非晶硅薄膜太阳能电池的优点
非晶硅太阳电池分类
非晶硅太阳电池分类非晶硅太阳电池是一种新型的太阳能电池,也被称为非晶硅薄膜太阳能电池。
它是利用非晶硅材料制成的薄膜,通过吸收太阳光的能量来产生电流,从而转化为可用的电能。
非晶硅太阳电池具有高效能转换、柔性和轻便等特点,被广泛应用于太阳能光伏发电领域。
非晶硅太阳电池主要分为非晶硅薄膜太阳电池和非晶硅多晶太阳电池两种类型。
非晶硅薄膜太阳电池是将非晶硅薄膜沉积在透明导电玻璃基板上制成的,它具有较高的光吸收能力和较高的光电转换效率。
非晶硅多晶太阳电池则是将非晶硅薄膜沉积在多晶硅基底上制成的,它能够在相对较低的光照条件下产生较高的电流输出。
非晶硅太阳电池相比于传统的结晶硅太阳电池具有以下几个优点。
首先,非晶硅薄膜太阳电池可以在室温下制备,而结晶硅太阳电池需要高温制备,因此非晶硅太阳电池的制备成本更低。
其次,非晶硅太阳电池具有较高的光吸收能力,可以在较低的光照条件下产生较高的电流输出。
此外,非晶硅太阳电池可以制成柔性的薄膜形式,可以用于制作柔性太阳能电池板,具有更广阔的应用前景。
非晶硅太阳电池的工作原理是光吸收-电荷分离-电流输出。
当太阳光照射到非晶硅薄膜上时,光子的能量被吸收并转化为电子的能量。
这些电子被激发到导带中,并在电场的作用下形成电流。
同时,光生电子和空穴的复合过程也会发生,这使得非晶硅太阳电池的光电转换效率相对较低。
为了提高非晶硅太阳电池的效率,可以采用掺杂和多层结构等方法进行优化。
非晶硅太阳电池的应用领域非常广泛。
首先,它可以应用于家庭和商业建筑的太阳能光伏发电系统中,用于发电和供电。
其次,非晶硅太阳电池还可以用于太阳能充电器、太阳能通信设备等小型电子设备中,为这些设备提供可再生的电能。
此外,非晶硅太阳电池还可以应用于太阳能电池板、太阳能路灯等领域,为城市提供清洁的能源。
非晶硅太阳电池是一种高效能转换、柔性和轻便的太阳能电池。
它具有较高的光吸收能力和较高的光电转换效率,可以在室温下制备,制备成本较低。
太阳能电池材料的种类、原理和特点
太阳能电池是一种将太阳能直接转换为电能的装置,它是太阳能光伏发电系统的核心部件之一。
太阳能电池材料的种类、原理和特点是影响太阳能电池性能和应用领域的关键因素。
本文将围绕这一主题展开讨论,以便为读者深入了解太阳能电池提供全面的了解。
一、太阳能电池材料的种类太阳能电池材料可以分为晶体硅、非晶硅、多晶硅、柔性薄膜电池材料等几种主要类型。
1. 晶体硅晶体硅是太阳能电池最常用的材料之一,它主要由单晶硅和多晶硅两种类型,其中单晶硅的电池效率较高,但成本较高,多晶硅则相对便宜一些。
2. 非晶硅非晶硅是一种非晶态材料,是将硅薄片进行涂覆和烧结而成的,其电池效率较低,但成本较低,适合一些需要成本控制的应用场景。
3. 多晶硅多晶硅电池是利用多晶硅片制成,其性价比相对较高,广泛应用于家用光伏电站和商业光伏电站中。
4. 柔性薄膜电池材料柔性薄膜电池是一种新型的太阳能电池材料,主要由非晶硅材料、铜铟镓硒等化合物材料制成,具有柔性、轻薄、便于携带等优点,是未来太阳能电池发展的方向。
二、太阳能电池材料的原理太阳能电池是利用光电效应将太阳能直接转换为电能的装置。
不同类型的太阳能电池材料有着不同的工作原理。
1. 晶体硅晶体硅太阳能电池的工作原理是通过P-N结构实现的。
当太阳光照射在P-N结上时,光子的能量被硅中的电子吸收并激发,使得电子跃迁到导带中,形成光生电子和空穴。
这些光生电子和空穴会在P-N结的作用下分离,从而形成电流,从而实现将太阳能光能转化为电能。
2. 非晶硅非晶硅太阳能电池利用非晶硅薄膜吸收太阳光的能量,并将其转化为电能。
其工作原理与晶体硅相似,但非晶硅的材料结构不规则,电子的运动方式也有所不同。
3. 柔性薄膜电池材料柔性薄膜电池材料利用非晶硅、铜铟镓硒等化合物材料,通过薄膜沉积技术将材料制备成薄膜,实现光伏效应的转化工作原理与晶体硅和非晶硅类似,通过材料的光电转换将太阳光能转换为电能。
三、太阳能电池材料的特点不同种类的太阳能电池材料各有其独特的特点和适用场景。
薄膜太阳能电池分类
薄膜太阳能电池分类薄膜太阳能电池分类21世纪初之前,太阳能电池主要以硅系太阳能电池为主,超过89%的光伏市场由硅系列太阳能电池所占领,但自2003年以来,晶体硅太阳能电池的主要原料多晶硅价格快速上涨,因此,业内人士自热而然将目光转向了成本较低的薄膜电池。
薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,目前转换效率最高可达13%以上。
薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其应用范围大,可与建筑物结合或是变成建筑体的一部份,应用非常广泛。
1.硅基薄膜电池硅基薄膜电池包括非晶硅薄膜电池、微晶硅薄膜电池、多晶硅薄膜电池,而目前市场主要是非晶硅薄膜电池产品。
非晶硅的禁带宽度为1.7eV,通过掺硼或磷可得到p型或n型a-Si。
为了提高效率和改善稳定性,还发展了p-i-n/p-i-n双层或多层结构式的叠层电池。
2.碲化镉(CdTe)薄膜电池碲化镉薄膜电池是最早发展的太阳电池之一,由于其工艺过程简单,制造成本低,实验室转换效率已超过16%,大规模效率超过12%,远高于非晶硅电池。
不过由于镉元素可能对环境造成污染,使用受到限制。
近年来美国FirstSolar公司采取了独特的蒸气输运法沉积等特殊措施,解决了污染问题,开始大规模生产,并为德国建造世界最大的光伏电站提供40MW碲化镉太阳电池组件。
3.铜铟镓硒(CIGS)薄膜电池铜铟镓硒薄膜电池是近年来发展起来的新型太阳电池,通过磁控溅射、真空蒸发等方法,在基底上沉积铜铟镓硒薄膜,薄膜制作方法主要有多元分布蒸发法和金属预置层后硒化法等。
基底一般用玻璃,也可用不锈钢作为柔性衬底。
实验室最高效率已接近20%,成品组件效率已达到13%,是目前薄膜电池中效率最高的电池之一。
4.砷化镓(GaAs)薄膜电池砷化镓薄膜电池是在单晶硅基板上以化学气相沉积法生长GaAs薄膜所制成的薄膜太阳电池,其直接带隙1.424eV,具有30%以上的高转换效率,很早就被应用于人造卫星的太阳电池板。
非晶硅薄膜太阳能电池概要课件
定义与特性
定义
非晶硅薄膜太阳能电池是一种利 用非晶硅材料制成的太阳能电池 。
特性
具有轻便、柔韧、可折叠等优点 ,同时制造成本较低,适合大规 模生产。
工作原理
01பைடு நூலகம்
02
03
光吸收
非晶硅薄膜能够吸收太阳 光并将其转换为电能。
电极
通过电极将产生的电流导 出,实现电能的有效利用 。
染料敏化太阳能电池
非晶硅薄膜太阳能电池与染料敏化太 阳能电池相比,具有更高的光电转换 效率和更长的使用寿命,但制造成本 较高。
03
非晶硅薄膜太阳能 电池的制造工艺
硅烷气体选择
硅烷气体是制造非晶硅薄膜太阳能电池的关键原料之一,其纯度对电池的性能和稳 定性有着至关重要的影响。
选择高纯度的硅烷气体可以减少杂质和缺陷,提高非晶硅薄膜的质量和光电性能。
非晶硅薄膜太阳能电 池概要课件
目录
CONTENTS
• 非晶硅薄膜太阳能电池简介 • 非晶硅薄膜太阳能电池的优势与
局限 • 非晶硅薄膜太阳能电池的制造工
艺 • 非晶硅薄膜太阳能电池的应用与
前景
目录
CONTENTS
• 非晶硅薄膜太阳能电池的挑战与 解决方案
• 非晶硅薄膜太阳能电池的实际案 例分析
01
反应温度与压强控制
制造非晶硅薄膜太阳能电池需要在一定 的温度和压强条件下进行。
温度和压强对非晶硅薄膜的结构、性能 和光电性能有着直接的影响。通过精确 控制温度和压强,可以优化非晶硅薄膜 的结构,提高其光电转换效率和稳定性
。
通常需要在较低的温度和压强条件下进 行非晶硅薄膜的合成,以减少缺陷和杂
质,提高其质量。
非晶硅薄膜太阳能电池特点及简介 李炜解析
中文摘要中文摘要非晶硅太阳能电池作为一种新型太阳能电池,其原材料来源广泛、生产成本低、便于大规模生产,因而具有广阔的市场前景。
它具有较高的光吸收系数,在0.4~0.75um的可见光波,其吸收系数比单晶硅要高出一个数量级,比单晶硅对太阳能辐射的吸收率要高40倍左右,用很薄的非晶硅膜(约1um厚)就能吸收约80%有用的太阳能,且暗电导很低,在实际使用中对低光强光有较好的适应,特别适用于制作室内用的微低功耗电源,这些都是非晶硅材料最重要的特点,也是它能够成为低价太阳能电池的重要因素。
非晶硅薄膜电池由于没有晶体硅所需要的周期性原子排列要求,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题,在较低的温度(200摄氏度左右)下可直接沉积在玻璃、不锈钢、塑料膜和陶瓷等廉价衬底材料上,工艺简单,单片电池面积大,便于工业化大规模生产,同时亦能减少能量回收时间,降低生产成本。
另外,非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5~2.0eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高,同时,还适合在柔性的衬底上制作轻型的太阳能电池,可做成半透明的电池组件,直接用做幕墙和天窗玻璃,从而实现光伏发电和建筑房屋一体化。
总之,非晶硅薄膜电池具有生产成本低、能量回收时间短、适于大批量生产、弱光响应好以及易实现与建筑相结合、适用范围广等优点。
关键字:非晶硅薄膜;光致衰退效应;界面态;太阳能电池I目录目录中文摘要 (I)第一章非晶硅薄膜太阳电池 (1)第一节非晶硅薄膜太阳电池基础知识简介 (1)第二节非晶硅薄膜太阳电池生产线及制造流程简介 (4)第二章非晶硅薄膜太阳电池应用分析 (7)第一节非晶硅电池特点 (7)第二节非晶硅电池光致衰退效应 (8)第三节非晶硅电池性能影响因素及发展前景 (9)第三章总结 (11)致谢 (12)参考文献 (13)II第一章 简易文本编辑器内容和功能第 1 页第一章 非晶硅薄膜太阳电池第一节 非晶硅薄膜太阳电池基础知识简介1976年美国RCA 实验室的D.E.Conlson 和C.R.Wronski 在Spear 形成和控制p-n 结工作的基础上利用光生伏特(PV)效应制成世界上第一个a-Si 太阳能电池,揭开了a-Si 在光电子器件或PV 组件中应用的幄幕。
非晶硅太阳电池
非晶硅太阳电池一、简介非晶硅太阳电池是一种新型的太阳能电池,它是利用非晶硅薄膜制成的。
与传统的多晶硅太阳电池相比,非晶硅太阳电池具有更高的光电转换效率和更低的制造成本。
二、原理非晶硅太阳电池采用了一种称为“堆垛结构”的设计,这种设计可以使得光线在薄膜中反复折射,从而增强了光吸收效果。
在吸收到光线后,光子会激发出电子-空穴对,在外加电场作用下,这些电子-空穴对会分别向两端移动,并产生一个电压差。
通过将多个这样的单元串联在一起,就可以得到一个具有较高输出功率的太阳能电池。
三、制造工艺1. 清洗基板:首先需要清洗基板表面以去除表面杂质。
2. 沉积非晶硅层:在基板上沉积一层非晶硅薄膜。
3. 氧化处理:经过氧化处理后形成氧化硅层。
4. 刻蚀:利用刻蚀技术去除氧化硅层的一部分,形成电极。
5. 沉积金属层:在电极上沉积一层金属,形成另一个电极。
6. 制成单元:将多个这样的单元串联在一起,就可以得到一个具有较高输出功率的太阳能电池。
四、优缺点1. 优点:(1)光电转换效率高:非晶硅太阳电池可以将光线转换为电能的效率达到了10%-13%左右,比传统的多晶硅太阳电池要高。
(2)制造成本低:非晶硅太阳电池制造工艺简单,生产成本低。
(3)适用范围广:非晶硅太阳电池可以适用于各种不同环境下的太阳能利用场合。
2. 缺点:(1)稳定性差:由于非晶硅薄膜中存在大量的缺陷和杂质,因此其稳定性较差。
(2)寿命短:由于材料缺陷和杂质等原因,非晶硅太阳电池寿命较短。
五、应用领域非晶硅太阳电池可以广泛应用于各种不同的领域,包括:1. 太阳能电池板:非晶硅太阳电池可以制成太阳能电池板,用于发电、供电等。
2. 光伏发电系统:非晶硅太阳电池可以作为光伏发电系统中的核心部件,用于将光能转换为电能。
3. 便携式充电器:非晶硅太阳电池可以制成便携式充电器,用于为手机、平板等设备充电。
六、结语随着可再生能源的需求不断增加,非晶硅太阳电池将会有更广阔的应用前景。
薄膜太阳能电池材料
薄膜太阳能电池是一种相对传统的太阳能电池技术,采用薄膜材料作为光电转换层。
以下是几种常用的薄膜太阳能电池材料:
1. 硅薄膜太阳能电池(a-Si):硅薄膜太阳能电池使用非晶硅(amorphous silicon)作为光电转换层。
它具有较低的成本和较高的灵活性,可适应多种形状和表面。
然而,它的转换效率相对较低。
2. 铜铟镓硒薄膜太阳能电池(CIGS):铜铟镓硒薄膜太阳能电池使用铜(Cu)、铟(In)、镓(Ga)和硒(Se)等元素的化合物作为光电转换层。
它具有较高的转换效率和较好的光吸收性能,但制造过程较复杂。
3. 铜铟硒薄膜太阳能电池(CIS):铜铟硒薄膜太阳能电池使用铜(Cu)、铟(In)和硒(Se)等元素的化合物作为光电转换层。
它与CIGS材料相似,但在元素比例和晶体结构上略有不同。
4. 钙钛矿薄膜太阳能电池(Perovskite):钙钛矿薄膜太阳能电池使用钙钛矿材料作为光电转换层。
这种材料具有良好的光吸收性能和较高的转换效率,并且制造成本较低。
然而,
稳定性和耐久性是目前钙钛矿太阳能电池面临的挑战之一。
这些薄膜太阳能电池材料具有不同的特点和应用情况,选择适当的材料取决于具体的需求和预算。
此外,还有其他一些薄膜太阳能电池材料正在研究和开发中,以提高转换效率和降低成本。
非晶硅薄膜太阳能电池基础知识
顾客导向、科技领航、全面管理、精益求精
顾客导向、科技领航、全面管理、精益求精
非晶硅太阳能电池的基本特性
2、太阳能电池的电流电压特性
根据PN结整流方程,在一定的 入射光下,通过外接负载的电流是:
I=IF-IL=IS[EXP(qV/kT)-1]-IL
输出电流随着负载的增大而减 小,输出电压随着外接负载的增大 而增大。
顾客导向、科技领航、全面管理、精益求精
非晶硅太阳能电池的基本特性
4、环境影响因素
1)辐照度 • 辐照度越大,电流越大。当辐照度大于500W/m2,辐照度与短路 电流呈良好的线性关系。 • 辐照度越大,电压越大。但电压随辐照度的变化较小,测试标准 AM1.5,光强1000 W/m2 2)温度 • 温度升高,电流增大,电压降低,呈现出功率下降,测试标准温度 25 ℃ • 非晶硅太阳能电池的温度系数一般为 电压温度系数:-0.33%/℃,电流温度系数:0.09%/℃, 输出功 率温度系数:-0.23%/℃ 3)光谱 不同的电池对各波长的光吸收系数不一样.
4)转换效率η 表示入射的太阳光能量有多少能转换为有效的电能。即: η =(太阳能电池的输出功率/入射的太阳光功率)x100% = (Vm•Im/Pin•S)×100% = Voc•Isc•FF/Pin • S 其中,Pin是入射光的强度,S为太阳能电池的面积。
顾客导向、科技领航、全面管理、精益求精
• 能源危机与环境污染是人类正面临的重大挑战,开发新能源和可再生清洁 能源是21世纪最具决定影响的技术领域之一。据世界能源委员会和国际应 用系统分析研究所预测,全球化石燃料不足100年,而且,由于燃烧化石 燃料的CO2等气体随能耗指数增加,已严重破坏了生态平衡。造成了诸如 温室效应,酸雨等一系列问题。寻求一种可再生,无污染的清洁能源成为 了一项迫切任务。太阳能电池正是在这种形势下发展起来的。
非晶硅叠层薄膜太阳能电池优点
探究非晶硅叠层薄膜太阳能电池的优势
随着环保意识的逐渐加强,太阳能电池作为可再生能源的代表,近年来备受人们青睐。
而在众多的太阳能电池中,非晶硅叠层薄膜太阳能电池已经成为目前发展最迅速的一种,其优势主要体现在以下三个方面:
一、较高的转换效率
在太阳能电池中,转换效率是一个至关重要的指标。
而非晶硅叠层薄膜太阳能电池的转换效率相对较高,可以达到12%以上。
这是由于非晶硅材料具有较高的光吸收能力,同时其叠层结构可以有效地减少反射损失,提高光利用效率。
二、稳定可靠
对于太阳能电池而言,其在长期使用中的稳定性和可靠性也是非常重要的。
而非晶硅叠层薄膜太阳能电池不仅可以在宽波长范围内实现高效率的转换,同时其长期使用时保持稳定性能也相对较好,可以维持很长的寿命。
三、制造成本低
太阳能电池的成本与生产工艺密切相关。
相比于一些传统的太阳能电池,非晶硅叠层薄膜太阳能电池具有较低的制造成本。
这是因为其生产工艺相对简单,不需要太多的原料和设备,而且由于其薄膜结
构,可以减少光电转换过程中的损失,从而减少能量浪费,进一步降低了成本。
总的来说,非晶硅叠层薄膜太阳能电池有着较高的转换效率、稳定可靠和制造成本低等诸多优点,有着广阔的应用前景。
非晶硅薄膜太阳能电池的优点
非晶硅薄膜太阳能电池的优点:2009-01-13 20:29非晶硅太阳能电池之所以受到人们的关注和重视,是因为它具有如下诸多的优点:1.非晶硅具有较高的光吸收系数.特别是在0.3-0.75um 的可见光波段,它的吸收系数比单晶硅要高出一个数量级.因而它比单晶硅对太阳能辐射的吸收率要高40倍左右, 用很薄的非晶硅膜(约1um厚)就能吸收90%有用的太阳能.这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能电池的最主要因素.2. 非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5-2.0 eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高.3.制备非晶硅的工艺和设备简单,淀积温度低,时间短,适于大批生产.制作单晶硅电池一般需要1000度以上的高温,而非晶硅电池的制作仅需200度左右.4.由于非晶硅没有晶体硅所需要的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题.因而它几乎可以淀积在任何衬底上,包括廉价的玻璃衬底,并且易于实现大面积化.5.制备非晶硅太阳能电池能耗少,约100千瓦小时,能耗的回收年数比单晶硅电池短很多:中国电子报:薄膜技术日趋成熟非晶硅电池主导市场来源:中国电子报发稿时间: 2009-02-10 15:52薄膜电池技术具有提供最低的每瓦组件成本的优势,将有望成为第一个达到电网等价点的太阳能技术。
由于原材料短缺,在单晶硅和多晶硅太阳能电池的发展速度受到限制的情况下,新型薄膜太阳能电池发展尤为迅速。
有资料显示,美国薄膜电池的产量已经超过了多晶硅和单晶硅电池的产量。
薄膜技术会越来越成熟,在未来的市场份额中将大比例提升。
据行业分析公司NanoMarkets预测,薄膜太阳能电池2015年的发电量将达到26GW,销售额将超过200亿美元,太阳能电池发电量的一半以上将来自薄膜太阳能电池。
预计在未来薄膜电池市场中非晶硅(a-Si)、碲化镉(CdTe)、铜铟镓硒(CIGS)三种电池将分别占到薄膜光伏市场的60%、20%和20%。
太阳能电池的分类与特点
太阳能电池的分类与特点太阳能电池是一种将太阳能转化为电能的装置,它由不同材料制成。
根据材料的不同,太阳能电池可以分为单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、染料敏化太阳能电池、聚合物太阳能电池等多种类型。
每种类型的太阳能电池都有其独特的特点和适用范围,下面将逐一介绍这些分类和特点。
1. 单晶硅太阳能电池:单晶硅太阳能电池是最常见的太阳能电池之一,它采用高纯度的单晶硅材料制成。
其特点包括高效率、长寿命和稳定性强。
单晶硅太阳能电池的高效率意味着单个电池的发电能力较强,因此在有限的面积内可以获得更多的电能。
此外,单晶硅太阳能电池通常具有较长的寿命,可在正常使用条件下运行20年以上。
然而,由于制造工艺较为复杂,单晶硅太阳能电池的成本较高,因此价格也相对较贵。
2. 多晶硅太阳能电池:多晶硅太阳能电池是另一种常见的太阳能电池类型,它由多晶硅材料制成。
与单晶硅太阳能电池相比,多晶硅太阳能电池的制造工艺更简单,成本也较低。
然而,多晶硅太阳能电池的效率较低,发电能力相对较弱,但仍然可以满足家庭和商业用途的基本需求。
此外,多晶硅太阳能电池的寿命较长,可持续发电15年以上。
3. 非晶硅太阳能电池:非晶硅太阳能电池是一种采用非晶硅材料制成的薄膜太阳能电池。
与单晶硅和多晶硅太阳能电池相比,非晶硅太阳能电池的制造工艺更简单,可以在较大面积的基板上快速制造。
非晶硅太阳能电池还具有较高的灵活性,可以适应不同形状的物体,因此广泛应用于卷曲表面和柔性电子设备。
然而,与其他太阳能电池相比,非晶硅太阳能电池的效率较低,需要更大的面积才能获得相同的发电能力。
4. 染料敏化太阳能电池:染料敏化太阳能电池是一种基于染料分子的太阳能电池。
它利用染料分子吸收光子,激发电子跃迁并产生电流。
相比于硅基太阳能电池,染料敏化太阳能电池具有灵活性好、制造工艺简单、成本低廉和透明度高等优势。
然而,染料敏化太阳能电池的稳定性较差,寿命较短,通常需在几年内更换。
单晶硅、多晶硅以及非晶硅太阳能电池的特点
单晶硅、多晶硅以及非晶硅太阳能电池的特点一、单晶硅太阳能电池单晶硅太阳能电池是一种高效能的太阳能电池,它可以将太阳能转化为电能。
单晶硅太阳能电池的核心是由一块纯净的单晶硅制成的,晶体结构是一个完整的结构,其中晶体的基础本质是一枝结构,由多个小的晶粒构成一个大的晶体,这种晶体的结构是一个完整的结构,它具有许多不同的特点,下面来详细介绍一下单晶硅太阳能电池的特点。
1、优点(1)单晶硅太阳能电池具有高转换效率。
由于其结构的完整性,使其能够在太阳能的照射下效率更高,这样可以提高太阳能电池的转换效率。
(2)单晶硅太阳能电池具有很高的耐久性。
单晶硅太阳能电池具有比较高的耐久性,且比较稳定,可以长期的使用,具有良好的使用效果。
2、缺点(1)单晶硅太阳能电池价格比较昂贵,且生产工艺复杂,一般价格比较昂贵。
(2)单晶硅太阳能电池偶尔会出现断路,由于它的晶体结构比较完整,在正常状态下,断路是很少发生的,但是由于其它原因仍然有可能出现断路状况。
二、多晶硅太阳能电池多晶硅太阳能电池是一种比较常见的太阳能电池,其主要结构是由多个小的晶体组成,这些晶体结构都是由多个小的晶体组成的,这些晶体之间可以按照一定的方式组合在一起,从而形成一个大的晶体结构,因此,多晶硅太阳能电池的特点也就不难理解了,下面详细介绍一下多晶硅太阳能电池的特点。
1、优点(1)多晶硅太阳能电池的可靠性比较高,它的结构与单晶硅相比,更加的安全可靠。
(2)多晶硅太阳能电池可以很好的满足客户的需求,因为它可以根据客户的需求,进行不同尺寸的定制。
2、缺点(1)多晶硅太阳能电池的价格比较贵,多晶硅电池的价格因为它的质量较高而比较昂贵,一般比单晶硅电池价格要高一些。
(2)多晶硅太阳能电池的转换效率也比较低,一般比单晶硅太阳能电池的转换效率要低一些。
三、非晶硅太阳能电池非晶硅太阳能电池是一种新型的太阳能电池,它具有一定的优势,并且在太阳能发电领域具有重要的应用价值。
下面详细介绍一下非晶硅太阳能电池的特点。
非晶硅薄膜太阳能电池
一、引言太阳能光电转换电池主要分为两类,一类是晶体硅电池,包括单晶硅(sc—si)电池、多晶硅(mc—si)电池两种,它们占据约93%的市场份额;另一类是薄膜电池,主要包括非晶体硅(a—Si,使用的是硅,但以不同的形态表现)太阳能电池、铜铟镓硒(cICS)太阳能电池和碲化镉(cdTe)太阳能电池,这类电池占据7%的市场份额。
晶体硅太阳能电池一直是主流产品,其中多晶硅太阳能电池自l998年开始成为世界光伏市场的主角。
但是由于晶体硅太阳能电池所需的高纯多晶硅价格飙升,使得晶体硅电池价格上涨,为非晶硅太阳能电池带来了行业机会。
制造晶体硅类太阳能电池成本高、能耗大、有污染,要解决这些问题,使太阳能行业真正变成最环保的产业,只能大力发展非晶硅太阳能电池。
二、优点1.非晶硅具有较高的光吸收系数.特别是在0.3-0.75um的可见光波段,它的吸收系数比单晶硅要高出一个数量级.因而它比单晶硅对太阳能辐射的吸收率要高40倍左右,用很薄的非晶硅膜(约1um厚)就能吸收90%有用的太阳能.这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能电池的最主要因素.2.非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5-2.0eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高.3.制备非晶硅的工艺和设备简单,淀积温度低,时间短,适于大批生产.制作单晶硅电池一般需要1000度以上的高温,而非晶硅电池的制作仅需200度左右.4.由于非晶硅没有晶体硅所需要的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题.因而它几乎可以淀积在任何衬底上,包括廉价的玻璃衬底,并且易于实现大面积化.5.制备非晶硅太阳能电池能耗少,约100千瓦小时,能耗的回收年数比单晶硅电池短很多三、原理非晶硅电池的工作原理是基于半导体的光伏效应。
当太阳光照射到电池上时,电池吸收光能产生光生电子—空穴对,在电池内建电场Vb的作用下,光生电子和空穴被分离,空穴漂移到P边,电子漂移到N边,形成光生电动势VL,VL与内建电势Vb相反,当VL=Vb时,达到平衡;IL=0,VL达到最大值,称之为开路电压Voc;当外电路接通时,则形成最大光电流,称之为短路电流Isc,此时VL=0;当外电路加入负载时,则维持某一光电压VL 和光电流IL。
非晶硅太阳能电池发展现状
非晶硅太阳能电池发展现状
非晶硅太阳能电池是一种新型的太阳能电池技术,它具有高效率、轻薄、柔性等特点,因此备受关注。
目前,非晶硅太阳能电池
的发展取得了一些进展,但仍面临着一些挑战。
首先,非晶硅太阳能电池的高效率是其最大的优势之一。
与传
统的多晶硅太阳能电池相比,非晶硅太阳能电池在光电转换效率上
有着明显的优势。
然而,目前非晶硅太阳能电池的效率仍然有待提高,特别是在低光照条件下的性能仍有待改善。
其次,非晶硅太阳能电池的轻薄柔性特点也为其在一些特殊应
用场景中提供了更多可能性。
例如,可以应用于建筑一体化、户外
休闲用品等领域。
然而,目前非晶硅太阳能电池的生产成本仍然较高,导致其在大规模商业应用中受到限制。
另外,非晶硅太阳能电池的稳定性和寿命也是当前亟待解决的
问题。
由于其材料特性,非晶硅太阳能电池在长时间使用后可能会
出现性能下降的情况,这也是目前产业界普遍关注的问题之一。
总的来说,非晶硅太阳能电池作为一种新型的太阳能电池技术,
具有很大的发展潜力。
随着技术的不断进步和成本的不断降低,相信非晶硅太阳能电池将会在未来得到更广泛的应用。
同时,需要产业界和科研机构共同努力,解决其在效率、成本、稳定性等方面的挑战,推动非晶硅太阳能电池技术的进一步发展。
非晶硅太阳能电池板特性
1、更低的成本目前,主流的光伏组件产品仍以硅为主要原材料,仅以硅原材料的的消耗计算,生产1兆瓦晶体硅太阳电池,需要10-12吨高纯硅,但是如果消耗同样的硅材料用以生产薄膜非晶硅太阳电池可以产出超过200兆瓦。
从能源消耗的角度看,非晶硅太阳电池仅1-1.5年的能源回收期,更体现了其在制造过程中对节约能源的贡献。
组件成本在光伏系统中的占有很高的比例,组件价格直接影响系统造价,进而影响到光伏发电的成本。
按目前的组件售价计算,同样的资金,购买非晶硅产品,您可以多获得接近30%的组件功率。
2、更多的电力对于同样功率的太阳电池阵列,非晶硅太阳电池比单晶硅、多晶硅电池发电要多约10%。
这已经被美国的Uni-Solar System LLC、Energy Photovoltaic Corp.、日本的Kaneka Corp.、荷兰能源研究所以及其他的光伏界组织和专家证实了。
在阳光充足的月份,也就是说在较高的环境温度下,非晶硅太阳电池组件能表现出更优异的发电性能。
3、更好的弱光响应由于非晶硅材料原子排列无序的特点,它的电子跃迁不再遵守传统的“选择定则”限制,因此,它的光吸收特性与单晶硅材料存在着较大的差别。
非晶硅和单晶硅材料的吸收曲线如图所示• 非晶硅的吸收曲线具有明显的三段(A、B、C)特征。
A区对应电子在定域态间的跃迁,如费米能及附近的隙态向带尾态的跃迁,该区的吸收系数较小,约1-10cm-1,为非本正吸收;B区的吸收系数随光子能量的增加指数上升,它对应于电子从价带边扩展态到导带定域态的跃迁,以及电子从价带尾定域态向导带边扩展态的跃迁,该区的能量范围通常只有半个电子伏特左右,但吸收系数通常跨越两三个数量级,达到104cm-1;C区对应于电子从价带内部到导带内部的跃迁,该区的吸收系数较大,通常在104cm-1以上。
后两个吸收区是非晶硅材料的本征吸收区。
• 从图中可以看到,两条曲线的交点约在1.8ev左右。
值得注意的是,在整个可见光范围内(1.7-3.0ev),非晶硅材料的吸收系数几乎都比单晶硅大一个数量级。
非晶硅薄膜太阳能电池
非晶硅薄膜太阳能电池
23.11.2020
1, 前言 2, 薄膜太阳能电池分类 3, 太阳能电池的未来市场需求 4, 为何要发展薄膜非晶硅太阳电池 5, 非晶硅太阳电池的发展及趋势 6, 非晶硅薄膜太阳能电池的优点 7, 非晶硅薄膜太阳能电池存在的问题 8, 非晶硅薄膜太阳能电池的主要市场 9, 世界主要非晶硅太阳电池生产厂家 10,中国非晶薄膜电池产业现状及存在问题 11,中国应当抓住的机遇
商品晶体硅太阳电池还是以156mm*156mm和125mm*125mm为主。
23.11.2020
11
短波响应优于晶体硅太阳电池
上海尤力卡公司曾在中国甘肃省酒泉市安装一套6500瓦非晶硅太阳能电 站,其每千瓦发电量为1300KWh,而晶体硅太阳电池每千瓦的年发电量约 为1100-1200KWh。非晶硅太阳电池显示出其极大的使用优势。下图为该 电站的现场照片,第一代非晶硅太阳电池的以上优点已被人们所接受。 2003年以来全世界太阳能市场需求量急剧上升,非晶硅太阳电池也出现 供不应求的局面。
23.11.2020
9
低成本
单结晶硅太阳电池的厚度<0.5um。
主要原材料是生产高纯多晶硅过程中使用的硅烷,这种气体,化学工业 可大量供应,且十分便宜,制造一瓦非晶硅太阳能电池的原材料本约 RMB3.5-4(效率高于6%)
且晶体硅太阳电池的基本厚度为240-270um,相差200多倍,大规模生产 需极大量的半导体级,仅硅片的成本就占整个太阳电池成本的65-70%, 在中国1瓦晶体硅太阳电池的硅材料成本已上升到RMB22以上。
23.11.2020
12
非晶硅太阳能电池存在的问题
效率较低
单晶硅太阳能电池,单体效率为14%-17%(AMO),而柔性基体非晶硅太阳 电池组件(约1000平方厘米)的效率为10-12%,还存在一定差距。
非晶硅太阳能电池组件的优势
Kyocera KC-60 Siemens Solar SM-55
ASE ASE-100 Shell Solar RSM75 Siemens Solar S-30
a-Si TJ a-Si SJ a-Si Dj mc-Si pc-Si mc-Si pc-Si pc-Si CIGS
这里我们做一个简单的计算,以便更直观的看出温度系数对太阳能 组件发电表现的影响。
组件的实际发电功率 Pma= 装机功率Pm × [1 + a(T - 25℃)]
这里: a – 组件的温度系数
非晶硅a≈ -0.2%/℃; 晶硅a≈ -0.5%/℃
非晶硅:Pma=1000W ×[1 -0.2%(60 ℃ -25℃)] =930W
Jardine和Lane,2002发表的几种太阳能组件在西班牙实测的累计年发电量数据 (kWh/kWp),从左至右依次为非晶硅、铜铟硒、单晶、多晶和碲化镉。参看文献[1]。 从图中可以看出同样功率下,非晶硅(double junction)比其他种类的组件年发电量都 要高。
品牌型号
种类
UNI-SOLAR US-32 FEE A13P
温度系数小,高温性能佳
大部分的发电量是产生在光照强度较高的条件下 (500-900 W/m2),这时通常都伴随高温天气。在这 样的条件下,太阳能电池组件的温度可以轻而易举的超过 60℃。由于非晶硅组件的温度系数较小(约只有晶硅的一 半)参看文献[1],组件在工作环境下的发电功率的下降比 晶硅少得多。
种类 STC功率
a-Si TJ CIGS a-Si DJ mc-Si pc-Si mc-Si pc-Si pc-Si pc-Si mc-Si mc-Si pc-Si mc-Si
非晶硅薄膜的性能与应用
非晶硅薄膜的性能与应用摘要:非晶硅薄膜是一种常用的红外波段光学薄膜材料,具有红外吸收系数小,折射率高(3.0~4.0)、热特性好等优点。
本文综述了非晶硅的结构,性能以及应用。
关键词:非晶硅,薄膜,电性能,光电性能1 前言非晶硅薄膜是一种常用的红外波段光学薄膜材料,具有红外吸收系数小,折射率高(3.0~4.0)、热特性好等优点[6-7]。
作为太阳能电池的无定形(a-Si)薄膜日益受到关注,同时它们在显示器、传感器方面,也有很大的应用前景。
1.1 非晶硅薄膜的结构非晶硅中原子的排列可以看作构成一个连续的无规网格,长程无序。
因此有时也把非晶半导体称为无序半导体。
但就一个硅原子讲,它与最邻近或次临近原子的情况基本相同。
因此原子化学性质所决定,所以键长基本一致,键角偏差也不大。
因此非晶硅保持着短程有序。
长程无序而短程有序的结构特点对于非晶半导体的能态、能带及性能都有决定性的影响。
例如,价带顶和导带底各有一个局域态组成的能带尾,禁带中也存在局域化的缺陷带。
薄膜是非晶半导体的主要应用形式,非晶硅薄膜中得到研究和应用的主要是氢化非晶硅(a-Si:H)薄膜,氢化非晶硅比未氢化非晶硅具有好得多的性能非晶半导体的掺杂和p-n结构的创造也是首先在氢化非晶硅中实现的。
这对非晶硅薄膜的应用具有非常重要的意义。
2 非晶硅薄膜的性能2.1 电学性能根据非晶半导体理论,同时考虑导带和价带的扩展态、导带和价带尾部的局域态、禁带中费密能级附近的缺陷局域态中电子的贡献,总电导由扩展态电导、带尾局域态电导、费密能级附近的局域态电导,以及低温下的变程跳跃电导组成。
在温度较高时非晶半导体的导电机理主要由扩展态电导决定。
对于用辉光放电法沉积的a-Si:H薄膜,实验测量结果表明,在温度T≈240K时电导率温度关系的斜率发生变化。
斜率即热激活能的变化是由于导电机理的变化。
温度高于240K 时非晶硅薄膜的电导主要是扩展态电导。
扩展态电导的电导率可用下式表示)exp(min kT E E F C --=σσ式中,σmin 是扩展态电导率的最低值,称为最小金属化电导率;E C 是把导带扩展态和带尾局域态分开的能量;E F 是费密能级。
非晶硅太阳能电池板特性
1、更低的成本目前,主流的光伏组件产品仍以硅为主要原材料,仅以硅原材料的的消耗计算,生产1兆瓦晶体硅太阳电池,需要10-12吨高纯硅,但是如果消耗同样的硅材料用以生产薄膜非晶硅太阳电池可以产出超过200兆瓦。
从能源消耗的角度看,非晶硅太阳电池仅1-1.5年的能源回收期,更体现了其在制造过程中对节约能源的贡献。
组件成本在光伏系统中的占有很高的比例,组件价格直接影响系统造价,进而影响到光伏发电的成本。
按目前的组件售价计算,同样的资金,购买非晶硅产品,您可以多获得接近30%的组件功率。
2、更多的电力对于同样功率的太阳电池阵列,非晶硅太阳电池比单晶硅、多晶硅电池发电要多约10%。
这已经被美国的Uni-Solar System LLC、Energy Photovoltaic Corp.、日本的Kaneka Corp.、荷兰能源研究所以及其他的光伏界组织和专家证实了。
在阳光充足的月份,也就是说在较高的环境温度下,非晶硅太阳电池组件能表现出更优异的发电性能。
3、更好的弱光响应由于非晶硅材料原子排列无序的特点,它的电子跃迁不再遵守传统的“选择定则”限制,因此,它的光吸收特性与单晶硅材料存在着较大的差别。
非晶硅和单晶硅材料的吸收曲线如图所示• 非晶硅的吸收曲线具有明显的三段(A、B、C)特征。
A区对应电子在定域态间的跃迁,如费米能及附近的隙态向带尾态的跃迁,该区的吸收系数较小,约1-10cm-1,为非本正吸收;B区的吸收系数随光子能量的增加指数上升,它对应于电子从价带边扩展态到导带定域态的跃迁,以及电子从价带尾定域态向导带边扩展态的跃迁,该区的能量范围通常只有半个电子伏特左右,但吸收系数通常跨越两三个数量级,达到104cm-1;C区对应于电子从价带内部到导带内部的跃迁,该区的吸收系数较大,通常在104cm-1以上。
后两个吸收区是非晶硅材料的本征吸收区。
• 从图中可以看到,两条曲线的交点约在1.8ev左右。
值得注意的是,在整个可见光范围内(1.7-3.0ev),非晶硅材料的吸收系数几乎都比单晶硅大一个数量级。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非晶硅薄膜太阳能电池的优点:
2009-01-13 20:29
非晶硅太阳能电池之所以受到人们的关注和重视,是因为它具有如下诸多的优点: 1.非晶硅具有较高的光吸收系数.特别是在0.3-0.75um 的可见光波段,它的吸收系
数比单晶硅要高出一个数量级.因而它比单晶硅对太阳能辐射的吸收率要高40倍左右, 用很薄的非晶硅膜(约1um厚)就能吸收90%有用的太阳能.这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能电池的最主要因素.
2. 非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5-2.0 eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高.
3.制备非晶硅的工艺和设备简单,淀积温度低,时间短,适于大批生产.制作单晶硅电池一般需要1000度以上的高温,而非晶硅电池的制作仅需200度左右.
4.由于非晶硅没有晶体硅所需要的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题.因而它几乎可以淀积在任何衬底上,包括廉价的玻璃衬底,并且易于实现大面积化.
5.制备非晶硅太阳能电池能耗少,约100千瓦小时,能耗的回收年数比单晶硅电池短很多:
中国电子报:薄膜技术日趋成熟非晶硅电池主导市场
来源:中国电子报发稿时间: 2009-02-10 15:52
薄膜电池技术具有提供最低的每瓦组件成本的优势,将有望成为第一个达到电网等价点的太阳能技术。
由于原材料短缺,在单晶硅和多晶硅太阳能电池的发展速度受到限制的情况下,新型薄膜太阳能电池发展尤为迅速。
有资料显示,美国薄膜电池的产量已经超过了多晶硅和单晶硅电池的产量。
薄膜技术会越来越成熟,在未来的市场份额中将大比例提升。
据行业分析公司NanoMarkets预测,薄膜太阳能电池2015年的发电量将达到26GW,销售额将超过200亿美元,太阳能电池发电量的一半以上将来自薄膜太阳能电池。
预计在未来薄膜电池市场中非晶硅(a-Si)、碲化镉(CdTe)、铜铟镓硒(CIGS)三种电池将分别占到薄膜光伏市场的60%、20%和20%。
非晶硅/微晶硅电池是产业化方向沉积设备至关重要
在薄膜太阳能电池中,硅基薄膜电池发展最迅速,其中已实现大规模产业化的是非晶硅电池。
提高电池转换效率和降低成本是当前非晶硅电池技术升级的主要任务。
在薄膜太阳能电池中,硅基薄膜电池由于原材料丰富,且无毒、无污染,因而研发最广泛,发展最迅速。
目前,已实现大规模产业化的硅基薄膜电池是非晶硅电池。
在过去的几年里,随着世界范围内太阳能电池市场蓬勃发展,许多传统的单晶硅和多晶硅太阳能电池企业开始开发硅基薄膜电池。
其中有日本的夏普、三洋,德国的Q-Cells和中国的尚德等。
与此同时,新兴硅基薄膜太阳能企业也迅速增多,特别是在中国和印度等发展中国家。
我国非晶硅电池原只有哈尔滨克罗拉、深圳宇康1MW单结a-Si电池生产线,现增加福建钧石能源、天津津能、蚌埠普乐等已建和在建的20多家非晶硅电池生产企业,规模从几兆达到数十兆瓦。
非晶硅/微晶硅电池是方向
提高电池效率最有效的途径是尽量提高电池的光吸收效率。
对硅基薄膜而言,采用窄带隙材料是必然途径。
如Uni-Solar公司采用的窄带隙材料为a-SiGe(非晶硅锗)合金,他们的a-Si/a-SiGe/a-SiGe三结叠层电池,小面积电池(0.25cm2)效率达到15.2%,稳定效率达13%,900cm2组件效率达11.4%,稳定效率达10.2%,产品效率达7%-8%。
国际公认非晶硅/微晶硅叠层太阳能电池是硅基薄膜电池的下一代技术,是实现高效低成本薄膜太阳能电池的重要技术途径,是薄膜电池新的产业化方向。
2005年日本三菱重工和钟渊化学公司的非晶硅/微晶硅叠层电池组件样品效率分别达到11.1%(40cm×50cm)和13.5%(91cm×45cm)。
日本夏普公司2007年9月实现非晶硅/微晶硅叠层太阳能电池产业化生产(25MW,效率8%-8.5%),欧洲Oerlikon(奥立康)公司、美国AppliedMaterials(应用材料公司),也正研发产品级非晶硅/微晶硅电池关键制造技术。
国内,南开大学以国家“十五”、“十一五”973项目和“十一五”863项目为依托,进行微晶硅材料和非晶硅/微晶硅叠层电池研究。
小面积微晶硅电池效率达9.36%,非晶硅/微晶硅叠层电池效率达11.8%,10cm×10cm组件效率达9.7%。
现正与福建钧石能源公司合作,进行平方米级非晶硅/微晶硅叠层电池关键设备及电池制造技术的研发。
提高效率降低成本是关键
目前硅基薄膜电池主要有三种结构:以玻璃为衬底的单结或双结非晶硅电池,以玻璃为衬底的非晶硅和微晶硅双结电池,以不锈钢为衬底的非晶硅和非晶锗硅合金三结电池。
由于各种
产品都有其独特的优势,在今后一段时间里这三种电池结构还会同步发展。
硅基薄膜电池的长远发展方向是很明显的,除了要充分利用其独特的优势,主要是克服产品开发、生产和销售方面存在的问题。
硅基薄膜电池要进一步提高电池效率,利用微晶硅电池作为多结电池的底电池可以进一步提高电池效率,降低电池的光诱导衰退。
目前微晶硅电池产业化的技术难点是实现微晶硅的高速沉积技术和实现大面积微晶硅基薄膜材料的均匀性。
如果微晶硅大面积高速沉积方面的技术难题可以在较短的时间里得到解决,预计在不远的将来,非晶硅和微晶硅相结合的多结电池将成为硅基薄膜电池的主要产品。
非晶硅和微晶硅多结电池可以沉积在玻璃衬底上,也可以沉积在柔性衬底上,因此无论是以玻璃还是以柔性衬底沉积的硅基薄膜电池都可以采用非晶和微晶硅多结电池结构。
在提高电池转换效率的同时,增加生产的规模是降低生产成本的重要途径。
随着生产规模的扩大,单位功率的成本会随之降低,相应的原材料价格也随之降低,另外开发新型封装材料和优化封装工艺也是降低成本的重要研究和开发方向。
沉积设备至关重要
非晶硅基薄膜的沉积设备是整个生产线中最重要的设备。
其中最简单的是单室设备,非晶硅电池的所有半导体层都在同一反应室中沉积。
目前应用较广泛的是由美国EPV公司设计的单室设备。
这种设备可以同时装入48片玻璃衬底,太阳能电池中所有不同层都在同一反应室内沉积。
设备的优点是成本低,运行稳定;缺点是气体交叉污染。
虽然单室设备存在反应气体交叉污染的问题,但是由于设备造价低,运行稳定,单室设备还是得到了许多公司的重视。
如果在技术上能有效地控制好掺杂气体的交叉污染,单室反应系统是降低生产成本最为有效的方法。
多室反应系统是生产高效硅基薄膜电池的重要手段,因为多室系统可以有效地避免反应气体的交叉污染,降低本征层中的杂质含量,提高太阳能电池的效率,同时电池的不同层可以同时沉积。
多室系统的缺点是设备成本高,需要维护的部件多。
对于生产规模较大的企业,多室分离沉积系统仍然是以玻璃为衬底的硅基薄膜太阳能电池的重要沉积设备。
近年来随着对微晶硅太阳能电池的深入研究,开发大面积高速微晶硅沉积系统成为硅基薄膜电池生产设备的重要课题。
超高频等离子体是高速沉积微晶硅的重要手段。
然而随着激发频率的增加,电磁波的波长降低,因此容易引起大面积沉积的均匀性问题。
为了提高超高频等离子体沉积的均匀性,一些开发机构围绕沉积电极形状和馈入方式的设计开展了深入研究。