人教版2019-2020学年八年级(上)第一次月考数学试卷C卷

合集下载

2019-2020学年初二数学八年级上学期第一次月考数学试卷和答案

2019-2020学年初二数学八年级上学期第一次月考数学试卷和答案

2019-2020学年初二数学八年级上学期第一次月考数学试卷和答案一、选择题1、如图,∠MON 内有一点P ,P 点关于OM 的轴对称点是G ,P 点关于ON 的轴对称点是H ,GH 分别交OM 、ON 于A 、B 点.若GH 的长为10cm ,求△PAB 的周长为( ) A .5cm B .10cm C .20cm D .15cm(第1题) (第2题) (第3题)2、如图所示的2×4的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC 成轴对称的格点三角形一共有( ) A .2个 B .3个 C .4个 D .5个3、一块三角形玻璃样板不慎被张宇同学碰破,成了四片完整碎片(如图所示),聪明的他经过仔细地考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是 ( ) A .带其中的任意两块去都可以 B .带1,2或2,3去就可以了 C .带1,4或3,4去就可以了 D .带1,4或2,4或3,4去均可4、如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE=2,AB=4,则AC 长是( )A .3B .4C .6D .5(第4题) (第5题) (第7题)5、如图,AC=AD ,BC=BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分 D .CD 平分∠ACB6、下列图形中,不是轴对称图形的是( )7、如图,请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A'O'B'=∠AOB 的依据是( ) A .SAS B .ASA C .AAS D .SSS 8、下列不能推得△ABC 和△A ′B ′C ′全等的条件是( )A .AB=A ′B ′,∠A=∠A ′, ∠C=∠C ′ B .AB= A ′B ′,AC=A ′C ′,BC=B ′C′C .AB=A ′B ′,AC=A ′C ′,∠B=∠B ′D .AB=A ′B ′,∠A=∠A ′,∠B=∠B 9、如图,在Rt △ABC 中,∠ACB=90°,E 是AB 上一点,且BE=BC ,过E 作DE ⊥AB 交AC 于点D ,如果AC=5 cm ,则AD+DE= ( )A .3 cmB .4 cmC .5 cmD .6 cm二、填空题10、木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即图中AB 、CD 两个木条),这样做根据的数学道理是 。

2019-2020学年八年级人教版数学上册月考试题带答案

2019-2020学年八年级人教版数学上册月考试题带答案

2019-2020学年八年级人教版数学上册月考试题(满分:150分考试时间:120分钟)题号一二三总分1~10 11~17 18 19 20 21 22 23 24 25得分一、选择题(本大题共10小题,每小题4分,共40分)1.下列长度的三条线段,能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.6,6,132.下列计算正确的是()A.2a a a+=B.236a a a⋅=C.326()a a-=-D.752a a a÷=3.下列各式从左到右的变形是因式分解的是()A.2)1(3222++=++xxx B.22))((yxyxyx-=-+C.222()x xy y x y-+=-D.)(222yxyx-=-4.下列图案中,不是..轴对称图形的是()A.B.C.D.5.已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.40°B.60°C.80°D.120°6.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°7.用形状、大小完全相同的图形不能..镶嵌成平面图案的是()A.正五边形B.正方形C.等边三角形D.正六边形8.等腰三角形的两边长为3和6,则这个等腰三角形的周长是()A.12 B.15 C.12或15 D.不能确定9.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.36°B.60°C.72°D.8210.将正整数依次按下表规律排列,则根据表中的排列规律,数2013应排在()A.第504行,第1列B.第504行,第4列C.第671行,第2列D.第671行,第3列(第5题图)(第9题图)(第13题图)二、填空题(本大题共7小题,每小题3分,共21分) 11.计算:2(3)a ab ⋅-=.12.分解因式:22a a += .13.将一副三角尺按图示叠在一起,则图中∠α等于 °. 14.如图,在△ABC 和△BAD 中,BC =AD ,请你再补充一个条件,使△ABC ≌△BAD .你补充的条件是 (填一个即可).15.如图,Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高,若AD =2,则BD = .16.如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上一个动点,若P A =3,则PQ 的最小值为 .17.如图, 已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下四个结论:①AE =CF ;②△EPF 是等腰直角三角形;③S 四边形AEPF =12S △ABC ;④BE +CF =EF .当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A ,B 重合),上述结论中始终正确的是 .(只填序号)三、解答题(本大题共8小题,共89分) 18.(本大题满分10分)(1)计算:20(2)(3)(1)2(2013)x x x π+---+-; (2)分解因式:282418xy xy x -+. 19.(本大题满分8分)先化简,再求值:()23223(23)(2)(2)525x y x y x y x y x y xy xy ++-+-++÷,其中12x =,3y =-.第1列 第2列 第3列 第4列 第1行 1 2 3 第2行 6 5 4 第3行 7 8 9 第4行 12 11 10 ……(第14题图) (第15题图) (第16题图) (第17题图)20.(本大题满分10分)如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:∠B=∠C.21.(本大题满分10分)体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为2n次;乙班:全班同学“引体向上”总次数为(50625)n 次.请比较两班同学“引体向上”总次数哪个班的次数多?多了多少次?22.(本大题满分12分)如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).(1)画出“基本图形”关于y轴对称的四边形A1B1C1D1,并写出A1,B1,C1,D1的坐标:A1(,),B1(,),C1(,),D1(,);(2)画出“基本图形”关于x轴对称的四边形A2B2C2D2;(3)画出四边形A3B3C3D3,使画出的三个图形与原“基本图形”组成的整体图案是关于坐标轴(x 轴或y轴)对称的图形.23.(本大题满分12分)如图,在△ABC中,AB=AC,D是BA延长线上一点,E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC的平分线AM;②连接BE并延长,交AM于点F.(第20题图)(第21题图)(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并证明你的结论.24.(本大题满分13分)如图,点C是线段AB上一点,△ACM与△BCN都是等边三角形.(1)如图①,AN与BM是否相等?证明你的结论;(2)如图②,AN与CM交于点E,BM与CN交于点F,试探究△ECF的形状,并证明你的结论.图①图②(第24题图)25.(本大题满分14分)CD 经过∠BCA 顶点C 的一条直线,CA =CB .E ,F 分别是直线CD 上两点,且∠BEC =∠CF A =∠α .(1)若直线CD 经过∠BCA 的内部,且E ,F 在射线CD 上,请解决下面两个问题:①如图1,若∠BCA =90°,∠α =90°,则BE CF ;EF | BE ﹣AF |(填“>”,“<”或“=”). ②如图2,若0°<∠BCA <180°,请添加一个关于∠α与∠BCA 关系的条件 _____ ,使①中的两个结论仍然成立,并证明.(2)如图3,若直线CD 经过∠BCA 的外部,∠α =∠BCA ,请提出EF ,BE ,AF 三条线段数量关系的合理猜想(不要求证明).A BC EFDDAB CE F ADFC EB(图1)(图2) (图3)(第25题图)八年级数学试题 第6页(共6页)参考答案一、选择题(本大题共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案ADDCBBABCD二、填空题(本大题共7小题,每小题3分,共21分)11.26a b -; 12.(2)a a +; 13.15°; 14.AC =BD (∠BAD =∠ABC )等(答案不唯一); 15.6; 16.3; 17.①②③. 三、解答题(本大题共8小题,共89分) 18.(本大题满分10分)(1)解:原式226(21)21x x x x =----++⨯ (2)解:原式22(4129)x y y =-+ 226212x x x x =---+-+ 22(23)x y =- 5x =- 19.(本大题满分8分)解:原式=22222241294525x xy y x y x xy y +++---- 10xy =当12x =,3y =-时, 原式110(3)152=⨯⨯-=-20.(本大题满分10分)证明:在△ABE 和△ACD 中,,,,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ACD .∴∠B =∠C . 21.(本大题满分10分)解:∵222(50625)50625(25)0n n n n n --=-+=-≥∴当25n =时,甲、乙两班同学“引体向上”总次数相同;当25n ≠时,甲班同学“引体向上”总次数比乙班多,多2(25)n -次. 22.(本大题满分12分) 解:(1)A 1( -4 , 4 ),B 1( -1 , 3 ),(第20题图)B 1C 1 A 1C 1( -3 , 3 ),D 1( -3 , 1 );23.(本大题满分12分) 解:(1)如图所示;(2)AF ∥BC ,且AF =BC ,理由如下:∵AB =AC , ∴∠ABC =∠C ,∴∠DAC =∠ABC +∠C =2∠C , 由作图可得∠DAC =2∠F AC , ∴∠C =∠F AC , ∴AF ∥BC , ∵E 为AC 中点, ∴AE =EC ,∴△AEF ≌△CEB (ASA ). ∴AF=BC .24.(本大题满分13分) 解:(1)AN =BM .证明如下:∵△ACM 与△BCN 都是等边三角形, ∴,,60.AC MC NC NB ACM NCB ==∠=∠=︒ ∴.ACM MCN NCB MCN ∠+∠=∠+∠ 即 .ACN MCB ∠=∠ 在△ACN 和△MCB 中,,,,AC MC ACN MCB NC NB =⎧⎪∠=∠⎨⎪=⎩∴△ACN ≌△MCB .(2)△ECF 是等边三角形.证明如下: ∵点C 是线段AB 上一点,∴180180606060.MCN ACM NCB ∠=︒-∠-∠=︒-︒-︒=︒图①(第23题图)∴ACM MCN ∠=∠即.ACE MCF ∠=∠ ∵△ACN ≌△MCB ,∴.NCA BMC EAC FMC ∠=∠∠=∠即 ∴△ACE ≌△MCF .∴CE =CF .∴△ECF 是等边三角形.25.(本大题满分14分) 解:(1)①=;=;②所填的条件是:180BCA α∠+∠=o .证明:在BCE △中,180180CBE BCE BEC α∠+∠=-∠=-∠o o .180BCA α∠=-∠o Q ,CBE BCE BCA ∴∠+∠=∠.又ACF BCE BCA ∠+∠=∠Q ,CBE ACF ∴∠=∠.又BC CA =Q ,BEC CFA ∠=∠,()BCE CAF AAS ∴△≌△.BE CF ∴=,CE AF =.又EF CF CE =-Q ,EF BE AF ∴=-.(2)EF BE AF =+.(第24题图)。

人教版2019-2020学年福建省厦门市八年级(上)第一次月考数学试卷解析版

人教版2019-2020学年福建省厦门市八年级(上)第一次月考数学试卷解析版

2019-2020学年福建省厦门市八年级(上)月考数学试卷一、选择题(本大题有10小题,每小题4分,共40分)1.(4分)下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A.B.C.D.2.(4分)能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线3.(4分)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.94.(4分)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm5.(4分)某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去6.(4分)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°7.(4分)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.8.(4分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30°B.20°C.15°D.14°9.(4分)下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()A.①②③④B.①③④C.①②④D.②③④10.(4分)如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A.25°B.27°C.30°D.45°二、填空题(本大题有6小题,每题4分,共24分)11.(4分)如图,一面小红旗,其中∠A=60°,∠B=30°,则∠BCD=.12.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.13.(4分)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是.14.(4分)如图,DE是△ABC中AC边的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为.15.(4分)若一个多边形的每个外角都为36°,则这个多边形的对角线共有条.16.(4分)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE =CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)三、解答题(本大题有9小题,共86分)17.(8分)解方程组:18.(8分)解不等式组.19.(8分)在直线l上找出一点P,使得点P到∠AOB的两边OA、OB的距离相等.(要求用尺规作图,保留作图痕迹)20.(8分)如图,AD=AE,∠1=∠2,∠B=∠C.求证:AB=AC.21.(8分)如图,已知CE⊥AB于点E,BF⊥AC于点F,CE与BF相交于点D,且AD平分∠BAC,求证:BD=CD.22.(10分)如图,△ABC中,AD⊥BC于D,BF=AC,FD=CD.求证:AC⊥BE.23.(10分)如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,且BD=CD.求证:(1)BE=CF;(2)∠ABD+∠ACD=180°.24.(12分)如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF求证:BE+CF>EF.25.(14分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC =∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并给出理由.参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分)1.解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选:A.2.解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.3.解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选:C.4.解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.5.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.6.解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.7.解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选:B.8.解:如图,∠2=30°,∠1=∠3﹣∠2=45°﹣30°=15°.故选:C.9.解:由全等三角形的概念可知:全等的图形是完全重合的,所以①全等图形的形状相同、大小相等是正确的;重合则对应边、对应角是相等的,周长与面积也分别相等,所以①②③④都正确的故选:A.10.解:在△ADB和△CDB,∵BD=BD,∠ADB=∠CDB=90°,AD=CD∴△ADB≌△CDB,∴∠ABD=∠CBD,又∵∠ABC=∠ABD+∠CBD=54°,∴∠ABD=∠CBD=×∠ABC=27°.在△ADB和△EDC中,∵AD=CD,∠ADB=∠EDC=90°,BD=ED,∴△ADB≌△CDE,∴∠E=∠ABD.∴∠E=∠ABD=∠CBD=27°.所以,本题应选择B.二、填空题(本大题有6小题,每题4分,共24分)11.解:∠BCD是三角形ABC的外角,所以∠BCD=∠A+∠B=60°+30°=90°.故填90°.12.解:这样做的道理是利用三角形的稳定性.13.解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.14.解:∵DE垂直平分AC,∴EA=EC.△EBC的周长=BC+BE+EC,=BC+BE+AE,=BC+AB,=8+10,=18(cm).故答案为:18cm.15.解:多边形的边数=360°÷36°=10,对角线条数==35条.故答案为:35.16.解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.三、解答题(本大题有9小题,共86分)17.解:解法1:(1)+(2),得5x=10,∴x=2,(3分)把x=2代入(1),得4﹣y=3,∴y=1,(2分)∴方程组的解是.(1分)解法2:由(1),得y=2x﹣3,③(1分)把③代入(2),得3x+2x﹣3=7,∴x=2,(2分)把x=2代入③,得y=1,(2分)∴方程组的解是.(1分)18.解:,由①得:x>1,由②得:x≥﹣2,不等式组的解集为:x>1.19.解:如图,点P为所作.20.证明:∵∠1=∠2,∴∠1+∠BAC=∠2+∠BAC,即∠CAE=∠BAD.在△ABD和△ACE中,∴△ABD≌△ACE(AAS).∴AB=AC.21.证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°,∴∠BDE+∠B=90°,∠FDC+∠90°,∵∠BDE=∠CDF,∴∠B=∠C,∵AD平分∠BAC,∴∠BAD=∠CAD,在△BAD与△CAD中,,∴△BAD≌△CAD(AAS),∴BD=CD.22.证明:∵AD⊥BC,∴∠BDF=∠ADC=90°,在Rt△BDF和Rt△ADC中∴Rt△BDF≌Rt△ADC(HL),∴∠FBD=∠DAC,∵∠BDF=90°,∴∠DBF+∠BFD=90°,∵∠BFD=∠AFE,∴∠DAC+∠AFE=90°,∴∠AEF=180°﹣90°=90°,∴AC⊥BE.23.解:(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在RT△BDE和RT△CDF中,,∴RT△BDE≌RT△CDF(HL),∴BE=CF;(2)∵RT△BDE≌RT△CDF,∴∠ACD=∠DBE,∵∠DBE+∠ABD=180°,∴∠ABD+∠ACD=180°.24.证明:延长FD至G,使得GD=DF,连接BG,EG ∵在△DFC和△DGB中,,∴△DFC≌△DGB(SAS),∴BG=CF,∵在△EDF和△EDG中∴△EDF≌△EDG(SAS),∴EF=EG在△BEG中,两边之和大于第三边,∴BG+BE>EG又∵EF=EG,BG=CF,∴BE+CF>EF.25.解:(1)①如图1中,E点在F点的左侧,∵BE⊥CD,AF⊥CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;②∠α+∠ACB=180°时,①中两个结论仍然成立;证明:如图2中,∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;故答案为∠α+∠ACB=180°.(2)结论:EF=BE+AF.理由:如图3中,∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,,∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.故答案为:=,EF=|BE﹣AF|;②∠α+∠ACB=180°时.。

2019年八年级数学上学期第一次月考试题(含解析) 新人教版(III)

2019年八年级数学上学期第一次月考试题(含解析) 新人教版(III)

2019年八年级数学上学期第一次月考试题(含解析) 新人教版(III)一、选择题(共8题,每题3分,共24分)1.两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )A.两角和一边B.两边及夹角C.三个角D.三条边2.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处 B.两处 C.三处 D.四处3.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是( )A.21:10 B.10:21 C.10:51 D.12:014.下列图形中,不一定是轴对称图形的是( )A.线段 B.角C.直角三角形D.等腰三角形5.如图,点D、E分别在线段AB、AC上,BECD相交于点O,AE=AD,要使△ABE≌△ACD需要添加一个条件是( )A.AB=AC B.∠A=∠O C.OB=OC D.BD=CE6.已知不平行的两条线段AB、A′B′关于直线L对称,AB和A′B′所在直线交于点P,下列结论:①AB∥A′B′;②点P在直线L上;③若点A′、A是对称点,则直线L垂直平分线段AA′;④若B、B′是对称点,则PB=PB′.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空(共9题,每题3分,共27分)7.等腰三角形是轴对称图形,它的对称轴是__________.8.已知△ABC≌△DEF,∠A=52°,∠B=57°,则∠F=__________.9.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为__________.10.点A(﹣3,2)关于y轴的对称点坐标是__________.11.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为__________cm.12.如图:沿AM折叠,使D点落在BC上,如果AD=7cm,DM=5cm,则AN=__________cm.13.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18cm2,则EF边上的高的长是__________cm.14.如图:EA∥DF,AE=DF,要使△AEC≌△DBF,则只要补充条件:__________(写一个即可).15.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是__________cm.三、解答题(共7题,共75分)16.作图:(不写作法,但要保留作图痕迹)如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短.17.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.18.如图,四边形ABCD中,AB=AD,BC边的垂直平分线MN经过点A,求证:点A在CD的垂直平分线上.19.如图所示,BD平分∠ABC,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,M、N为垂足.求证:PM=PN.20.如图所示,点B、F、C、E在同一直线上,AC、DF相交于G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.(1)求证:△ABC≌△DEF;(2)如果GF=4,求GC的长.21.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.22.(13分)如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图①过A的直线与斜边BC不相交时,求证:EF=BE+CF;(2)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求:FE长.2015-2016学年河南省信阳市淮滨二中八年级(上)第一次月考数学试卷一、选择题(共8题,每题3分,共24分)1.两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )A.两角和一边B.两边及夹角C.三个角D.三条边【考点】全等三角形的判定.【分析】本题考查的是全等三角形的判定,可根据全等三角形的判定定理进行求解,常用的方法有:SSS、SAS、SSA、AAS、HL.【解答】解:判定两三角形全等,就必须有边的参与,因此C选项是错误的.A选项,运用的是全等三角形判定定理中的AAS或ASA,因此结论正确;B选项,运用的是全等三角形判定定理中的SAS,因此结论正确;D选项,运用的是全等三角形判定定理中的SSS,因此结论正确;故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处 B.两处 C.三处 D.四处【考点】角平分线的性质.【专题】应用题.【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥A B,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选D.【点评】此题考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.3.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是( )A.21:10 B.10:21 C.10:51 D.12:01【考点】镜面对称.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的时刻与10:51成轴对称,所以此时实际时刻为10:51.故选C.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.4.下列图形中,不一定是轴对称图形的是( )A.线段 B.角C.直角三角形D.等腰三角形【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项图形分析判断后利用排除法求解.【解答】解:A、线段是轴对称图形,对称轴是线段的垂直平分线与线段本身所在的直线,故本选项错误;B、角是轴对称图形,对称轴是角平分线所在的直线,故本选项错误;C、直角三角形不一定是轴对称图形,故本选项正确;D、等腰三角形是轴对称图形,对称轴是底边的垂直平分线,故本选项错误.故选C.【点评】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,点D、E分别在线段AB、AC上,BECD相交于点O,AE=AD,要使△ABE≌△ACD需要添加一个条件是( )A.AB=AC B.∠A=∠O C.OB=OC D.BD=CE【考点】全等三角形的判定.【分析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等.在△ABE和△ACD 中,已知了AE=AD,公共角∠A,因此只需添加一组对应角相等或AC=AB即可判定两三角形全等.【解答】解:添加条件可以是:AB=AC或∠AEB=∠ADC或∠B=∠C.故选A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.已知不平行的两条线段AB、A′B′关于直线L对称,AB和A′B′所在直线交于点P,下列结论:①AB∥A′B′;②点P在直线L上;③若点A′、A是对称点,则直线L垂直平分线段AA′;④若B、B′是对称点,则PB=PB′.其中正确的结论有( )A.1个B.2个C.3个D.4个【考点】轴对称的性质.【分析】根据轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.【解答】解:①AB∥A′B′;根据不平行的两条线段AB、A′B′关于直线L对称故此选项错误;②点P在直线L上;如图所示,故选项正确;③若点A′、A是对称点,则直线L垂直平分线段AA′;利用图形对称性得出,此选项正确;④若B、B′是对称点,则PB=PB′,利用图形对称性得出,此选项正确;其中正确的结论有3个,故选:C.【点评】本题考查轴对称图形的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(共9题,每题3分,共27分)7.等腰三角形是轴对称图形,它的对称轴是底边的中垂线.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:等腰三角形是轴对称图形,它的对称轴是底边的中垂线.【点评】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.8.已知△ABC≌△DEF,∠A=52°,∠B=57°,则∠F=71°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D=∠A=52°,∠E=∠B=57°,根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=52°,∠B=57°,∴∠D=∠A=52°,∠E=∠B=57°,∴∠F=180°﹣∠D﹣∠E=71°,故答案为:71°.【点评】本题考查了全等三角形的性质,三角形内角和定理的应用,能根据全等三角形的性质得出∠D=∠A,∠E=∠B是解此题的关键,注意:全等三角形的对应边相等,对应角相等.9.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.10.点A(﹣3,2)关于y轴的对称点坐标是(3,2).【考点】关于x轴、y轴对称的点的坐标.【分析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.【解答】解:点A(﹣3,2)关于y轴的对称点坐标是(3,2).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为9cm.【考点】翻折变换(折叠问题).【专题】压轴题.【分析】由折叠中对应边相等可知,DE=CD,BE=BC,可求AE=AB﹣BE=AB﹣BC,则△AED的周长为AD+DE+AE=AC+AE.【解答】解:DE=CD,BE=BC=7cm,∴AE=AB﹣BE=3cm,∴△AED的周长=AE+AD+DE=AC+AE=6+3=9cm.【点评】本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.12.如图:沿AM折叠,使D点落在BC上,如果AD=7cm,DM=5cm,则AN=7cm.【考点】翻折变换(折叠问题).【分析】根据折叠的性质直接解答.【解答】解:根据折叠的性质,有AN=AD=7cm.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.13.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18cm2,则EF边上的高的长是6cm.【考点】全等三角形的性质.【分析】本题还可根据全等三角形的对应边上的高相等,求出BC边上的高,即可得到EF 边上的高.【解答】解:∵△ABC≌△DEF∴S△DEF=S△ABC=18cm设EF边上的高为h,则•EF•h=18即×6×h=18h=6故答案为:6.【点评】本题考查全等三角形的面积相等的性质,解题时应注重识别全等三角形中的对应边.14.如图:EA∥DF,AE=DF,要使△AEC≌△DBF,则只要补充条件:AC=BD(答案不唯一).(写一个即可).【考点】全等三角形的判定;平行线的性质.【专题】开放型.【分析】要判定△AEC≌△DFB,已知AE=DF、∠A=∠D,要加线段相等,只能是AC=DB,而AB=CD即可得.【解答】解:∵AB=CD∴AC=D B又AE=DF、∠A=∠D∴△AEC≌△DFB故答案为AC=BD(答案不唯一).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是20cm.【考点】角平分线的性质.【分析】由已知条件,结合已知在图形上的位置,根据角平分线的性质可得M到AB的距离等于CM.【解答】解:∵∠C=90°,AM平分∠CAB,∴M到AB的距离等于CM=20cm.故填20.【点评】本题考查了角平分线的性质;注意题中隐含的条件:MC⊥AC的运用.本题比较简单,属于基础题.三、解答题(共7题,共75分)16.作图:(不写作法,但要保留作图痕迹)如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短.【考点】轴对称-最短路线问题.【专题】作图题.【分析】作A关于街道的对称点A',连接A'B,交街道所在直线于C,点C即为所求.【解答】解:作图如右图:牛奶站应建在C点,才能使A、B到它的距离之和最短.【点评】此题主要考查有关轴对称﹣﹣最短路线的问题中的作图步骤,是此类问题的基础,需熟练掌握.17.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.【考点】作图-轴对称变换.【专题】作图题.【分析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y 轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.【解答】解:△ABC的各顶点的坐标分别为:A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).【点评】本题考查了轴对称作图,作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.18.如图,四边形ABCD中,AB=AD,BC边的垂直平分线MN经过点A,求证:点A在CD的垂直平分线上.【考点】线段垂直平分线的性质.【专题】证明题.【分析】连接AC,根据垂直平分线的性质求得AB=AC,进而求得AC=AD,根据垂直平分线性质定理的逆定理即可证得结论.【解答】证明:连接AC,∵MN垂直平分BC,∴AB=AC,∵AB=AD,∴AC=AD,∴点A在CD的垂直平分线上.【点评】本题考查了线段垂直平分线的性质定理和逆定理,作出辅助线构建等腰三角形是本题的关键.19.如图所示,BD平分∠ABC,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,M、N为垂足.求证:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据已知条件结合三角形全等的判定方法通过SAS证明△ABD≌△CBD,得∠ADB=∠CBD,从而根据角平分线的性质即可证明结论.【解答】证明:在△ABD和△CBD中,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB.又PM⊥AD,PN⊥CD,∴PM=PN.【点评】此题考查了全等三角形的判定和性质以及角平分线的性质:角平分线上的点到角两边的距离相等.三角形全等的证明是解题的关键.20.如图所示,点B、F、C、E在同一直线上,AC、DF相交于G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.(1)求证:△ABC≌△DEF;(2)如果GF=4,求GC的长.【考点】全等三角形的判定与性质.【分析】(1)要证明三角形ABC和DEF全等.这两个三角形中已知的条件有一组直角,AB=DE,那么只需证得BC=EF即可得出两三角形全等的结论,已知了BF=CE,等式两边都加上FC后,就可得出BC=EF,那么这两三角形也就全等了(SAS);(2)根据全等三角形的性质得到∠ACB=∠DFE,再根据等腰三角形的性质即可求解.【解答】证明:(1)∵AB⊥BE,DE⊥BE,∴∠ABC=∠DEF=90°,∵BF=CE,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),(2)∵△ABC≌△DEF,∴∠ACB=∠DFE,∴GC=GF=4.【点评】本题考查的是全等三角形的判定与性质.利用全等三角形来得出角相等或线段相等是解此类题的关键.21.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的性质得出∠AOP=∠COP,∠BOP=∠DOP,从而推出∠AOB=∠COD,再利用SAS判定其全等从而得到AB=CD.【解答】证明:∵OP是∠AOC和∠BOD的平分线,∴∠AOP=∠COP,∠BOP=∠DOP.∴∠AOB=∠COD.在△AOB和△COD中,.∴△AOB≌△COD.∴AB=CD.【点评】本题考查三角形全等的判定方法,以及全等三角形的性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.本题比较简单,读已知时就能想到要用全等来证明线段相等.22.(13分)如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图①过A的直线与斜边BC不相交时,求证:EF=BE+CF;(2)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求:FE长.【考点】直角三角形全等的判定;全等三角形的性质.【专题】计算题;证明题.【分析】(1)此题根据已知条件容易证明△BEA≌△AFC,然后利用对应边相等就可以证明题目的结论;(2)根据(1)知道△BEA≌△AFC仍然成立,再根据对应边相等就可以求出EF了.【解答】(1)证明:∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA,在△ABE和△AFC中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△BEA≌△AFC.∴EA=FC,BE=AF.∴EF=EB+CF.(2)解:∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,∴∠CAF=∠ABE,在△ABE和△AFC中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△BEA≌△AFC.∴EA=F C=3,BE=AF=10.∴EF=AF﹣CF=10﹣3=7.【点评】此题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.。

2019年新人教版八年级数学上册第一次月考试卷(附答案)

2019年新人教版八年级数学上册第一次月考试卷(附答案)

2019-2020学年八年级数学上学期第一次月考试题一、选择题(1—8每题3分,9—12每题4分,共40分)1.下列图标中,是轴对称图形的是()A.(1)(4)B.(2)(4)C.(2)(3)D.(1)(2)△2.ABC≌△A′B′C′,其中∠A′=50°,∠B′=70°,则∠C的度数为()A.55°B.60°C.70°D.75°3.某同学把一块三角形的玻璃打碎成了3块(如图2),现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去4.和点P(-3,2)关于y轴对称的点是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)5.已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E。

其中能使∆ABC≅∆AED的条件有()A.4个B.3个C.2个D.1个(第3题))(第7题)(第5题)6.等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°△7.如图,已知∠ABC=∠BAD,添加下列条件还不能判定ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里(第8题)(第9题)(第11题)(第12题) 9.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点△P,使AOP为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个10.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,1AB于点M,N,再分别以点M,N为圆心,大于2MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=△15,则ABD的面积是()A.15B.30C.45D.6011.如图,在ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结△论中不正确的是()△A.ABC≌△CDE B.CE=AC C.AB⊥CD D.E为BC的中点12.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接B F;②ABD和△ACD的面积相等;③BF∥△C E;④BDF≌△CDE. BF,CE.下列说法:①CE=△其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题4分,共16分)13.已知点A(a,-2)和B(3,2),当满足条件________时,点A和点B关于x轴对称.14.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=____度.(第 14 题)(第 16 题)15、一个汽车车牌在水中的倒影为,则该车的牌照号码是________.△16、如图: ABC 中,DE 是 AC 的垂直平分线,AE=3cm ,△ABD 的周长为 13cm ,则△ABC 的周长为________.三、解答题(共 64 分)17.(8)如图,已知 A(0,4),B(-2,2),C(3,0).(1)作△ABC 关于 x 轴对称的 A △1B 1C 1;(2)写出点 A 1,B 1,C 1 的坐标;(3) A △1B 1C 1 的面积 S A △1B 1C 1=________.(第 17 题)18(10).如图,点 B ,F ,C ,E 在直线 l 上(点 F ,点 C 之间不能直接测量),点 A ,D在 l 异侧,测得 AB =DE ,AC =DF ,BF =EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.19.(△10)如图,已知在 ABC 中,D 为 BC 上的一点,DA 平分∠EDC,且∠E=∠B,DE=DC ,求证:AB =AC.20.(10)如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第20题)21.(12)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.22.(14分△)如图,在ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.八年级数学月考答案一、选择题 1.D 2.B 3.C 4.A5.B6.D 7.A 8.D 9.D 10.B 1 1.D 12.D二、填空 13.a =314.135 15.w5236499 16.19cm三、17.解:(1)如图.(第 17 题)(2)A 1(0,-4),B 1(-2,-2),C 1(3,0).(3)718.(1) 证明:∵BF= CE ,∴ BF + F C = F C + C E ,即 BC = E F ,在△ABC 和△DEF 中,⎧⎪AB =DE ,⎨AC =△DF ,∴ ABC ≌△DEF(SSS) (2)结论:AB∥DE,AC ∥DF.理由:∵△ABC≌△DEF,∴ ⎪⎩BC =EF ,∠ABC =∠DEF,∠ACB =∠DFE ,∴AB ∥DE ,AC ∥DF19a. 证 明 : ∵DA 平 分 ∠EDC , ∴∠ADE = ∠ADC. 又 ∵DE = DC , AD = AD ,∴△AED≌△ACD(SAS ).∴∠E=∠C.又∵∠E=∠B,∴∠B=∠C.∴AB=AC.20.解:(1)∵DE 垂直平分 AC ,∴AE=CE ,∴∠ECD=∠A=36°.(2)∵AB=AC ,∠A=36°,∴∠ABC=∠ACB=72°.∵∠BEC=∠A+∠ACE=72°,∴∠B=∠BEC,∴BC=CE =5.⎧⎪AB =AC ,21.(1)证明:在△ABD 和△ACE 中, ⎨∠1=∠2,∴△ A BD ≌△ACE(SAS ),∴ B D =CE⎪⎩AD =AE ,(2) 证 明 : ∵∠1 = ∠2 , ∴ ∠ 1 + ∠DAE = ∠2 + ∠DAE , 即 ∠BAN = ∠CAM , 由 (1) 得 :∴△ACM ≌△ABN(ASA ),∴∠M =∠N△BABD≌ ACE ,∴∠=∠C,在△ACM 和△ABN 中,⎧⎪∠C=∠B,⎨AC =AB ,⎪⎩∠CAM =∠BAN,22.解:(1)BD =CE ,BD ⊥CE.证明:延长 BD 交 CE 于点 M ,易证△ABD≌△ACE(SAS ),∴BD =CE ,∠ A BD =∠ACE,∵∠ BME =∠MBC+∠BCM=∠MBC+∠ACE+∠ ACB =∠ M BC +∠ABD +∠ACB =∠ABC +∠ACB =90°,∴BD ⊥CE (2)仍有 BD =CE ,BD ⊥CE ,理由同(1)。

2019-2020学年八年级(上)第一次月考数学试卷(含答案)

2019-2020学年八年级(上)第一次月考数学试卷(含答案)

2019-2020学年八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.在△ABC中,∠C=90°,AB=10,AC:BC=3:4,则BC=()A. 4B. 6C. 8D. 102.下列数中,有理数是()A. −√7B. −0.6C. 2πD. 0.151151115…3.已知P(x,y)在第二象限,且x2=4,∣y∣=7,则点P的坐标是()A. (2,−7)B. (−4,7)C. (4,−7)D. (−2,7)4.在下列各式中正确的是()A. √(−2)2=2B. ±√9=3C. √16=8D. √22=±25.若a=√13,则实数a在数轴上对应的点P的大致位置是()A. B.C. D.6.下列说法中:(1)√5是实数;(2)√5是无限不循环小数;(3)√5是无理数;(4)√5的值等于2.236,正确的说法有()A. 4个B. 3个C. 2个D. 1个7.(如图)在4×8的方格中,建立直角坐标系E(−1,−2),F(2,−2),则G点坐标()A. (−1,1)B. (−2,−1)C. (−3,1)D. (1,−2)8.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A. 3cmB. 4cmC. 5cmD. 6cm9.和数轴上的点一一对应的数是()A. 整数B. 有理数C. 无理数D. 实数10.在直角坐标系xOy中,△ABC关于直线y=1轴对称,已知点A坐标是(4,4),则点B的坐标是()A. (4,−4)B. (−4,2)C. (4,−2)D. (−2,4)二、填空题(本大题共4小题,共16.0分)11.一直角三角形的三边分别为6,8,x,那么以x为边长的正方形的面积为______.12.916的算术平方根是.13.计算:√−83+√9=______.14.若点(a,−4)与点(−3,b)关于x轴对称,则a=________,b=________.三、计算题(本大题共2小题,共14.0分)15.计算12√113+(3√18+15√50−4√12)÷√3216.计算(1)(2x−1)2+(1−2x)(1+2x)(2)(x+2)(x−3)−x(x+1)四、解答题(本大题共5小题,共40.0分)17.求满足下列各式的未知数x(1)27x3+125=0(2)(x+2)2=16.18.如图,在每个小正方形是边长为1的网格中,A,B,C均为格点.(Ⅰ)仅用不带刻度的直尺作BD⊥AC,垂足为D,并简要说明道理;(Ⅱ)连接AB,求△ABC的周长.19.如图,在海上观察所A处.我边防海警发现正南方向60海里的B处有一可疑船只正以每小时20海里的速度向正东方向C处驶去,海我边防海警即刻从A处派快艇去拦截.若快艇的速度是每小时1003里.问快艇最快几小时拦截住可疑船只?20.求代数式的值:(1)当a=7,b=4,c=0时,求代数式a(2a−b+3c)的值.(2)如图是一个数值转换机的示意图.请观察示意图,理解运算原理,用代数式表示为______ .若输入x的值为3,y的值为−2,输出的结果是多少?21.如图1,在平面直角坐标系中,A(a,0),B(0,2√3)(1)点(k+1,2k−5)关于x轴的对称点在第一象限,a为实数k的范围内的最大整数,求A点的坐标及△AOB的面积;(2)在(1)的条件下如图1,点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,请直接写出P点坐标;(3)在(1)的条件下,如图2,以AB、OB的作等边△ABC和等边△OBD,连接AD、OC交于E 点,连接BE.①求证:EB平分∠CED;②M点是y轴上一动点,求AM+CM的最小值.-------- 答案与解析 --------1.答案:C解析:解:∵∠C=90°,AB=10,AC:BC=3:4,∴BC2+AC2=AB2,AC:BC:AB=3:4:5,∴BC=8;故选:C.根据勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,即BC2+AC2=AB2,结合已知条件,即可得出BC的长.本题考查了勾股定理;熟记勾股定理是解决问题的关键.2.答案:B解析:解:A、−√7是无理数,故选项错误;B、−0.6是有理数,故选项正确;C、2π是无理数,故选项错误;D、0.151151115…是无理数,故选项错误.故选:B.本题考查了实数,根据有理数的定义选出即可.3.答案:D解析:【分析】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据第二象限内点的横坐标是负数,纵坐标是正数分别求出x、y的值,然后写出点P的坐标即可.【解答】解:∵P(x,y)在第二象限,且x2=4,|y|=7,∴x=−2,y=7,∴点P的坐标为(−2,7).故选D.4.答案:A解析:【分析】此题考查了算术平方根,以及平方根,熟练掌握各自的性质是解本题的关键.根据算术平方根和平方根的定义分别对每一项进行计算,即可得出答案.【解答】解:A.√(−2)2=√4=2,正确;B.±√9=±3,故本选项错误;C.√16=4,故本选项错误;D.√22=2,故本选项错误;故选A.5.答案:C解析:解:∵3<√13<4,故选:C.根据3<√13<4,即可选出答案本题主要考查了是实数在数轴上的表示,熟悉实数与数轴的关系式解答此题的关键.6.答案:B解析:解:(1)√5是实数,故正确;(2)√5是无限不循环小数,故正确;(3)√5是无理数,故正确;(4)√5的值等于2.236,故错误;故选B.根据实数的分类进行判断即可.本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.答案:C解析:【分析】本题考查了平面直角坐标系,点的坐标的确定,先由E(−1,−2),F(2,−2)确定平面直角坐标系,然后确定G点坐标即可.【解答】解:如图,由E(−1,−2),F(2,−2)可确定平面直角坐标系如下图:∴G点坐标为(−3,1),故选C.8.答案:A解析:【分析】折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8−x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长【解答】解:设CN=xcm,则DN=(8−x)cm,BC=4cm,根据题意可知DN=EN,EC=12在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8−x)2=16+x2,整理得16x=48,∴x=3,则CN=3cm.故选A.9.答案:D解析:和数轴上的点一一对应的数是实数,故选:D .熟练掌握实数与数轴上的点是一一对应的关系是解题的关键.10.答案:C解析:解:根据题意,点A 和点B 是关于直线y =1对称的对应点,它们到y =1的距离相等是3个单位长度,所以点B 的坐标是(4,−2).故选:C .根据轴对称的两点到对称轴的距离相等,此题易解.主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.11.答案:100或28解析:解:当较大的数8是直角边时,根据勾股定理,得x 2=36+64=100;当较大的数8是斜边时,根据勾股定理,得x 2=64−36=28.所以以x 为边长的正方形的面积为100或28.故答案为:100或28.以x 为边长的正方形的面积是x 2,所以只需求得x 2即可.但此题应分8为直角边和为斜边两种情况考虑.此题考查勾股定理,此类题在没有明确直角边或斜边的时候,一定要注意分情况考虑,熟练运用勾股定理进行计算.12.答案:34解析:【分析】此题主要考查了算术平方根的定义,根据算术平方根的定义即可解答.【解答】解:916的算术平方根为34.故答案为34.13.答案:1解析:解:原式=−2+3=1,故答案为:1原式利用平方根与立方根定义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.答案:−3;4解析:【分析】本题考查了关于轴x、y轴对称的点的坐标,据关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数,根据关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P(a,−4)与点Q(−3,b)关于x轴对称,得a=−3,b+(−4)=0,解得a=−3,b=4,故答案为−3;4.15.答案:解:原式=12×2√3+(9√2+√2−2√2)÷4√23=8√3+2.解析:先化简二次根式,然后根据二次根式的混合运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.16.答案:解:(1)(2x−1)2+(1−2x)(1+2x)=4x2−4x+1+1−4x2=−4x+2;(2)(x+2)(x−3)−x(x+1)=x2−3x+2x−6−x2−x=−2x−6.解析:(1)根据完全平方公式和平方差公式可以解答本题;(2)根据多项式乘多项式和单项式乘多项式可以解答本题.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.17.答案:解:(1)27x3+125=0则x3=−12527解得:x=−5;3(2)(x+2)2=16则x+2=±4,解得:x1=−6,x2=2.解析:(1)直接利用立方根的定义化简求出答案;(2)直接利用平方根的定义化简求出答案.此题主要考查了立方根以及平方根,正确把握相关定义是解题关键.18.答案:解:(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连接BD,则BD⊥AC,理由:由图可知BC=√32+42=5,连接AB,则AB=5,∴BC=AB,又CD=AD,∴BD⊥AC.(Ⅱ)由(1)可得AB=5,BC=5由图得AC=√22+42=2√5,∴△ABC的周长=5+5+2√5=10+2√5.解析:本题考查作图−应用与设计,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连接BD,根据等腰三角形的性质可得BD⊥AC,(Ⅱ)利用勾股定理求出AC、BC即可解决问题;19.答案:解:设快艇最快x小时拦截住可疑船只,x,则BC=20x,AC=1003由勾股定理得:AC2=AB2+BC2,x)2=602+(20x)2,即(1003(负值舍去),解得:x=±94∴x=9,4小时拦截住可疑船只.答:快艇最快94解析:本题考查了勾股定理在实际生活中的应用,本题中正确的找到CB,AB,AC的等量关系,并且根据该等量关系在直角△CAB中求解是解题的关键.首先求得线段AC,BC的长,然后利用勾股定理得出方程,解方程即可.20.答案:(1)∵a=7,b=4,c=0,∴原式=2a2−ab+3ac=98−28+0=70;(2x+y2)(2)用代数式表示为12将x=3,y=−2代入(2×3+4)=5.得:原式=12解析:解:(1)∵a=7,b=4,c=0,∴原式=2a2−ab+3ac=98−28+0=70;(2x+y2),(2)由题意可得:12将x=3,y=−2代入得:原式=5.(2x+y2).故答案为:12(1)直接利用已知数据代入代数式求出答案;(2)直接利用已知数值转换机的示意图得出代数式,进而求出答案.此题主要考查了代数式求值,正确列出代数式是解题关键.21.答案:解:(1)∵点(k+1,2k−5)关于x轴的对称点在第一象限,∴点(k+1,2k−5)在第四象限,∴k+1>0,2k−5<0,∴−1<k<2.5,∵a为实数k的范围内的最大整数,∴a=2,∵A(a,0),∴A(2,0),∴OA=2,∵B(0,2√3),∴OB=2√3,∴S△AOB=12OA⋅OB=12×2×2√3=2√3;(2)如图1,∵点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,∴①当∠BAP=90°时,AB=AP,过点P作PF⊥OA于F,∴∠PAF+∠APF=90°,∵∠BAP=90°,∴∠PAF+∠BAO=90°,∴∠APF=∠BAO,∵AB=AP,∴△OAB≌△FPA(AAS),∴PF=OA=2,AF=OB=2√3,∴OF=OA+AF=2+2√3,∴P(2+2√3,2),②当∠ABP=90°时,同①的方法得,P′(2√3,2√3+2),即:P点坐标为(2+2√3,2)或(2√3,2√3+2);(3)①如图2,∵△OBD和△ABC都是等边三角形,∴BD=OB,AB=BC,∠OBD=∠ABC=60°,∴∠ABD=∠CBO,在△ABD和△CBO中,{BD=OB∠ABD=∠CBO AB=BC,∴△ABD≌△CBO(SAS),∴S△ABD=S△CBO,AD=OC,过点B作BM⊥AD于M,BN⊥OC于N,∴BM=BN,∵BM⊥AD,BN⊥OC,∴BE是∠CED的角平分线;②如图3,作点A关于y轴的对称点A′,∵A(2,0),∴A′(−2,0),连接A′C交y轴于M,过点C作CH⊥OA于H,在Rt△AOB中,OA=2,OB=2√3,∴AB=4,tan∠OAB=OBOA =2√32=√3,∴∠OAB=60°,∵△ABC是等边三角形,∴AC=AB=4,∠BAC=60°,∴∠CAH=60°,在Rt△ACH中,∠ACH=90°−∠CAH=30°,∴AH=2,CH=2√3,∴OH=OA+AH=4,∴点C(4,2√3),∵A′(−2,0),∴直线A′C的解析式为y=√33x+2√33,∴M(0,2√33).解析:(1)根据点在第四象限内,得出不等式,进而求出k的范围,进而求出点A坐标,最后用三角形面积公式即可得出结论;(2)分两种情况:构造全等三角形求出PF和AF,即可求出点P坐标;(3)①先判断出△ABD≌△CBO(SAS),进而得出S△ABD=S△CBO,AD=OC,即可得出BM=BM,最后用角平分线的判定定理即可得出结论;②根据含30度角的直角三角形的性质求出线段的长,进而求出点C坐标,求出直线A′C的解析式,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,角平分线的判定定理,等腰直角三角形的性质,待定系数法,等边三角形的性质,正确作出辅助线是解本题的关键.。

八年级上学期第一次月考(数学)试题含答案

八年级上学期第一次月考(数学)试题含答案

八年级上学期第一次月考(数学)(考试总分:150 分)一、 单选题 (本题共计10小题,总分30分)1.(3分)1.下列各组数中,能构成直角三角形的一组是( ) A .1,2,3 B .1,1,2 C .2,3,4 D .7,15,172.(3分)2.在某个电影院里,如果用(3,13)表示3排13号,那么2排6号可以表示为( )A .(3,6)B .(13,6)C .(6,2)D .(2,6)3.(3分)3.如图,以直角三角形的三边为边向外作三个正方形A 、B 、C .若24A S =,16B S = ,则C S =( )A .40B .8C .20D .√84.(3分)4.M(-4,-1)关于y 轴对称的点的坐标为( )A.(-4,1) B .(4,1)C .(4,-1)D .(-4,-1)5.(3分)5.下列计算正确的是( )A .236⨯=B .20210=C .2(3)3-=-D .422-= 6.(3分)6.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( ) A .12m B .13m C .18m D .20m7.(3分)7.0.64的算术平方根是( )A .0.8B .-0.8C .0.8±D .0.48.(3分)8.如图是小刚画的一张脸,若用点()1,3A 表示左眼的位置,()3,3B 表示右眼的位置,则嘴巴点C 的位置可表示为( )A .()2,1B .()1,2C .()3,1D .()2,29.(3分)9.32-的绝对值是( )A .32-B .23-C .32+D .32--10.(3分)10.已知实数a ,b 在数轴上的位置如图所示,则化简1b - )A .2bB .22b -C .-2D .22a -+二、 填空题 (本题共计5小题,总分20分)11.(4分)11__ _.√83= .12.(4分)12.在Rt△ABC 中,△C=90°,a,b,c 分别为△A,△B,△C 的对边.若a=5,c=13,则b= .13.(4分)13.某小区楼梯如图所示,欲在楼梯上铺设红色地毯,已知楼梯宽为2m ,则购买这种地毯的长为______.14.(4分)14.若√a +|b −2|=0,则a +b= .15.(4分)15.点()1,37A m m +-在第一、三象限的角平分线上,则m =_______.三、 解答题 (本题共计10小题,总分100分)16.(8分)16.(本题8分)把下列各数分别填在表示它所属的括号里:0,3.14159,18-,0.362,20192-,3π (1)无理数:{______ _______…}(2)整数:{________ _____…}17.(10分)17.(本题10分)计算 (1)√25121 (2)√27+√12√3 18.(10分)18.(本题10分)化简(1)(2+√3)(2-√3) (2)(√35+√53)×√2019.(10分)19.(本题10分)如图,传说中的一个藏宝岛图,藏宝人生前用直角坐标系的方法画了这幅图,现今的寻宝人没有原来的地图,但知道在该图上有两块大石头A (2,1),B (8,1),而藏宝地的坐标是(6,6),试设法在地图上找到藏宝地点.20.(10分)20.(本题10分) 在数轴上画出表示10的点,并说明该点表示的数是10.21.(10分)21.(本题10分)如图,滑杆在机械槽内运动,ACB ∠为直角,已知滑杆AB 长2.5米,顶端A 在AC 上运动,滑杆下端B 距C 点的距离为1.5米,当端点B 向右移动0.5米(D 处)时,求滑杆顶端A 下滑多少米(E 处).22.(10分)22.(本题10分)已知在平面直角坐标系中有三点()2,1A -、()3,1B 、()2,3C .请回答如下问题:(1)在坐标系内描出点A 、B 、C 的位置.(2)在平面直角坐标系中画出A B C ''',使它与ABC 关于x 轴对称.并求A B C '''的面积.23.(10分)23.(本题10分)如图,在ABC 中,AB AC =,15BC =,D 是AB 上一点,9BD =,12CD =.(1)求证:CD AB ⊥;(2)求AC 长.24.(10分)24.(本题10分)一个长方体形盒子的长、宽、高分别为8cm ,8cm ,12cm ,—只蚂蚁想从盒底的A 点爬到盒顶的B 点,你能帮蚂蚁设计一条最短的路线吗?蚂蚁要爬行的最短行程是多少?25.(12分)25.(本题12分)阅读下列解题过程:2=,求a 的取值.解:原式=24a a -+-,当a<2时,原式=(2-a)+(4-a)=6-2a=2,解得a =2(舍去);当2≤a <4时,原式=(a-2)+(4-a)=2=2,等式恒成立;当a≥4时,原式=(a-2)+(a-4)=2a -6=2,解得a=4;所以,a 的取值范围是2≤a≤4.上述解题过程主要运用分类讨论的方法,请你根据上述理解,解答下列问题:(1) 当3≤a≤7_________;(2) =5的a 的取值范围__________;(3) 6,求a 的取值.答案一、 单选题 (本题共计10小题,总分30分)1.(3分)B2.(3分) 2. D3.(3分)3.B4.(3分) 4.C5.(3分)5.A6.(3分)6.C7.(3分) 7.A8.(3分) 8.A9.(3分) 9.B10.(3分) 10.A二、 填空题 (本题共计5小题,总分20分)11.(4分)11.2,212.(4分) 12.1213.(4分)13.714.(4分) 14.215.(4分) 15.4三、 解答题 (本题共计10小题,总分100分)16.(8分)16.解:无理数:3π,...}整数:{0,20192-,...}分数:{3.14159,18-,0.36,...} 17. 17.(10分)略18. 18.(10分)略19. 19.(10分)【详解】通过A,B 两点的坐标找到平面直角坐标系,而后通过宝藏的坐标是(6,6)就能求出其准确位置.20.(10分)20.见解析【分析】以1和3为直角边构建直角三角形,再在数轴上截取斜边的长度即可.【详解】解:在数轴上画出点B 表示3,作AB 垂直于x 轴,截取AB =1,根据勾股定理得,OA ,在数轴上截取OC =OA ,点C【点睛】本题考查了勾股定理和在数轴上表示无理数,解题关键是树立数形结合思想,通过构建直角三角形,利用斜边长表示无理数.21.(10分)21.【详解】设AE 的长为x 米,依题意得CE=AC-x .∵AB=DE=2.5,BC=1.5,∠C=90°,∴AC=AB2−BC2=2.52−1.52=2∵BD=0.5,∴在Rt △ECD 中,CE=DE2−CD2=2.52−(BC+BD) 2=2.52−(1.5+0.5)2=1.5.∴2-x=1.5,x=0.5.即AE=0.5.22.(10分)22.【分析】(1)在坐标系内描出各点即可;(2)根据关于x 轴对称的点的坐标特点画出△A ′B ′C ′,然后求出面积即可.【详解】解:(1)如图所示,A 、B 、C 即为所求;(2)则A B C '''即为所求,15252A B C S '''=⨯⨯=.【点睛】此题考查作图—轴对称变换,坐标与图形,解题关键在于掌握作图法则.【来源】山东省菏泽市单县2020-2021学年八年级下学期期中数学试题23.(10分)23.【分析】(1)根据勾股定理的逆定理即可得到结论;(2)根据勾股定理列方程即可得到结论.【详解】解:(1)证明:15BC =,9BD =,12CD =,22222291215BD CD BC ∴+=+==,90CDB ∴∠=︒,CD AB ∴⊥;(2)解:AB AC =,9AC AB AD BD AD ∴==+=+,90ADC ∠=︒,222AC AD CD ∴=+,222(9)12AD AD ∴+=+,72AD ∴=, 725922AC ∴=+=.【点睛】本题考查了勾股定理的逆定理,勾股定理,正确的识别图形是解题的关键.24.(10分)24.(1)AB=25;(2)S△ABC=150.【来源】陕西省西安市西安高新第一中学2019-2020学年八年级11月月考数学试题【分析】(1)两次用勾股定理,在直角三角形CDB与直角三角形ADC中,把CD计算出来,然后再把AD计算出来,再计算AD+DB= AB.(2)找准三角形的高为CD,底为AB,再计算面积.【详解】(1)△CD△AB,△△CDB=△CDA=90°,△CD22BC BD-22159-=12,△AD22AC CD-222012-16,△AB=AD+BD=16+9=25.(2)S△ABC=12•AB•CD=12×25×12=150.【点睛】本题考查了勾股定理解直角三角形以及三角形的面积计算,需要注意的是,直角三角形中辆直角边的平方和等于斜边的平方,三角形的面积为底乘以高除以2.25.(12分)25.(1)4;(2)16a≤≤;(3)2-或4【来源】山东省烟台市芝罘区2019-2020学年九年级下学期期中数学试题【分析】(1)根据二次根式的性质即可求出答案;(2)先将等式的左边进行化简,然后分情况讨论即可求出答案;(3)先将等式的左边进行化简,然后分情况讨论即可求出答案;【详解】解:(1)△37a ≤≤时,△30a -≤,70a -≤37a a =-+-=(3)(7)a a ----=37a a --+=4;故答案为:4;(25=, △165a a -+-=,当1a ≤时,则10a -≤,60a -<,△原式=16725a a a -+-=-=,解得:1a =;当16a <≤时,则10a ->,60a -≤,△原式=165a a -+-=,△16a <≤符合题意;当6a >时,则10a ->,60a ->,△原式=16275a a a -+-=-=,解得:6a =;△5的a 的取值范围是16a ≤≤;故答案为:16a ≤≤;(3)6=, △136a a ++-=,当1a ≤-时,则10a +≤,30a -<,△原式=13226a a a --+-=-=,解得:2a =-;当13a -<≤时,则10a +>,30a -≤,△原式=1346a a ++-=<,△13a -<≤不符合题意;当3a >时,则10a +>,30a ->,△原式=13226a a a ++-=-=,解得:4a=;△a的值为:2-或4;【点睛】本题考查二次根式的混合运算,二次根式的性质,化简绝对值,解题的关键是熟练运用二次根式的性质,绝对值的意义进行化简,本题属于中等题型.注意运用分类讨论的思想进行分析.。

2019-2020人教版八年级数学上册第一次月考试卷解析版

2019-2020人教版八年级数学上册第一次月考试卷解析版

周长是( )
A. 6cm
B. 7cm
C. 8cm
D. 9 cm
5.已知一个多边形的内角和是 1080°,则这个多边形是( )
A. 五边形
B. 六边形
C. 七边形
D. 八边形
6.如图,△ABC 中,AC=BC<AB.若∠1、∠2 分别为∠ABC、∠ACB 的外角,则下列角度关系何者正确( )
A. ∠ 迀 ∠ B. ∠ ∠ C. ∠ ∠ 迀 䅀೚ D. ∠ ∠ 䅀೚ 7.如图,将 Rt△ABC 沿着点 B 到 C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为 6,则阴影部 分面积为( )
第 3 页 共 13 页
17.如图,BD 平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C 的度数.
18.如图,在△ABC 中,∠ADB=100°,∠C=80°,∠BAD= ∠DAC,BE 平分∠ABC,求∠BED 的度数.
19.如图,有一池塘 要测池塘两端 A、B 的距离,可先在平地上取一个可以直接到达 A 和 B 的点 C , 连
接 AC 并延长到 D , 使
连接 BC 并延长到 E , 使
连接 DE , 那么量出 DE 的
长,就是 A、B 的距离 请说明 DE 的长就是 A、B 的距离的理由.
四.解答题(每小题 7 分,共 21 分) 20.如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE. 求证:BD=CE.
第 1 页 共 13 页
A. 42
B. 96
C. 84
D. 48
8.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为 붘ಾ೚ 的新多边形,则原多
边形的边数为( )

2019-2020年八年级数学上学期第一次月考试题参考答案

2019-2020年八年级数学上学期第一次月考试题参考答案

2019-2020年八年级数学上学期第一次月考试题参考答案1.A2.C3.B4.C5.A6.C7.A8.B9.D 10.D11.1<x<6 12.120° 13.-a+3b-c 14.八 15.416.解:由三角形三边关系得AB-AC<BC<AB+AC 即7<BC<11 ....................(2分)∵BC的长为偶数∴BC=8或BC=10......(6分)∴△ABC的周长为AB+AC+BC=9+2+8=19或AB+AC+BC=9+2+10=21 ......(8分)∴△ABC的周长为19或21......(9分)17.解:∵∠A:∠B:∠C=3:5:7 ∴设∠A=3x,∠B=5x,∠C=7x∵∠A+∠B+∠C=180°∴3x+5x+7x=180°...........(4分)解得 x=12°...........(5分)∴3x=36°,5x=60°,7x=84°.....(6分)即∠A为36°,∠B为60°,∠C为84°....(8分)18.解:∵AD=AB,AD=5cm,∴AB=8cm.......(3分)又∵△ABD的周长是18cm,∴BD=5cm.又∵D是BC的中点,∴BC=2BD=10cm........(6分)又∵△ABC的周长为24cm,∴AC=24-8-10=6cm.........(8分)19.解:设∠1=∠2=x,则∠3=∠4=2x.∵∠BAC=66°,∴∠2+∠4=114°,即x+2x=114°,...(4分)解得x=38°..........(6分)∴∠DAC=∠BAC﹣∠1=28°............(8分)20.解:∵AB∥CD,∴∠C=180°﹣∠B=80°,.........(2分)∵五边形ABCDE内角和为(5﹣2)×180°=540°,....(5分)∴在五边形ABCDE中,∠AED=540°-∠A-∠B-∠C-∠D=540°﹣130°﹣100°﹣80°﹣150°=80°.......(8分)21.解:(1)∵∠A=100°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=30°.....(3分)∵△ABC≌△DEF,AB=6,∴∠F=∠ACB=30°,DE=AB=6 .........(5分)∵EH=2.5∴DH=DE-EH=6﹣2.5=3.5 ...........(8分)(2)∵△ABC≌△DEF,∴∠DEF=∠B=50°∴∠DHC=∠DEF+∠ACB=50°+30°=80°....(10分)22.解:∵点D是BC的中点∴S△ABD=S△ABC ........(2分)又∵点E是AD中点∴S△BED=S△ABD=S△ABC S△CDE=S△ACD=S△ABC∴S△BEC=S△ABD+S△ACD=S△ABC+S△ABC=S△ABC .....(8分)∵点F为CE的中点∴S△BEF=S△BEC=S△ABC=×8=2 即阴影部分的面积为2cm²...(12分)23.解:(1)∵AE平分∠BAC ∴∠EAC=∠BAC ∵∠BAC=180°-∠B-∠C ∵AD⊥BC∴∠DAC+∠C=90°∴∠EAD=∠EAC-∠DAC =∠BAC-(90°-∠C) =(180°-∠B-∠C)-(90°-∠C)=(∠C-∠B)………………(4分)(2)∠EFD=(∠C-∠B)……(5分)理由如下:过点A作AG∥DF ∴∠EFD=∠EAG同(1)可知,∠EAG=(∠C-∠B)∴∠EFD=(∠C-∠B)……(8分)(3)∠EFD=(∠C-∠B)………(9分)理由如下:过点A作AG∥DF交BC于点G∴∠EFD=∠EAG 同(1)可知,∠EAG=(∠C-∠B)即∠EFD=(∠C-∠B)…………(12分)。

人教版2019-2020学年八年级上学期数学第一次月考试卷G卷

人教版2019-2020学年八年级上学期数学第一次月考试卷G卷

人教版2019-2020学年八年级上学期数学第一次月考试卷G卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分) (2019八上·杭州期末) 若三角形三个内角度数比为2:3:4,则这个三角形一定是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 不能确定2. (3分)(2019·抚顺) 若一个等腰三角形的两边长分别为2,4,则第三边的长为()A . 2B . 3C . 4D . 2或43. (3分) (2019七上·尚志期末) 下列说法正确的是()A . 一点确定一条直线B . 两条射线组成的图形叫角C . 两点之间线段最短D . 若AB=BC,则B为AC的中点4. (3分)(2019·南关模拟) 用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是()A .B .C .D .5. (3分) (2018七下·松北期末) 如图,△ACB≌△A' CB',∠BCB'=30°,则∠ACA'的度数为()A . 20°B . 30°C . 35°D . 40°6. (3分) (2016八上·萧山月考) 如图,△ABC中,∠A=70° , AB=AC,点D在BC 的延长线上,则∠ACD=()A . 110°B . 55°C . 125°D . 105°7. (3分) (2017八下·西城期末) 彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案.以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是()A .B .C .D .8. (3分) (2019八上·江海期末) 如图,在△ABC中,∠A=80°,∠C=60°,则外角∠ABD的度数是()A . 100°B . 120°C . 140°D . 160°9. (3分)(2019·十堰) 如图,四边形内接于⊙ ,交的延长线于点,若平分,,则()A .B .C .D .10. (3分)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A . 9B . 18C . 36D . 72二、填空题(每小题4分,共24分) (共6题;共24分)11. (4分) (2017八上·北部湾期中) 将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为________度.12. (4分) (2017八上·广水期中) 已知,在△ABC中,AD是BC边上的高线,且∠ABC =25°,∠ACD=55°,则∠BAC=________.13. (4分) (2019九下·江阴期中) 如图,正三角形ABC的边长是2,分别以点B,C 为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是________.14. (4分) (2019八下·孝义期中) 如图,四边形是正方形,,点是对角线的中点,将绕点旋转,其中,两直角边、分别与边、相交于点、,连接 .在旋转过程中的最小值为________.15. (4分)(2018·开远模拟) 如图,AB∥CD,CE与AB交于点A,BE⊥CE,垂足为E.若∠C=37°,则∠B=________.16. (4分) (2019八下·宜兴期中) 如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=8,BC=6,则线段MM′的长为________.三、解答题(本大题有7小题,共66分) (共7题;共105分)17. (15分)两个大小不同的圆可以组成如图中的五种图形,它们仍旧是轴对称图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么特点。

人教版2019-2020学年湖北省武汉市武昌区南湖中学八年级(上)月考数学试卷(10月份)解析版

人教版2019-2020学年湖北省武汉市武昌区南湖中学八年级(上)月考数学试卷(10月份)解析版

2019-2020学年湖北省武汉市武昌区南湖中学八年级(上)月考数学试卷(10月份)一、选择题(每小题3分,共30分)1.(3分)下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形2.(3分)下列长度的三条线段能组成三角形的是()A.1,2,3B.4,5,10C.8,15,20D.5,8,153.(3分)如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE是()A.100°B.120°C.135°D.150°4.(3分)已知等腰三角形的两边长分别是5和11,则这个等腰三角形的周长为()A.21B.16C.27D.21或275.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等6.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块7.(3分)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.8.(3分)如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管()根.A.2B.4C.5D.无数9.(3分)如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在射线DB、DC、BC上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=()A.30°B.35°C.15°D.25°10.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若AC=9,AB=15,且S=54,则△ABD的面积是()△ABCA.B.C.45D.35二.填空题(每小题3分,共18分)11.(3分)一个n边形的内角和是其外角和的2倍,则n=.12.(3分)已知AD是△ABC的一条中线,AB=9,AC=7,则AD的取值范围是.13.(3分)如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)14.(3分)如图,AD是△ABC的高,∠BAD=40°,∠CAD=65°.若AB=5,BD=3,则BC 的长为.15.(3分)如图,已知点A(﹣4,4),一个以A为顶点的45°角绕点A旋转,角的两边分别交x轴正半轴,y轴负半轴于E、F,连接EF.当△AEF是直角三角形时,点E的坐标是三.解答题(8小题,共72分)16.(8分)一个正多边形每个内角比外角多90°,求这个正多边形所有对角线的条数.17.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.18.(8分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.19.(8分)如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.求证:AE=CF.20.(8分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.21.(10分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF;(3)连接AM,求证:AM平分∠EMF.22.(10分)C点的坐标为(4,4),A为y轴负半轴上一动点,连CA,CB⊥CA交x轴于B.(1)求OB﹣OA的值;(2)E在x轴正半轴上,D在y轴负半轴上,∠DCE=45°,转动∠DCE,求线段BE、DE和AD之间的数量关系.23.(12分)在平面直角坐标系中,已知A(0,a)、B(b,0),且a、b满足:a2+b2﹣4a+4b+8=0,点D为x正半轴上一动点(1)求A、B两点的坐标;(2)如图,∠ADO的平分线交y轴于点C,点F为线段OD上一动点,过点F作CD的平行线交y轴于点H,且∠AFH=45°,判断线段AH、FD、AD三者的数量关系,并予以证明;(3)以AO为腰,A为顶角顶点作等腰△ADO,若∠DBA=30°,直接写出∠DAO的度数参考答案与试题解析一、选择题(每小题3分,共30分)1.解:具有稳定性的图形是三角形.故选:A.2.解:由1、2、3,可得1+2=3,故不能组成三角形;由4、5、10,可得4+5<10,故不能组成三角形;由8、15、20,可得8+15<20,故能组成三角形;由5、8、13,可得5+8=13,故不能组成三角形;故选:C.3.解:∠ADE=45°+90°=135°,故选:C.4.解:当等腰三角形的腰为5时,三边为5,5,11,5+5=10<11,三边关系不成立,当等腰三角形的腰为11时,三边为5,11,11,三边关系成立,周长为5+11+11=27.故选:C.5.解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.6.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.7.解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选:B.8.解:如图所示,∠AOB=15°,∵OE=FE,∴∠GEF=∠EGF=15°×2=30°,∵EF=GF,所以∠EGF=30°∴∠GFH=15°+30°=45°∵GH=GF∴∠GHF=45°,∠HGQ=45°+15°=60°∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QM,∴∠QMH=75°,∠HQM=180﹣75°﹣75°=30°,故∠OQM=60°+30°=90°,不能再添加了.故选:C.9.解:∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A)=×(180°﹣60°)=60°,∴∠MBC+∠NCB=360°﹣60°=300°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°﹣(∠5+∠6+∠1)=180°﹣150°=30°,∵BF、CF分别平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故选:C.10.解:在Rt△ACB中,BC===12,作DH⊥AB于H,如图,设DH=x,则BD=9﹣x,由作法得AD为∠BAC的平分线,∴CD=DH=x,在Rt△ADC与Rt△ADH中,,∴△ADC≌△ADH,(HL),∴AH=AC=9,∴BH=15﹣9=6,在Rt△BDH中,62+x2=(12﹣x)2,解得x=,∴△ABD的面积=AB•DH=×15=.故选:B.二.填空题(每小题3分,共18分)11.解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;12.解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<16,∴1<AD<8.故答案为:1<AD<8.13.解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.14.解:在DC上截取DE=BD=3,连接AE,∴AE=AB=5,∴∠EAD=∠BAD=40°,∵∠CAD=65°,∴∠CAE=25°,∵AD⊥BC,∴∠ADC=90°,∴∠C=25°,∴∠CAE=∠C,∴CE=AE=5,∴BC=BD+DE+CE=5+6=11,故答案为:11.15.解:①如图所示:当∠AFE=90°,∴∠AFD+∠OFE=90°,∵∠OEF+∠OFE=90°,∴∠AFD=∠OEF∵∠AFE=90°,∠EAF=45°,∴∠AEF=45°=∠EAF,∴AF=EF,在△ADF和△FOE中,,∴△ADF≌△FOE(AAS),∴FO=AD=4,OE=DF=OD+FO=8,∴E(8,0)②当∠AEF=90°时,同①的方法得,OF=8,OE=4,∴E(4,0),综上所述,满足条件的点E坐标为(8,0)或(4,0)三.解答题(8小题,共72分)16.解:设此正多边形为正n边形.由题意得:﹣=90,n=8,∴此正多边形所有的对角线条数为:==20.答:这个正多边形的所有对角线有20条.17.证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.18.证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中,∴△DBE≌DCF(AAS),∴DE=DF.19.证明:∵AB∥CD,∴∠B=∠D(两直线平行,内错角相等);∴在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF(全等三角形的对应边相等).20.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.21.证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵,∴△ABF≌△AEC(SAS),∴EC=BF;(2)根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.(3)作AP⊥CE于P,AQ⊥BF于Q.如图:∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.22.解:(1)如图1,过C作CQ⊥y轴于Q,过C作CP⊥OB于P,∵C(4,4),∴CQ=CP=OQ=OP=4,∵AC⊥BC,∴∠ACB=∠ACP+∠BCP=∠BCP+∠PBC=90°,∴∠ACP=∠PBC,∵OA∥PC,∴∠CAQ=∠ACP=∠PBC,∵∠CPB=∠CQA=90°,∴△CQA≌△CPB(AAS),∴PB=AQ,∴OB﹣OA=OP+PB﹣OA=OP+AQ﹣OA=OP+OQ=8;(2)分两种情况:①当D在OA的延长线上时,DE=AD+BE,理由是:如图2,过C作CM⊥CD,交x轴于M,∵AC⊥BC,∴∠ACD=∠BCM,由(1)知:△CQA≌△CPB,∴AC=BC,∠CAQ=∠PBC,∴∠DAC=∠MBC,∴△CAD≌△CBM(ASA),∴BM=AD,CD=CM,∵∠ACB=90°,∠DCE=45°,∴∠ACD+∠BCE=45°=∠BCM+∠BCE=∠ECM,∵CE=CE,∴△DCE≌△MCE(SAS),∴DE=EM,∴EM=BE+BM=BE+AD=DE,即DE=AD+BE.②当D在边OA上时,DE=BE﹣AD,理由是:如图3,过C作CM⊥CD,交x轴于M,同理得△CAD≌△CBM(ASA),∴BM=AD,CD=CM,同理得:△DCE≌△MCE(SAS),∴DE=EM,∴EM=BE﹣BM=BE﹣AD=DE,即DE=BE﹣AD.23.解:(1)∵a2+b2﹣4a+4b+8=0,∴(a﹣2)2+(b+2)2=0,∵(a﹣2)2≥0,(b+2)2≥0,∴a﹣2=0,b+2=0,∴a=2,b=﹣2,∴A(0,2),B(﹣2,0).(2)结论:AH+FD=AD理由:在AD上取K使AH=AK.设∠HFO=α,∴∠OAF=45﹣α,∵HF∥CD,∴∠CDO=∠ADC=α,∴∠FAD=45﹣α,∴△AHF≌△AKF,∴∠AFK=45°,∴∠KFD=90﹣α,∠FKD=90﹣α,∴FD=DK,∴AH+FD=AD.(3)如图2中:①当D1在△ABO内部时,可以证明当BD1=OD1时,AO=AD1,此时∠D1BO =∠D1OB=15°,∠AOD1=∠AD1O=75°,∴∠D1AO=30°.②当D3在BD1的延长线上时,可得∠OAD3=60°,③当D2在AB上方时,同法可得∠OAD2=60°,∠OAD4=150°∴∠DAO=60°或30°或150°.故答案为60°或30°或150°.。

人教版2019-2020学年八年级上学期数学第一次月考试卷C卷

人教版2019-2020学年八年级上学期数学第一次月考试卷C卷

人教版2019-2020学年八年级上学期数学第一次月考试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下图中,既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个2. (2分)用尺规作图,下列条件中可能作出两个不同的三角形的是()A . 已知三边B . 已知两角及夹边C . 已知两边及夹角D . 已知两边及其中一边的对角3. (2分)如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD ,那么,下列说法错误的是()A . △EBD是等腰三角形,EB=EDB . 折叠后∠ABE和∠CBD一定相等C . 折叠后得到的图形是轴对称图形D . △EBA和△EDC一定是全等三角形4. (2分)下面四个条件,不能判定两个直角三角形全等的是()A . 两条直角边分别相等B . 两个锐角分别相等C . 斜边和一直角边对应相等D . 一锐角和斜边分别相等5. (2分)如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()A .B .C .D .6. (2分)如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A . 4 cmB . 5 cmC . 6 cmD . 10 cm7. (2分)如图,把长方形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的有()A . 1个B . 2个C . 3个D . 4个8. (2分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A . 两点之间的线段最短B . 长方形的四个角都是直角C . 长方形是轴对称图形D . 三角形有稳定性9. (2分)如图,Rt△ABC中,CF是斜边AB上的高,角平分线BD交CF于G,DE⊥AB 于E,则下列结论①∠A=∠BCF , ② CD=CG=DE, ③AD=BD ,④ BC=BE中正确的个数是()A . 1B . 2C . 3D . 410. (2分)如图,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,则AD:DC=A .B .C . -1D . -1二、填空题 (共8题;共10分)11. (1分)观察下列图形: 其中是轴对称图形的有________个.12. (1分)如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2 ,则图中阴影部分面积为________ cm2 .13. (2分)等腰梯形ABCD的对角线AC、BD相交于点O,则图中共有________对全等三角形,有________个等腰三角形.14. (1分)如图,△ABC中,DE是AB的垂直平分线,交BC于D,交AB于E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是________。

2019-2020学年度新人教版八年级数学上册第一次月考试卷

2019-2020学年度新人教版八年级数学上册第一次月考试卷

2019-2020学年度新人教版八年级数学上册第一次月考试卷新人教版八年级数学第一次月考试题姓名:一、选择题(每小题3分;共36分)1、下列所给的各组线段;能组成三角形的是:( )A、1cm、2cm、3cmB、2cm、3cm、4cmC、1cm、2cm、4cmD、1cm、4cm、5cm2、如图,小明把一块三角形的玻璃打碎成了三块;现在要到玻璃店去配一块完全一样的玻璃;那么最省事的办法是:( )A、带①去;B、带②去C、带③去D、①②③都带去3、如果从一个多边形的一个顶点出发作它的对角线;最多能将多边形分成2011个三角形;那么这个多边形是:( )边形A、2012B、2013C、2014D、20154、一个正多边形的一个内角等于144°;则该多边形的边数为:( )A.8 B.9 C.10 D.115、等腰三角形中;一个角为50°;则这个等腰三角形的顶角的度数为()A.150°B.80°C.50°或80°D.70°6、下列说法正确的是( )A、全等三角形是指形状相同大小相等的三角形;B、全等三角形是指面积相等的三角形C、周长相等的三角形是全等三角形D、所有的等边三角形都是全等三角形7、.如图所示;在下列条件中;不能作为判断△ABD≌△BAC的条件是()A. ∠D=∠C;∠BAD=∠ABC B.∠BAD=∠ABC;∠ABD=∠BACC.BD=AC;∠BAD=∠ABC D.AD=BC;BD=AC8、如图所示;E、B、F、C四点在一条直线上;EB=CF;∠A=∠D;再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DEB. DF∥ACC. ∠E=∠ABCD. AB∥DE9、△ABC中;AC=5;中线AD=7;则AB边的取值范围是()A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<1910、一个多边形截去一个角后;形成另一个多边形的内角和720°那么原多边形的边数为()A.5 B.6或4 C.5或7 D.5或6或710、如图所示;在△ABC中;CD、BE分别是AB、AC边上的高;并且CD、BE交于点P;若∠A=50°;则∠BPC等于()A、90°B、130°C、270°D、315°11、如图;a∥b,则下列式子中等于180°的是 ( )A、α+β+γB、α+β-γC、β+γ -αD、α-β+γB C第10题 第11题 第12题12.如图所示;点B 、C 、E 在同一条直线上;△ABC 与△CDE 都是等边三角形;则下列结论不一定成立的是 ( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA二、填空题(每小题3分;共18分)13、师傅在做完门框后;为防止门框变形;常常需钉两根斜拉的木条;这样做的数学原理是 .14.一个三角形的两边长分别为2厘米和9厘米;若第三边的长为奇数;则第三边的长 为厘米.15. 如图;△ABC ≌△DEF ;A 与D ;B 与E 分别是对应顶点;∠B=32;∠A=68;AB=13cm ;则∠F= 度;DE= cm .16、如图,∠1=_____ 度.第15题图 第16题图 第18题图17、一个等腰三角形有两边分别为5和8厘米;则周长是 厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版2019-2020学年八年级(上)第一次月考数学试卷C卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 下列说法中错误的是()
A.所有的有理数都可以在数轴上表示出来B.在数轴上0和−1之间没有负数
C.数轴上在原点两旁到原点的距离相等的点表示的数互
D.数轴上表示−3的点与表示+1的点距离是4个单位长度为相反数
2 . 在直线 l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别为 a,b,c,正放置的四个正方形的面积依次为 S1,S2,S3,S4,则 S1+S2+S3+S4=()
A.a+b B.b+c C.a+c D.a+b+c
3 . 下列说法正确的是()
A.﹣81的平方根是±9B.﹣6是(﹣6)2的平方根
C.的算术平方根是5D.是﹣3的算术平方根
4 . 若=x﹣5,则x的取值范围是()
A.x<5B.x≤5C.x≥5D.x>5
5 . 如图,四边形ABCD是长方形,四边形AEFG是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC 交BC于点H.若∠BCF=30°,CD=4,CF=6,则正方形AEFG的面积为()
A.1B.2C.3D.4
6 . 在数0、1、、中,最小的数是()
A.0B.1C.﹣D.﹣
7 . 在△ABC中,∠A、∠B、∠C的对边分别为a,b,c,下列说法中错误的是()
A.如果,那么B.如果,那么
C.如果,那么D.如果,那么
8 . 如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()
A.4B.4.8C.5.2D.6
9 . 下列四组线段中,可以构成直角三角形的是()
A.1、、B.2、3、4C.1、2、3D.4、5、6
10 . 如果,则的平方根是()
A.-7B.1C.7D.±1
二、填空题
11 . 若,,那么=_________,=_________.
12 . 一只小虫在数轴上从A点出发,第1次向正方向爬行1个单位后,第2次向负方向爬行2个单位,第3次又向正方向爬行3个单位……按上述规律,它第2018次刚好爬到数轴上的原点处,求小虫爬行的起始位置A点所表示的数________.
13 . 如图,由四个直角边分别为8和6的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为
__________.
14 . 若代数式有意义,则x的取值范围是_____.
三、解答题
15 . 如图所示,正方体盒子的棱长为2,BC的中点为M.
(1)一只蚂蚁从点M沿正方体的棱爬到点D1,蚂蚁爬行的最短路程是多少?
(2)若蚂蚁从点M沿正方体的表面爬行到点D1,请你结合正方体的展开图画出蚂蚁爬行的最短路
线.
16 . 图①、图②、图③都是5×5的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,请在所给网格区域(含边界)上按要求画格点三角形.
(1)在图①、图②中分别画一个△PAB,使△PAB的面积等于4(所画的两个三角形不全等).
(2)在图③中,画一个△PAB,使tan∠APB=

17 . 观察下面的一列数:
··········
(1)用只含一个字母的等式表示这一列数的特征;
(2)利用(1)题中的规律计算:的值.
(3)计算:的值.
18 . 已知a、b、c在数轴上对应的点如图所示,
(1)化简:2|b﹣c|﹣|b+c|+|a﹣c|﹣|a﹣b|;
(2)若(c+4)2与|a+c+10|互为相反数,且b=|a﹣c|,求(1)中式子的值.
19 . 计算:(1)+﹣2
(2)﹣4+3
(3)(﹣2)2﹣(+2)(2﹣).
20 . 如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm,直线CM⊥B
A.动点从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时问为t秒.
(1)求AB的长;
(2)当t为多少时,△ABD的面积为?
(3)当t为多少时,,并简要说明理由(可在备用图中画出具体图形).
21 . 如图,在中,∠ACB=90°,,,于
A.
(1)求斜边AB的长;
(2)求高CD的长.
22 . 学校需要测量升旗杆的高度. 同学们发现系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.经测量,绳子多出的部分长度为2m,将绳子沿地面拉直,绳子底端距离旗杆底端6m,求旗杆的高度.
23 . 计算:
(1)()2+-(1-)0
(2)+2+|-2|
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
三、解答题
1、2、3、4、5、6、7、8、9、。

相关文档
最新文档