technology for electroslag remelting with rolation of the consunable electrode
电渣重熔过程渣池流场数值模拟
电渣重熔过程渣池流场数值模拟王晓花;厉英【摘要】采用商业软件ANSYS和FLUENT建立了电渣重熔过程渣池流场数学模型,分析了电渣重熔过程电磁力和热浮力共同作用下渣池流动行为,以及典型电渣重熔工艺参数(电极形貌、插入深度、填充比和电流强度)对电渣重熔过程渣池内流场的影响规律.结果表明:电磁力有利于渣池内产生逆时针涡流,浮力有利于渣池产生顺时针涡流.电极端部形貌对渣池流动影响较大,当电渣重熔电流均为5000A,频率为50 Hz时,平头电极所在渣池内同时存在逆时针涡流和顺时针涡流,锥形电极所在渣池内只存在逆时针涡流.电极填充比和电流都对渣池内流动行为影响较大,减小电极填充比和增大电流强度都会使渣池内逆时针涡流增加.【期刊名称】《材料与冶金学报》【年(卷),期】2014(013)002【总页数】6页(P133-137,151)【关键词】电渣重熔;渣池;流场;数值模拟【作者】王晓花;厉英【作者单位】东北大学材料与冶金学院,沈阳110819;东北大学材料与冶金学院,沈阳110819【正文语种】中文【中图分类】TG142.4电渣重熔获得的最终产品具有成分均匀、杂质含量低、凝固组织致密等优点.因此,电渣重熔被广泛应用于高附加值特殊钢和镍基超级合金生产[1~4].渣池在电渣重熔电流作用下产生大量焦耳热熔化自耗电极,并在金属熔滴形成和下落过程中去除金属熔滴中的夹杂物和有害元素,从而达到净化金属溶液的目的.电渣重熔过程电磁力和热浮力作用使得渣池内熔渣产生复杂的湍流流动,影响金属熔滴流动和温度以及金属熔滴净化效果,从而影响最终重熔钢锭成分和组织均匀性.因此,电渣重熔过程渣池流动行为研究对于制定合理的电渣重熔工艺,生产高质量钢锭至关重要.鉴于电渣重熔过程渣池内发生复杂的物理化学变化,且渣池为非透明材料,很难由物理方法直接观察渣池内部情况,而数值模拟对于高温冶金过程传输现象研究是一种行之有效的方法,因此越来越受到冶金工作者的重视.以Choudhary和Sezekely[1~3]为代表的研究者首先开始采用耦合Maxwell方程、湍流Navier-Stokes方程和能量守恒方程的方法,研究了电渣重熔过程渣池内熔渣流动行为.随后以Ferng、Jardy和Weber为代表的研究者[4~6]进一步分析了供电模式、填充比和熔渣物性参数对电渣重熔过程渣池流动行为的影响,但大多忽略了渣池温度分布不均产生的热浮力对渣池流动行为的影响.魏季和任永莉[7,8]研究了电渣重熔过程电磁场对渣池流动行为的影响,但忽略了电渣重熔过程渣池内部温度分布不均产生的热浮力对渣池流动行为的影响.尧军平、刘福斌、董艳伍等[9~12]为代表的研究者采用ANSYS分析了电渣重熔过程操作参数对渣池流动行为的影响.然而要充分了解电渣重熔过程传输现象,还需要进一步完善其他因素的影响,特别是电磁力和热浮力共同作用下渣池的流动行为[13,14].本研究在前期建立的电渣重熔电磁场数学模型[15]基础上,耦合电渣重熔过程流场和温度场数学模型,分析了电磁力和热浮力共同作用下电渣重熔渣池内熔渣流动行为,以及电渣重熔操作参数(电极形貌、电流强度和填充比)对渣池流场的影响规律.电渣重熔过程中电磁场、温度场和流场相互作用,对渣池内熔渣流动行为影响较为复杂.为了简化计算,本研究作如下假设:(1)电渣重熔达到稳定后,在较短时间内处于准稳态过程;(2)电极端部与渣池接触处温度为重熔金属的液相线温度;(3)结晶器绝缘,没有电流通过结晶器;(4)渣的密度随温度变化.连续性方程:动量方程:式中电磁力为:根据Boussinesq假设,与温度相关的密度变化仅出现在动量方程的浮力项.因此,电渣重熔过程渣池内熔渣温度分布不均所引起的热浮力对渣池运动的影响,可将浮力项直接包含在动量方程.能量方程:采用k-ε双方程模型[16]描述渣池内湍流流动:湍动能方程:湍动能耗散率方程:式中湍动能产生项:以上各式中:u为速度矢量,m/s;p为压强,Pa;ρ为熔体密度,kg/m3;cp为等压比热容,J/(kg·℃);λeff为有效导热系数,W/(m·℃);QJ为体积焦耳热,W/m3;t为时间,s;μ为层流黏度系数,P a·s;μt为湍流黏度系数,Pa·s;k为湍动能,m2/s2;μ0为真空磁导率,1.26×10-6H/m; J为感应电流密度,A/m2;H为磁场强度,A/m; T和T0分别为熔渣温度和参考温度,℃;k-ε双方程模型中通用系数均采用Launder和Spalding推荐数值[16].温度场边界条件:渣/电极界面为常温度边界条件,为了简化取自耗电极液相线温度;渣/空气界面为辐射边界条件;渣/结晶器和渣金界面为对流换热边界条件.流场边界条件:渣/电极界面和渣/结晶器界面采用无滑移边界条件;渣金界面和渣自由表面采用零剪切力边界条件.本研究针对单电极电渣重熔系统,结晶器直径为 0.36 m,电极直径为 0.10 m,渣池厚度0.20 m,渣黏度0.03 Pa·s[12].图1为电渣重熔模型计算区域示意图.采用大型有限元商业软件ANSYS对电渣重熔过程电磁场进行分析,具体的计算方法可详见笔者前期工作[15],在此不再赘述.将电磁场分析得到的体积电磁力和体积焦耳热存储成一定格式的数据文件,并采用FLUENT的UDF二次开发接口函数读入到Fluent所建立的电渣重熔渣池模型,从而耦合求解电磁力和热浮力共同作用下电渣重熔过程渣池流动行为.图2为电渣重熔电流5 000 A,频率50 Hz时,电极端部形貌对渣池流场的影响. 从图2中可以看出电极端部为平面时,渣池内部同时存在一个逆时针涡流和顺时针涡流,液渣流动速度介于0~0.05 m/s之间且最大速度位于渣池中心轴线处附近.电极与结晶器壁之间的逆时针涡流是电磁力和浮力共同作用的结果,这是因为电磁力驱动的逆时针流动强于位于结晶器壁和电极冷面之间的热流体浮力驱动的顺时针流动.由于渣池内靠近结晶器壁径向上存在较大的温度梯度,使得浮力占据主导地位,因而渣池内靠近结晶器壁存在顺时针方向的涡流.电极端头为平面时,渣池内流动特征与Choudhary和Szekely的研究结果[1]基本一致,同时说明了模型准确可靠.当电极端头为锥形时,渣池内仅存在逆时针涡流,这是由于电磁力较浮力强,使得渣池内产生逆时针流动,且流速介于0~0.20 m/s之间,最大流速同样位于中心渣池轴线处附近.图3为不同电极形貌对渣池内温度场的影响.从图中可以看出当电极端部为平面时,渣池内最高温度区域位于电极下方,电极/渣池界面和渣池/结晶器界面处温度梯度最大.渣池内电磁力和热浮力共同驱动下产生的逆时针涡流和顺时针涡流使得渣池内流动剧烈并使渣池内高温区扩大,温度趋于均匀.当电极端部为锥形时,由于电渣重熔过程产生的电磁力驱动熔渣成逆时针流动,促使熔渣温度逐渐均匀,并在涡流中心出现温度最高值.图4为电渣重熔电流5 000 A,频率50 Hz时,平头电极插入渣池深度对渣池流动行为的影响.从图4中可以看出随着电极插入深度的减少,渣池内部电极与结晶器壁之间,由于电磁力占主导作用所产生的逆时针回旋区逐渐缩小,而由于热浮力占主导作用而在渣池内靠近结晶器壁处所产生的顺时针回旋区逐渐扩大.当平头电极插入深度减少到0.02 m时,渣池内部电极与结晶器壁间的逆时针回旋区无限趋近消失,但在渣池内部电极下方出现逆时针回旋区.图5为电渣重熔电流5 000 A,频率50 Hz时,填充比(电极半径/结晶器半径)对渣池流场行为的影响.从图5中可以看出随着填充比的增加,由电磁力所引起的位于电极与结晶器壁之间的逆时针涡流逐渐减弱.相反,顺时针涡流逐渐增强.这是由于随着填充比的增加,渣池内部电流分布发生变化,体积电磁力减小,最大焦耳热也相应减小,但位置更加靠近结晶器壁,从而使得渣池内部电磁力的主导地位逐渐降低,靠近结晶器壁处热浮力作用逐渐增强.图6为填充比0.56和插入深度0.04 m时,不同电流强度对电渣重熔渣池内流场的影响.从图6中可以看出随着电流强度的降低,渣池内部的体积电磁力减小,从而使渣池内由电磁力占主导作用引起的位于电极与结晶器壁之间的逆时针涡流逐渐减小.相反,由于电磁力逐渐减小,渣池内热浮力逐渐占主导地位,从而使渣池内部由热浮力占主导地位产生的靠近结晶器壁的顺时针涡流逐渐增强.通过计算定量分析可知随着电渣重熔电流强度从6 000 A降低到4 000 A,渣池内部最大流速从0.06 m/s降低到0.04 m/s.本文建立了耦合电渣重熔过程渣池内电磁场、温度场和流场的数学模型,分析了电磁力和热浮力作用下,不同电渣重熔工艺参数(电极形貌、插入深度、填充比和电流强度)对渣池流场的影响规律.(1)电渣重熔过程渣池内熔渣流动行为受电磁力和热浮力共同作用.电磁力有利于渣池内产生逆时针涡流,热浮力有利于渣池产生顺时针涡流.(2)电渣重熔过程渣池流场受电极形貌影响较大.电渣重熔电流5 000 A,频率50 Hz时,电极端部为平面,渣池内部同时存在逆时针涡流和顺时针涡流;电极端部为锥形,渣池内部只存在逆时针涡流.(3)电极插入深度、填充比和电流强度都会影响电渣重熔过程渣池内熔渣流动行为.增加电极插入深度、减小填充比和增大电流强度都会使渣池内部逆时针涡流增强.【相关文献】[1]Dilawari A H,Szekely J.Heat transfer and fluid flow phenomena in electroslag refining[J]. Metallurgical Transaction B,1978,9B(1):77-87.[2]Choudhary M,Szekely J.The modeling of pool profiles,temperature profiles and velocity fields in ESR systems[J].Metallurgical Transaction B,1980,11B(3):439-452. [3]Choudhary M,Szekely J,Medovar B I,et al.The velocity field in the molten slag region of ESR systems:a comparison of measurements in a model system with theoretical predictions[J].Metallurgical Transaction B,1982,13B(1):35-43.[4]Ferng Y M,Chieng C C,Pan C.Numerical simulation of electro-slag remelting process[J].Numerical Heat Transfer A,1989,16(4):429-449.[5]Jardy A,Ablitzer D,Wadier J F.Magnetohydrodynamic and thermalbehavior of electroslag remelting slags[J].Metallurgical and Materials Transactions B,1991,22B(1): 111-120.[6]Weber V,Jardy A,Dussoubs B,et al.A comprehensive model of the electroslag remelting process:description and validation[J].Metallurgical and Materials Transactions B,2009,40B(3):271-280.[7]魏季和,任永莉.电渣重熔体系内磁场的数学模拟[J].金属学报,1995,31(2):51-60. (Wei Jihe,Ren Yongli.Mathematical simulation of magnetic field in ESR system[J].Acta Metallurgica Sinica,1995,31 (2):51-60.)[8]魏季和,任永莉.电渣重熔体系内熔渣流场的数学模拟[J].金属学报,1994,30(11):481-490.(Wei Jihe,Ren Yongli.Mathematical modelling of slag flow field in ESR system[J].Acta Metallurgica Sinica,1994,30 (11):481-490.)[9]尧军平,徐俊杰.电渣熔铸过程渣池流场的模拟研究[J].铸造,2007,56(7):712-715. (Yao Junping,Xu Junjie.Simulation analysis of the slag pool flow field in the electroslag casting process[J].Foundry,2007,56(7):712-715.)[10]刘福斌,姜周华,藏喜民,等.电渣重熔过程渣池流场的数学模拟[J].东北大学学报(自然科学版),2009,30(7): 1013-1017.(Liu Fubin,Jiang Zhouhua,Zang Ximin,et al.Mathematical modelling of flow field in slag bath during electroslag remelting[J].Journal of northeastern university(natural science),2009,30(7):1013-1017.)[11]Dong Y W,Jiang Z H,Li Z B.Mathematical model for electroslag remelting process[J].Journal of Iron and Steel Reasearch,2007,14(5):7-12.[12]Dong Y W,Jiang Z H,Liu H,et al.Simulation of multielectrode ESR process for manufacturing large ingot[J].ISIJ International,2012,52(12):2226-2234.[13]Hernandez-Morales B,Mitchell A.Review of mathematical models of fluid flow,heat transfer,and mass transfer in electroslag remelting process[J].Ironmaking and Steelmaking,1999,26(6):423-438.[14]Mitchell A.Solidification in remelting process[J].Materials Science and Engineering A,2005,413-414:10-18.[15]王晓花,厉英.电渣重熔过程电磁场和温度场数值模拟[J].东北大学学报(自然科学版),2014,35(6).(Wang Xiaohua, LiYing. Numericalsimulation of electromagnetic field and temperature field of ESR[J].Journal of northeastern university(natural science),2014,35(6).) [16]Launder B E,Spalding D B.The numerical computation of turbulent flows [J].Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.。
机械零部件常用英语翻译词汇
机械零部件常用词汇 管模 pipe mould锻压 press forging电渣重熔冶炼 electroslag remelting锅炉管 boiler tube风力发电机主轴Main Shaft for wind power generator镗床 boring lathe铣床 milling machine锻件forging parts天轴 line shaft船用轴系 ship shafting可倾瓦块轴承 tilting-pad bearing成型填料密封shaped packing seal曲轴 crank shaft自润滑轴承 self-lubricating bearing含油轴承 oil-impregnated bearing制动功率 braking power板弹簧 leaf spring油(气)膜振盪 oil/gas whip空气弹簧 air spring花键联接 spline joint活塞环 piston ring飞轮 fly wheel径向滑动轴承 journal bearing气体轴承 gas bearing浮环密封floating ring seal粉末冶金轴承powder metallurgy bearing迷宫密封 labyrinth seal带式制动器 band brake推力滑动轴承 thrust bearing液体动压轴承 hydrodynamic bearing 液体静压轴承 hydrostatic bearing焊接 welding球轴承 ball bearing连桿 link嵌入离合器 jaw clucth胀圈密封piston ring seal超越离合器 overrunning clutch塔轮 step pulley填料函密封 packing box seal块式制动器 shoe brake楔联接 wedge joint滑动轴承材料 sliding bearing material 滑轮 pulley万向联轴器 universal coupling游丝 hairspring过盈配合联接 interference fit joint铆接 riveted joint电磁制动器 electromagnetic brake电磁轴承 electromagnetic bearing槓桿 ganggan滚子轴承 roller bearing滚针轴承 needle bearing磁流体密封 ferrofluidic seal磁流体轴承 hydro-magnetic bearing 箔轴承 foil bearing弹性环联接 spring-ring friction joint 摩擦离合器 friction clutch挠性轴 flexible shaft标准紧固件 standard fastener盘式制动器 disk brake胶黏剂 adhesive调速器 governor销联接 pin joint齿轮联轴器 toothed coupling橡胶弹簧 rubber spring机械密封 mechanical seal静密封 static seal螺纹 screw thread螺纹防松locking of screw joint螺旋密封 screw seal螺旋弹簧 helical spring键联接 key joint转子 rotor离心密封 centrifugal seal宝石轴承 jewel bearing少齿差行星齿轮传动planetary gearing with small difference between the numbers of teeth 非圆齿轮传动 non-circular gearing射流 fluidics径节 diametral pitch气缸 pneumatic cylinder气动工具 pneumatic tool气动马达 pneumatic motor气动逻辑元件pneumatic logic element带传动 belt drive液力耦合器 fluid coupling液力变矩器 fluid torque converter液压伺服阀 hydraulic servo-valve液压泵 hydraulic pump液压马达 hydraulic motor液压控制阀 hydraulic control valve减速器 speed reducer无级变速infinitely variable speed transmission 传动比 speed ratio圆弧齿轮传动 circular profile gearing圆柱齿轮传动 cylindrical gearing电力传动 electrical drive渐开线 involute蓄能器 accumulator摩擦轮传动 friction drive模数 module轮系 train轮齿修形 geartooth correction齿轮承载能力 gear load capacity谐波传动 harmonic drive谐波齿轮传动 harmonic gearing锥蜗桿传动 spiroid drive锥齿轮传动 bevel gearing环面蜗桿传动enveloping worm drive螺旋传动 screw drive螺旋齿轮传动 crossed helical gearing摆线 cycloid摆线针轮传动pin-cycloid planetary gearing摆线齿轮传动 cycloidal gearing双曲面齿轮传动 hypoid gearing绳传动 rope drive链传动 chain drive变位齿轮 profile modified gear变位齿轮传动 profile modified gearing变速器transmission gear box。
光电子技术专业英语
3. 增减词译法
由于两种语言表达方式不同,在把原文信息译成译文信息时,常常 需要删去或增添一些词。这样做并不损害原意,反而可以使译文更 为通顺,意思更为清楚。
如:You cannot build a ship, a bridge or a house if you don’t know how to make a design or how to read it.不会制图或看不懂图纸,就不可能造船、 架桥或盖房子。汉译中省略代词you和it、冠词a、连接词if和副词how。
5. 反译法
由于汉英两种语言表达习惯不同而且均可以从正面或反面来表达同一概念, 翻译时如果用正面表达译文有困难,欠通顺,则不妨用反面表达,或将反面 表达改用正面表达,这样可以使译文比较通顺而与原意并无出入。
如:I lay awake almost the whole night.我几乎一夜没睡着。例属正说反译。 I can’t agree with you more.我极其赞同你的意见。本例属反说正译。
1.2科技英语文体总貌
科技英语要求客观性、准确性和严密性,注重叙事逻辑上的 连贯(Coherence)及表达上的明晰(Clarity)与畅达(Fluency), 避免行文晦涩。 科技英语力求平易(Plainness)和精确(Preciseness),避免使 用旨在加强语言感染力和宣传效果的各种修辞格
ESR(电渣炉资料)
tion. This is why ESR is recognized as the preferred production method for high-performance superalloys that are used today in industries such as aerospace and nuclear engineering as well as for heavy forgings. Ingots are obtained with purity levels that were unheard of some years ago. Other branches of engineering are following the examples of the “high-tech” pacesetters and insist on new, high purity levels that can be obtained from ESR with the latest, most sophisticated equipment.
Finally, computer controlled process automation has been developed to perform similarly to ALD’s automatic melt control system (AMC) described under VAR. Important to mention here is that ALD’s electrode immersion depth control into the slag is based on slag resistance or slag resistance swing. Using the resistance parameter automatically decouples the immersion depth and remelting rate control loops which are otherwise cross-influencing each other.
电渣重熔技术的最新进展
电渣冶金的最新进展陈希春1,冯涤1傅杰2,周德光2(1•钢铁研究总院高温材料研究所,北京,100081; 2.北京科技大学电冶金研究所,北京,100083)摘要:对电渣冶金的最新进展进行了综述,简要介绍了导电结晶器技术、快速电渣重熔、洁净金属喷射成形以及可控气氛电渣冶金,包括真空电渣重熔、惰性气体保护下电渣重熔、高压下电渣重熔等技术。
这些技术的出现,在改善与消除传统电渣冶金局限性的同时,进一步发扬了电渣冶金技术的优越性,使电渣冶金显示出了更强大的生命力、更宽广的应用前景。
关键词:电渣冶金;导电结晶器;高纯净度中图分类号:Recent Development of Electroslag Metallurgy1 12 2CHEN Xi-chun ,FENG Di ,FU Jie,ZHOU De-guang(1. Central Iron & Steel Research Institute, Beijing 100081 ,China ;2. Un iversity of Scie nee & Techno logy Beiji ng, Beijing 100083 ,China)Abstract: The recent adva nces in Electroslag Metallurgy have bee n reviewed in this paper. Some importa nt inno vative tech no logies, such as Curren t-c on ductive Mold, Electroslag Rapid Remelt ing, Clea n Melt Spray Forming, and Vacuum Electroslag Remelting, Electroslag Remelting under Inert Gases, Electroslag under High Pressure, Electroslag Remelting under Ca-containing Fluxes are introduced briefly. With the developme nt of these adva need tech no logies, which avoid some disadva ntages existi ng in the traditi onal ESM successfully, Electroslag Metallurgy is en titled to further improveme nt and wider applicati on.Keyword: Electroslag Metallurgy ;Current-conductive Mold ;High Cleanliness现代电渣冶金技术起源于前苏联乌克兰巴顿电焊研究所,在电渣焊的基础上开发出了电渣重熔技术。
材料科学专业英语词汇(E)
材料科学专业英语词汇(E)e.b.m (electron beam machining)电子束加工,电刻e.c.m. (electrochemical machining)电化加工e.d.m (electrical discharge machining)放电加工earing 成耳(冲压)early-strenghth cement 早强水泥earth bar/grounding bar 接地棒earthenware 陶器;瓦器easy fired 易烧easy glide plane 易滑面easy-flo 易流硬焊料(含ag50%,cd18%,su16.5%,cu15.5% 之四元共晶)eaves tile 詹瓦ebonite 硬橡胶(皮)eccentric converter 偏心转炉eccentric upset forging 偏心锻粗eccentric upsets 偏心锻粗件eccentric upsetting 偏感锻粗法economizer[ 锅炉]节热器eddy current 涡[电]流eddy current loss 涡[电]流损失eddy current method 涡电流法eddy current test 涡[电]流试验edge bead removal /e.b.r 边缘球状物去除edge bending 侧向弯曲edge crack 边缘裂纹edge dislocation 刃差排edge exclusion 周边除外范围edge lining 钩边edge polisher 边缘抛光机edge runner 混砂机edge sensor 边缘感测器edge-runner mill 轮辗机edger 磨边器,成边器edging 磨边,成边edging impression 成边型edging stone 磨边路eds testeds 测试effective aperture 有效孔径effective case depth 有效硬化深度effective strain 有效应变effective stress 有效应力efferrescing steel (同rimming steel)赤静钢efficiency of target utilization 靶子利用效率efflorescence 粉化;吐霜efflorwick test 吓霜试验effluent 流出物eggert'stube 爱格特管(快速比色,测钢中之碳用) eggshell porcelain 蛋壳簿瓷eggshelling 蛋壳耳(搪瓷)(陶)einsteinium (es,99)金爱ejecter 拆卸器ejection 顶出ejector1 顶出器2.喷射器ejector plate 顶出板elastic after-effect 弹性余效elastic constant 弹性常数elastic constraint 弹性抑制elastic deflection 弹性挠曲elastic deformation 弹性变形elastic emission machining 弹性碰撞机械加工elastic fatigue 弹性疲劳elastic hardness 弹性硬度elastic hysteresis 弹性迟滞elastic limit 弹性限elastic medium 弹性媒质elastic modulus 弹性模数,弹性系数elastic reactance 弹性抗elastic strain 弹性应变eldred's wire 爱瑞得导线(镀铜,镍铁心封於玻璃内之导线) electret 驻极[电介]体electric arc furnace 电弧炉electric arc welding 电弧熔接electric flame off 电火炬electric furnace 电炉electric furnace iron 电炉生铁electric furnace steel 电炉钢electric furnace steel making 电炉炼钢electric induction 电感应electric induction furnace 感应电炉electric micrometer 电测分厘卡electric porcelain 电瓷electric precipitation 电力析出electric resistance furnace 电阻炉electric resistance heater 电阻加热器electric resistance strain gage 电阻应变计electric resistance thermometer 电阻温度计electric resistance welding 电阻溶接electric spark maching 放电加工(同e.d.m)electric steel 电炉钢electric welding 电熔接,电焊electric-arc cutting 电弧切割electric-furnace ferrosilicon 电炉矽铁electrical dipole 电隅极electrical discharge machine (edm)电蚀机,放电加工机electrical heating 电加热electrical resistivity 电阻率electrical rule check 电器法则查验electro graphy 电蚀刻electro hydralic forming 电液成型electro striction 电致伸缩electro-deposited coating 电积层electro-deposition 电 [淀]积electro-forming 电铸electro-luminescence method 场致发光法electro-migration check 电性选移查检electro-migration test 电性迁移试验electro-osmosis 电渗electro-osmosis (或electro smose)电渗透作用electro-phoresis 电泳electro-plating 电镀electro-slag refining (esr)电渣精炼electro-type metal 电铸版合金electrocast refractory 电铸耐火材料electroceraimcs 电用陶瓷electrochemical corrosion 电化腐蚀electrochemical cyaniding 电解氰化electrochemical equivalent 电化当量electrochemical grinding 电化研磨electrochemical series 电化序electrocoating 电咏护膜,电着护膜electrode materials 电极材料electrode potential 电极电位electrode ring 电极环electrodeposition 电[淀]积electroformed diamond blade 电铸钻石刀片electrofusion 电熔electrokinetics 动电常electroless plating 无电镀金electrolysis 电解electrolysis treatment 电解处理electrolyte 电解质electrolytic cell 电解电池electrolytic cleaning 电解清洁法electrolytic copper 电解铜electrolytic de-rusting 电解去锈electrolytic deflash 电解树脂残渣去除electrolytic discharge aided grinding machine 电解放电辅助研磨机electrolytic dissociation 电[解]离解electrolytic etching 电 [解]浸蚀electrolytic hardening 电[解]硬化electrolytic ionized water /electrolysis-ionized water 电解电离水electrolytic iron 电解铁electrolytic pickling 电解浸洗electrolytic polishing 电解抛光electrolytic powder 电解粉未electrolytic protection 电解防蚀法electrolytic refining 电解精炼electrolytic solution tension 电解溶压electrolytic toughpitch copper 电解勒炼铜electrolytical series 电解序列electromagnet 电磁体,电磁铁electromagnetic forming 电磁成形electromagnetic lens 电磁透镜electromagnetic wave 电磁波electromechanical polishing 电解机械抛光electrometallurgy 电化冶金,电冶学electromotive force series 电动势序electron alloy 伊兰镁合金(含铝锌镁基合金)electron balance 电子天秤electron beam 电子束electron beam annealer 电子波束退火处理机红electron beam cell mask 电子束功能电路胞光罩electron beam control 电子束控制electron beam evaporation system 电子束蒸镀系统electron beam exposure system 电子波束曝光系统electron beam melting furnace 电子束熔解炉electron beam prober 电子波束探针electron beam test system 电子波束测试系统electron beam welding 电子束熔接electron beam zone-refining 电子束区带精炼electron cloud 电子云electron compound 电子化合物electron configuration 电子组态electron coupling resonance (ecr)plasma enhanced cvd systemecr 等离子体增强型cvd 系统electron coupling resonance (ecr)sputtering system 电子耦合谐振溅镀系统electron cyclotron resonance 电子回旋加速器共振electron cyclotron resonance etching system 电子回旋加速器共振蚀刻系统electron diffraction pattern 电子绕射图electron diffratction 电子线绕射electron flood gun 淹没式电子枪,电子流枪electron furnace iron 电炼生铁electron gun 电子枪electron lens 电子透镜electron microscope 电子显微镜electron negative potential 电子负电位electron optics 电子光学electron pair 电子隅electron photomicrograph 电子显微照片electron probe micro analysis 电子探针微分析electron probe microanalysis 电子探针分析electron probe microanalyzer 电子探测显微分析仪electron ratio 电子比electron shading effect 电子遮掩效应electron spin 电子自旋electron suppressor 电子抑制器electron volt 电子伏特electron wave 电子波electronic charge 雯子电荷electronic design automation(eda)电子设计自动化electronic design interchange format(edif)电子电路设计互换格式electronic polarization 电子极化electronic system design automation tool 电子系统自动设计工具electrophoresis 电咏electrophoretic plating 电咏镀electropositive potential 正电位electroslag remelting process 电渣再熔法electroslag welding 电渣熔接electrostatic chuck 静电夹头,静电夹盘electrostatic discharge protection 静电放电保护electrostatic fluidized bed 静电浮床electrostatic mineral separation 静电矿物分离机electrostatic precipitation 静电沉积electrostatic scan 静电扫描electrostatic separation 静电分离electrostatic spraying 静电喷涂electrothermal equivalent 电热当量electrothermic method 电热法electrotype 电铸板electrotyping 电铸版术electrovalent compound 电价化合物electrowinning 湿式电冶eletrode1. 电极2.熔接条eletrum 白黄金(40-50%au, 其余为ag)elevator kiln 升降窑elevator unit 升降机单元elinvar [steel] 恒弹性钢elphal 依尔花法,钢皮差面沉积纯铝法eluant solution 洗涤液elutriation 淘析(液体中分离大小,粉未颗粒的方法)email sur bisque 素三彩emaillieuen 插画珐琅embeded array 埋入行阵列embeded system 埋入型系统embossing 浮花压制法压凸embrittlement 脆性emerg colth[ 金钢]砂布emerg paper[ 金钢]砂纸emergizer 促进剂(渗碳)emery 钢砂,钢石粉emission electrton microscope 发射电子显微镜emissivity 发射率emissivity correction 发射率校正emitter 射极empirical proportioning 经验配合emulator 模拟除错器emulsified oil quenching 乳化油卒火emulsion 乳液,乳胶emulsion cleaner 乳化清洁剂enamel1. 搪瓷2.瓷漆enamel coating 搪瓷护膜enamel color 珐琅色彩enamel glaze 珐琅釉enamel paint 瓷漆enameled iron ware 搪瓷[铁]器enameled wire 漆包线enamelling 施珐琅;搪瓷enamelling iron 搪瓷胎铁encapsulation 封装enclosure 夹杂物,包壳encoustic tile 彩纹瓦end arch 端拱砖end chipping 最终结晶屑end skew 端斜砖end wall 端墙end-station 终端站endless band saw 环型条带锯endothermic gas 叹热型气体(热处理保护气) endothermic reaction 吸热反应endurance limit (fatingue limit)疲劳限endurance ratio 疲劳比endurance strength 疲劳强度endurance test 疲劳试验enduron 安久乐(一悝含铬钼矽之铁系耐蚀合金) energy band 能带energy contamination 能量污染,杂质能量energy gap 能隙energy level 能阶,能准位energy packet 能,束enfield rolling mill 恩菲德巴钢机engine-turning lathe 机动车床engineering change order 工程变更次序engineering work station(ems)工程工作站english 中文english bond 英式砌法english crystal 高铅水晶玻璃english white 白垩engobe 化粧土;釉底料engravers brass 刻版黄铜(一种含铅黄铜) engraving 刻花enhanced global alignment 增强型全晶圆调准enriched uranium 浓缩铀enrichement 浓缩enthalpy 焓entrained air 输气(混凝土)entrapped air 陷入空气(混凝土)entropy 熵environment control 环境控制environmental scanning electron microscope 环境控制扫描型电子显微镜epitaxial growth 叠晶生长,同轴生长(晶体)epitaxial growth system 磊晶生长系统epitaxial wafer 磊晶晶圆epithermal neutrons 超热中子(具有在分裂中子与热中子间能量之中子)epoxy resin 环氧树鲁epsilon carbideε 碳化物epsilon compoundsε 佮合物(电子比为7:4,例如cuzn3)equations of state 状态方程式equi-blast cupola 等吹熔铁炉equiaxial polytggonal grain 等轴多角形晶粒equicohesive temperature 等结合温度(晶粒内晶粒界强度相等时之温度)equigranular 等粒状equilibrium (phase)平衡equilibrium diagram 平衡图equilibrium potential 平衡电位equilibrium segregation 平衡偏析equilibrium segregation coefficient 平衡偏析系数equilibrium state 平衡状态equivalence factors 当量因素equivalent fault 等效故障equivalent section 比量断面equivalent weight 当量equlibrium 平衡erase error 删除错误erase error allowance 删除错误容限erase fail 删除失误erbium (er,68)铒erichsen [cupping] test 爱理逊压凹试验ermalite 艾马来铁(高延性铸铁)ernst hardness tester 恩氏硬度计erosion 冲蚀erosion-corrosion 阵蚀,腐蚀erosion-resistrance 耐冲蚀性erubescite 硫铜石,斑铜矿(cu2fes3)ester 酯estimated wire length 估计布线长度etch back 回蚀etch bands 浸蚀带etch fiqure 蚀迹etch pit density 腐蚀坑密度etch rate 蚀刻速率etch residue 蚀刻残余物etch selectivity raito 蚀刻选择比,蚀刻选择性etch uniformity 蚀刻均质性etchant 浸蚀液,蚀刻液etched wafer 经蚀刻晶圆etching1 蚀刻2浸蚀etching chamber 蚀刻处理室etching end point detection 蚀刻终点检测etching pit 蚀乙etching system 蚀刻系统etching wafer 刚蚀刻晶圆ethyl silicate 矽乙酯ettinghausen effect 埃丁赫逊效应(晶体之一种物理效应) eucryptite 锂霞石eureka 尤瑞卡铜(电阻线之一种,近似康史登铜) europium (eu, 63)铕eutectic 共晶eutectic alloy 共晶合金eutectic bonding 共晶接合eutectic carbide 共晶碳化物eutectic cast iron 共晶铸铁eutectic cell 共晶单胞eutectic cementite 共晶雪明碳体(铁)eutectic colong 共晶集团eutectic graphite 共晶石墨eutectic mixture 共晶混合物eutectic reaction 兆晶反应eutectic temperature 共晶温度eutectoid 共析eutectoid alloy 共析合金eutectoid cementite 共析雪明碳体(铁)eutectoid composition 共析成分eutectoid ferrite 共析肥粒体(铁)eutectoid hardening 共析硬化eutectoid line 共析线eutectoid point 共析点eutectoid reaction 共析反应eutectoid steel 共析钢eutectoid structure 共析组织eutectoid temperature 共析温度eutectoid transformation 共析变态evacuated wet etching system 减压抽气浸渍式蚀刻系统evanohm 艾文姆台金(一种镍铬铝铜合金) evaporation coefficient 蒸发系数evaporation loss 蒸发损失evaporation material 蒸发材料evaporation ratio 蒸发比evaporation source 蒸发源event driven simulator 事件驱动模拟器everdur 艾未狄合金(一种矽青铜)ewald chart 厄互特图(x-ray)exb magnetron sputtering system 直交电磁场型溅镀系统excavator 挖掘机exchange energy 互换能exchange force 互换力exchange-cunent density 交换电流密度excimer laser stepper 准分子雷射步进机excitation 激发,激励exciting level 激励准位excluding backside deposition 防止背面沉积exclusing backside deposition 防止背面沉积exfoliation 表皮脱落exhaust for developer 显影剂排放exhaustion creep 耗竭潜变exogenous metallic inclusion 外来金属夹杂物exothermic reaction 放热反应exothermic-base atmosphere 放热式蒙气,放热式炉器expand stage 黏胶片扩展夹片台expanded metal 展成金属(网)expanded r-field 扩张r 区expanding metals 胀大金属(铋合金)expansion 展开expansion coefficient 膨胀系数expansion ratio 晶圆黏胶片扩展率expansion scab 膨胀剥砂expectation value pattern 期待值图案expected pattern 预期图案explosibility 爆炸性explosion testing 爆炸试验explosion welding 爆炸熔接explosive antimony 爆炸锑explosive bonding 爆炸接合explosive forming 爆炸成形explosive pressing 爆炸压制exposed area ratio 蚀刻面积率,曝光面积率exposure 曝光extended dislocation 扩展差排extension board 延伸接线板;扩张接线板extensometer 伸长计external gettering 外部吸器external torch unit 外界火炬装置external upset 向外锻粗锻件external upset forging 向外锻粗external upsetting 向外锻粗法extra dense flint 特火石玻璃extra light flint 特轻火石玻璃extra-hard cold work 特硬级冷加工(冷巴至断面缩小50.0%) extra-spring-hared cold work 特弹簧硬冷加工(冷巴至断面缩小68.7%)extraction electrodes 提取电极extraction replica 萃取印模(电子显微镜)extraction voltage 提取电压extractive metallurgy 提炼冶金学extrapolation of creep data 潜变数据外推法extrinsic gettering 非本徵吸器extrinsic semi-conductor 他激半导体,他半导体extrudability 挤制性extruding 挤延extrusion1 凸出(疲劳滑动面)2挤裂extrusion cold 冷挤制extrusion, backward 逆向,挤制extrusion, forward 顺向,挤制extrusion, hydrostatic 液压挤制extrusion, impact 冲击,挤制extrusion, reducing 减缩,挤制eyelet 小孔eyeleting 小眼圈eyepies 目镜。
电渣重熔
电渣重熔免费编辑添加义项名材料电渣重熔钢(electroslag remelting)是利用电流通过熔渣时产生的电阻热作为热源进行熔炼的方法。
中文名称电渣重熔外文名称electroslag remelting主要目的提纯金属热源主要目的其主要目的是提纯金属并获得洁净组织均匀致密的钢锭。
经电渣重熔的钢,纯度高、含硫低、非金属夹杂物少、钢锭表面光滑、洁净均匀致密、金相组织和化学成分均匀。
电渣钢的铸态机械性能可达到或超过同钢种锻件的指标。
电渣钢锭的质量取决于合理的电渣重熔工艺和保证电渣工艺的设备条件。
主要产品电渣重熔的产品品种多,应用范围广。
其钢种有:碳素钢、合金结构钢、轴承钢、模具钢、高速钢、不锈钢、耐热钢、超高强度钢、高温合金、精密合金、耐蚀合金、电热合金等400多个钢种。
此外,可用电渣法直接熔铸异形铸件,可以铸代锻,简化生产工序,提高金属的利用率。
主要作用电渣熔铸工艺从根本上解决了一般铸造工艺的主要矛盾,它综合了电渣重溶-获得高冶金质量的金属和铸造-浇铸异型零件精化毛坯的长处,并具有与普通冶炼的变形金属相近的致密组织以及无各向异性的特点。
与普通锻件相比,电渣熔铸件的各项性能指标完全达到同钢种的变型金属指标,甚至还避免了锻件的一些不足之处。
应用成果近些年来,电渣熔铸新工艺逐渐引起了国内外工程技术界的重视,许多工业部门在加紧研究和使用电渣熔铸产品。
在发展这项新工艺方面,原苏联、日本和美国的研究成果较多,其次是西德、捷克斯洛伐克、英国、瑞典和法国。
东北大学电冶金研究室在发展电渣熔铸新工艺以及研制使用它的异型件方面取得了以下成果:?电渣熔铸冷轧辊、阀体、三通管、厚壁中空管、石油裂解炉管、齿轮毛坯、各种模具(包括冲压模具)和柴油机曲轴等。
目前,国外著名的电渣炉制造厂家,如美国的CONSARC、德国的ALD和奥地利的INTECO等公司均采用基于PLC和工控机的2级计算机控制系统,能实现整个重熔过程的设备和工艺的全自动控制。
Review of maglev train technologies
Review of Maglev Train TechnologiesHyung-Woo Lee1,Ki-Chan Kim2,and Ju Lee2Korea Railroad Research Institute,Uiwang437-757,KoreaDepartment of Electrical Engineering,Hanyang University,Seoul133-791,KoreaThis paper reviews and summarizes Maglev train technologies from an electrical engineering point of view and assimilates the results of works over the past three decades carried out all over the world.Many researches and developments concerning the Maglev train have been accomplished;however,they are not always easy to understand.The purpose of this paper is to make the Maglev train technologies clear at a glance.Included are general understandings,technologies,and worldwide practical projects.Further research needs are also addressed.Index Terms—EDS,EMS,Maglev train,magnetic guidance,magnetic levitation,magnetic propulsion.I.I NTRODUCTIONA LONG with the increase of population and expansionin living zones,automobiles and air services cannot afford mass transit anymore.Accordingly,demands for in-novative means of public transportation have increased.In order to appropriately serve the public,such a new-generation transportation system must meet certain requirements such as rapidity,reliability,and safety.In addition,it should be convenient,environment-friendly,low maintenance,compact, light-weight,unattained,and suited to mass-transportation.The magnetic levitation(Maglev)train is one of the best candidates to satisfy those requirements.While a conventional train drives forward by using friction between wheels and rails,the Maglev train replaces wheels by electromagnets and levitates on the guideway,producing propulsion force electromechanically without any contact.The Maglev train can be reasonably dated from1934when Hermann Kemper of Germany patented it.Over the past few decades since then,development of the Maglev train went through the quickening period of the1960s,the maturity of the1970s–1980s,and the test period of the1990s,finally accomplishing practical public service in2003in Shanghai, China[1]–[4].Since the Maglev train looks to be a very promising solu-tion for the near future,many researchers have developed tech-nologies such as the modeling and analysis of linear electric machinery,superconductivity,permanent magnets,and so on [5]–[25].The Maglev train offers numerous advantages over the con-ventional wheel-on-rail system:1)elimination of wheel and track wear providing a consequent reduction in maintenance costs[26];2)distributed weight-load reduces the construction costs of the guideway;3)owing to its guideway,a Maglev train will never be derailed[96];4)the absence of wheels removes much noise and vibration;5)noncontact system prevents it from slipping and sliding in operation;6)achieves higher grades and curves in a smaller radius;7)accomplishes acceleration and de-celeration quickly;8)makes it possible to eliminate gear,cou-pling,axles,bearings,and so on;9)it is less susceptible toDigital Object Identifier10.1109/TMAG.2006.875842TABLE IC OMPARISON OF M AGLEV AND W HEEL-ON-R AIL SYSTEMS weather conditions.However,because there is no contact be-tween rails and wheels in the Maglev train,the traction mo-tors must provide not only propulsion but also braking forces by direct electromagnetic interaction with the rails.Secondly, the more weight,the more electric power is required to support the levitation force,and it is not suitable for freight.Thirdly, owing to the structure of the guideway,switching or branching off is currently difficult.Fourthly,it cannot be overlooked that the magneticfield generated from the strong electromagnets for levitation and propulsion has effects on the passenger compart-ment.Without proper magnetic shielding,the magneticfield in the passenger compartment will reach0.09T atfloor level and 0.04T at seat level.Suchfields are probably not harmful to human beings,but they may cause a certain amount of inconve-nience.Shielding for passenger protection can be accomplished in several ways such as by putting iron between them,using the Halbach magnet array that has a self-shielding characteristic, and so on.[27],[79].Table I shows the comparison of Maglev and wheel-on-rail systems.In all aspects,Maglev is superior to a conventional train.Table II represents the comparison of characteristics of the mass transportation systems provided by the Ministry of Trans-portation in Japan.It is appreciable from the tables that the ten-dency of global transportation is toward the Maglev train.Ac-cordingly,it is necessary to be concerned and understand all0018-9464/$20.00©2006IEEETABLE IIC OMPARISON OF C HARACTERISTICS OF THE M ASS T RANSPORTATION SYSTEMSparison of support,guidance,and propulsion.(a)Wheel-on-rail system.(b)Maglev system.technologies including magnetic levitation,guidance,propul-sion,power supply,and so on.II.T ECHNOLOGY A SPECTSState-of-the-art Maglev train technologies are investigated.Fig.1illustrates the difference between the conventional train and the Maglev train.While the conventional train uses a rotary motor for propulsion and depends on the rail for guidance and support,the Maglev train gets propulsion force from a linear motor and utilizes electromagnets for guidance and support.A.LevitationTypically,there are three types of levitation technologies:1)electromagnetic suspension;2)electrodynamic suspension;and 3)hybrid electromagnetic suspension.1)Electromagnetic Suspension (EMS):The levitation is ac-complished based on the magnetic attraction force between a guideway and electromagnets as shown in Fig.2.This method-ology is inherently unstable due to the characteristic of the mag-netic circuit [28].Therefore,precise air-gap control is indis-pensable in order to maintain the uniform air gap.Because EMS is usually used in small air gapslike 10mm,as the speed be-comes higher,maintaining control becomes dif ficult.However,EMS is easier than EDS technically (which will be mentioned in Section II)and it is able to levitate by itself in zero or low speeds (it is impossible with EDS type).In EMS,there are two types of levitation technologies:1)the levitation and guidance integrated type such as Korean UTM and Japanese HSST and 2)the levitation and guidance sepa-rated type such as German Transrapid.The latter is favorable for high-speed operation because levitation and guidancedoFig.2.Electromagnetic suspension.(a)Levitation and guidance integrated.(b)Levitation and guidanceseparated.Fig.3.Electrodynamic suspension.(a)Using permanent magnets.(b)Using superconducting magnets.not interfere with each other but the number of controllers in-creases.The former is favorable for low-cost and low-speed op-eration because the number of electromagnets and controllers is reduced and the guiding force is generated automatically by the difference of reluctance.The rating of electric power supply of the integrated type is smaller than that of the separated type,but as speed increases,the interference between levitation and guidance increases and it is dif ficult to control levitation and guidance simultaneously in the integrated type [29].In general,EMS technology employs the use of electromag-nets but nowadays,there are several reports concerning EMS technology using superconductivity,which is usually used for EDS technology [30]–[33].Development of the high-tempera-ture superconductor creates an economical and strong magnetic field as compared with the conventional electromagnets even though it has some problems such as with the cooling system.2)Electrodynamic Suspension (EDS):While EMS uses attraction force,EDS uses repulsive force for the levitation [34]–[46].When the magnets attached on board move for-ward on the inducing coils or conducting sheets located on the guideway,the induced currents flow through the coils or sheets and generate the magnetic field as shown in Fig.3.The repulsive force between this magnetic field and the magnets levitates the vehicle.EDS is so stable magnetically that it is unnecessary to control the air gap,which is around 100mm,and so is very reliable for the variation of the load.Therefore,EDS is highly suitable for high-speed operation and freight.However,this system needs suf ficient speed to acquire enough induced currents for levitation and so,a wheel like a rubber tire is used below a certain speed (around 100km/h).By the magnets,this EDS may be divided into two types such as the permanent magnet (PM)type and the supercon-ducting magnet (SCM)type.For the PM type,the structure is very simple because there is no need for electric power supply.The PM type is,however,used for small systems only because ofLEE et al.:REVIEW OF MAGLEV TRAIN TECHNOLOGIES1919Fig.4.Hybrid electromagneticsuspension.Fig.5.Concept of the linear motor from the rotary motor.the absence of high-powered PMs.Nowadays,a novel PM such as the Halbach Array,is introduced and considered for use in the Maglev train (Inductrack,USA).For the SCM type,the struc-ture is complex,in addition,quenching and evaporation of liquid helium,which are caused from the generated heat of the in-duced currents,may cause problems during operation [49]–[60].Hence,helium refrigerator is indispensable for making the SCM operate.Nevertheless,the SCM type holds the world record of 581km/h in 2003in Japan.3)Hybrid Electromagnetic Suspension (HEMS):In order to reduce the electric power consumption in EMS,permanent mag-nets are partly used with electromagnets as illustrated in Fig.4[61]–[67].In a certain steady-state air gap,the magnetic field from the PM is able to support the vehicle by itself and the elec-tric power for the electromagnets that control the air gap can be almost zero.However,HEMS requires a much bigger vari-ation of the current ’s amplitude as compared with EMS from the electromagnets ’point of view because the PM has the same permeability as the air [68].B.PropulsionThe Maglev train receives its propulsion force from a linear motor,which is different from a conventional rotary motor;it does not use the mechanical coupling for the rectilinear move-ment.Therefore,its structure is simple and robust as compared with the rotary motor [69]–[71].Fig.5shows the concept of the linear motor derived from the rotary motor.It is a conven-tional rotary motor whose stator,rotor and windings have been cut open,flattened,and placed on the guideway.Even though the operating principle is exactly the same as the rotary motor,the linear motor has a finite length of a primary or secondary part and it causes “end effect.”Moreover,the large air gap lowers the ef ficiency.However,the linear motor is superior to the rotary motor in the case of rectilinear motion,because of the less signi ficant amount of vibration and noise that are generated directlyfromFig.6.Linear induction motor (LPtype).Fig.7.Linear synchronous motor (LP type).the mechanical contact of components such as the screw,chain,and gearbox.1)Linear Induction Motor (LIM):The operating principle of the LIM is identical to the induction motor.Space-time variant magnetic fields are generated by the primary part across the air gap and induce the electromotive force (EMF)in the secondary part,a conducting sheet.This EMF generates the eddy currents,which interact with the air-gap flux and so produce the thrust force known as Lorenz ’s force.There are two types as follows.1)Short primary type (SP):stator coils are on board and con-ducting sheets are on the guideway.2)Long primary type (LP):stator coils are on the guideway and conducting sheets are on board as shown in Fig.6.For the LP type,construction cost is much higher than SP type but it does not need any current collector for operation.In high speeds,the LP type is usually used because transfer of energy using a current collector is dif ficult.In the case of the SP type,it is very easy to lay aluminum sheets on the guideway and thereby reduce construction costs.However,the SP type has low energy ef ficiency because of the drag force and leakage inductance caused from the end effect.Secondly,the SP type cannot exceed around 300km/h on ac-count of the current collector.Therefore,the SP type LIM is generally applied for the low –medium speed Maglev trains such as the Japanese HSST or Korean UTM.2)Linear Synchronous Motor (LSM):Unlike the LIM,the LSM has a magnetic source within itself as shown in Fig.7.In-teraction between the magnetic field and armature currents pro-duces the thrust force.The speed is controlled by the controller ’s frequency.According to the field location,there are two types equivalent to the LIM (LP and SP type).Furthermore,there are another two types according to the magnetic field.One of them utilizes the electromagnets with iron-core (German Transrapid)and the other uses the super-conducting magnets with air-core (Japanese MLX).High-speed Maglev trains prefer the LSM because it has a higher ef ficiency and power factor than the LIM.The economical ef ficiency of the electric power consumption is very important for high-speed operation.1920IEEE TRANSACTIONS ON MAGNETICS,VOL.42,NO.7,JULY2006Fig.8.Propulsion-guidance coils used in JapaneseMLU-002.Fig.9.Levitation-guidance coils used in Japanese MLX.Neither the LSM nor the LIM requires sensor techniques for their operation,and they are much alike in reliability and con-trollability but,as mentioned above,either one can be chosen based on speed,construction costs,and so on.C.GuidanceThe Maglev train is a noncontact system that requires a guiding force for the prevention of lateral displacement.As in the case of levitation,the guidance is accomplished electrome-chanically by magnetic repulsive force or magnetic attraction force [72]–[75].1)Using Magnetic Repulsive Force:As shown in Fig.8,by setting the propulsion coils on the left and right sides of the guideway and connecting the coils,the induced electromotive force (EMF)cancels out each other when the train runs in the center of the guideway.However,once a train runs nearer to one sidewall,currents flow through the coils by the EMF induced by the distance difference.This produces the guiding force.In the MLX,by connecting the corresponding levitation coils of both sidewalls as shown in Fig.9,these coils work as a guide system.When a train displaces laterally,circulating currents be-tween these two coils are induced and this produces the guiding force.In the case of the Transrapid,lateral guidance electromag-nets are attached in the side of the vehicle and reaction rails are on both sides of the guideway.Interaction between them keeps the vehicle centered laterally as shown in Fig.12.2)Using Magnetic Attraction Force:As indicated in Fig.14,magnetic attraction force is generated in the way to reduce the reluctance and increase the inductance when the vehicle dis-places laterally.Because energy tends to flow toward small re-luctance,this guides the vehicle centered laterally.Since guid-ance is integrated with levitation,the interference between them makes it dif ficult to run at high speeds.Therefore,guidance using attraction force is used for low –medium speed operation such as the HSST orUTM.Fig.10.LSM design of Transrapid.(Linear generator is inserted in the levita-tion electromagnets).D.Transfer of Energy to VehicleEven though all Maglev trains have batteries on their vehi-cles,electric power supply from the ground side is necessary for levitation,propulsion,on-board electrical equipment,bat-tery recharging,etc.The transfer of energy all along the track involves the use of a linear generator or a mechanical contact based on the operation speed.1)Low–Medium Speed Operation:At low speeds up to 100km/h,the Maglev train,generally,uses a mechanical contact such as a pantograph.As has been pointed out,this is the reason why the SP type-LIM Maglev train is used for low –medium speed.2)High-Speed Operation:At high speeds,the Maglev train can no longer obtain power from the ground side by using a me-chanical contact.Therefore,high-speed Maglev trains use their own way to deliver the power to the vehicle from the ground [76],[77].The German Transrapid train employs the use of a linear generator that is integrated into the levitation electro-magnets as demonstrated in Fig.10.The linear generator de-rives power from the traveling electromagnetic field when the vehicle is in motion.The frequency of the generator windings is six times greater than the motor synchronous frequency.The linear generator is mechanically contact-free,as aspect that is very positive for high-speed operation.However,fluctuation of the induced voltage due to the unevenness of the airgap,and small magnitude of the induced voltage because of the minia-turized inducing coils can be a problem.For MLX,beside a gas turbine generator,two linear gener-ators are considered.The first one utilizes exclusive supercon-ducting coils (500kA)and generator coils at the upper and lower sides as shown in Fig.11(a).The second one utilizes generator coils between superconducting coils and levitation-propulsion coils as shown in Fig.11(b).Because the first one concentrates in the nose and tail of the vehicle,it is called the concentra-tion-type.The second one is known as the distribution-type be-cause it is distributed along the vehicle[101].With speed,these coils generate a variable flux in the upper part of the levitation and guidance fixed coils.Consequently,the lower part (generator coils)sees a variable flux,which crosses the air gap.The variable flux is coupled with on board generatorLEE et al.:REVIEW OF MAGLEV TRAIN TECHNOLOGIES1921Fig.11.Two types of the linear generators used in MLX.(a)Concentration-type.(b)Distribution-type.coils.In other words,a dcflux created by the on-board super-conducting coils is transformed in an acflux,on-board,via a linear transformer[101].III.W ORLDWIDE M AGLEV T RAIN P ROJECTSSince the Maglev train has been studied and developed from the1960s,both German and Japanese Maglev trains have reached industrial levels and test tracks are experienced.In the 1990s,the USA Inductrack,the Swiss Swissmetro,and Korea’s UTM have been intensively studied and some component pro-totypes have been built.The Transrapid in Shanghai,China and the HSST(High Speed Surface Transport)in Nagoya,Japan, have been in public service since December2003and March 2005,respectively.Some projects(Pittsburgh or Baltimore in USA,Seoul in Korea,London in England,and so on)are awaiting approval,and the Munich project in Germany was approved in September2003with public service possible from 2009[78]–[114].Tables III and IV represent the types and characteristics of the Maglev trains“in operation”and“in ready to use”states,respec-tively.The EDS levitation-type Maglev trains such as the MLU, MLX,and Inductrack,especially,need lateral and vertical wheel bogies to guide the vehicle at low speeds(below100km/h). There is one further thing that we cannot ignore.The MLX has higher maximum speed than the Transrapid.For the Transrapid, the maximum synchronous frequency is300Hz,which corre-sponds to limit of the power inverter.Such a limited frequency corresponds to a synchronous speed of around500–550km/h.TABLE IIIC LASSIFICATION OF THE M AGLEV T RAIN IN OPERATIONTABLE IVC LASSIFICATION OF THE M AGLEV T RAIN(R EADY TO U SE)Fig.12.Transrapid[107].However,for the MLX,superconducting technology permits a higher pole pitch(1350mm)than the Transrapid(258mm)and1922IEEE TRANSACTIONS ON MAGNETICS,VOL.42,NO.7,JULY2006Fig.13.Guideway of MLX[104].Fig.14.HSST.a corresponding lower synchronous frequency,72Hz can make 700km/h,which is the speed goal of the Japanese train [101].It is also notable that the low –medium speed Maglev train em-ploys SP-LIM as its propulsion type.Figs.12–14illustrate the Transrapid,infrastructure of the MLX,and the HSST system,respectively.Fig.15represents the diagram of the development of the global Maglev trains in chronological order.IV .C ONCLUSIONThe Maglev train is considered for both urban transportation and intercity transportation systems.In the low –medium speed Maglev train,the operating routine is shorter than the high-speed train.Therefore,EMS technology and LIM is preferred from the construction cost viewpoint.However,in high-speed operation,EDS technology and LSM is preferred for controlla-bility and reliability.In addition,as along with the development of the high temperature superconductor and new type of perma-nent magnets,stronger magnetic energy that is more cost effec-tive will be used for the Maglev train.Authors are sure that this technology can be utilized for not only train application but also aircraft launching systems and spacecraft launchingsystems.Fig.15.Development diagram of the global Maglev train.The need for a new and better transportation system has en-couraged many countries to be interested in and attempt to de-velop the Maglev train.However,even though the Maglev train has been studied and developed for approximately half a cen-tury,only a few countries have the knowledge and expertise to do so.This review paper tried to describe the present complete system in detail and summarize foundational core technologies of the Maglev train from an electrical engineering point of view.It is certain that this review paper will be helpful for persons who are interested in this matter to assimilate the Maglev train tech-nologies including magnetic levitation,propulsion,guidance,and power supply system.It only remains to be said that besides core technologies,there is still the need to obtain a better understanding of how various factors may in fluence the system.For example,the dynamic be-havior of the vehicle with the in fluence of the guideway may cause the mechanical dynamic resonance phenomena;air vibra-tion rattles the windows of buildings near tunnel portals when a Maglev train enters or leaves a tunnel at high speed;the pas-senger safety issue is not considered fully;vehicle vibration generated from the rough guideway construction also remains.And furthermore,cost-effectiveness is still undecided.A CKNOWLEDGMENTThe authors would like to thank Dr.Y.Lee and Dr.S.Lee,Korea Railroad Research Institute (KRRI),for their support.R EFERENCES[1]S.Yamamura,“Magnetic levitation technology of tracked vehiclespresent status and prospects,”IEEE Trans.Magn.,vol.MAG-12,no.6,pp.874–878,Nov.1976.[2]P.Sinha,“Design of a magnetically levitated vehicle,”IEEE Trans.Magn.,vol.MAG-20,no.5,pp.1672–1674,Sep.1984.[3]D.Rogg,“General survey of the possible applications and developmenttendencies of magnetic levitation technology,”IEEE Trans.Magn.,vol.MAG-20,no.5,pp.1696–1701,Sep.1984.[4]A.R.Eastham and W.F.Hayes,“Maglev systems development status,”IEEE Aerosp.Electron.Syst.Mag.,vol.3,no.1,pp.21–30,Jan.1988.[5]E.Abel,J.Mahtani,and R.Rhodes,“Linear machine power require-ments and system comparisons,”IEEE Trans.Magn.,vol.14,no.5,pp.918–920,Sep.1978.LEE et al.:REVIEW OF MAGLEV TRAIN TECHNOLOGIES1923[6]J.Fujie,“An advanced arrangement of the combined propulsion,levi-tation and guidance system of superconducting Maglev,”IEEE Trans.Magn.,vol.35,no.5,pp.4049–4051,Sep.1999.[7]P.Burke,R.Turton,and G Slemon,“The calculation of eddy losses inguideway conductors and structural members of high-speed vehicles,”IEEE Trans.Magn.,vol.MAG-10,no.3,pp.462–465,Sep.1974. [8]B.-T.Ooi,“Electromechanical dynamics in superconducting levitationsystems,”IEEE Trans.Magn.,vol.MAG-11,no.5,pp.1495–1497, Sep.1975.[9]G.Bohn,“Calculation of frequency responses of electro-magneticlevitation magnets,”IEEE Trans.Magn.,vol.MAG-13,no.5,pp.1412–1414,Sep.1977.[10]S.Aoki,“3-dimensional magneticfield calculation of the levitationmagnet for HSST by thefinite element method,”IEEE Trans.Magn., vol.MAG-16,no.5,pp.725–727,Sep.1980.[11]R.Knowles,“Dynamic circuit and Fourier series methods for momentcalculation in electrodynamic repulsive magnetic levitation systems,”IEEE Trans.Magn.,vol.MAG-18,no.4,pp.953–960,Jul.1982. [12]J.Williams,R.Paul,and J Simkin,“Three-dimensionalfinite-elementmodelling of a superconducting suspension system,”IEEE Trans.Magn.,vol.MAG-19,no.6,pp.2615–2618,Nov.1983.[13]K.Hayafune and E.Masada,“Dynamics of the PM type linear syn-chronous motor for magnetically levitated carrier vehicle,”IEEE Trans.Magn.,vol.MAG-23,no.5,pp.2578–2580,Sep.1987.[14]T.Takahashi and K.Kurita,“Computation of eddy currents induced ina conducting sheet under moving magnets,”IEEE Trans.Magn.,vol.24,no.1,pp.197–200,Jan.1988.[15]M.Tsuchimoto,K.Miya,A.Yamashita,and M.Hashimoto,“An anal-ysis of eddy current and Lorentz force of thin plates under moving mag-nets,”IEEE Trans.Magn.,vol.28,no.2,pp.1434–1437,Mar.1992.[16]T.Saitoh,N.Maki,T.Kobayashi,M.Shibata,and T.Takizawa,“Elec-tromagnetic force and eddy current loss in dynamic behavior of a su-perconducting magnetically levitated vehicle,”IEEE Trans.Appl.Su-percond.,vol.3,no.1,pp.417–420,Mar.1993.[17]J.L.He,D.M.Rote,and H.T.Coffey,“Applications of the dynamiccircuit theory to Maglev suspension systems,”IEEE Trans.Magn.,vol.29,no.6,pp.4153–4164,Nov.1993.[18]H.Fukumoto,Y.Kameoka,K.Yoshioka,T.Takizawa,and T.Kobayashi,“Application of3D eddy current analysis on magnetically levitated vehicles,”IEEE Trans.Magn.,vol.29,no.2,pp.1878–1881, Mar.1993.[19]M.Andriollo,G.Martinelli,A.Morini,and A.Tortella,“FEM calcu-lation of the LSM propulsion force in EMS-MAGLEV trains,”IEEE Trans.Magn.,vol.32,no.5,pp.5064–5066,Sep.1996.[20]D.Albertz,S.Dappen,and G.Henneberger,“Calculation of the in-duced currents and forces for a hybrid magnetic levitation system,”IEEE Trans.Magn.,vol.33,no.2,pp.1263–1266,Mar.1997. [21]K.Yoshida,J.Lee,and Y.J.Kim,“3-D FEMfield analysis in con-trolled-PM LSM for Maglev vehicle,”IEEE Trans.Magn.,vol.33,no.2,pp.2207–2210,Mar.1997.[22]K.Davey,“Analysis of an electrodynamic Maglev system,”IEEETrans.Magn.,vol.35,no.5,pp.4259–4267,Sep.1999.[23]I.Takahashi and Y.Ide,“Decoupling control of thrust and attractiveforce of a LIM using a space vector control inverter,”IEEE Trans.Ind.Appl.,vol.29,no.1,pp.161–167,Jan.–Feb.1993.[24]D.Cho,Y.Kato,and D.Spilman,“Sliding mode and classical con-trollers in magnetic levitation systems,”IEEE Control Syst.Mag.,vol.13,no.1,pp.42–48,Feb.1993.[25]P.K.Sinha,F.B.Zhou,and R.S.Kutiyal,“Fault detection in elec-tromagnetic suspension systems with state estimation methods,”IEEE Trans.Magn.,vol.29,no.6,pp.2950–2952,Nov.1993.[26]J.F.Eastham,M.J.Balchin,P.C.Coles,and D.Rodger,“Comparisonof short primary linear machines for high speed maglev vehicles,”IEEE Trans.Magn.,vol.23,no.5,pp.2338–2343,Sep.1987.[27]J.F.Hoburg,“Modeling maglev passenger compartment static mag-neticfields from linear Halbach permanent-magnet arrays,”IEEE Trans.Magn.,vol.40,no.1,pp.59–64,Jan.2004.[28]E.Riches,“Will Maglev lift off?,”IEE Review,pp.427–430,Dec.1988.[29]S.Kusagawa,J.Baba,K.Shutoh,and E.Masada,“Multipurpose de-sign optimization of EMS-type magnetically levitated vehicle based on genetic algorithm,”IEEE Trans.Appl.Supercond.,vol.14,no.2,pp.1922–1925,Jun.2004.[30]J.R.Hull,“Attractive levitation for high-speed ground transport withlarge guideway clearance and alternating-gradient stabilization,”IEEE Trans.Magn.,vol.25,no.5,pp.3272–3274,Sep.1989.[31]W.Jiasu,W.Suyu,R.Zhongyou,D.Xiaogang,L.Guobin,L.Jisan,Z.Cuifang,H.Haiyu,D.Changyan,and Z.Dequi,“A scheme of Ma-glev vehicle using high Tc bulk superconducters,”IEEE Trans.Appl.Supercond.,vol.9,no.2,pp.904–907,Jun.1999.[32]M.Tsuchiya and H.Ohsaki,“Characteristics of electromagnetic forceof EMS-type maglev vehicle using bulk superconductors,”IEEE Trans.Magn.,vol.36,no.5,pp.3683–3685,Sep.2000.[33]G.Zhang,Y.Fang,F.Song,G.Zhu,and Z.Wang,“Optimal designand FEM analysis of the superconducting magnets of EMS-MAGLEV models using Bi-2223tapes,”IEEE Trans.Appl.Supercond.,vol.14, no.2,pp.1850–1853,Jun.2004.[34]J.Hogan and H.Fink,“Comparison and optimization of lift and dragforces on vehicles levitated by eddy current repulsion for various null and normalflux magnets with one or two tracks,”IEEE Trans.Magn., vol.11,no.2,pp.604–607,Mar.1975.[35]T.Iwahana,“Study of superconducting magnetic suspension and guid-ance characteristics on loop tracks,”IEEE Trans.Magn.,vol.11,no.6, pp.1704–1711,Nov.1975.[36]O.Tsukamoto,Y.Iwata,and S.Yamamura,“Analysis of ride qualityof repulsive type magnetically levitated vehicles,”IEEE Trans.Magn., vol.17,no.2,pp.1221–1233,Mar.1981.[37]R.J.Hill,“Teaching electrodynamic levitation theory,”IEEE Trans.Educ.,vol.33,no.4,pp.346–354,Nov.1990.[38]T.Sakamoto,A.R.Eastham,and G.E.Dawson,“Induced currents andforces for the split-guideway electrodynamic levitation system,”IEEE Trans.Magn.,vol.27,no.6,pp.5004–5006,Nov.1991.[39]J.L.He,Z.Wang,D.M.Rote,and S.Winkelman,“Investigation ofthe stability of AC repulsive-force levitation systems for low-speed ma-glev,”IEEE Trans.Magn.,vol.28,no.5,pp.3315–3317,Sep.1992.[40]E.E.Burkhardt,J.Schwartz,and S.Nakamae,“Analysis of super-conducting magnet(SCM)-ground coil interactions for EDS Maglev coil configurations,”IEEE Trans.Appl.Supercond.,vol.3,no.1,pp.430–433,Mar.1993.[41]E.Leung,M.Dew,G.Samavedam,and B.Gamble,“A study of twodistinct coil designs for a Maglev EDS application,”IEEE Trans.Magn.,vol.30,no.4,pp.2379–2382,Jul.1994.[42]I.-Y.A.Wang and I.Busch-Vishniac,“A new repulsive magnetic lev-itation approach using permanent magnets and air-core electromag-nets,”IEEE Trans.Magn.,vol.30,no.4,pp.1422–1432,Jul.1994.[43]M.Andriollo,G.Martinelli,A.Morini,and A.Scuttari,“Optimizationof the winding configuration in EDS-MAGLEV trains,”IEEE Trans.Magn.,vol.32,no.4,pp.2393–2398,Jul.1996.[44]D.-H.Kim,J.-K.Lee,S.-Y.Hahn,and G.Cha,“New levitation schemewith AC superconducting magnet for EDS MAGLEV system,”IEEE Trans.Magn.,vol.32,no.5,pp.5151–5153,Sep.1996.[45]K.R.Davey,“Electrodynamic Maglev coil design and analysis,”IEEETrans.Magn.,vol.33,no.5,pp.4227–4229,Sep.1997.[46]D.M.Rote and Y.Cai,“Review of dynamic stability of repulsive-forcemaglev suspension systems,”IEEE Trans.Magn.,vol.38,no.2,pp.1383–1390,Mar.2002.[47]J.de Boeij,M.Steinbuch,and H.M.Gutiérrez,“Mathematical modelof the5-DOF sled dynamics of an electrodynamic Maglev system witha passive sled,”IEEE Trans.Magn.,vol.41,no.1,pp.460–465,Jan.2005.[48]——,“Modeling the electromechanical interactions in a null-flux elec-trodynamic Maglev system,”IEEE Trans.Magn.,vol.41,no.1,pp.466–470,Jan.2005.[49]H.Tsuchishima and T.Herai,“Superconducting magnet and on-boardrefrigeration system on Japanese MAGLEV vehicle,”IEEE Trans.Magn.,vol.27,no.2,pp.2272–2275,Mar.1991.[50]M.E.Vermilyea and C.Minas,“A cryogen-free superconductingmagnet design for Maglev vehicle applications,”IEEE Trans.Appl.Supercond.,vol.3,no.1,pp.444–447,Mar.1993.[51]E.A.Scholle and J.Schwartz,“Power dissipation due to vibration-in-duced disturbances in maglev superconducting magnets,”IEEE Trans.Appl.Supercond.,vol.4,no.4,pp.205–210,Dec.1994.[52]M.Andriollo,G.Martinelli,A.Morini,and A.Scuttari,“Minimiza-tion of the induced current effects in the shields of SC coils in EDS-MAGLEV trains,”IEEE Trans.Appl.Supercond.,vol.5,no.2,pp.604–609,Jun.1995.[53]S.Yokoyama,K.Shimohata,T.Inaguchi,T.Takeuchi,T.Kim,S.Nakamura,S.Miyashita,and F.Uchikawa,“A conceptual design of a superconducting magnet for MAGLEV using a Bi-based high-Tc tape,”IEEE Trans.Appl.Supercond.,vol.5,no.2,pp.610–613,Jun.1995.[54]A.Ametani,R.Kato,H.Nishinaga,and M.Okai,“A study of transientinduced voltages on a Maglev train coil system,”IEEE Trans.Power Del.,vol.10,no.3,pp.1657–1662,Jul.1995.。
电渣重熔实验
电渣重熔法去夹杂实验方案电渣重熔法(Electroslag Remelting),简称ESR ,是利用水冷铜模和自耗电极在熔渣中熔化精炼,快速凝固得到高质量钢锭的方法。
该设备以熔渣的电阻做发热源,以炉渣和钢液物化反应清洗钢中夹杂物生产特殊钢和合金。
一、去除夹杂的理论研究渣洗过程中夹杂的去除,主要靠两方面的作用。
一方面是钢中原有的夹杂与乳化渣滴碰撞,被渣滴吸附、同化而随渣滴上浮而去除。
渣洗时,乳化了的渣滴与钢液强烈地搅拌,这样渣滴与钢中原有的夹杂,特别是大颗粒夹杂接触的机会就急剧增加。
由于渣和夹杂间的界面张力 бS-1远小于钢液与夹杂间的界而张力бm-1,(据资料介绍,渣与夹杂之间的润湿角бS-1=15-20º,而钢液与夹杂之间的润湿角бm-1=120-170º)所以钢中夹杂很容易被与它碰撞的渣滴所吸附,如图10 所示。
图10 润湿角示意图渣洗工艺所用的合成渣大都选用CaO 、Al 2O 3系,均是氧化物熔体,而夹杂大都也是氧化物,所以被渣吸附的夹杂比较容易溶解于渣滴中,这种溶化过程称为同化。
夹杂被渣滴所同化而使渣滴长大,加速了渣滴的上浮过程。
另一方面是促进了二次反应产物的排出,从而使成品钢中夹杂数量减少。
特别是当用C 12A 7渣系精炼时,由于其比重小、空心状、熔点低,,故易上浮。
假定在冶炼的出钢时用金属脱氧剂M 进行终脱氧,脱氧元素在钢液中残留含量为[M]。
若因出钢时钢液的二次氧化使[O]增加,以及钢液温度的下降,建立的[M]与[O]的平衡必然被破坏,而再次进行[M]与[O]的反应,也就是M 的二次脱氧(二次反应)。
倘若二次反应要依靠自发形核,那么新相形成所必须的自由能增加就要求有较大的过饱和度来提供。
也就是说当实际的氧含量略大于与[M]相平衡的[O]P 时,M 的脱氧反应不能进行,只有当温度进一步降低时,反应才能进行,此时所形成的反应产物其本上都作为夹杂留在钢中。
而渣洗过程中,乳化渣滴表面可作为进一步脱氧反应新相形成的晶核。
提高乳酸菌加工与胃肠耐受性的策略与新技术
许琼耀,王娟,廖宁,等. 提高乳酸菌加工与胃肠耐受性的策略与新技术[J]. 食品工业科技,2023,44(20):1−10. doi:10.13386/j.issn1002-0306.2023030350XU Qiongyao, WANG Juan, LIAO Ning, et al. Strategies and New Technologies for Improving the Tolerance of Lactic Acid Bacteria to Processing and Gastrointestinal Environments[J]. Science and Technology of Food Industry, 2023, 44(20): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030350· 青年编委专栏—益生菌与抗菌肽(客座主编:孙志宏、付才力) ·提高乳酸菌加工与胃肠耐受性的策略与新技术许琼耀,王 娟,廖 宁,刘冠闻,李颖慧,尚欣哲,盖逸萱,王聪聪,师俊玲*(西北工业大学生命学院,陕西西安 710072)摘 要:活性乳酸菌产品因其良好的益生功效越来越受到人们的青睐,市场需求量不断增大。
然而,受乳酸菌厌氧和热敏感性的限制,以及加工中加热和氧气胁迫的影响,产品中活性乳酸菌数量大幅度下降。
进入体内的活性乳酸菌在胃液高酸性和肠道高胆汁酸等复杂环境的胁迫下进一步降低,严重影响产品的益生功效。
为此,人们在提高乳酸菌对热、氧气、胃肠环境耐受性方面进行了大量研究,并开发了系列新技术,但缺乏彼此间的综合对比与分析。
本文围绕如何提高乳酸菌的加工存活率,以及胃肠耐受性和肠道递送问题,对静电纺丝、静电喷雾、乳滴技术、多酚纳米盔甲、热诱导预处理等新技术的作用效果进行了总结与对比,以期为相关研究和技术应用提供参考。
电渣重熔的发展及其趋势
电渣重熔的发展及其趋势李孝根内蒙古科技大学材料与冶金学院09冶金2班 0961102226摘要:简要地回顾了电渣重熔工艺在近几十年的发展与创新。
对电渣重熔技术发展过程中的一些重要工艺,如快速重熔、保护气氛下的电渣重熔等进行了简单的描述。
这些技术在改善传统电渣冶金工艺局限性的同时,进一步发挥了电渣重熔的优越性,使电渣重熔显示了更宽广的应用前景。
并简要地讨论了电渣重熔工艺在21世纪的发展趋势。
关键词:电渣重熔导电结晶器电渣快速重熔保护气氛下的电渣重熔Development and Tendency of Electroslag RemeltingAbstract :The development and achievement of technology of Electroslag Remelting (ESR) in near decades has been reviewed briefly in this text. Some important technologies in the evolution of ESR,such as Electroslag Rapid Remeltiong (ESRR) ,Electroslag Remelting under gases ,etc. were introduced briefly . With the development of these techniques,which avoid some disadvantages existing in the traditiongal ESR,the ESR is entitled to wider range application. And the development trend of the technology of ESR in the 21th century is discussed.Key Words :ESR ,Current conductive mold(CCM) ,ESRR ,ESR under gases 前言电渣重熔是一种在世界范围内广泛应用于优质钢生产的重熔工艺。
Luxfer MEL Technologies Elektron WE43B高强度镁基铸造合金说明书
DATASHEET• 467†Elektron® WE43BElektron WE43B is a high strength magnesium based casting alloy developed and patented by Luxfer MEL Technologies for use at temperatures up to 300˚C. This alloy system maintains its good mechanical properties at elevated temperatures, without the use of either silver or thorium. The alloy is stable for long term exposure up to 250˚C. Elektron WE43B has excellent corrosion resistance characteristics.ApplicationsThe excellent retention of properties at elevated temperatures will be of interest to designers of aeroengines and other power systems, helicopter transmissions, missiles, racing and high performance cars.SpecificationsUNS No. M18430ASTM B80AMS 4427MAM 4427AECMA MG-C96002ISO 16220: MC95310Chemical compositionYttrium 3.7–4.3%Rare earths 2.4–4.4% Zirconium 0.4% min Magnesium BalanceHeat treatmentThe alloy develops its optimum properties in the fully heat treated condition ie:Solution heat treat for 8 hours at 525˚C,Air cool, hot water or polymer quench,Age for 16 hours at 250˚C, Air cool.Physical propertiesSpecific gravity 1.84 Coefficient of thermal expansion 26.7 x10-6K-1 Thermal conductivity 51 Wm-1K-1 Specific heat 966 Jkg-1K-1 Electrical resistivity 148 nΩm Modulus of elasticity 45 x 103 MPa Poissons ratio 0.27Melting range 540–640˚C Damping index 0.09Vickers hardness 85–105 Design dataMinimum specification tensile properties:0.2% proof stress 172 MPa Tensile strength 220 MPa Elongation 2%Other propertiesCastabilityFine grained and pressure tight with good casting characteristics.Pattern makers shrinkage factor1.5%WeldabilityFully weldable by the tungsten arc inert gas (TIG) process, using filler rods of the parent alloy composition.MachiningElektron WE43B castings, like all magnesium alloy castings, machine faster than any other metal. Providing the geometry of the part allows, the limiting factor is the power and speed of the machine rather than the quality of the tool material. The power required per cubic centimetre of metal removed varies from 9 to 14 watts per minute depending on the operation.Surface treatmentNormal protective treatments apply for ElektronWE43B but some chromating baths may need to be modified for the satisfactory treatment of castings.Please refer to Luxfer MEL Technologies Design Guide.Corrosion resistanceASTM B117 salt spray testCorrosion rate 0.1–0.2 mg/cm 2/day10 mpyAmbient temperature mechanical propertiesTypical tensile properties 0.2% proof stress 185 MPaTensile strength265 MPaElongation 7%Typical compressive properties 0.2% proof stress 187 MPaUltimate strength 323 MPaTypical shear properties Ultimate stress160 MPaFracture toughness K IC15.9 MPa m 1/2Fatigue properties140120100806040104105106107108Cycles of stressM a x i m u m s t r e s s (M P a )Figure 1. Rotating bend fatigue test.Figure 2. Effect of temperature on tensile properties.Figure 3. Stress / time relationship for specified creep strains at 200˚C.Figure 4. Stress / time relationship for specified creep strains at 250˚C.Figure 5. Rotating bend fatigue test.Elevated temperature mechanical propertiesTypical tensile properties300200100001002003001020304050E l o n g a t i on %Temperature (˚C)S t r e s s (M P a )Tensile strength0.2% proof stressElongation300200100001002003001020304050E l o n g a t i o n %Temperature (˚C)S t r e s s (M P a )Tensile strength0.2% proof stressElongationCreep properties9070805060304010101001000500020S t r e s s (M P a )0.5%0.1%0.2%Time (Hrs)9070805060304010101001000500020S t r e s s (M P a )0.5%0.1%0.2%Time (Hrs)Fatigue propertiesDiscover more at@LuxferMELTechLuxfer MEL Technologies Elektron Technology CentreLumns Lane, Manchester, M27 8LN, UK T +44 (0) 161 911 1000Luxfer MEL Technologies500 Barbertown Point Breeze Road Flemington, NJ 08822, USA T +1 908 782 5800Luxfer MEL Technologies4601 Westown Parkway Suite 130West Des Moines, IA 50266T +1 515 421 4100Certificate No. FM12677†The information contained within is meant as a guideline onlyCopyright © Luxfer MEL Technologies 2018. The information provided within this document is aimed to assist manufacturers andother interested parties in the use of Luxfer MEL Technologies products. Luxfer MEL Technologies accepts no liability in whole or in part from use and interpretation of the data herein. All information is given in good faith but without warranty. Freedom from patent rights must not be assumed. Health and Safety information is available for all Luxfer MEL Technologies products. DS-1021-1118Table 1. Cut up properties on samples taken from actual castings.。
钠冷快堆控制棒驱动机构用GH1059合金动导管的试制
试验与研究19钠冷快堆控制棒驱动机构用G H1059合金动导管的试制+高佩h2(1.江苏银环精密钢管有限公司,江苏宜兴214203; 2.江苏大学材料科学与工程学院,江苏镇江212013)摘要:采用真空感应+保护气氛电渣重熔冶炼出GH1059合金,经过锻造+热挤压+两个道次冷轧工艺成功研制出外径186 mm/内径104 m m的动导管5检测结果表明:GH1059合金动导管表面质量及尺寸精度优良,基体为全奥氏体组织,平均晶粒尺寸约为78.23 (x m,晶内有近似圆形的含Cr、Fe、Ni、M o的碳化物,晶内及晶界还有呈片层状的富Cr、Mo的碳化物;动导管的拉伸性能、硬度、冲击韧性、耐铜-硫酸铜-16%硫酸及硝酸的腐蚀性能优良。
国产化GH1059合金动导管的各项指标均满足其使用要求。
关键词:合金无缝管;G H1059;动导管;钠冷快堆;控制棒驱动机构DOI: 10.19938/j.steelpipe. 1001-2311.2021.2.19.23 开放科学(资源服务)标识码(0SID) :Trial Production of GH1059 Alloy Guide Tube for Control-rod Drive Mechanism of Sodium-cooled Fast ReactorGAO Pei1.2(1. Jiangsu Yinhuan Precision Steel Tube Co., Ltd., Yixing 214203, China;2. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013,China )A b s t r a c t:The GH1059 alloy is made via the vacuum-induction and protective atmosphere electroslag remelting process. Then the guide tube with OD 186 mm and ID 104 mm is successfully manufactured by means of the processes, namely forging,hot-extrusion, and 2-pass cold-rolling. The inspection and testing results of the tube show that the GH1059 alloy guide tube features excellent surface quality and dimensional accuracy, full austenite structure matrix with average grain size of about 78.23 ^Jim; approximately circular carbides containing Cr, Fe, Ni and Mo are distributed in the grains, while the lamellar carbides rich in Cr and Mo are distributed in the grains and at the grain boundary as well; and the guide tube also has excellent tensile properties, hardness and impact toughness, and corrosion resistance against copper-copper sulfate-16% sulfuric acid and nitric acid.The localized GH1059 alloy guide tube has all of its technical indexes up to relevant application requirements.K e y w o r d s:alloy seamless tube; GH1059; guide tube; sodium-cooled fast reactor; control-rod drive mechanism钠冷快堆作为第四代6个先进核能系统堆型之 一,具有极高的安全性,能显著提高铀的利用率并 大幅度减少核废物,有效防止核扩散。
介绍电子工程的英语作文
介绍电子工程的英语作文Title: Introduction to Electronic Engineering。
Electronic engineering is a dynamic and rapidly evolving field that plays a crucial role in shaping the modern world. It encompasses the study, design, and application of electronic devices, circuits, and systems, enabling the development of technologies that power everything from smartphones to spacecraft. In this essay, we will delve into the fundamentals of electronic engineering, exploring its key principles, applications, and future prospects.### Fundamentals of Electronic Engineering。
At its core, electronic engineering deals with the manipulation of electrical currents to perform various tasks. This involves understanding the behavior of electrons within different materials and designing circuits that can control their movement. Key concepts in electronicengineering include:1. Circuit Theory: This branch of electronic engineering focuses on analyzing and designing electrical circuits comprising components such as resistors, capacitors, inductors, and semiconductor devices like diodes and transistors. Circuit theory forms the foundation upon which more complex electronic systems are built.2. Analog and Digital Electronics: Electronic systems can be broadly categorized into analog and digital domains. Analog electronics deals with continuous signals, while digital electronics processes discrete signals represented as binary digits (bits). Both domains have their unique challenges and applications.3. Signal Processing: Signal processing involves manipulating analog or digital signals to extract information or enhance specific characteristics. It plays a vital role in various applications, including telecommunications, audio processing, and medical imaging.4. Microelectronics: Microelectronics focuses on the design and fabrication of integrated circuits (ICs) containing thousands to billions of electronic components on a single chip. This field drives advancements in computing, telecommunications, and consumer electronics.### Applications of Electronic Engineering。
电渣锭起弧端和电渣锭补缩端的英文
电渣锭起弧端和电渣锭补缩端的英文Electroslag ingot starting arc end and Electroslag ingot shrinkage repair end are two important parts in the process of electroslag remelting.1. Electroslag ingot starting arc endThe starting arc end is the front end of the molten pool in the electroslag remelting process. It is responsible for creating the initial conditions required for stable electroslag remelting and ensuring a continuous and smooth operation of the process.In this part, the arc is ignited and the initial molten pool is formed. A stable arc is maintained between the electrode and the molten pool, and the heat generated by the arc is used to melt the metal material and form a molten pool.2. Electroslag ingot shrinkage repair endThe shrinkage repair end is the rear end of the molten pool in the electroslag remelting process. It is responsible for compensating for the volume shrinkage of the solidifying ingot during the cooling process.In this part, the molten metal is added to the rear end of the molten pool using a special feeding device. The added molten metal compensates for the shrinkage of the solidifying ingot, ensuring that the molten pool remains at a constant volume and the electroslag remelting process continues smoothly.In conclusion, the starting arc end and shrinkage repair end are criticalcomponents of the electroslag remelting process. Their proper operation ensures the production of high-quality electroslag ingots with consistent properties.。
电解技术 英文缩写
电解技术英文缩写全文共四篇示例,供读者参考第一篇示例:Electrolysis technology, also known as electrochemical splitting, is a process that uses an electrical current to drive a non-spontaneous chemical reaction. This technology plays a crucial role in many industrial processes, such as metal extraction, water treatment, and the production of various chemicals.Applications of Electrolysis Technology:1. Metal Extraction: ET is commonly used in the extraction of metals from their ores. For example, the Hall-Héroult process employs ET to produce aluminum from bauxite ore.2. Water Treatment: ET can be used to remove impurities from water through processes like electrocoagulation and electrooxidation.3. Chlor-Alkali Industry: ET is essential for the production of chlorine, caustic soda, and hydrogen, which are integral to various industrial processes.4. Electroplating: ET is used in electroplating to deposit a thin layer of metal onto a substrate for decorative or functional purposes.5. Electrolytic Cells: ET plays a crucial role in energy storage devices like batteries and fuel cells.第二篇示例:Electrolysis technology is a process that involves using an electrical current to drive a non-spontaneous chemical reaction. This process is widely used in various industries, including metal production, water treatment, and energy storage. The English abbreviation for electrolysis technology is "ET." In this article, we will explore the basics of electrolysis technology, its applications, and future prospects.第三篇示例:Electrolysis is a technique that uses an electric current to drive a chemical reaction, typically involving the decomposition of a compound into its constituent elements or ions. This process is commonly used in various industries, including metal extraction, water treatment, and electrolytic deposition of metals.第四篇示例:One of the most common applications of ET is in metal extraction. For example, the electrolysis of molten aluminium oxide (alumina) is used to produce pure aluminium metal. This is achieved by passing an electric current through a molten mixture of alumina and cryolite, a mineral that acts as the electrolyte. The oxygen ions in the alumina migrate towards the anode, while the aluminium ions migrate towards the cathode, where they are reduced to form pure aluminium metal.。
氩气保护对电渣重熔气阀钢NCF3015铝钛烧损的影响
第42卷第2期 .52 .2021 年 4月特殊钢S P E C I A L S T E E LV〇1.42. N o.2April 2021氩气保护对电渣重熔气阀钢NCF3015铝钛烧损的影响丁磊1贾景岩2(1合智熔炼装备(上海)有限公司,上海201203;2江苏申源集团有限公司,泰州225722)摘要气阀钢N C F3015 <D280 m m x 1700 m m 电极(/% : 0.03 ~0.08C,13.5 ~ 15.5C r,30 ~33.5N i,1.7 ~ 2. 1A1,2.4 ~2.9T i,0.65 ~0. 80M〇,0.65 ~0. 80N b,0.002 - 0.006B)经全同轴式惰性气体保护电渣重熔成伞340 m m 0.80 t电渣锭。
在使用三元预熔渣70C a F2-15A l2O3-I5C a O以熔速为4 kg/m in的全氩气保护条件下,试验了气阀钢 NCF3015电渣过程中A I、T i烧损的烧损量及S i的变化情况和脱S率,并阐述了机理。
结果表明,A1相对T i是主要 的烧损元素,A1的平均烧损量为-0.071% ,T i的平均烧损量为-0. 035%。
从底部至顶部A l,T i的烧损都逐渐减 小,与常规电渣重熔烧损率相比,氩气保护对减小A l,T i的烧损作用显著。
A l、T i的烧损导致重熔初期S i含量略 增。
该渣系有一定的脱硫效果,平均脱S率36. 7%。
关键词电渣重熔氩气保护气阀钢N C F3015钛烧损铝烧损硅烧损Effect of Argon Gas Shielded on Burning Loss of ElectroslagRemelting Valve Steel NCF3015 Aluminum and TitaniumD i n g l e i1a n d J i a J i n g y a n2(1 Herz special metallurgy plant (S hanghai) C o Ltd, Shanghai 201203;2 Jiangsu S h e n y u a n G r o u p C o Ltd, Taizhou 225722)Abstract Valve steel N C F3015<l>280 m m x1 700m m electrode (/% :0. 03〜0. 08C,13. 5 ~15. 5C r,30~ 33. 5N i, 1.7 〜2. 1A1,2.4〜2.9T i,0. 65〜0.80M〇,0.65〜0. 80N b,0. 002〜0. 006B)is remelted into ^340m m 0. 80 t electroslag ingot with full coaxial inert gas shielding. U n d e r the conditions of full argon protection with ternary premelted slag 70C a F2-15A l2O3-15C a O a n d a melting rate 4 k g/m i n,the a m o u n t of burning loss of A1 a n d I'i a n d the change of Si a n d S removal rate in the process of gas valve steel N C F3015electroslag remelting are tested, and the m e c h a n i s m is explained. T h e results s h o w that A1 is the m a i n burning element relative to T i,the average burning loss of A1is -0.071% ,a n d the average burning loss of Ti is -0. 035%;a n d the burning loss of A1 a n d Ti gradually decreases from the bottom to the top of electroslag remelted ingot. C o m p a r e d with the burning loss rate of conventional electroslag remelting, argon protection has a significant effect o n reducing the burning loss of A1 a n d Ti. T h e burning loss of A1 a n d Ti causes a slight increase in Si content at the initial stage of remelting. T h e slag system has a certain desulfurization effect, with an average desulfurization rate of 36. 7%.Material Index E S R,A r g o n Protection, Valve Steel N C F3015,Ti Loss, A1 Loss, Si Loss气阀钢是制造汽油发动机和柴油发动机进、排 气阀的必用材料,是整个发动机制造中的关键材料。
cap1400主管道用112t电渣锭研制
CAP1400主管道用112t电渣锭研制向大林 辜荣如 温培建(浙江电渣核材有限公司,浙江,314305)摘 要:浙江电渣核材有限公司自主创新研发的130t电渣炉是目前世界上取得成功的为数不多的大型电渣炉之一。
利用自主研发的大型电渣技术,生产CAP1400主管道用超低碳控氮不锈钢SA376 TP316LN 112t电渣锭一次成功。
本文简述了在世界上首次生产CAP1400主管道用SA376TP316LN 112t电渣锭的关键技术和取得的结果。
指出,生产CAP1400主管道锻件必须采用电渣锭,电渣重熔的关键则是有效保证超低碳、氮含量、高纯净度和高均匀性。
关键词: CAP1400主管道; 电渣锭; SA376 TP316LN; 130t电渣炉Development of 112t ESR ingot for CAP1400 main pipeXiang Dalin Gu RongruAbstract: The 130t electroslag remelting (ESR) furnace innovated by Zhejiang ESR Nuclear Material Co.,Ltd.independently is one of the successful large ESR furnaces which are numbered in the world at present. By means of large ESR technology with independent research and development,it is successful to produce the 112t ESR ingot of stainless steel SA376 TP316LN with ultralow-C control-N for CAP1400 main pipe.This paper describes the key techniques and results of SA376 TP316LN 112t ESR ingot produced for the first time in the world. Points out, it must use the ESR ingots to produce CAP1400 main pipe forgings,and effective guarantee of ultralow-C, N contents,high cleanliness and high homogeneity is a key during ESR.Key words: CAP1400 main pipe; ESR ingot; SA376 TP316LN; 130t ESR furnace1 研制的由来1.1 AP1000主管道和主管道电渣锭核电站主管道连接反应堆压力容器和蒸汽发生器,管道内直接承载和输送高温、高压、高流速、含有放射性物质的一回路冷却剂。
新降三吨重熔电渣炉性能及参数
三吨重熔电渣炉性能及参数技术规格书太原市鑫浩瀚机械有限公司2011年7月2日星期六目录附件1、设备工艺技术附件2、设备概述附件3、双方资料交换附件4、人员培训附件5、技术服务和售后服务附件一设备工艺技术一、1.工艺概述电渣冶金起源于美国,一九四零年霍普金取得了发明专利。
一九五八年,苏联德聂泊尔特钢厂建成,现代电渣冶金开始进入工业化过程。
近年来国内外电渣冶金取得了突飞猛进的发展,新工艺、新技术、层出不穷,形成了一个跨专业、跨行业的新学科。
电渣重熔是利用电流通过熔渣时产生的电阻热作为热源进行熔炼的方法。
其目的主要是提纯金属,结晶组织均匀致密的钢锭。
经电渣重熔的钢,纯度高、含硫量低、非金属夹杂物少、钢锭表面光滑、结密、金相组织和化学成分均匀。
电渣钢的铸态机械性能可达到或超过同钢种锻件的指标。
电渣熔铸(electrosgcastingESC)技术是在电渣重熔(ElectroslagRemeltingESR)的基础上发展起来的一种新技术,属超净、均质化的特种冶金范畴。
电渣熔铸将金属的精炼提纯、结晶凝固和成形集中于一个工序完成,使成形件不仅具有良好的冶金质量和凝固质量,而且其形状尺寸接近于最终产品,是物质转变的最佳短流程,因此电渣熔铸属于现代近净成形(nearnetshapecomponents)技术范畴,生产的铸件材质纯净、组织致密、综合力学性能优良。
国内外电渣冶金取得了突飞猛进的发展,新工艺、新技术层出不穷,形成了一个跨专业、跨行业的新科学。
因此,美国材料咨询局将电渣熔铸称为“跨世纪的技术”。
2.主要技术参数电渣熔铸(electrosgcastingESC)技术是在电渣重熔(ElectroslagRemeltingESR)的基础上发展起来的一种新技术,属超净、均质化的特种冶金范畴。
电渣熔铸将金属的精炼提纯、结晶凝固和成形集中于一个工序完成,使成形件不仅具有良好的冶金质量和凝固质量,而且其形状尺寸接近于最终产品,是物质转变的最佳短流程,因此电渣熔铸属于现代近净成形(nearnetshapecomponents)技术范畴,生产的铸件材质纯净、组织致密、综合力学性能优良。
3YC7合金电渣重熔工艺技术
3YC7合金电渣重熔工艺技术李道乾;刘玉庭;马中钢;贾成建;李化坤【摘要】用二次电渣重熔技术,减少3YC7合金中杂质含量和气体含量。
去除合金棒料二次缩孔。
使合金棒料表面光滑,化学成分均匀,组织致密。
利用电渣二次重熔脱硫技术,使合金中的硫含量降低到0.01%以下。
满足客户后续加工的要求。
%Using secondary electroslag remelting technology, lots of impurity and gas in 3YC7 alloy can be reduced. The secondary sinkhole of alloy rod can be removed, that made alloy rod surface smooth and increased the uniform of the chemical composition and got compact microstructure. By means of the secondary remelting electroslag desulfurization technology, the sulfur content can be reduced to less than 0.01%and it can meet the requirements of customer’s follow-up processing.【期刊名称】《山东冶金》【年(卷),期】2015(000)005【总页数】4页(P20-22,28)【关键词】3YC7合金;电渣重熔;用电制度;渣制度【作者】李道乾;刘玉庭;马中钢;贾成建;李化坤【作者单位】山东瑞泰新材料科技有限公司,山东淄博256100;山东瑞泰新材料科技有限公司,山东淄博256100;山东瑞泰新材料科技有限公司,山东淄博256100;山东瑞泰新材料科技有限公司,山东淄博256100;山东瑞泰新材料科技有限公司,山东淄博256100【正文语种】中文【中图分类】TF1423YC7合金电渣重熔工艺技术李道乾,刘玉庭,马中钢,贾成建,李化坤(山东瑞泰新材料科技有限公司,山东淄博256100)摘要:用二次电渣重熔技术,减少3YC7合金中杂质含量和气体含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Metallurgist,Vol. 45,Nos. 3–4,2001TECHNOLOGY FOR ELECTROSLAG REMELTINGWITH ROTATION OF THE CONSUMABLEELECTRODEI. V. Chumanov and V. I. Chumanov UDC 669.56.001It is known that metal which is produced by the method of electroslag remelting (ESR) has service properties supe-rior to those of metal made by open refining and casting. This can be attributed to the better conditions which exist for refin-ing in the specially chosen slag and for the crystallization of the metal in the case of ESR. However,the need for a two-stage metallurgical conversion (essentially requiring repeat refining) makes ESR metal more expensive than metal made by elec-tric-arc refining. By resorting to out-of-furnace treatments,the content of harmful impurities in the latter product can be reduced to nearly the same level as in ESR metal. In addition,the consumption of electric power in the production of ESR ingots is more than three times greater than the level characteristic of steelmaking in electric furnaces. It is this circumstance that is presently impeding the wider use of ESR [1]. The costs of producing ESR ingots could be reduced significantly by using an electroslag remelting technology that involves rotation of the consumable electrode around its axis.The General Metallurgy Department of South-Ural State University has already had many years of experience in developing and studying an ESR process that takes place in a centrifugal force field [2–8]. Such a technology has several important advantages. Most significantly,it makes it possible to appreciably increase the productivity of the process (more than 25% in some cases) without increasing the amount of power that must be supplied to the slag bath. This is accomplished through a change in the hydrodynamic situation in the bath,a reduction in the height of the bath,and the forced removal of liquid metal from the electrode.The hydrodynamic pattern which exists during the melting of a rotating electrode is different from the pattern char-acteristic of an electrode that moves only vertically. An ascending slag flow is created in the zone near the consumable elec-trode as it rotates. While rising,the slag is heated and reaches its highest temperature in the immediate vicinity of the elec-trode end that is being melted (Fig. 1b). In the standard technology,slag washes over the melting conical portion of the elec-trode after it gives up heat to the water-cooled wall of the mold. Moving through the near-electrode region,the slag reaches its highest temperature at the boundary with the liquid metal bath (Fig. 1a).The removal of liquid metal from the electrode as the latter rotates occurs mainly under the influence of centrifugal forces rather than gravitational forces,which is typical of the given (standard) remelting technology. When the electrode is melted in a centrifugal force field,the liquid phase (drops) are more shielded from the melting surface than when the elec-trode is not rotated.The melting end of the consumable electrode is flat when it is rotated. The slag level in the mold is thus lower than in the standard technology. In the latter,the slag bath is higher because slag is displaced by the conical end immersed in it. The decrease in the area of contact between the slag and the water-cooled wall of the mold also reduces heat losses by 9–13%, the exact reduction depending on the parameters of the remelting process. The presence of a flat end makes it possible to ensure that the required distance is maintained between the electrode and the liquid bath with a 10–15% decrease in the amount of flux which is used.In addition,rotation of the consumable electrode significantly improves the refining ability of the remelting process. This is due to the fact that the thickness of the layer of liquid metal (film) on the end of the electrode is uniform and mini-South Ural State University (Zlatoust Campus). Translated from Metallurg,No. 3,pp. 40–41,March,2001.0026-0894/01/0304-0125$25.00 ©2001 Plenum Publishing Corporation125mal (commensurate with the size of the nonmetallic inclusions),i.e.,this boundary is the limiting factor in the refining oper-ation. The drops of metal leaving the end of the electrode under the influence of centrifugal forces are very small,which increases the likelihood of nonmetallic inclusions being located at the phase boundary and subsequently being assimilated by the flux [8].An important aspect of the removal of nonmetallic inclusions from the metal during ESR is the length of time that drops are in (or pass through) the refining flux. The centrifugal forces created by the rotation of the electrode ensure radial flow of the liquid metal on the melting electrode surface. When the drops of metal separate from the electrode,they move along a trajectory that depends on the rotational velocity of the electrode. The path followed by the drops in this case is an average of twice as long as in the case of remelting without rotation. The drops determine the geometry of the metal bath as they fall into it. Because the rotation of the electrode disperses the drops and causes them to strike the bath at different loca-tions,we achieve a more planar form for the bottom of the liquid bath (and,thus,for the crystallization front) during the entire remelting process. This in turn improves the quality of the crystalline structure of the ingot.The above advantages caused us to reexamine the issue of controlling the remelting rate by changing the speed of rotation of the consumable electrode. The relations obtained to describe the effect of the rotational velocity of the electrode on the rate of its remelting for different process parameters were studied experimentally and were determined to be of an extreme nature (Fig. 2). The extremum corresponds to the maximum productivity of the furnace and the best refining con-ditions for the given process parameters. Additive expressions that were obtained previously [4,5] make it possible to reli-ably determine the optimum rotational velocity of the consumable electrode.The quality of the metal in ESR refining and the uniformity of its properties depend largely on the constancy of the temperature regime of the slag bath. However,the length of the consumable electrode decreases during the remelting oper-ation. This decreases the resistivity of the electrode and the height of the slag bath,since some of the slag goes into the crust that is formed and since the electrode is overheated to some extent. These changes lead to an increase in the power supplied 126Fig. 1. Hydrodynamics of the slag bath in the existing ESR technology (a ) and theESR technology with a rotating consumable electrode (b ):ω) speed of rotation ofthe electrode; T max ) maximum temperature of the slag bath; H 1,h 1) height of theslag and metal baths,respectively,in the existing ESR technology; H 2,h 2) heightof the slag and metal baths,respectively,in the ESR technology with a rotatingelectrode; d 1,d 2) thickness of the slag crust in the existing ESR technology andthe technology with the rotating electrode,respectively.127Fig. 2. Dependence of the rate of melting of the consumable electrode on its speed ofrotation in the electroslag remelting of steel 12Kh13 (electrode diameter 80 mm,molddiameter 150 mm):1) under flux ANF-6,current 1.8 kA,voltage 32 V; 2)under fluxANF-6,current 2.3 kA,voltage 32 V; 3) under flux AN-291,current 1.4 kA,voltage 41 V .Fig. 3. Change in electrical and process characteristics during electroslag remelting:P ) power delivered to the slag bath; t ) heat time; ω) speed of rotation of consumableelectrode; R el1,R sl ,R in ) resistance of the electrode,slag bath,and ingot,respectively;I ) furnace current; U ) working voltage of the furnace transformer.to the slag bath,so that remelting rate gradually increases. Thus,there is a change in the crystallization rate and the condi-tions under which the physico-chemical processes take place.An analysis of the changes in the electrical characteristics during the refining operation (Fig. 3) and experimental data on the effect of the rotational velocity of the consumable electrode on the rate of its melting made it possible to devel-op a technology in which the electrode initially rotates at a linear velocity that maximizes the productivity of the process for the given electrical and slag regimes. During the remelting operation,the speed of rotation of the electrode is uniformly decreased in proportion to the decrease in resistance on the slag bath and the electrode.We used the proposed technology to make a series of heats of steel 12Kh2N4A on electroslag unit A-550. The diam-eter of the consumable electrode was 80 mm,the diameter of the mold was 150 mm,the flux used as ANF-6,and the elec-trical parameters were as follows:I= 2.3 kA,U= 32 V. Using additive expressions [4,5],for specific experimental condi-tions we determined the dependence of remelting rate on the speed of rotation of the electrode:the speed ensuring the max-imum productivity was determined to be 80 rpm. The existence of this relation allowed us organize the melting operation in such a way that the drop in resistance would be offset by a decrease in the speed of the consumable electrode from 80 to 60 rpm for the duration of the heat. We constantly monitored the linear remelting rate,and when it increased we decreased elec-trode speed so as to return to the originally specified productivity. We thus succeeded in maintaining a constant thermal regime in the slag bath without changing the electrical parameters of the heat.Study of the quality of the metal that was produced showed that use of the new technology ensures the production of ingots with a defect-free macrostructure and a high degree of chemical homogeneity along and across the ingot. One char-acteristic feature of the macrostructure of the experimental ingots is the more pronounced orientation of the principal axes of the dendrites parallel to the axis of the ingot.REFERENCES1. A. E. V olkov,A. V. Laktionov,and A. G. Shalimov,“Prospects of electroslag technologies,”Elektrometallurgiya,No.1,35–37 (1998).2.V. I. Chumanov,“Development of an ESR technology with rotation of the consumable electrode to increase the pro-ductivity of the process and improve the quality of the metal,”Engineering Sciences Candidate Dissertation, Novokuznetsk (1984).3.I. V. Chumanov,“Control of the melting,transport,and crystallization of metal in ESR,”Engineering SciencesCandidate Dissertation,Chelyabinsk (1996).4.V. I. Chumanov,B. P. Belozerov,and I. V. Chumanov,“Mathematical model of the remelting of a rotating electrode,”Izv. Vyssh. Uchebn. Zaved. Chern. Metall.,No. 12,74–75 (1991).5.V. I. Chumanov,B. P. Belozerov,and I. V. Chumanov,“Kinetic model of the remelting of a rotating electrode,”ibid.,No. 8,57–60 (1994).6.I. V. Chumanov and V. I. Chumanov,“Calculation of the motion of a drop of electrode metal in slag,”ibid.,No. 12,22–23 (1995).7.V. I. Chumanov and I. V. Chumanov,“Effect of the rotation of the consumable electrode on the productivity of theprocess in electroslag remelting,”Probl. Spets. Elektrometallurgii,No. 4,8–10 (1997).8.I. V. Chumanov and V. E. Roshchin,“Aspects of the modeling of electroslag remelting on transparent models,”Izv.Vyssh. Uchebn. Zaved. Chern. Metall.,No. 8,30–36 (1998).128。