高中数学知识点:关于函数奇偶性的常见结论
(完整版)函数奇偶性、对称性、周期性知识点总结,推荐文档
抽象函数的对称性、奇偶性与周期性常用结论一.概念:抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于定义域内的每一个,都存在非零常数,使得()f x x T ()()f x T f x +=恒成立,则称函数具有周期性,叫做的一个周期,则(()f x T ()f x kT )也是的周期,所有周期中的最小正数叫的最小正周期。
,0k Z k ∈≠()f x ()f x 分段函数的周期:设是周期函数,在任意一个周期内的图像为C:)(x f y =),(x f y =。
把个单位即按向量[]a b T b a x -=∈,,)()(a b K KT x x f y -==轴平移沿在其他周期的图像:)()0,(x f y kT a ==平移,即得。
[]b kT a kT x kT x f y ++∈-=,),(2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若。
为偶函数则称)()()(x f y x f x f ==-分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
函数的单调性和奇偶性知识归纳和典型题型
奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知 是奇函数,它在区间[a,b]上是增函数(减函数),则 在区间[-b,-a]上也是增函数(减函数);偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知 是偶函数且在区间[a,b]上是增函数(减函数),则 在区间[-b,-a]上也是减函数(增函数).
若a>0,在区间 ,函数是减函数;在区间 ,函数是增函数;
若a<0,在区间 ,函数是增函数;在区间 ,函数是减函数.
要点三、一些常见结论
(1)若 是增函数,则 为减函数;若 是减函数,则 为增函数;
(2)若 和 均为增(或减)函数,则在 和 的公共定义域上 为增(或减)函数;
(3)若 且 为增函数,则函数 为增函数, 为减函数; 若 且 为减函数,则函数 为减函数, 为增函数.
(1) ; 1)x∈[5,10]; 2)x∈(-3,-2)∪(-2,1);
(2) ;
(3) ;
(4) .
举一反三:
【变式1】已知 当 的定义域为下列区间时,求函数的最大值和最小值.
(1)[0,3];(2)[-1,1];(3)[3,+∞).
例5.(2015 西安周至县一模)已知函数 ,x∈[―5,5],
(2) 存在 ,使得 ,那么,我们称 是函数的最大值(或最小值).
要点诠释:
①最值首先是一个函数值,即存在一个自变量 ,使 等于最值;
②对于定义域内的任意元素 ,都有 (或 ),“任意”两字不可省;
③使函数 取得最值的自变量的值有时可能不止一个;
④函数 在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标.
高考数学知识点汇总函数的奇偶性与周期性
高考数学知识点汇总函数的奇偶性与周期性高考数学知识点汇总函数的奇偶性与周期性知识要点:一、函数的奇偶性1.定义:关于函数f(x),假如关于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;关于函数f(x),假如关于定义域内任意一个x,都有f(-x)=f(x),那么f (x)为偶函数;2.性质:(1)函数依据奇偶性分类可分为:奇函数非偶函数,偶函数非奇函数,既奇且偶函数,非奇非偶函数;(2) f(x),g(x)的定义域为D;(3)图象特点:奇函数的图象关于原点对称;偶函数的图象关于原点对称;(4)定义域关于原点对称是函数具有奇偶性的必要不充分条件,奇函数f(x)在原点处有定义,则有f(0)=0;(5)任意一个定义域关于原点对称的函数f(x)总能够表示为一个奇函数与偶函数的和的形式:f(x)=g(x)+h(x),其中g(x)=-[f(x)+f(-x)]为偶函数,h(x) =-[f(x)-f(-x)]为奇函数;(6)奇函数在关于原点对称的区间具有相同的单调性,偶函数在关于原点对称的区间具有相反的单调性。
3.判定方法:(1)定义法(2)等价形式:f(-x)+f(x)=0,f(x)为奇函数;f(-x)-f(x)=0,f(x)为偶函数。
4.拓展延伸:(1)一样地,关于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2 b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;(2)一样地,关于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a -x),则它的图象关于x=a成轴对称。
二、周期性:1.定义:关于函数y=f(x),假如存在一个非零常数T,使得当自变量x 取定义域内的每一个值时,都有f(x)=f(x+T)成立,那么就称函数y=f(x)为周期函数。
2.图象特点:将函数y=f(x)的图象向左(右)平移的整数倍个单位,所得的函数图象与函数y=f(x)的图象重合。
函数的奇偶性、对称性与周期性总结-史上最全
函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。
高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。
本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。
需要WORD 电子文档的同学,可以入群领取。
1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。
①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。
()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
《分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f/函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+ ⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3= "7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2=8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6=10、若.2 , )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
高中数学函数的奇偶性(解析版)
1.函数的奇偶性(1)奇偶性的定高中数学函数的奇偶性(解析版)义奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称(2)函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称.结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶,偶)(÷⨯偶=偶,奇)(÷⨯偶=奇.结论7:若函数f (x )的定义域关于原点对称,则函数f (x )能表示成一个偶函数与一个奇函数的和的形式.记g (x )=12[f (x )+f (-x )],h (x )=12[f (x )-f (-x )],则f (x )=g (x )+h (x ).结论8:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论9:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论10:复合函数y =f [g (x )]的奇偶性:内偶则偶,两奇为奇.结论11:指数型函数的奇偶性(1)函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;(2)函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;(3)函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数;(4)函数f (x )=a x -a -x a x +a -x =a 2x +1a 2x-1(a >0且a ≠1)是奇函数;结论12:对数型函数的奇偶性(1)函数f (x )=log a m -x m +x (a >0且a ≠1)是奇函数;函数f (x )=log a m +xm -x (a >0且a ≠1)是奇函数;(2)函数f (x )=log a x -m x +m (a >0且a ≠1)是奇函数;函数f (x )=log a x +mx -m (a >0且a ≠1)是奇函数;(3)函数f (x )=log a mx -b mx +b (a >0且a ≠1)是奇函数;函数f (x )=log a mx +bmx -b(a >0且a ≠1)是奇函数;(4)函数f(x)=log a(1+m2x2±mx)(a>0且a≠1)是奇函数.2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y=f(x)满足f(x+a)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的图象关于直线x=0(y轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.推论1:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.推论2:如果函数y=f(x)满足f(x)+f(-x)=0,则函数y=f(x)的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:f(a+x)=f(a-x)⇔f(2a-x)=f(x)⇔f(2a+x)=f(-x)若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:f(a+x)=-f(a-x)⇔f(2a-x)=-f(x)⇔f(2a+x)=-f(-x)考点一判断函数的奇偶性【方法总结】判断函数的奇偶性:首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f(-x)与f(x)的关系作出判断.分段函数奇偶性的判断,要分别从x>0或x<0来寻找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.用函数奇偶性常用结论6或特值法可秒杀.【例题选讲】[例1](1)下列函数为偶函数的是()A.y=B.y=x2+e|x|C.y=x cos x D.y=ln|x|-sin x答案B解析对于选项A,易知y=tan B,设f(x)=x2+e|x|,则f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以y=x2+e|x|为偶函数;对于选项C,设f(x)=x cos x,则f(-x)=-x cos(-x)=-x cos x=-f(x),所以y=x cos x为奇函数;对于选项D,设f(x)=ln|x|-sin x,则f(2)=ln2-sin 2,f(-2)=ln2-sin(-2)=ln2+sin2≠f(2),所以y=ln|x|-sin x为非奇非偶函数,故选B.(2)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2-cos x C.y=2x+12xD.y=x2+sin x 答案D解析对于A,定义域为R,f(-x)=-x+sin2(-x)=-(x+sin2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;对于D,y=x2+sin x既不是偶函数也不是奇函数.(3)设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数答案D解析∵f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).∴f(x)是奇函数.∵f(|-x|)=f(|x|),∴f(|x|)是偶函数,∴f(|x|)f(x)是奇函数.(4)已知f(x)=4-x2,g(x)=|x-2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)·g(x)是奇函数C.h(x)=g(x)·f(x)2-x是偶函数D.h(x)=f(x)2-g(x)是奇函数答案D解析h(x)=f(x)+g(x)=4-x2+|x-2|=4-x2+2-x,x∈[-2,2].h(-x)=4-x2+2+x≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.B.h(x)=f(x)·g(x)=4-x2|x-2|=4-x2(2-x),x∈[-2,2].h(-x)=4-x2(2+x)≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.C.h(x)=g(x)·f(x)2-x=4-x2,x∈[-2,2),定义域不关于原点对称,是非奇非偶函数.D.h(x)=f(x)2-g(x)=4-x2x,x∈[-2,0)∪(0,2],是奇函数.(5)已知函数f(x)满足f(x+1)+f(-x+1)=2,则以下四个选项一定正确的是()A.f(x-1)+1是偶函数B.f(x-1)-1是奇函数C.f(x+1)+1是偶函数D.f(x+1)-1是奇函数答案-12解析法一:因为f(x+1)+f(-x+1)=2,所以f(x)+f(2-x)=2,所以函数y=f(x)的图象关于点(1,1)中心对称,而函数y=f(x+1)-1的图象可看作是由y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到,所以函数y=f(x+1)-1的图象关于点(0,0)中心对称,所以函数y=f(x+1)-1是奇函数,故选D.法二:由f(x+1)+f(-x+1)=2,得f(x+1)-1+f(-x+1)-1=0,令F(x)=f(x+1)-1,则F(x)+F(-x)=0,所以F(x)为奇函数,即f(x+1)-1为奇函数,故选D.【对点训练】1.下列函数为奇函数的是()A.f(x)=x3+1B.f(x)=ln1-x1+xC.f(x)=e x D.f(x)=x sin x1.答案B解析对于A,f(-x)=-x3+1≠-f(x),所以其不是奇函数;对于B,f(-x)=ln1+x1-x=-ln 1-x 1+x=-f(x),所以其是奇函数;对于C,f(-x)=e-x≠-f(x),所以其不是奇函数;对于D,f(-x)=-x sin(-x)=x sin x=f(x),所以其不是奇函数.故选B.2.函数f(x)=9x+13x的图象()A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称2.答案B解析因为f(x)=9x+13x=3x+3-x,易知f(x)为偶函数,所以函数f(x)的图象关于y轴对称.3.下列函数中既不是奇函数也不是偶函数的是()A.y=2|x|B.y=lg(x+x2+1)C.y=2x+2-x D.y=lg1x+13.答案D解析对于D项,1x+1>0,即x>-1,其定义域关于原点不对称,是非奇非偶函数.4.已知f(x)=x2x-1,g(x)=x2,则下列结论正确的是()A.f(x)+g(x)是偶函数B.f(x)+g(x)是奇函数C.f(x)g(x)是奇函数D.f(x)g(x)是偶函数4.答案A解析令h(x)=f(x)+g(x),因为f(x)=x2x-1,g(x)=x2,所以h(x)=x2x-1+x2=x·2x+x2(2x-1),定义域为(-∞,0)∪(0,+∞).因为h(-x)=-x·2-x-x2(2-x-1)=x(1+2x)2(2x-1)=h(x),所以h(x)=f(x)+g(x)是偶函数,令F(x)=f(x)g(x)=x22(2x-1),定义域为(-∞,0)∪(0,+∞).所以F(-x)=(-x)22(2-x-1)=x2·2x2(1-2x),因为F(-x)≠F(x)且F(-x)≠-F(x),所以F(x)=g(x)f(x)既不是奇函数也不是偶函数.5.设f(x)=e x+e-x,g(x)=e x-e-x,f(x),g(x)的定义域均为R,下列结论错误的是() A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数5.答案D解析f(-x)=e-x+e x=f(x),f(x)为偶函数.g(-x)=e-x-e x=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2e x,f(-x)+g(-x)=2e-x≠-(f(x)+g(x)),且f(-x)+g(-x)=2e-x≠f(x)+g(x),所以f(x)+g(x)既不是奇函数也不是偶函数,D错误,故选D.6.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是() A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.答案C解析对于A:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,A错.对于B:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,B错.对于C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)·|g(x)|=-h(x),∴h(x)是奇函数,C正确.对于D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.考点二已知函数的奇偶性,求函数解析式中参数的值【方法总结】已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.对于选填题可用特值法进行秒杀.【例题选讲】[例2](1)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案1解析f(x)为偶函数,则y=ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,则ln(a+x2-x2)=0,∴a=1.(2)已知函数f(x)=2×4x-a2x的图象关于原点对称,g(x)=ln(ex+1)-bx是偶函数,则log a b=()A.1B.-1C.-12D.14答案B解析由题意得f(0)=0,∴a=2.∵g(1)=g(-1),∴ln(e+1)-b=ln(1e+1)+b,∴b=12,∴log212=-1.故选B.(3)若函数f(x)-1,0<x≤2,1,-2≤x≤0,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=答案-12解析因为f (x )-1,0<x ≤2,1,-2≤x ≤0,所以g (x )=f (x )+ax -1,-2≤x ≤0,1+a )x -1,0<x ≤2,因为g (x )-1,-2≤x ≤0,+a )x -1,0<x ≤2为偶函数,所以g (-1)=g (1),即-a -1=1+a -1=a ,所以2a =-1,所以a =-12.(4)已知函数f (x )=a -2e x +1(a ∈R )是奇函数,则函数f (x )的值域为()A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)答案A解析法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x +1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).(5)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.答案-3解析当x >0,-x <0,f (-x )=-e-ax.因为f (x )是奇函数,所以当x >0时,f (x )=-f (-x )=e-ax,所以f (ln 2)=e-a ln2=(e ln 2)-a =2-a =8.解得a =-3.【对点训练】7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.7.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln(1+e 3x )-ln e 3x -ax =ln(e 3x +1)+ax ,即-3x -ax =ax ,所以2ax +3x =0恒成立,所以a =-328.若函数f (x )=x 3(12x -1+a )为偶函数,则a 的值为________.8.答案12解析解法1:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-x )=f (x ),即(-x )3(12-x -1+a )=x 3(12x -1+a ),所以2a =-(12-x -1+12x -1),所以2a =1,解得a =12.解法2:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-1)=f (1),所以(-1)3×(12-1-1+a )=13×(121-1+a ),解得a =12,经检验,当a =12时,函数f (x )为偶函数.9.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =________.9.答案-1解析由题意得f (-1)+f (1)=0,即2(a +1)=0,解得a =-1,经检验,a =-1时,函数f (x )为奇函数.10.已知奇函数f (x )x +a ,x >0,-2-x,x <0,则实数a =________.10.答案-4解析因为函数f (x )为奇函数,则f (-x )=-f (x ),f (-1)=-f (1),所以4-21=-(21+a ),解得a =-4.11.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =()A .17B .-1C .1D .711.答案A解析因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又因为f (x )为偶函数,所以b =0,即a +b =17.故选A .12.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax ,x ∈[-4,-1]的值域为________.12.答案-2,-12解析由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即-2,-12.考点三已知函数的奇偶性,求函数的值【方法总结】已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.【例题选讲】[例3](1)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=____.答案12解析∵x ∈(-∞,0)时,f (x )=2x 3+x 2,且f (x )在R 上为奇函数,∴f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12.(2)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +2x +b (b 为常数),则f (1)=________.答案52解析由题意知f (0)=20+2×0+b =0,解得b =-1.所以当x ≤0时,f (x )=2x +2x -1,所以f (1)=-f (-1)=-[2-1+2×(-1)-1]=52(3)设函数f (x )是定义在R 上的奇函数,且f (x )3(x +1),x ≥0,(x ),x <0,,则g (-8)=()A .-2B .-3C .2D .3答案A解析法一当x <0时,-x >0,且f (x )为奇函数,则f (-x )=log 3(1-x ),所以f (x )=-log 3(1-x ).因此g (x )=-log 3(1-x ),x <0,故g (-8)=-log 39=-2.法二由题意知,g (-8)=f (-8)=-f (8)=-log 39=-2.【对点训练】13.若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=()A .2B .4C .-2D .-413.答案C解析根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.14.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则21(())f f e 的值为________.14.答案ln 2解析由已知可得21(f e =ln 1e 2=-2,所以21((f f e=f (-2).又因为f (x )是偶函数,所以21(())f f e =f (-2)=f (2)=ln 2.15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=()A .-6B .6C .4D .-415.答案D解析因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.16.设函数f (x )是定义在R 上的奇函数,且f (x )3x +1,x ≥0,x ,x <0,则g (f (-8))=()A .-1B .-2C .1D .216.答案A解析因为f (x )为奇函数,所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.考点四已知函数的奇偶性,求函数的解析式【方法总结】已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.对于奇函数可在x 以及解析式前同时加负号,对于偶函数可在x 前加负号进行秒杀.【例题选讲】[例4](1)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=()A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1答案D 解析通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D .优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D .(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案-x -1-x ,x ≤0x -1+x ,x >0解析当x >0时,-x <0,则f (-x )=e x -1+x ,又f (-x )=f (x ),因此f (x )=e x -1+x .所以f (x )-x -1-x ,x ≤0x -1+x ,x >0.(3)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=()A .e x -e -xB .12(e x +e -x )C .12(e -x -e x )D .12(e x -e -x )答案D解析因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).【对点训练】17.已知f (x )是奇函数,且x ∈(0,+∞)时的解析式是f (x )=-x 2+2x ,若x ∈(-∞,0),则f (x )=________.17.答案x 2+2x解析由题意知f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-(-x )2+2×(-x )=-x 2-2x =-f (x ),所以f (x )=x 2+2x .18.函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=()A .-2xB .2-xC .-2-xD .2x18.答案C解析当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .19.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.19.答案2-4x ,x >0x 2-4x ,x ≤0解析∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ),即f (x )=-x 2-4x (x <0),∴f (x )2-4x ,x >0,x 2-4x ,x ≤0.20.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.20.答案14解析法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =+14,所以当x <0时,函数f (x )的最大值为14.法二:当x >0时,f (x )=x 2-x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.考点五与奇函数相关的函数的求值【方法总结】对于可表示成奇函数加常数的函数,如果已知一个数的函数值,求它的相反数的函数值或求两个相反数的函数值的问题,可用奇函数的结论5的推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c ,如果是涉及到函数的最大值与最小值的问题则可用推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c 进行秒杀.【例题选讲】[例5](1)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+1(lg )2f 等于()A .-1B .0C .1D .2答案D解析设g (x )=ln(1+9x 2-3x )=f (x )-1,g (-x )=ln(1+9x 2+3x )=ln11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+1(lg 2f -1=g (lg 2)+1(lg )2g =0,因此f (lg 2)+1(lg 2f =2.(2)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________.若g (10)=2019,则g (-10)的值为()A .-2219B .-2019C .-1919D .-1819答案D解析由题意,因为f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0)=f (0),即f (0)=0,令y =-x ,则有f (x -x )=f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),即f (x )是奇函数,若g (x )=f (x )+sin x +x 2,g (10)=2019,则g (10)=f (10)+sin 10+100=2019,则g (-10)=f (-10)-sin 10+100=-f (10)-sin 10+100,两式相加得200=2019+g (-10),得g (-10)=200-2019=-1819,故选D(4)已知函数f (x )=a sin x +b ln 1-x1+x+t ,若1()2f +1()2f =6,则实数t =()A .-2B .-1C .1D .3答案D 解析令g (x )=a sin x +b ln1-x1+x ,则易知g (x )为奇函数,所以1(2g +1()2g -=0,则由f (x )=g (x )+t ,得1()2f +1()2f -=1()2g +1(2g -+2t =2t =6,解得t =3.故选D .(5)已知函数f (x )=2|x |+1+x 3+22|x |+1的最大值为M ,最小值为m ,则M +m 等于()A .0B .2C .4D .8答案C解析易知f (x )的定义域为R ,f (x )=2·(2|x |+1)+x 32|x |+1=2+x 32|x |+1,设g (x )=x 32|x |+1,则g (-x )=-g (x )(x ∈R ),∴g (x )为奇函数,∴g (x )max +g (x )min =0.∵M =f (x )max =2+g (x )max ,m =f (x )min =2+g (x )min ,∴M +m =2+g (x )max +2+g (x )min =4,故选C .【对点训练】21.已知函数f (x )=x +1x-1,f (a )=2,则f (-a )=________.21.答案-4解析法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2.所以f (a )+f (-a )=-2,故f (-a )=-4.法二:由已知得f (a )=a +1a -1=2,即a +1a =3,所以f (-a )=-a -1a -11=-3-1=-4.22.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为()A .3B .0C .-1D .-222.答案B解析设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B .23.对于函数f (x )=a sin x +bx 3+cx +1(a ,b ,c ∈R ),选取a ,b ,c 的一组值计算f (1),f (-1),所得出的正确结果可能是()A .2和1B .2和0C .2和-1D .2和-223.答案B解析设g (x )=a sin x +bx 3+cx ,显然g (x )为定义域上的奇函数,所以g (1)+g (-1)=0,所以f (1)+f (-1)=g (1)+g (-1)+2=2,只有B 选项中两个值的和为2.24.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=()A .-5B .-1C .3D .424.答案C解析设g (x )=ax 3+b sin x ,则f (x )=g (x )+4,且函数g (x )为奇函数.又lg(lg2)+lg(log 210)=lg(lg2·log 210)=lg1=0,所以f (lg(lg2))+f (lg(log 210))=2×4=8,所以f (lg(lg2))=3.故选C .25.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=()A .-3B .-1C .1D .325.答案C解析用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1.故选C .26.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.26.答案2解析显然函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.27.设函数f(x)=(e x+e-x)sin x+t,x∈[-a,a]的最大值和最小值分别为M,N.若M+N=8,则t=() A.0B.2C.4D.827.答案4解析设g(x)=(e x+e-x)sin x,x∈[-a,a],因为g(x)是奇函数,所以g(x)max+g(x)min=0,所以M+N=g(x)max+g(x)min+2t=2t=8,所以t=4.28.若定义在[-2020,2020]上的函数f(x)满足:对任意x1∈[-2020,2020],x2∈[-2020,2020]都有f(x1+x2)=f(x1)+f(x2)-2019,且x>0时有f(x)>2019,f(x)的最大值、最小值分别为M,N,则M+N =()A.2019B.2020C.4040D.403828.答案D解析令x1=x2=0得f(0)=2f(0)-2019,所以f(0)=2019,令x1=-x2得f(0)=f(-x2)+f(x2)-2019=2019,所以f(-x2)+f(x2)=4038,令g(x)=f(x)-2019,则g(x)max=M-2019,g(x)min=N -2019,因为g(-x)+g(x)=f(-x)+f(x)-4038=0,所以g(x)是奇函数,所以g(x)max+g(x)min=0,即M-2019+N-2019=0,所以M+N=4038.29.已知函数f(x)=(x2-2x)·sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=() A.4B.2C.1D.029.答案A解析f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令t=x-1,g(t)=(t2-1)sin t+t,则y=f(x)=g(t)+2,t∈[-2,2].显然M=g(t)max+2,m=g(t)min+2.又g(t)为奇函数,则g(t)max+g(t)min=0,所以M+m=4,故选A.30.若关于x的函数f(x)+cos xt≠0)的最大值为a,最小值为b,且a+b=2,则t=____.30.答案1解析f(x)+cos x t+t sin x+x2x2+cos x,设g(x)=t sin x+x2x2+cos x,则g(x)为奇函数,g(x)max=a-t,g(x)min=b-t.∵g(x)max+g(x)min=0,∴a+b-2t=0,即2-2t=0,解得t=1.。
函数的奇偶性
函数的奇偶性若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数;若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数要点二、判断函数奇偶性的常用方法(1)定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x -与()f x ±之一是否相等.(2)验证法:在判断()f x -与()f x 的关系时,只需验证()f x -()f x ±=0及()1()f x f x -=±是否成立即可.(3)图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.(4)性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.(5)分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.在函数定义域内,对自变量x 的不同取值范围,有着不同的对应关系,这样的函数叫做分段函数.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x -与()f x 的关系.首先要特别注意x 与x -的范围,然后将它代入相应段的函数表达式中,()f x 与()f x -对应不同的表达式,而它们的结果按奇偶函数的定义进行比较.要点三、关于函数奇偶性的常见结论奇函数在其对称区间[a,b]和[-b ,-a]上具有相同的单调性,即已知()f x 是奇函数,它在区间[a,b]上是增函数(减函数),则()f x 在区间[-b ,-a]上也是增函数(减函数);偶函数在其对称区间[a,b]和[-b ,-a]上具有相反的单调性,即已知()f x 是偶函数且在区间[a,b]上是增函数(减函数),则()f x 在区间[-b ,-a]上也是减函数(增函数).【典型例题】类型一、判断函数的奇偶性 例1. 判断下列函数的奇偶性: (1)1-()(1xf x x x=++; (2)f(x)=x 2-4|x|+3 ;(3)f(x)=|x+3|-|x-3|;(4)()f x =(5)22-(0)()(0)x x x f x x x x ⎧+≥⎪=⎨+<⎪⎩; (6)1()[()-()]()2f xg x g x x R =-∈ 【思路点拨】利用函数奇偶性的定义进行判断. 【答案】(1)非奇非偶函数;(2)偶函数;(3)奇函数;(4)奇函数;(5)奇函数;(6)奇函数.【解析】(1)∵f(x)的定义域为(]-1,1,不关于原点对称,因此f(x)为非奇非偶函数;(2)对任意x ∈R ,都有-x ∈R ,且f(-x)=x 2-4|x|+3=f(x),则f(x)=x 2-4|x|+3为偶函数 ;(3)∵x ∈R ,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(4)[)(]2-1x 11-x 0 x -1,00,1x 0x -4x+22≤≤⎧≥⎧∴∴∈⋃⎨⎨≠≠≠±⎩⎩且221-1-()(2)-2x x f x x x∴==+221-(-)1-(-)-()x x f x f x ∴===,∴f(x)为奇函数;(5)∵x ∈R ,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(6)11(-){(-)-[-(-)]}[(-)-()]-()22f xg x g x g x g x f x ===,∴f(x)为奇函数.【总结升华】判定函数奇偶性容易失误是由于没有考虑到函数的定义域.函数的定义域关于原点对称是函数具有奇偶性的前提条件,因此研究函数的奇偶性必须“坚持定义域优先”的原则,即优先研究函数的定义域,否则就会做无用功.如在本例(4)中若不研究定义域,在去掉|2|x +的绝对值符号时就十分麻烦.举一反三:【变式1】判断下列函数的奇偶性:(1)23()3xf x x =+; (2)()|1||1|f x x x =++-; (3)222()1x xf x x +=+;(4)22x 2x 1(x 0)f (x)0(x 0)x 2x 1(x 0)⎧+-<⎪==⎨⎪-++>⎩.【答案】(1)奇函数;(2)偶函数;(3)非奇非偶函数;(4)奇函数.【解析】(1)()f x 的定义域是R ,又223()3()()()33x xf x f x x x --==-=--++,()f x ∴是奇函数. (2)()f x 的定义域是R ,又()|1||1||1||1|()f x x x x x f x -=-++--=-++=,()f x ∴是偶函数. (3)22()()()11f x x x x x -=-+-+=-+()()()()f x f x f x f x ∴-≠--≠且,∴()f x 为非奇非偶函数. (4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x 2-2x-1=-(-x 2+2x+1)=-f(x)任取x<0,则-x>0f(-x)=-(-x)2+2(-x)+1=-x 2-2x+1=-(x 2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.【高清课堂:函数的奇偶性356732例2(1)】【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x)G(-x)=f(-x)·g(-x)=-f(x)·[-g(x)]=f(x)·g(x)=G(x)∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.【高清课堂:函数的奇偶性356732例2(2)】【变式3】设函数()f x和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是().A.()f x-|g(x)|是奇函数f x+|g(x)|是偶函数 B.()C.|()f x|- g(x)是奇函f x| +g(x)是偶函数 D.|()数【答案】A例 2.已知函数(),∈,若对于任意实数,a b都有f x x R+=+,判断()f x的奇偶性.()()()f a b f a f b【答案】奇函数【解析】因为对于任何实数,a b ,都有()()()f a b f a f b +=+,可以令,a b 为某些特殊值,得出()()f x f x -=-.设0,a =则()(0)()f b f f b =+,∴(0)0f =. 又设,a x b x =-=,则(0)()()f f x f x =-+,()()f x f x ∴-=-,()f x ∴是奇函数.【总结升华】判断抽象函数的单调性,可用特殊值赋值法来求解.在这里,由于需要判断()f x -与()f x 之间的关系,因此需要先求出(0)f 的值才行.举一反三:【变式1】 已知函数(),f x x R ∈,若对于任意实数12,x x ,都有121212()()2()()f x x f x x f x f x ++-=⋅,判断函数()f x 的奇偶性.【答案】偶函数 【解析】令120,,xx x ==得()()2(0)()f x f x f f x +-=,令210,,xx x ==得()()2(0)()f x f x f f x +=由上两式得:()()()()f x f x f x f x +-=+,即()()f x f x -=∴()f x 是偶函数.类型二、函数奇偶性的应用(求值,求解析式,与单调性结合)例3. f(x),g(x)均为奇函数,()()()2H x af x bg x =++在()0,+∞上的最大值为5,则()H x 在(-,2∞)上的最小值为 .【答案】 -1【解析】考虑到(),()f x g x 均为奇函数,联想到奇函数的定义,不妨寻求()H x 与()H x -的关系.()H x +()H x -=()()2()()2af x bg x af x bg x +++-+-+()(),()()f x f x g x g x -=--=-,()()4H x H x ∴+-=.当0x <时,()4()H x H x =--,而0x ->,()5H x ∴-≤,()1H x ∴≥-∴()H x 在(,0)-∞上的最小值为-1.【总结升华】本例很好地利用了奇函数的定义,其实如果仔细观察还可以发现()()af x bg x +也是奇函数,从这个思路出发,也可以很好地解决本题.过程如下:0x >时,()H x 的最大值为5,0x ∴>时()()af x bg x +的最大值为3,0x ∴<时()()af x bg x +的最小值为-3,0x ∴<时,()H x 的最小值为-3+2=-1. 举一反三: 【变式1】已知f(x)=x 5+ax 3-bx-8,且f(-2)=10,求f(2).【答案】-26【解析】法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b =10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.【总结升华】本题要会对已知式进行变形,得出f(x)+8= x 5+ax 3-bx 为奇函数,这是本题的关键之处,从而问题(2)g 便能迎刃而解.例 4. 已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.【答案】2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪==⎨⎪-++<⎩ 【解析】()f x 是定义在R 上的奇函数,()()f x f x ∴-=-,当0x <时,0x ->, 2()()()3()1f x f x x x ⎡⎤∴=--=--+--⎣⎦=231x x -++又奇函数()f x 在原点有定义,(0)0f ∴=.2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪∴==⎨⎪-++<⎩【总结升华】若奇函数()f x 在0x =处有意义,则必有(0)0f =,即它的图象必过原点(0,0).举一反三:【高清课堂:函数的奇偶性 356732 例3】【变式1】(1)已知偶函数()f x 的定义域是R ,当0x ≤时2()31f x x x =--,求()f x 的解析式.(2)已知奇函数()g x 的定义域是R ,当0x >时2()21g x x x =+-, 求()g x 的解析式.【答案】(1)2231(0)()31(0)x x x f x x x x ⎧+->⎪=⎨--≤⎪⎩;(2)2221(0)()0021(0)x x x g x x x x x ⎧+->⎪==⎨⎪-++<⎩ ()例5. 定义域在区间[-2,2]上的偶函数()g x ,当x ≥0时,()g x 是单调递减的,若(1)()g m g m -<成立,求m 的取值范围.【思路点拨】根据定义域知1-m ,m ∈[―1,2],但是1―m ,m 在[―2,0],[0,2]的哪个区间内尚不明确,若展开讨论,将十分复杂,若注意到偶函数()f x 的性质:()()(||)f x f x f x -==,可避免讨论. 【答案】1[1,)2-. 【解析】由于()g x 为偶函数,所以(1)(1)g m g m -=-,()(||)g m g m =.因为x ≥0时,()g x 是单调递减的,故|1|||(1)()(|1|)(||)|1|2||2m m g m g m g m g m m m ->⎧⎪-<⇔-<⇔-≤⎨⎪≤⎩,所以222121222m m m m m ⎧-+>⎪-≤-≤⎨⎪-≤≤⎩,解得112m -≤<.故m 的取值范围是1[1,)2-. 【总结升华】在解题过程中抓住偶函数的性质,将1―m ,m 转化到同一单调区间上,避免了对由于单调性不同导致1―m 与m 大小不明确的讨论,从而使解题过程得以优化.另外,需注意的是不要忘记定义域.类型三、函数奇偶性的综合问题例6. 已知()y f x =是偶函数,且在[0,+∞)上是减函数,求函数2(1)f x -的单调递增区间. 【思路点拨】本题考查复合函数单调性的求法。
高三数学奇偶性知识点归纳
高三数学奇偶性知识点归纳在高中数学学科中,奇偶性是一个重要的概念。
奇偶性指的是一个数的特性,能够帮助我们判断运算的结果和数的性质。
在高三数学中,奇偶性知识点涉及到数的性质、函数的性质以及方程式的求解等方面。
本文将对高三数学奇偶性知识点进行归纳总结,帮助同学们更好地理解和掌握这一部分内容。
一、奇偶性的基本定义在数论中,我们将整数分为两类:奇数和偶数。
奇数是无法被2整除的整数,而偶数则可以被2整除。
这是奇数和偶数最基本的定义。
例如,1、3、5、7是奇数,而2、4、6、8是偶数。
二、奇偶性与四则运算在四则运算中,奇偶性有着重要的应用。
无论是加法、减法、乘法还是除法,我们都可以利用奇偶性来判断运算结果的奇偶性。
1. 加法和减法奇数加奇数得到的结果是偶数,奇数加偶数得到的结果是奇数,而偶数加偶数得到的结果仍然是偶数。
这是因为奇数加奇数的结果无法被2整除,所以是偶数;奇数加偶数的结果可以被2整除,所以是奇数;而偶数加偶数的结果必然能被2整除,所以是偶数。
减法运算同理。
2. 乘法奇数乘以奇数得到的结果是奇数,奇数乘以偶数得到的结果是偶数,而偶数乘以偶数得到的结果仍然是偶数。
这是因为奇数乘以奇数的结果无法被2整除;奇数乘以偶数的结果可以被2整除;而偶数乘以偶数的结果必然能被2整除。
3. 除法奇数除以奇数得到的结果是奇数,奇数除以偶数得到的结果是奇数,而偶数除以偶数得到的结果是偶数。
这是因为奇数除以奇数的结果无法被2整除;奇数除以偶数的结果可以被2整除;而偶数除以偶数的结果必然能被2整除。
三、奇偶性与函数的性质在函数的性质中,也存在着奇偶性的规律。
1. 奇函数和偶函数函数f(x)被称为奇函数,当且仅当满足f(-x) = -f(x),即关于原点对称。
例如,f(x) = x^3就是一个奇函数。
在奇函数中,如果给定一个数x,那么-f(x)也是该函数的一个解。
如果一个函数既不是奇函数也不是偶函数,则称其为非奇非偶函数。
函数g(x)被称为偶函数,当且仅当满足g(-x) = g(x),即关于y 轴对称。
高中数学必修一-函数的奇偶性
函数的奇偶性知识集结知识元根据奇偶性求值知识讲解一、奇函数1、定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.2.点拨(1)如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;(2)若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;(3)已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f (x),当x>0时,f(x)=x2+x,那么当x<0时,﹣x>0,有f(﹣x)=(﹣x)2+(﹣x)⇒﹣f(x)=x2﹣x⇒f(x)=﹣x2+x3.命题方向奇函数是函数里很重要的一个知识点,同学们一定要熟悉奇函数的概念和常用的解题方法,它的考查形式主要也就是上面提到的这两种情况﹣﹣求参数或者求函数的表达式.二、偶函数1.定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.2.点拨(1)运用f(x)=f(﹣x)求相关参数,如y=ax3+bx2+cx+d,那么a+c是多少?(2)结合函数图象关于y轴对称求函数与x轴的交点个数或者是某个特定的值,如偶函数f (﹣2)=0,周期为2,那么在区间(﹣2,8)函数与x轴至少有几个交点.3.命题方向与奇函数雷同,熟悉偶函数的性质,高考中主要还是以选择题或者填空题的形式考查对偶函数性质的灵活运用.例题精讲根据奇偶性求值例1.设y=f(x)是定义域为R的偶函数,若当x∈(0,2)时,f(x)=|x-1|,则f(-1)=()A.0B.1C.-1D.2例2.已知定义域为R的奇函数f(x)的图象关于直线x=1对称,且当0≤x≤1时,f(x)=x3,则=()A.B.C.D.例3.下列函数,既是偶函数,又在(-∞,0)上单调递增的是()A.f(x)=-(x-1)2B.C.f(x)=3|x|D.f(x)=cos x例4.已知函数f(x)和f(x+2)都是定义在R上的偶函数,当x∈[0,2]时,f(x)=2x,则=()A.2B.C.D.函数的奇偶性中的含参数问题知识讲解一、奇函数1、定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.2.点拨(1)如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;(2)若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;(3)已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f (x),当x>0时,f(x)=x2+x,那么当x<0时,﹣x>0,有f(﹣x)=(﹣x)2+(﹣x)⇒﹣f(x)=x2﹣x⇒f(x)=﹣x2+x3.命题方向奇函数是函数里很重要的一个知识点,同学们一定要熟悉奇函数的概念和常用的解题方法,它的考查形式主要也就是上面提到的这两种情况﹣﹣求参数或者求函数的表达式.二、偶函数1.定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.2.点拨(1)运用f(x)=f(﹣x)求相关参数,如y=ax3+bx2+cx+d,那么a+c是多少?(2)结合函数图象关于y轴对称求函数与x轴的交点个数或者是某个特定的值,如偶函数f (﹣2)=0,周期为2,那么在区间(﹣2,8)函数与x轴至少有几个交点.3.命题方向与奇函数雷同,熟悉偶函数的性质,高考中主要还是以选择题或者填空题的形式考查对偶函数性质的灵活运用.例题精讲函数的奇偶性中的含参数问题例1.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=﹣2,则实数a=.例2.若f(x)=2x+a•2﹣x为奇函数,则a=.例3.设函数f(x)=为奇函数,则实数a=.根据函数的奇偶性求函数解析式知识讲解一、奇函数1、定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.2.点拨(1)如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;(2)若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;(3)已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f (x),当x>0时,f(x)=x2+x,那么当x<0时,﹣x>0,有f(﹣x)=(﹣x)2+(﹣x)⇒﹣f(x)=x2﹣x⇒f(x)=﹣x2+x3.命题方向奇函数是函数里很重要的一个知识点,同学们一定要熟悉奇函数的概念和常用的解题方法,它的考查形式主要也就是上面提到的这两种情况﹣﹣求参数或者求函数的表达式.二、偶函数1.定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.2.点拨(1)运用f(x)=f(﹣x)求相关参数,如y=ax3+bx2+cx+d,那么a+c是多少?(2)结合函数图象关于y轴对称求函数与x轴的交点个数或者是某个特定的值,如偶函数f (﹣2)=0,周期为2,那么在区间(﹣2,8)函数与x轴至少有几个交点.3.命题方向与奇函数雷同,熟悉偶函数的性质,高考中主要还是以选择题或者填空题的形式考查对偶函数性质的灵活运用.例题精讲根据函数的奇偶性求函数解析式例1.设f(x)是R上的奇函数,且当x∈(0,+∞)时,f(x)=x(1+)+1,则f(x)表达式为.例2.'已知函数y=f(x)为R上的奇函数,当x>0时,,求f(x)在R上的解析式.'例3.已知f(x)是R上的奇函数,且当x∈(0,+∞)时,,则f(x)的解析式为.备选题库知识讲解本题库作为知识点“函数奇偶性的定义”的题目补充.例题精讲备选题库例1.已知一个奇函数的定义域为{-1,2,a,b},则a+b=()A.-1B.1C.0D.2例2.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2-2x,则当x<0时,f(x)的解析式是()A.f(x)=-x(x+2)B.f(x)=x(x-2)C.f(x)=-x(x-2)D.f(x)=x(x+2)例3.若函数f(x)(f(x)≠0)为奇函数,则必有()A.f(x)∙f(-x)>0B.f(x)∙f(-x)<0C.f(x)<f(-x)D.f(x)>f(-x)例4.y=f(x)为奇函数,当x>0时f(x)=x(1-x),则当x<0时,f(x)=______。
高中数学函数奇偶性专题复习总结
【函数的奇偶性】专题复习一、关于函数的奇偶性的定义定义说明:对于函数)(x f 的定义域内任意一个x :⑴)()(x f x f =- ⇔)(x f 是偶函数; ⑵)()(x f x f -=-⇔)(x f 奇函数;二、函数的奇偶性的几个性质①对称性:奇(偶)函数的定义域关于原点对称;②整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立;③可逆性:)()(x f x f =-⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 是奇函数; ④等价性:)()(x f x f =-⇔0)()(=--x f x f ;)()(x f x f -=-⇔0)()(=+-x f x f ⑤奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;⑥可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
三、函数的奇偶性的判断判断函数的奇偶性大致有下列两种方法:第一种方法:利用奇、偶函数的定义,考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①定义域是否关于原点对称;②数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性(1)x x x f 2)(3+= (2)2432)(x x x f += (3)1)(23--=x x x x f(4)2)(x x f = []2,1-∈x (5)x x x f -+-=22)( (6)2|2|1)(2-+-=x x x f ;(7)2211)(x x x f -+-=(8)221()lg lgf x x x =+; (9)xx x x f -+-=11)1()( 例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x x x x f 的奇偶性。
第二种方法:利用一些已知函数的奇偶性及下列准则 (前提条件为两个函数的定义域交集不为空集): 35721246822()...1(0);()sin ;tan ()...(0);;()cos ;();log ;(0,0)(0)0()k k x a x x x x x k Z k k x x x x x x x x x x k Z ax c b x f x x y C C a x kx b k b y x a a y y +⎧∈⎪⎪≠+⎨⎪⎪⎩⎧∈⎪⎪+=⎨⎪=⎪⎩⎧+≠≠⎪⎨=+≠⎪⎩==常见的奇函数:耐克函数常见的偶函数:为常数常见的非奇非偶函数:定义域关于原点对称常见的既奇又偶函数:1)x ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪=±⎪⎪⎩⎩两个点的函数 四、关于函数的奇偶性的两个奇函数的代数和是奇函数;两个偶函数的和是偶函数; 奇函数与偶函数的和既不非奇函数也非偶函数; 两个奇函数的积为偶函数;两个偶函数的积为偶函数; 奇函数与偶函数的积是奇函数。
2020届高中数学:函数的奇偶性与周期性、对称性解题方法总结
2020届高中数学 第 1 页 共 1 页 2020届高中数学:函数的奇偶性与周期性、对称性解题方法总结1.判断函数的奇偶性时,首先要确定函数的定义域(函数的定义域关于原点对称是函数具有奇偶性的必要条件,如果函数定义域不关于原点对称,那么它不具有奇偶性),若定义域关于原点对称,再判断f (-x )与f (x )的关系,从而确定函数的奇偶性.2.奇、偶函数的定义是判断函数奇偶性的主要依据,为了方便判断函数的奇偶性,有时需要将函数进行化简,或应用定义的等价形式:f (-x )=±f (x )⇔f (-x )∓f (x )=0⇔f (-x )f (x )=±1(f (x )≠0)进行判断.3.判断函数奇偶性的方法通常有(1)定义法:根据定义判断.(2)图象法:函数的图象能够直观地反映函数的奇偶性,f (x )为奇函数的充要条件是函数f (x )的图象关于原点对称;f (x )为偶函数的充要条件是函数f (x )的图象关于y 轴对称.(3)运用奇、偶函数的运算结论.要注意定义域应为两个函数定义域的交集.4.判断周期函数的一般方法(1)定义法:应用定义法判断或证明函数是否具有周期性的关键是从函数周期的定义出发,充分挖掘隐含条件,合理赋值,巧妙转化.运用“考点梳理”栏目中有关周期的结论可简化运算.(2)公式法:若函数f (x )是周期函数,且周期为T ,则函数f (ax +b )(a ≠0)也为周期函数,且周期T ′=T |a |. 5.函数奇偶性和周期性的应用已知奇(偶)函数或周期函数在定义域的某一区间内的解析式,求函数在另一区间或整体定义域内的解析式时,一定要注意区间的转换.如:若x >0,则-x <0;若1<x <2,则3<x +2<4等.如果要研究其值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.6.解题中要注意以下性质的灵活运用(1)f (x )为偶函数⇔f (x )=f (|x |);(2)若奇函数f (x )在x =0处有定义,则f (0)=0;(3)若f (x )既是奇函数,又是偶函数,则它的图象一定在x 轴上.。
高中数学奇函数偶函数知识点
高中数学奇函数偶函数知识点高中数学奇函数偶函数知识点1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)③判断或证明函数是否具有奇偶性的根据是定义2.奇偶函数图像的特征:定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称点(x,y)→(-x,-y)奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
3.奇偶函数运算(1).两个偶函数相加所得的和为偶函数.(2).两个奇函数相加所得的和为奇函数.(3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.(4).两个偶函数相乘所得的积为偶函数.(5).两个奇函数相乘所得的积为偶函数.(6).一个偶函数与一个奇函数相乘所得的积为奇函数.定义域(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。
8函数的奇偶性
Ex:设函数 f x 是定义在R上奇函数,当 x 0, 时,有 f x lg x, 则满足 f x 0的 x 取值范围是___. Ex:设函数 f x 是定义在R上偶函数,当 x 0, 时, f x x 1, 则 f x 1 0 解集是 0,2 .
二、函数的奇偶性判断
①.看定义域是否关于原点对称 ②.若满足①,再看f(x)与f(-x)的关系 Ex:判断下列函数的奇偶性 2 2 既奇又偶 1 f x 1 x x 1
1.D关于原点对称;2. 函数解析式化简后
f x 0 x D ,称其为既奇又偶函数。
三、由函数奇偶性来确定解析式 Ex:求下列字母的值: 2 2 f x ax b 1 x 3, x a (1)若 2, a 1 b _____ 1 . 为偶函数,则实数 a _____,
1 x x 10 . f x 2 2 lg a 为偶函数,则 a ___ (2)若 a 2x a 2 (3)已知 f x 2 x 1 a R 为奇函数,则 1 . 实数 a _______
5 0 f _______________ . 2
则
2 f x
x 2 2 x
偶 非奇非偶
x 0 3 f x x 1 x
1 x 4 f x x5 5
2
5 f x lg
1 x2 x
高中数学基础之函数的奇偶性与周期性
D.
考点二 函数奇偶性的应用
【例 2】 (1)(2019·全国卷Ⅱ)设 f(x)为奇函数,且当 x≥0 时,f(x)=ex-1,则
当 x<0 时,f(x)=( D ) A.e-x-1
B.e-x+1
C.-e-x-1
D.-e-x+1
(2)(2020·长沙第一中学期末)若函数 f(x)=xln(x+ a+x2)为偶函数,则 a= ___1_____.
又 x<0,∴-x>0. ∵x≥0 时,f(x)=ex-1,∴-y=e-x-1, ∴y=-e-x+1(x<0),即 f(x)=-e-x+1(x<0). 解法三(赋值法):∵f(x)是奇函数,且 x≥0 时,f(x)=ex-1, ∴f(-1)=-f(1)=-(e1-1)=1-e,即 f(-1)=-e+1,只有 D 符合. (2)因为 f(x)-f(-x)=xln(x+ a+x2)+xln(-x+ a+x2)=xln(a+x2-x2)=xlna =0,所以 a=1.
1.(2020·福州市高三期末)下列函数为偶函数的是( B )
A.y=tan(x+π4)
B.y=x2+e|x|
C.y=xcosx
D.y=ln|x|-sinx
[解析] 对于选项 A,易知 y=tan(x+π4)为非奇非偶函数;对于选项 B,设 f(x)
=x2+e|x|,则 f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以 y=x2+e|x|为偶函数;对于选
ቤተ መጻሕፍቲ ባይዱ
B.最小正周期为 2π 的奇函数
C.最小正周期为 π 的偶函数
D.最小正周期为 2π 的偶函数
(2)(2020·河南南阳模拟)已知函数 f(x)是定义在 R 上的偶函数,并且满足 f(x+
高中数学知识点:函数的奇偶性概念及判断步骤
第 1 页共 2 页高中数学知识点:函数的奇偶性概念及判断步骤
1.函数奇偶性的概念
偶函数:若对于定义域内的任意一个
x ,都有f(-x)=f(x),那么f(x)称为偶函数.
奇函数:若对于定义域内的任意一个
x ,都有f(-x)=-f(x),那么f(x)称为奇函数.
要点诠释:
(1)奇偶性是整体性质;
(2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的;
(3)f(-x)=f(x)
的等价形式为:()()()0,1(()0)()f x f x f x f x f x , f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x ,;
(4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0;
(5)若f(x)既是奇函数又是偶函数,则必有
f(x)=0. 2.奇偶函数的图象与性质
(1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数
. (2)如果一个函数为偶函数,则它的图象关于
y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数.。
高中数学:应用函数的奇偶性解决有关的问题
高中数学:应用函数的奇偶性解决有关的问题【“函数的奇偶性”重点难点解读】一、函数的奇偶性1、偶函数:一般地,如果对于函数f(x)的定义域内任意一个x都有f(-x)=f(x),那么函数f(x)就叫做偶函数.2、奇函数:一般地,如果对于函数f(x)的定义域内任意一个x都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.3、对函数奇偶性定义的理解:(1)奇函数的定义等价于f(-x)+f(x)=0.偶函数的定义等价于f(x)-f(-x)=0.(2)定义中的x具有任意性,函数的奇偶性是相对于函数的定义域而言的,而函数的单调性是相对于定义域的某个子集而言的,从这个意义上讲,函数的单调性属于“局部性质",而函数的奇偶性则属于“整体性质”。
(3)x具有对称性.因为函数y=f(x)的奇偶性考查的是f(-x)与f(x)的关系,所以f(-x)与f(x)都应有意义,即x与-x都应在函数的定义域内,所以定义域在数轴上必定都关于原点对称.否则,这个函数一定不具有奇偶性.例如函数y=x^2,在R上是偶函数,但在区间[一1,2 ] 上既不是奇函数,也不是偶函数。
(4)由此可知,要判断函数的奇偶性,第一步必须先求函数的定义域,并判断定义域是否关于原点O对称。
如果定义域不关于原点O对称,那么它就是“非奇非偶函数”了。
如果定义域关于原点O对称,那再进一步用定义来判断它的奇偶性。
二、奇函数与偶函数图象的性质(1)如果一个函数是奇函数,则这个函数的图象是以坐标原点O为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数。
(2)如果一个函数是偶函数,则它的图象是以y轴为对称轴的轴对称图形;反之,如果一个函数的图象是以y轴为对称轴的轴对称图形,则这个函数是偶函数.三、函数的奇偶性的简单应用1、判断函数的奇偶性5、求函数的最大最小值6、利用奇偶性和单调性研究函数的图象。
函数奇偶性
函数奇偶性1.若奇函数f(x)的定义域为 R, 则f(0)=0.假设f(0)=2,因为奇函数性质关于原点对称,(0,2)关于原点的对称点为(0,-2), f(0)=-2,与f(0)=2矛盾,故f(0)只能等于0.2.奇偶四则运算结论偶函数±偶函数=偶函数奇函数±奇函数=奇函数假设偶函数、y=x²,奇函数y=x,便于记忆.偶函数×偶函数=偶函数(x²·x²=x⁴,x⁴)为偶函数)奇函数×奇函数=偶函数(x·x=x²,x²)为偶函数)偶函数×奇函数=奇函数(x·x²=x³,x³)为奇函数)3.复合函数的奇偶性对于复合函数f(g(x)),若g(x)为偶函数, f(x)为偶函数或奇函数,f(g(x))为偶函数,若g(x)为奇函数, f(g(x))与f(x)的奇偶性相同.其中f(g(x))的定义域关于原点对称, f(x), g(x)有奇偶性.4.奇偶函数的一些性质(1)若函数f(x)(x∈A)是偶函数,则f(|x|)=f(x)(x∈A)恒成立.(2)若偶函数f(x)在x=0处可导,则f'(0)=0.(3)若f(x)是奇函数, f(x)的最大值+最小值=0,若g(x)=f(x)+a, g(x)的最大值+最小值=2a.(4)判断一个复杂函数的奇偶性,一定要先判断函数的定义域,定义域关于原点对称才能判断奇偶性,若定义域不关于原点对称,则函数非奇非偶.奇函数二级结论强调:(1) 上述指、对数函数中含有的变量a需满足a>0且a≠1.(2)上述g(x)=12(e x−e;x),f(x)=e x;e−xe x:e−x,f(x)=12ln1:x1;x均是非常重要的双曲三角函数或其反函数.该知识点在人教A版普通高中教科书数学必修第一册的第160页以例题的形式出现.(3)还有一些常规的函数没有总结在上表中,大家可以在此基础上进行扩充. 证明:上述所有奇函数模型都可以用定义来证明,下面给出对数根式型函数f(x)=log a(√1+m2x2+ mx)是奇函数的证明,显然x∈R,于是有logₐ1=0,则有。
与函数奇偶性有关的结论
【与函数奇偶性有关的结论】1.若一个函数具有奇(偶)性,其定义域必关于原点对称.判断函数的奇偶性的解题步骤:首先求函数的定义域,若定义域不关于原点对称,则必为非奇非偶的函数.在定义域关于原点对称的前提下,再看其是否符合奇(偶)函数的定义式.2.奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;反之,如果一个函数的图像关于原点对称,那么这个函数是奇函数;如果一个函数的图像关于y 轴对称,那么这个函数是偶函数.3.若奇函数在x=0处有意义,则f(0)=0;偶函数对于定义域内任意a 的值满足f(|a|)=f(a).4.已知函数f(x)是奇函数在某一区间上的解析式,求其在关于原点对称的另一区间上的解析式的方法为,将原函数中的所有自变量x 都用-x 代换,化简后再各项变号(即-f (-x )),当x=0时若有意义,还要注意f(0)=0.而偶函数只需将所有x 都用-x 代换化简后即可.5.设F(x)=af(x)+b,若f(x)为奇函数,则对于定义域内的任意x 值,都有F(-x)+F(x)=2b.例1.判断下列函数的奇偶性:(1)g(x)=2211x x -+-. (2)h(x)=(x+1)xx +-11. (3)f(x)=|2|212---x x . 解:(1)由于此函数的定义域为{1,-1}关于原点对称,又g(x)=0,∴ 此函数既是奇函数又是偶函数.(2)此函数的定义域为(-1,1],不关于原点对称,∴ 此函数既不是奇函数又不是偶函数. (3)此函数的定义域由不等式组⎩⎨⎧≠--≥-0|2|2012x x 确定,解得{x|-1≤x ≤1且x ≠0}关于原点对称,化简得f(x)=xx 21-,易知f(x)是奇函数.说明:(1)本例中的(2)易错误地变形为h(x)=21)1)(1(x x x -=+-,从而误认为其为偶函数.(2)例中的(3)易错误地变形为⎪⎪⎩⎪⎪⎨⎧≠<-≠≥--=,0,21,4,241)(22x x xx x x x x x f 从而误认为是非奇非偶的函数. 例2.(1)设函数f(x)= ax 7+bx 5+cx+5,其中a ,b ,c 为非零常数,若f(-7)=7,则f(7)=( ).A.7.B.3.C.-7.D.-17.(2)若定义在R 上的奇函数f(x)满足:当x >0时,f(x)=x 2-x+1,求f(x)的表达式.(3)若f(x),g(x)的定义域为R ,且f(x)是奇函数,g(x)是偶函数.又11)()(2+-=+x x x g x f ,求f(x)的表达式. (4)已知偶函数f(x)在(-∞,0)上函数值随自变量的增大而减少.若f(a)≥f(2),求实数a 的取值范围.解:(1)令g(x)= ax 7+bx 5+cx,则易知y=g(x)是奇函数,∴ f(x)=g(x)+5,由上述5的结论知,f(7)+f(-7)=10.又∵ f(-7)=7,∴f(7)=3.故应选B.(2)∵ f(x)是奇函数且当x >0时,f(x)= x 2-x+1,∴ 当x <0时,f(x)=-f(x)=-x 2-x-1.由于f(x)的定义域为R ,∴ f(0)=0.故⎪⎩⎪⎨⎧<---=>+-=.0,00,01)(22x x x x x x x x x f(3) ∵ f(x)、g(x)的定义域为R ,且f(x)是奇函数,g(x)是偶函数,∴ f(-x)=-f(x),g(-x)=g(x).又 11)()(2+-=+x x x g x f ,∴ ⎪⎩⎪⎨⎧++=+-+-=+)2(11)()()1(11)()(22x x x g x f x x x g x f . (1)-(2)得 1)(24++=x x x x f . (4)∵ y=f(x)是偶函数且在(-∞,0)上函数值随自变量的增大而减少,由上述结论2知,y=f(x)在(0,+∞)上函数图像是上升的,又 由上述结论3,由f(a)≥f(2),⇒≥⇒≥⇒,2||),2(|)(|a f a f a ≥2或a ≤-2.想一想①:1.已知奇函数y=f(x)的定义域为(-3,a 2+2a).求实数a 的值.2.已知函数f(x)=2x -2-x lga 是奇函数,则a 的值是( ).3.已知函数f(x)为偶函数,y=f(x-2)的图像在区间[0,2]上下降,则( ).A.f(0)<f(-1)<f(2).B.f(2)<f(-1)<f(0).C.f(-1)<f(0)<f(2).D.f(-1)<f(2)<f(0).例3.已知函数cbx ax x f ++=12)((a.b.c ∈R ,a >0,b >0)是奇函数,当x >0时,f(x)有最小值2,其中b ∈N +,且f(1)<25.试求f(x)的解析式. 解:∵ y=f(x)是奇函数,∴ f(x)=-f(-x),即 ,1122cbx ax c bx ax +-+-=++得c=0. ba x axb bx ax x f 2)1(11)(2≥+=+=∴, 又当x >0时,f(x)有最小值2,∴ a=b 2. 由 f(1)=,2511<+=+b b b a ∵ b ∈N +,∴a=b=1. 故 f(x)=x+x1. 说明:对于此题,不能用f(0)=0来求出c=0,因为,题目的条件中不能保证y=f(x)在x=0处有意义.故只能由f(x)=-f(-x)再比较系数得出c=0.【与函数的周期性有关的几个结论】(1)对于周期函数,若x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界.即周期函数的定义域不可能是一个有限的数集.(2)周期函数的图像特征为,每隔一定的长度单位(周期长度)其图像将重复出现.(3)函数y=f(x)的图像若既关于直线x=a 对称,又关于直线x=b 对称(a <b),则这个函数是周期函数,且2(b -a)为其一个周期.如函数y=sinx 的图像既关于直线x=2π-对称,又关于直线x=2π对称,则2[2π-(2π-)]=2π是其一个周期. (4)函数y=f(x)的图像关于点(a ,0)和点(b ,0)都对称(a <b),则这个函数是以2(b -a)为其一个周期的周期函数. 如函数y=cosx 的图像既关于点(2π-,0)对称,又关于点(2π,0)对称,则2[2π-(2π-)]=2π是其一个周期.(5)函数y=f(x)的图像若既关于直线x=a 对称,又关于点(b ,0)对称(a <b),则这个函数是以4(b -a)为其一个周期的周期函数.如函数y=sinx 的图像既关于直线x=2π-对称,又关于点(0,0)对称,则4[0-(2π-)]=2π是其一个周期.(6)若函数f(x)是周期为T 的奇函数,当x=2T 有意义时,必有f(2T )=0.(奇函数的半周期现象——若T 是零点,则2T 也是零点). 如函数f(x)=sinx 的周期T=2π,且f(2π)=0,则f(2T )=f(π)=0.(7)若函数f(x)的定义域为R ,且满足f(x+a)=-f(x)、f(x+a)=)(x f k ±(k 为非零的常数)之中任何一个,均可知T=2a 是其一个周期.想一想②:你能利用周期函数的定义证明上述结论中的(6)、(7)吗?例5.(1)已知奇函数f(x)满足f(1+x)=f(1-x),且f(1)=-2,求f(2015)的值.(2)已知函数f(x)的定义域为R ,且以2为周期,当x ∈[0,2]时,f(x)=|x -1|.作出 f(x)在(-∞,+∞)上的图像.解:(1) ∵ 奇函数f(x)满足f(1+x)=f(1-x), ∴ f(x+4)=f[1+(x+3)]=f[1-(x+3)]=f(-x-2) =-f(x+2)=-f[1+(x+1)]=-f[1-(x+1)]=-f(-x)=f(x),由周期的定义知,f(x)是一个周期T=4的周期函数.(若是选填题,也可直接利用上述(5)的结论得到,即f(x)的图像既关于(0,0)对称,又关于直线x=1对称,所以T=4(1-0)=4).∴ f(2015)=f(504×4-1)=f(-1)=-f(1)=2.(2)∵ 当x ∈[0,2]时,f(x)=|x -1|=⎩⎨⎧<≤+-≤≤-.101,211x x x x 先作出x ∈[0,2]时,y=f(x)图像,再利用周期函数的图像特征,每个2个长度单位将已作出的图像平移即可.如图 1.6—1.例6.(1)已知奇函数f(x)满足f(1)=2,且有1()(1)1()f x f x f x ++=-,则f(2015)=___ _. (2)已知奇函数f(x)满足f(3)=0,且f(x+1)= f(1-x),f(x)=f(5-x),则当x ∈[-6,6]时,使得f(x)=0的x 值有( )个.A.4.B.5.C.7.D.9.解:(1) ∵1()(1)1()f x f x f x ++=-,∴ )(1)(1)(11)(1)(11)1(1)1(1]1)1[()2(x f x f x f x f x f x f x f x f x f -=-+--++=+-++=++=+,图1.6—1∴ f(x+4)=f[(x+2)+2]=).()2(1x f x f =+-=即y=f(x)是一个周期为4的周期函数. ∴ f(2015)=f(504×4-1)=f(-1)=-f(1)=-2.(2)由f(x+1)= f(1-x),f(x)=f(5-x)知函数y=f(x)的图像既关于直线x=1对称,又关于直线 x=2.5对称,∴ 函数y=f(x)是一个周期T=3的周期函数且为奇函数.∵ f(3)=0, ∴ f(3)=f(-3)=f(6)=f(-6)=f(0)=0.又由半周期现象知,f(1.5)=f(-1.5)=f(4.5)=f(-4.5)=0.∴ 则当x ∈[-6,6]时,使得f(x)=0的x 值有9个. 故应选D.习题1.61.函数y =f (x )与y =g (x )有相同的定义域,且都不是常数函数,对定义域中任意x ,有f (x )+f (-x )=0,g (x )g (-x )=1,且x ≠0,g (x )≠1,则F (x )=2f (x )g (x )-1+f (x )( ). A.是奇函数但不是偶函数. B.是偶函数但不是奇函数.C.既是奇函数又是偶函数.D.既不是奇函数也不是偶函数.2.f(x)是定义在()11-,上的函数,对于(),11x y ∀∈-,,有()())1(xy y x f y f x f --=-成立,且当()1,0x ∈-时,()0f x >.给出下列命题:①()00f =; ②函数()f x 是偶函数; ③函数()f x 只有一个零点; ④)41()31()21(f f f <+.其中正确命题的个数是( ). A .1. B .2. C.3. D .4.3.函数 f (x )满足 f (x )·f (x +2)=13,若 f (1)=2,则 f (99)= ..4.已知函数f(x),g(x)在R 上有定义,对任意的x ,y ∈R 有f(x -y)=f(x)g(y)-g(x)·f(y),且f(1)≠0,则f(x)的奇偶性是________.5.设g(x)是定义在R 上以1为周期的直线型函数,且在每个周期内单减.若函数f(x)=x+g(x) 在区间[3,4]上的值域为[-2,5],则f(x)在区间[-10,10]上的值域为 .【与单调性有关的几个结论】1.若f(x)和g(x)均为增函数,则f(x)+g(x)为增函数;若f(x)和g(x)均为减函数,则f(x)+g(x)也为减函数.2.函数f(x)与-f(x)的增减性相反;函数f(x)与)(1x f (f(x)恒正或恒负)的增减性相反;函数f(x)与-)(1x f (f(x)>0)的增减性相同. 3.奇函数在关于原点对称的两个区间上的增减性相同.偶函数在关于原点对称的两个区间上的增减性相反.4.复合函数的单调性:若记减函数为:“—”,增函数为“+”,则复合函数的单调性等同于实数的符号运算规则.即,若减函数的个数为奇数个,则复合后的复合函数为减函数.若减函数的个数为偶数个,则复合后的复合函数为增函数.5.互为反函数的两个函数的增减性相同.例3.求证函数f(x)=x+)0(>a xa 在(0,a ]上单减,在[a ,+∞)上单增.并说明在[-a ,0)及(-∞,-a ]上,其单调性是怎样的?证明: 设任意的x 1,x 2∈(0,a ],且x 1<x 2. 由f(x 1)-f(x 2)=2121x a x a x x -+- ,))((212121x x a x x x x --=∵ x 1,x 2∈(0,a ],且x 1<x 2,∴ x 1-x 2<0,,x 1x 2>0, x 1x 2-a<0,∴f(x 1)-f(x 2)>0,即f(x 1)>f(x 2). 由定义知,函数f(x)=x+)0(>a x a 在(0,a ]上单减. 再设任意的x 1,x 2∈[a ,+∞),且x 1<x 2. 由f(x 1)-f(x 2)=2121x a x a x x -+- ,))((212121x x a x x x x --=∵ x 1,x 2∈[a ,+∞),且x 1<x 2,∴ x 1-x 2<0,,x 1x 2>0, x 1x 2-a>0,∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2). 由定义知,函数f(x)=x+)0(>a x a 在[a ,+∞)又∵ f(-x)=-x+x a -=-f(x)对定义域内任意的x ∴ 函数f(x)=x+)0(>a x a 是奇函数. ∴ 函数f(x)=x+)0(>a xa 在[-a ,0)上单减, 在(-∞,-a ]上单增.其图像如图1.7—2所示. 说明:此函数是在高中数学中应用非常广泛的函数之一——“对钩函数”,尤其是在求函数的值域、最值等问题中经常要用到它.例4.已知奇函数y=f(x)在(0,+∞)上单增且恒为正,试讨论函数y=-)(1x f ,在(-∞,0)上的单调性.解:设任意的x 1,x 2∈(-∞,0)且x 1<x 2,则-x 1>-x 2∈(0,+∞).∵ 函数y=f(x)在(0,+∞)上单增且恒为正,∴ f(-x 1)>f(-x 2)>0,又∵ y=f(x)为奇函数, ∴ -f(x 1)>-f(x 2)>0,即f(x 1)<f(x 2)<0. ∴ y 1-y 2=0)()()()()(1)(1212112<-=-x f x f x f x f x f x f , 即y 1<y 2,由定义知,函数y=-)(1x f ,在(-∞,0)上的单调递增. 例5.已知定义在(a ,b)的增函数y=f(x)的值域为(c ,d),函数y=g(x)在(c ,d)上为减函数, 图1.7—2试说明函数y=g[f(x)]在(a ,b)上的单调性.解: 设任意的x 1,x 2∈(a ,b)且x 1<x 2,∵ y=f(x)在(a ,b)上是增函数且值域为(c ,d),∴ c<f(x 1)<f(x 2)<d ,又∵ y=g(x)在(c ,d)上为减函数,∴ g[f(x 1)]>g[f(x 2)], 由定义知,函数函数y=g[f(x)]在(a ,b)上单减的函数.想一想③:1.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域为_____ . 2.设偶函数y=g(x)在(a ,b)上单减,求证:函数y=g(x)在(-b ,-a)上单增.【求函数单调区间的途径】 (1)利用单调性的定义求.(2)利用图像求.(3)利用复合函数单调性的规律求. 例6.求函数f(x)=|x 2-2x-3|的单增区间.解:作出函数f(x)=|x 2-2x-3|的图像,如图1.7—3.利用增函数的图像特征——上升,易知其单增区间为[-1,1],[3,+∞).例7.求函数函数y=232+-x x 的单减区间.解:令u=x 2-3x+2≥0,则原函数可看成是由y=u ,u=x 2-3x+2≥0两个函数复合而成. ∵ y=u 是u 的增函数,∴ 原函数的单减区间即u=x 2-3x+2≥0的单减区间(-∞,1]. 一般地,求由基本初等函数复合而成的复合函数的单调区间的步骤为:①将原函数分解成若干个基本初等函数;②求出原函数的定义域;③确定奇函数的个数;④利用复合函数单调性规律找出在定义域范围内的单调区间.想一想④:1.函数y=log 0 . 5(-x 2+3x+1)的单增区间是( ).2.已知y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( ).A.(0,1).B.(1,2).C.(0,2).D.(2,+∞).【函数单调性应用举例】(一)比较大小.例8.(1)若函数f (x )在(4,+∞)上为减函数,且对任意的x ∈R ,有f (4+x )=f (4-x ),则( ).A.f (2)>f (3).B.f (2)>f (5).C.f (3)>f (5).D.f (3)>f (6).(2)当10<<a 时,a a a a a a ,,的大小关系是( ).A.a a a a a a >>.B.a a a a a a >>.C.a a a a a a >>.D.a a a a a a >>. 解:(1) ∵ 对任意的x ∈R ,有f (4+x )=f (4-x ),∴ f(3)=f(4-1)=f(4+1)=f(5),又∵ 函数f (x )在(4,+∞)上为减函数,f(3)=f(5)>f(6). 故应选D.(2)考查函数y=a x ,当10<<a 时,函数y=a x 是x 的减函数. ∵ 1>a >0,∴ a 1<a a <1, 即a <a a <1,从而a aa a a a >>.故选B. (二)求函数的值域或最值.例9.(1)求函数y=)1(3212->+-+x x x x 的值域. (2)已知y=f(x)是定义域为R 的函数,且对任意的x 、y 恒有:f(x+y)=f(x)+f(y),又当x >0时,f(x)<0,f(1)=-1,求f(x)在[-3,3]上的最值.解:(1)令x+1=t>0. ∴ y=461643)1(2)1(321222-+=+-=+---=+-+tt t t t t t t x x x , 考查“对钩函数”u=)0(6>+t t t 知,62≥u ,∴ 046246>-≥-+tt , 结合反比例函数的图像知函数y=)1(3212->+-+x x x x 的值域为(0,426+]. (2) ∵ 对任意的x 、y 恒有:f(x+y)=f(x)+f(y),令x=y=0,可得 f(0)=0.设任意的x 1、x 2∈R,且x 1<x 2,∵ f(x 2)=f[(x 2-x 1)+x 1]=f(x 2-x 1)+ f(x 1),又∵ x >0时,f(x)<0, ∴ f(x 2)- f(x 1)= f(x 2-x 1)<0,即f(x 2)<f(x 1). 由单调性的定义知y=f(x)是R 上的减函数.∵ f(1)=-1, ∴ f(3)=f(1+2)=f(1)+f(1+1)=3f(1)= -3,f(-3)=-f(3)=3.故f(x)在[-3,3]上的最大值为f(-3)=3,最小值为f(3)=-3.想一想⑤:1.定义在(,)-∞+∞上的函数()y f x =在(,2)-∞上是增函数,且(2)y f x =+为偶函数,则(1),(4),(6)f f f -的大小关系为____________.2.已知函数f x ()是定义域为R 的偶函数,x <0时,f x ()是增函数,若x 10<,x 20>, 且||||x x 12<,则f x f x ()()--12,的大小关系是_______.(三)解不等式.例10.定义在(0,+∞)上的函数f(x)满足:f(xy)=f(x)+f(y),1)31(=f ,且当x >1时, f(x)>0.问=)91(f ?并解不等式:f(x)+f(2-x)>2. 解:令x=y=31,代入f (xy )=f (x)+f (y)得,.2)31()31()91(=+=f f f 设任意的x 1、x 2∈(0,+ ∞),且x 1<x 2,由f(x 2)=f(112x x x ⋅)=f(12x x )+f(x 1), ∵ 0<x 1<x 2, ∴ 12x x >1,由已知得f(12x x )>0, ∴ f(x 2)>f(x 1), 即函数f(x)在(0,+∞)上是增函数.∴ 由f(x)+f(2-x)>2, ⎪⎪⎩⎪⎪⎨⎧∈⇒>->>-⇒x x x x x ,02,0,91)2((3221,3221+-). 【参考答案】想一想①:1.a=-3或1. 2.利用f(0)=0得a=10. 3.A.想一想②:(6) ∵ 函数f(x)是周期为T 的奇函数,∴ 一方面 f(-2T )=-f(2T )(1),另一方面f(-2T )=f(T-2T )=f(2T )(2). 由(1)、(2)得-f(2T )=f(2T ),∴ f(2T )=0. (7) ∵f(x+a)=-f(x), ∴f(x+2a)=f[(x+a)+a]=-f(x+a)=f(x),由周期函数的定义知,T=2a为其一个周期.类似地可得另外的结论.习题 1.6.1.B. 2.令x=y=0,得f(0)=0.对于∀x 、y ∈(-1,1),令x=0, 由()())1(xyy x f y f x f --=-得,f(0)-f(y)=f(-y),即f(-y)=-f(y), ∴ f(x)是奇函数.设∀x 、y ∈(-1,1),且x <y,则1-xy >0,x-y <0, ∴ 0)1(,01>--⇒<--xyy x f xy y x , 即f(x)>f(y), ∴ f(x)在(-1,1)上是减函数.则易知①、③正确,②错误.再由f(x)在(-1,1)上是减函数,知),31()72()412112141()21()41(f f f f f >-=⨯--=-∴ )41()31()21(f f f <+. 即④也正确. 故应选C.3.由已知可得T=4,∴ f(99)=f(24×4+3)=f(3)=f(2+1)=.213)1(13=f 4.奇函数. 提示:令x=y=0,得f(0)=0;再令x=1,y=0,得g(0)=1;令x=0,得f(-y)=-g(0)f(y)=-f(y).5.[-15,11].由已知可得-6≤g(x)≤2,因为g(x)是周期为1的减函数,结合图形知,当-10≤x ≤-9时,f(x)取得最小值(-9)+(-6)= -15. 当9≤x ≤10时,f(x)取得最大值9+2= 11. 想一想③:1. 10[2,]3. 2.略. 想一想④:1. ]2133,23[+. 2. B. 想一想⑤:1.f(6)<f(-1)<f(4).9.)()(21x f x f ->-.习题1.7 1. B. 2. B. 3. {x|98≤<x }.4.解:)])(1[(log )(),1(12x p x x f p p x -+=∴><< ]4)1()21([log ])1([log 22222++---=+-+-=p p x p x p x , (1)当,即31≤<p 时,),1()(p x x f ∈在上单调递减,)]1(2[log )1()(2-=<∴p f x f ,)(x f 值域为)]1(log 1,(2-+-∞p .(2)当1<p p ≤-21,即p>3时,)(x f 值域为]2)1(log 2,(2-+-∞p . (3)当p p >-21,即p<-1时,不满足p>1. 5. 2331<<a 或a<-1. 6.)23,2111()2111,(02322+----∞⇒>-> a a . 7.解:(1)令a=b=0,代入f (a +b )=f (a )·f (b )得,f(0)=f 2(0),∵ f (0)≠0,∴ f(0)=1.(2)令a=b=2x ,代入f (a +b )=f (a )·f (b )得,,0)2()(2≥=x f x f 又令a+b=0,即b=-a , ∴ f(0)=1=f(a)f(-a))(1)(a f a f =-⇒,当x>0时,f (x)>1,∴ 当x<0时,0<f(x)<1. ∵ f (0)≠0,∴ .0)2()(2>=x f x f (3)设任意的x 1、x 2∈R,且x 1<x 2,∵ f(x 2)=f[(x 2-x 1)+x 1]=f(x 2-x 1)f(x 1)>f(x 1). 由单调性的定义知y=f(x)是R 上的增函数. (4)由f (x )·f (2x -x 2)>1,).3,0(,03),0()3(22∈⇒>-⇒>-⇒x x x f x x f8.由xf(x+1)=(x+1)f(x), 得xx f x x f )(1)1(=++,相当于数列}{n a n 是常数列,可得f(n)=nf(1)=0,(n 为整数).又令x=21-,可得,f(1/2)=0,从而可得f((2k-1)/2)=0(n 为整数). ∴∑==20130)2(k k k f =0.。
关于高中函数的知识点总结
高中函数的知识点总结关于高中函数的知识点总结导语:小编整理高中数学知识点总结:包括有关函数、数列、平面解析几何、立体几何等知识点的整理。
以供参考。
1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的`对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;7.(1) (a0,a≠1,b0,n∈R+);(2) l og a N= ( a0,a≠1,b0,b≠1);(3) l og a b的符号由口诀“同正异负”记忆;(4) a log a N= N ( a0,a≠1,N8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。