子醛被氧化成酸。

benzoin缩合反应:安息香酯化反应:芳醛在氰基负离子催化剂下,分解成α-羟基酮的反应。

wittig反应魏悌希反应:醛、酮与磷叶立德反应生成烯烃的反应。

gattermann-koch反应:砌特曼-柯赫反应:在催化剂无水氯化铝和氯化亚铜存有下,芳烃与氯化氢和一氧化碳混合气体作用,生成芳醛的反应。

michael差率:麦克尔加成:α,β-不饱和醛或酮和亲核的碳负离子进行的1,4-共轭加成反应。

有机人名反应及其机理

有机人名反应及其机理

本文整理出常见的有机人名反应80多个,共计约100页,大部分内容在竞赛考察范围之内。

全国初赛有机难度虽然有所降低,但有能力冲刺决赛的选手对于有机反应必须熟练掌握,熟记反应实例与机理。

熟记有机人名反应不仅是化学竞赛的要求,也是考研的重要内容,更是对化学先驱们的尊重与缅怀。

索引:Arbuzov反应Arndt-Eister反应Baeyer-Villiger 氧化Beckmann 重排Birch 还原Bischler-Napieralski 合成法Bouveault-Blanc还原Bucherer 反应Cannizzaro 反应Chichibabin 反应Claisen 酯缩合反应Claisen-Schmidt 反应Clemmensen 还原Combes 合成法Cope 重排Cope 消除反应Curtius 反应Dakin 反应Darzens 反应Demjanov 重排Dieckmann 缩合反应Elbs 反应Eschweiler-Clarke 反应Favorskii 反应Favorskii 重排Friedel-Crafts烷基化反应Friedel-Crafts酰基化反应Fries 重排Gabriel 合成法Gattermann 反应Gattermann-Koch 反应Gomberg-Bachmann 反应Hantzsch 合成法Haworth 反应Hell-Volhard-Zelinski 反应Hinsberg 反应Hofmann 烷基化Hofmann 消除反应Hofmann 重排(降解) Houben-Hoesch 反应Hunsdiecker 反应Kiliani 氰化增碳法Knoevenagel 反应Knorr 反应Koble 反应Koble-Schmitt 反应Leuckart 反应Lossen反应Mannich 反应Meerwein-Ponndorf 反应Meerwein-Ponndorf 反应Michael 加成反应Norrish I和II 型裂解反应Oppenauer 氧化Paal-Knorr 反应Pictet-Spengler 合成法Pschorr 反应Reformatsky 反应Reimer-Tiemann 反应Reppe 合成法Robinson 缩环反应Rosenmund 还原Ruff 递降反应Sandmeyer 反应Schiemann 反应Schmidt反应Skraup 合成法Sommelet-Hauser 反应Stephen 还原Stevens 重排Strecker 氨基酸合成法Tiffeneau-Demjanov 重排Ullmann反应Vilsmeier 反应Wagner-Meerwein 重排Wacker 反应Williamson 合成法Wittig 反应Wittig-Horner 反应Wohl 递降反应Wolff-Kishner-黄鸣龙反应Yurév 反应Zeisel 甲氧基测定法亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

2020届陕西省渭南市蓝光中学人名反应(类型整理)

2020届陕西省渭南市蓝光中学人名反应(类型整理)

有机反应总结氧化:1.Baeyer-Villiger氧化:酮过酸氧化成酯迁移规则:叔>仲>环己基>苄>伯>甲基>氢2.Corey-Kim 氧化:醇在NCS/DMF作用后,碱处理氧化成醛酮3.Criegee邻二醇裂解:邻二醇由Pb(OAc)4氧化成羰基化合物4.Criegee臭氧化:烯烃臭氧化后水解成醛酮5.Dakin反应:对羟基苯甲醛由碱性H2O2氧化成对二酚6.Dess-Martin过碘酸酯氧化:仲醇由过碘酸酯氧化成酮7.Fleming氧化:硅烷经过酸化,过酸盐氧化,水解以后形成醇8.Hooker氧化:2-羟基-3烷基-1,4-醌被KMnO4氧化导致侧链烷基失去一个亚甲基,同时羟基和烷基位置互变9.Moffatt氧化(Pfitzner-Moffatt)氧化:用DCC和DMSO氧化醇,形成醛酮10.Oppenauer氧化:烷氧基催化的仲醇氧化成醛酮11.Riley氧化:活泼亚甲基(羰基α位等)被SeO2氧化成酮12.Rubottom氧化:烯醇硅烷经过m-CPBA和K2CO3处理后α-羟基化13.Sarett氧化:CrO3·Py络合物氧化醇成醛酮14.Swern氧化:用(COCl)2,DMSO为试剂合Et3N淬灭的方法将醇氧化成羰基化合物15.Tamao-Kumada氧化:烷基氟硅烷被KF,H2O2,KHCO3氧化成醇16.Wacker氧化:Pd催化剂下,烯烃氧化成酮还原:1..Barton-McCombie去氧反应:从相关的硫羰基体中间用n-Bu3SnH,AIBN试剂经过自由基开裂发生醇的去氧作用2.Birch 还原:苯环由Na单质合液胺条件下形成环内二烯烃(带供电子基团的苯环:双键连接取代基;带吸电子基团的苯环,取代基在烯丙位。

)3.Brown硼氢化:烯烃和硼烷加成产生的有机硼烷经过碱性H2O2氧化得到醇4.Cannizzaro歧化:碱在芳香醛,甲醛或者其他无α-氢的脂肪氢之间发生氧化还原反应给出醇和酸5.Clemmensen还原:用锌汞齐和氯化氢将醛酮还原为亚甲基化合物6.Corey-Bakshi-Shibata(CBS)还原:酮在手性恶唑硼烷催化下的立体选择性还原7.Gribble吲哚还原:用NaBH4直接还原会导致N-烷基化,NaBH3CN在冰醋酸当中还原吲哚双键可以解决8.Gribble二芳基酮还原:用NaBH4在三氟乙酸中还原二芳基酮和二芳基甲醇为二芳基甲烷,也可以应用于二杂芳环酮和醇的还原9.Luche还原:烯酮在NaBH4-CeCl3下发生1,2-还原形成烯丙位取代烯醇10.McFadyen-Stevens还原:酰基苯磺酰肼用碱处理成醛11.Meerwein-Ponndorf-Verley还原:用Al(OPr’)3/Pr’OH体系将酮还原为醇12.Midland还原:用B-3-α-蒎烯-9-BBN对酮进行不对称还原13.Noyori不对称氢化:羰基在Ru(II)BINAP络合物催化下发生不对称氢化还原14.Rosenmund还原:用BaSO4/毒化Pd催化剂将酰氯氢化成醛,如催化剂未被毒化,会氢化为醇15.Wolff-Kishner-黄鸣龙还原:用碱性肼将羰基还原为亚甲基成烯反应:1.Boord反应:β-卤代烷氧基与Zn作用生成烯烃2.Chugaev消除:黄原酸酯热消除成烯3.Cope消除:胺的氧化物热消除成烯烃4.Corey-Winter olefin烯烃合成:邻二醇经1,1-硫代羰基二咪唑和三甲氧基膦处理转化为相应的烯5.Doering-LaFlamme丙二烯合成:烯烃用溴仿以及烷氧化物处理以后生成同碳二溴环丙烷再反应生成丙二烯6.Horner-Wadsworth-Emmons反应:从醛合磷酸酯生成烯烃.副产物为水溶性磷酸盐,故以后处理较相应的Witting反应简单的多7.Julia-Lythgoe成烯反应:从砜合醛生成(E)-烯烃8.Peterson成烯反应:从α-硅基碳负离子合羰基化合物生成烯烃.也成为含硅的Witting 反应9.Ramberg-Backlund烯烃合成:Α-卤代砜用碱处理生成烯烃10.Witting反应:羰基用膦叶立德变成烯烃11.Zaitsev消除:E2消除带来更多取代的烯烃偶联反应:Cadiot-Chodkiewicz偶联:从炔基卤和炔基酮合成双炔衍生物Castro-Stephens偶联:芳基炔合成,同Cadiot-Chodkiewicz偶联Eglinton反应:终端炔烃在化学计量(常常过量)Cu(Oac)2促进下发生的氧化偶联反应Eschenmoser偶联:从硫酰胺和烷基卤生成烯胺Glaser偶联:Cu催化终端炔烃的氧化自偶联Gomberg-Bachmann偶联:碱促进下芳基重氮盐和一个芳烃之间经自由基偶联生成二芳基化合物Heck反应:Pb催化的有机卤代物或者三氟磺酸酯和烯烃之间的偶联反应杂芳基Heck反应:发生在杂芳基受体上的Pd(Ph3P)4,Ph3P,CuI,Cs2CO3催化下的分子内或者分子间Heck反应Hiyama交叉偶联反应:Pb催化有机硅和有机卤代物或者三氟磺酸酯等在诸如F-或者OH-之类的活化剂Pd(Ph3P)4,TBAF催化剂存在下发生的交叉偶联反应Kumada交叉偶联(Kharasch交叉偶联):Ni和Pd催化下,格氏试剂和一个有机卤代物或者三氟磺酸酯之间的交叉偶联Liebeskind-Srogl偶联:硫酸酯和有机硼酸之间经过Pd催化发生交叉偶联生成酮McMurry 偶联:羰基用低价Ti,如TiCl3/LiAlH4产生的Ti(0)处理得到双键,反应是一个单电子过程Negishi交叉偶联:Pd催化的有机Zn和有机卤代物,三氟磺酸酯等之间发生的交叉偶联反应Sonogashira反应:Pd/Cu催化的有机卤和端基炔烃之间的交叉偶联反应Stille偶联:Pd催化的有机Sn和有机卤,三氟磺酸酯之间的交叉偶联反应Stille-Kelly偶联:双Sn试剂进行Pd催化下二芳基卤代物的分子交叉偶联Suzuki偶联:Pd催化下的有机硼烷和有机卤,三氟磺酸酯在碱存在下发生的交叉偶联Ullmann反应:芳基碘代物在Cu存在下的自偶联反应Wurtz反应:烷基卤经Na或Mg金属处理后形成碳碳单键Ymada偶联试剂:用二乙基氰基磷酸酯(EtO)2PO-CN活化羧酸缩合反应:Aldol缩合:羰基和一个烯醇负离子或一个烯醇的缩合Blaise反应:腈和α-卤代酯和Zn反应得到β-酮酯Benzoin 缩合:芳香醛经CN-催化为安息香(二芳基乙醇酮)Buchner-Curtius-Schlotterbeck反应:羰基化合物和脂肪族重氮化物反应给出同系化的酮Claisen缩合:酯在碱催化下缩合为β-酮酯Corey-Fuchs反应:醛发生一碳同系化生成二溴烯烃,然后用BuLi处理生成终端炔烃Darzen缩水甘油酸酯缩合:碱催化下从α-卤代酯和羰基化合物生成α,β-环氧酯(缩水甘油醛)Dieckmann缩合:分子内的Claisen缩合Evans aldol反应:用Evans手性鳌合剂,即酰基恶唑酮进行不对称醇醛缩合Guareschi-Thorpe缩合(2-吡啶酮合成):氰基乙酸乙酯和乙酰乙酸在氨存在下生成2-吡啶酮Henry硝醇反应:醛和有硝基烷烃在碱作用下去质子化产生氮酸酯Kharasch加成反应:过渡金属催化的CXCl3对于烯烃的自由基加成Knoevenagel缩合:羰基化合物和活泼亚甲基化合物在胺的催化下缩合Mannnich缩合(羰基胺甲基化):胺,甲醛,和一个带有酸性亚甲基成分的化合物之间的三组分反应发生胺甲基化Michael加成:亲核碳原子对α,β-不饱和体系的共扼加成Mukaiyama醇醛缩合:Lewis酸催化下的醛和硅基烯醇醚之间的Aldol缩合Nozaki-Hiyama-KIshi反应:Cr-Ni双金属催化下的烯基卤对于醛的氧化还原加成Pechmann缩合(香豆素合成):Lewis酸促进的酸和β-酮酯缩合成为香豆素Perkin反应:芳香醛和乙酐反应合成肉桂酸Prins反应:烯烃酸性条件下对于甲醛的加成反应Reformatsky反应:有机Zn试剂(从α-卤代酯来)对羰基的亲核加成反应Reimer-Tiemann反应:从碱性介质当中从酚和氯仿合成邻甲酰基苯酚Schlosser对Witting反应的修正:不稳定的叶立德和醛发生的Witting反应生成Z-烯烃,而改进的Schlosser反应可以得到E-烯烃Stetter反应(Michael-Stetter反应):从醛和α,β-不饱和酮可以得到1,4-二羰基衍生物。

药物合成反应重要人名反应整理

药物合成反应重要人名反应整理

药物合成反应重要人名反应整理1.Hunsdriecke反应:羧酸银盐和溴或碘反应,脱去二氧化碳,生成比原反应物少一个碳原子的卤代烃。

2.Sandmeyer反应:用氯化亚铜或溴化亚铜在相应的氢卤酸存在下,将芳香重氮盐转化成卤代芳烃。

3.Gattermann反应:将上面改为铜粉和氢卤酸。

4.Shiemann反应:将芳香重氮盐转化成不溶性的重氮氟硼酸盐或氟磷酸盐,或芳胺直接用亚硝酸纳和氟硼酸进行重氮化,此重氮盐再经热分解(有时在氟化钠或铜盐存在下加热),就可以制得较好收率的氟代芳烃。

5.Williamson合成:醇在碱(钠,氢氧化钠,氢氧化钾)存在下与卤代烃反应生成醚。

6.Gabriel合成:将氨先制备成邻苯二甲酰亚胺,利用氮上氢的酸性,先与氢氧化钾生成钾盐,然后与卤代烃作用,得N-烃基邻苯二甲酰亚胺,肼解或酸水解即可得纯伯胺。

7.Delepine反应:用卤代烃与环六亚甲基四胺(乌洛托品)反应得季铵盐,然后水解可得伯胺。

8.Leuckart反应:用甲酸及其铵盐可以对醛酮进行还原烃化,得各类胺。

9.Ullmann反应:卤代芳烃与芳香伯胺在铜或碘化铜及碳酸钾存在并加热的条件下可得二苯胺及其同系物。

10.Friedel-Crafts反应:在三氯化铝催化下,卤代烃及酰卤与芳香族化合物反应,再环上引入烃基及酰基。

11.Meerwein芳基化反应:芳基自由基可与烯反应,引致烯键的碳原子上。

12.Gomberg-Bachmann反应:芳香自由基与过量存在的另一芳香族化合物发生取代反应,得到联苯。

方向自由基的来源主要有三种:最常用重氮离子的分解;其次为N-亚硝基乙酰苯胺类及芳酰过氧化物的分解13.Hoesch反应:腈类化合物与氯化氢在Lewis酸催化剂ZnCl2的存在下与具有烃基或烷氧基的芳烃进行反应可生成相应的酮亚胺,在经水解则得具有羟基或烷氧基的芳香酮。

14.Gattermann反应:将具有羟基或烷氧基的芳烃在三氯化铝或氯化锌催化下与氰化氢及氯化氢作用生成相应芳香醛的反应。

rosenmund还原反应

rosenmund还原反应

rosenmund还原反应
罗森蒙德还原反应是催化氢化还原反应,指在催化剂作用下,氢气将酰氯还原为醛的反应,反应中使用的催化剂称为罗森蒙德催化剂(Rosenmund catalyst),是附着在硫酸钡(BaSO₄)上的钯粉并加入中毒剂(2,6-二甲基吡啶、喹啉-硫等)制成。

罗森蒙德还原反应(rosenmund reduction)
总反应及反应机理:
酰氯在部分失活的钯催化剂(Pd/BaSO4)作用下用氢气进行还原,得到相应的醛。

反应由德国化学家Karl Wilhelm Rosenmund (1884-1965) 首先报道。

该反应是通氢气于悬浮有催化剂的酰氯溶液中来进行。

是从羧酸合成醛的方法之一,一般应用于制备一元脂肪醛和一元芳香醛。

反应的副产物有醇、烷烃、酸酐和酯。

用三叔丁氧基氢化铝锂也可以将酰氯还原为醛。

此外,芳香酰氯也可在钯络合物催化下用聚甲基氢硅氧烷(PMHS)还原为芳醛。

亦可用三丁基氢化锡来进行或在氢供体存在下用光照射来还原。

一般需要使催化剂中毒以防止进一步的还原作用,最常用的中毒剂是硫-喹啉(由硫在喹啉中回流来制备)和硫脲。

除了硫酸钡,其他活性调节剂,如2, 6-二甲基吡啶(Pd/C)也可使用。

在催化剂作用下,氢气将酰氯还原为醛的反应,反应中使用的催化剂称为罗森蒙德催化剂(Rosenmund catalyst),是附着在硫酸钡上的钯粉并加入中毒剂(2, 6-二甲基吡啶、喹啉-硫等)制成。

罗森蒙德反应可制备几乎所有醛类,反应需较高温度,常在煮沸二甲苯中进行。

有机化学中的人名反应

有机化学中的人名反应

O C H + HCHO NaOH
CH2 OH + HCO2
Cannizzaro反应
具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢 原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲 醛反应得到季戊四醇:
HCHO + CH3CHO NaOH C CH2OH 4 + HCO2
人名反应
Koble-Schmitt 反应
酚钠和二氧化碳在加压下于125-150 ºC反应,生成邻羟基苯甲酸,同时有 少量对羟基苯甲酸生成
Gabriel合成法
邻苯二甲酰亚胺与氢氧化钾的乙醇溶液作用转变为 邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基 邻苯二甲酰亚胺,然后在酸性或碱性条件下水解得 到一级胺和邻苯二甲酸,这是制备纯净的一级胺的 一种方法
GO
Clemmensen还原法
醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:
O C
Zn-Hg HCl
CH2
+
H2O
此法只适用于对酸稳定的化合物。对酸不稳定而对碱稳定的化合物可用 Wolff-Kishner-黄鸣龙反应还原。
GO
Wolff-Kishner还原法
醛类或酮类在碱性条件下与肼作用,羰基被还原为亚甲基:
感谢您的聆听
Diels-Alder反应
含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双
烯体)发生1,4-加成,生成六员环状化合物:
R1 R3
R1 R3
+
R4 R2
R4 R2
Diels-Alder 反应
这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状 化合物的一个非常重要的方法。

考研有机经典人名反应

考研有机经典人名反应

12.Darzens反应反应机理反应实例13.Dieckmann缩合反应机理反应实例14.Demjanov重排环烷基甲胺或环烷基胺与亚硝酸反应,生成环扩大与环缩小的产物。

如环丁基甲胺或环丁胺与亚硝酸反应,除得到相应的醇外,还有其它包括重排的反应产物:这是一个重排反应,在合成上意义不大,但可以了解环发生的一些重排反应。

反应机理15.Favorskii重排α-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状α-卤代酮,则导致环缩小。

如用醇钠的醇溶液,则得羧酸酯此法可用于合成张力较大的四元环。

反应机理反应实例16.Favorskii反应炔烃与羰基化合物在强碱性催化剂如无水氢氧化钾或氨基钠存在下于乙醚中发生加成反应,得到炔醇液氨、乙二醇醚类、四氢呋喃、二甲亚砜、二甲苯等均能作为反应的溶剂。

反应机理反应实例17.Friedel-Crafts烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF 等)存在下,发生芳环的烷基化反应。

卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超过3个碳原子时,反应过程中易发生重排。

反应机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,得到较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体 络合物,然后失去一个质子得到发生亲电取代产物:反应实例18.Friedel-Crafts酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通常用无水三氯化铝)催化下发生酰基化反应,得到芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排。

反应机理反应实例19.Fries重排酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物。

重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行。

(完整版)大学有机化学人名反应总结

(完整版)大学有机化学人名反应总结
②醛也可发生拜耶尔-维立格氧化反应,但因优先迁移基团是氢,所以主要产物是羧酸,相当于醛被过氧酸氧化。
【例】
6、醛(酮)的还原
(1)催化氢化
【注】很多基团都可以催化氢化,如碳碳双键、碳碳三键、硝基、氰基……,所以选择催化氢化还原羰基的时候,要看好化合物是否还有其他可以催化氢化的基团。
(2)用LiAlH4、NaBH4还原
3、醇的氧化
(1)沙瑞特(Sarret)试剂
【注】沙瑞特试剂,是CrO3和吡啶的络合物。它可以把伯醇的氧化控制在生成醛的阶段上,产率比较高,且对分子中的双键无影琼斯试剂是把CrO3溶于稀硫酸中,滴加到醇的丙酮溶液中,在室温下就可以得到很高的产率的酮。同样对分子中的双键无影响。
(格式试剂)
(2)与金属钠反应 武兹(Wurtz)反应
(3)与金属锂反应
【注】二烷基铜锂主要是与卤代烃偶联成烷烃
4、还原反应
5、氯甲基化
五、醇
1、卢卡斯(Lucas)试剂
无水氯化锌与浓盐酸的很合溶液叫卢卡斯试剂,用于鉴别伯、仲、叔醇
2、把羟基变成卤基
(1)、醇与卤化磷(PX5、PX3)
(2)、醇与亚硫酰氯(SOCl2)
4、环氧化合物
(1)开环
①酸性开环
【注】不对称环氧化合物的酸性开环方向是亲核试剂优先与取代较多的碳原子结合。
【例】
②碱性开环
【注】碱性开环,亲核试剂总是先进攻空间位阻较小的,空间效应。
【例】
【注】环氧开环不论酸式还是碱式开环,都属于SN2类型的反应,所以亲核试剂总是从离去基团(氧桥)的反位进攻中心碳原子,得到反式开环产物。这种过程犹如在烯烃加溴时,溴负离子对溴鎓离子的进攻。
【机理】
【注】类似的构型也可发生重排

药物合成反应重要人名反应

药物合成反应重要人名反应

1.Hunsdriecke反应:羧酸银盐和溴或碘反应,脱去二氧化碳,生成比原反应物少一个碳原子的卤代烃;2.Sandmeyer反应:用氯化亚铜或溴化亚铜在相应的氢卤酸存在下,将芳香重氮盐转化成卤代芳烃;3.Gattermann反应:将上面改为铜粉和氢卤酸;4.Shiemann反应:将芳香重氮盐转化成不溶性的重氮氟硼酸盐或氟磷酸盐,或芳胺直接用亚硝酸纳和氟硼酸进行重氮化,此重氮盐再经热分解有时在氟化钠或铜盐存在下加热,就可以制得较好收率的氟代芳烃;5.Williamson合成:醇在碱钠,氢氧化钠,氢氧化钾存在下与卤代烃反应生成醚;6.Gabriel合成:将氨先制备成邻苯二甲酰亚胺,利用氮上氢的酸性,先与氢氧化钾生成钾盐,然后与卤代烃作用,得N-烃基邻苯二甲酰亚胺,肼解或酸水解即可得纯伯胺;7.Delepine反应:用卤代烃与环六亚甲基四胺乌洛托品反应得季铵盐,然后水解可得伯胺;8.Leuckart反应:用甲酸及其铵盐可以对醛酮进行还原烃化,得各类胺;9.Ullmann反应:卤代芳烃与芳香伯胺在铜或碘化铜及碳酸钾存在并加热的条件下可得二苯胺及其同系物;10.Friedel-Crafts反应:在三氯化铝催化下,卤代烃及酰卤与芳香族化合物反应,再环上引入烃基及酰基;11.Meerwein芳基化反应:芳基自由基可与烯反应,引致烯键的碳原子上;12.Gomberg-Bachmann反应:芳香自由基与过量存在的另一芳香族化合物发生取代反应,得到联苯;方向自由基的来源主要有三种:最常用重氮离子的分解;其次为N-亚硝基乙酰苯胺类及芳酰过氧化物的分解13.Hoesch反应:腈类化合物与氯化氢在Lewis酸催化剂ZnCl2的存在下与具有烃基或烷氧基的芳烃进行反应可生成相应的酮亚胺,在经水解则得具有羟基或烷氧基的芳香酮;14.Gattermann反应:将具有羟基或烷氧基的芳烃在三氯化铝或氯化锌催化下与氰化氢及氯化氢作用生成相应芳香醛的反应;15.Vilsmeier-Haack反应:以N-取代的甲酰胺化试剂在氧氯化磷作用下,在芳核或杂环上引入甲酰基;16.Rimer-Tiemann反应:将酚及某些杂环化合物与碱金属的氢氧化物溶液和过量的氯仿一起加热形成芳醛的反应;17.Claisen反应和Dieckmann反应:羧酸酯与另一分子具有α-活泼氢的酯进行缩合的反映称为Claisen缩合;若两个酯在同一分子之内,在上述条件下可发生分子内缩合,得环状β-酮酸酯,此反应称为Dieckmann反应;18.Aldol缩合:含有α-活泼氢原子的醛或酮,在碱或酸的催化下发生自身缩合,或与令一分子的醛或酮发生缩合,生成β-羟基醛或酮类化合物;该类化合物易脱水生成α,β-不饱和醛酮;19.Claisen-Schimidt反应:芳醛与含有α-活泼氢的醛、酮之间的缩合;芳醛和脂肪醛、酮在碱催化下缩合生成β-不饱和醛酮的就反应;20.Tollens缩合:甲醛在碱的催化下,可与含有α-活性氢的醛、酮进行醛醇缩合,在醛、酮的α-碳原子上引入羟甲基,产物是β-羟基醛或其脱水物——α,β-不饱和醛酮;21.Cannizzaro反应:22.Robinson环和:酯环酮与α,β-不饱和酮的共轭加成产物所发生的分子内缩合反应,可以再原来环结构基础上在引入一个环;23.Prins反应:烯烃与甲醛或其他醛在酸催化下加成而得1,3-丙二醇或其环状缩醛1,3-二氧六环及α-烯醇的反应;安息香缩合:芳醛在含水乙醇中,以氰化钾为催化剂,加热后发生双分子缩合生成α-羟基酮的反应;24.Reformatsky反应:醛或酮与α-卤代酸酯在金属锌粉存在下缩合而得β-羟基酸酯或脱水得α,β-不饱和酸酯的反应;25.Grignard反应:由有机卤素化合物卤代烃、活性卤代芳烃等与金属镁在无水乙醚存在下生成格式试剂,后者在与羰基化合物醛、酮等反应而得相应的醇类的反应;26.Blanc反应:芳烃在甲醛、氯化氢及无水二氯化锌三氯化铝、四氯化锡或质子酸等缩合剂的存在下,在芳环上引入卤烷基--CH2Cl的反应;27.Mannich反应:具有活性氢的化合物与甲醛或其他醛、胺进行缩合,生成胺甲基衍生物的反应;28.Pictet-Spengler反应:β-芳乙胺与羰基化合物在酸性溶液中缩合生成1,2,3,4-四氢异喹啉的反应;29.Strecker反应:脂肪族或芳香族醛、酮类与氰化氢和过量氨或胺类作用生成α-氨基腈,再经酸或碱水解得到dl-α-氨基酸类的反应;30.Michael反应:活性亚甲基化合物和α,β-不饱和羰基化合物在碱性催化剂存在下发生加成缩合,生成β-羰烷基类化合物;31.Wittig反应:醛或酮与含磷试剂——烃代亚甲基三苯膦反应,醛、酮分子中的羰基的氧原子被亚甲基或取代亚甲基所取代,生成相应的稀类化合物及氧化三苯膦,此类反应称为羰基稀化反应;32.Horner反应:利用膦酸酯与醛、酮类化合物在碱存在下作用生成烯烃的反应;33.Knoevenagel反应:凡具有活性亚甲基的化合物在氨、胺或其羧酸盐的催化下,与醛、酮发生醛醇型缩合,脱水得α,β-不饱和化合物的反应;34.Stobbe反应:丁二酸酯或α-烃基取代的丁二酸酯在碱性试剂存在下,与羰基化合物进行缩合而得α-烷烃或芳烃亚甲基丁二酸单酯的反应;常用碱性试剂有醇钠,叔丁醇钾,氰化钠和三苯甲烷钠等35.Perkin反应:芳香醛和脂肪酸酐在相应的脂肪酸碱金属盐的催化下缩合,生成β-芳基丙烯酸类化合物的反应;36.Darzens缩合:醛或酮与α-卤代酸酯在碱催化下缩合生成α,β-环氧羧酸酯的反应;37.Diels-Alder反应:共轭二烯烃与烯烃、炔烃进行环加成,生成环己烯衍生物的反应;38.Wagner-Meerwein重排:在质子酸或lewis酸催化下生成的碳正离子中,烷基、芳基、或氢从一个碳原子通过过渡态,迁移至相邻带正电荷碳原子的反应;39.Pinacol重排:在酸催化下,邻二叔醇失去一分子水,重排成醛或酮的反应;40.二苯基乙二酮-二苯基乙醇酸型重排:α-二酮用强碱处理发生重排,生成α-羟基乙酸盐;41.Fovorski重排:α-卤代酮在碱氢氧化钠,醇钠,HNRR’催化下脱去卤原子,重排为羧酸或其衍生物的反应;42.Wolff重排:α-重氮酮经加热、光解或在某些金属等催化剂作用下脱去一分子氮气后重排成烯酮的反应;烯酮经进一步反应,生成羧酸、酯、酰胺或酮;43.Arndt-Eistert反应:酰氯与重氮甲烷反应得α-重氮酮,再经Wolff重排,生成比原来酰氯多一个碳原子的羧酸;44.Beckmann重排:醛肟与酮肟在酸催化剂作用下重排成取代酰胺的反应;45.Hofmann重排:氮上无取代基的酰胺用卤素溴或氯及碱处理,脱羧生成伯胺的反应;由于产物比反应物少一个碳原子,所以又称为Hofmann降解;46.Curtius重排:酰基叠氮化合物加热分解生成异腈酸酯的反应;47.Schmidt反应:在酸催化下,酸和酮或醛与氨或叠氮化钠反应生成伯胺、酰胺或腈的反应;48.Baeyer-Villiger氧化:在酸催化下,醛或酮与过氧酸作用,在烃基与羰基之间插入氧生成酯的反应;49.Stevens重排:α-位上具有吸电子基Z的季铵盐在强碱作用下,脱去一个α活泼氢生成叶立德,然后季氮上的烃基进行分子内1,2-迁移,生成叔胺的反应;50.Sommelet-Hauser重排:苄基季铵盐在强碱催化下,重排成邻位烃基取代的苄基叔胺的反应;51.Wittig重排:醚类化合物经强碱处理,分子中一个烃基发生迁移,生成醇的反应;52.Claisen重排:烯醇或酚的烯丙基醚加热,通过3,3-σ迁移使烯丙基自氧原子迁移到碳原子上的反应;53.Cope重排:1,5-二稀连二烯丙基经过3,3-σ迁移,异构化成另一双烯丙基衍生物的反应;54.Fischer吲哚合成:醛或酮的芳腙在适当催化剂存在下,脱氨基生成吲哚类化合物的反应;55.Oppenauer氧化:仲醇与丙酮在烷氧基铝存在下一起回流,将仲醇氧化成酮;56.Dakin反应:在芳香醛中,当醛基的邻、对位有羟基等供电子基团时,与有机过氧酸反应,醛基经甲酸酯阶段,最后转换成羟基;57.Sharpless环氧化反应:58.Wacker反应:在氯化钯、氯化铜存在下,利用空气中的氧气使烯烃转化成醛或酮的过程;59.Birch还原:芳香族化合物在液氨中用钠还原,生成非共轭二烯的反应;60.Clemmensen反应:在酸性条件下,用锌汞齐或锌粉还原醛基、酮基为甲基和亚甲基的反应;61.Wolff-кижер-黄鸣龙还原反应:醛酮在强碱条件下,与水合肼缩合成腙,进而放氮分解转化成甲基和亚甲基的反应;62.Meerwein-Ponndorf-Verley反应:将醛、酮等羰基化合物和异丙醇铝在异丙醇中共热,可还原得到相应的醇,同时将异丙醇氧化成丙酮;63.Leuckart反应:在甲酸及其衍生物存在下,羰基化合物与氨、胺的还原胺化反应;64.Rosenmund反应:酰卤在适当的反应条件下,用催化氢化或金属氢化物选择性的还原为醛的反应;65.Bouveault-Blanc反应:将羧酸酯用金属钠和无水醇直接还原生成相应的伯醇,主要用于高级脂肪酸酯的还原;66.偶姻缩合:羧酸酯在惰性溶剂如醚、甲苯、二甲苯中与金属钠发生还原偶联反应,生成α羟基酮;67.脱苄反应:苄基或取代苄基与氧、氮或硫连接生成的醇、醚、酯、苄胺、硫醚等,均可以通过氢解反应脱去苄基生成相应的烃、醇、酸、胺等类化合物;68.Heck反应:卤代烃、苯甲酰氯或芳基重氮盐等与乙烯基化合物的C-C偶联反应;69.Suzuki交叉偶联反应:钯催化的有机硼化合物与卤代烃生成不对称联芳烃;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档