考点30 数学归纳法 【2019年高考数学真题分类】
山东数学高考知识点分布
山东数学高考知识点分布山东省是中国的人口大省之一,也是教育强省之一。
在高考中,数学是一个重要的科目,其考试内容涵盖了多个知识点。
本文将对山东数学高考知识点的分布进行分析和总结。
一、函数与方程函数与方程是数学的基础,也是高考数学中的重点内容之一。
在山东高考数学试卷中,函数与方程相关的知识点大致占据了15-20%的比重。
其中,中学阶段学习的基本函数和特殊函数是常见考点,如常见的一次函数、二次函数、指数函数、对数函数等。
此外,还有三角函数、反三角函数、指数对数函数的复合与求导等综合性考点。
方程的题目则常常涉及到线性方程、二次方程、分式方程、绝对值方程以及含有参数的方程等。
掌握解方程的方法与技巧,能够灵活运用于各类解题中,是考生必备的基本能力。
二、几何与图形几何与图形作为数学的一个重要分支,也是高考中的常见考点之一。
山东高考数学试卷中,几何与图形的考点一般占据了20-30%的比重。
几何与图形的知识点包括平面几何和空间几何两部分。
平面几何的知识点主要包括平面直角坐标系、平面向量的基本性质、二维几何图形的性质等。
而空间几何则涉及到了空间直角坐标系、空间向量的基本性质、三维几何图形的性质等。
在几何与图形的考题中,经常涉及到的知识点有:平面几何中的相交线、圆锥曲线、曲线的切线与法线、平行线与垂线、三角形的各类性质等。
此外,在空间几何中,常见考点包括空间点、直线、平面的位置关系等。
三、概率与统计概率与统计是数学中的一门实用性较强的学科,也是高考数学试卷中的重点内容。
在山东高考数学试卷中,概率与统计的考点一般占据了15-20%的比重。
在概率与统计的考题中,常见知识点包括事件的概率、随机变量与分布、样本调查与总体统计、与可能性有关的问题等。
在考试中,经常需要运用到的统计方法有统计图表的分析与解读、样本与总体的相关性分析、利用样本推断总体的特征等。
掌握这些知识和方法,能够有效进行统计数据的收集、整理和分析,并得出科学合理的结论。
数学数学归纳法
(2)递推乃关键 数学归纳法的实质在于递推,所以 从“k”到“k+1”的过程,必须把归 纳假设“n=k”作为条件来导出 “n=k+1”时的命题,在推导过程 中,要把归纳假设用上一次或几 次.
第51页/共63页
基础梳理
1.归纳法 归纳法有不完全归纳法和完全归纳法, 如果我们考察了某类对象中的一部分, 由这一部分具有某种特征而得出该类 对象中的全体都具有这种特征的结论, 为不完全归纳法.
第2页/共63页
由不完全归纳法得出的结论不一定 都是正确的,其正确性还需进一步证 明;如果我们考察了某类对象中的 每一个对象,而得出该类对象的某 种特征的结论为完全归纳法,由完 全归纳法得出的结论一定是正确的, 数学归纳法是一种完全归纳法.
1 3
+
…
+
1 2k
+
1 2k+1
+
1 2k+2
+…+2k+1 2k<12+k+2k·21k=12+(k+1),
即 n=k+1 时,命题也成立.
由(1)(2)可知,命题对所有 n∈N*都成立.
第27页/共63页
【规律方法】 用数学归纳法证 明不等式,推导n=k+1也成立时, 证明不等式的常用方法,如比较法, 分析法,综合法均要灵活运用,在 证明过程中,常利用不等式的传递 性对式子放缩.
第3页/共63页
2.数学归纳法 一般地,证明一个与正整数n有关的 命题,可按下列步骤进行: (1)归纳奠基:验证当n取第一个值 n0时结论成立;
第4页/共63页
(2)归纳递推:假设当n=k(k∈N*, 且k≥n0)时结论成立.推出n=k+1 时结论也成立. 只要完成这两个步骤,就可以断定命 题对从n0开始的所有自然数n(n≥n0) 都成立,这种证明方法叫做数学归纳 法.
高考数学考点总结与备考技巧
高考数学考点总结与备考技巧数学是高考三大科目之一,也是很多考生担心的科目。
数学考试主要考察数学知识和思维能力。
本文将对高考数学的考点进行总结,并提供备考技巧。
一、数学考点1.函数函数是高考数学考试中的重要考点。
函数的概念、性质、图像、反函数等都需要掌握。
特别是函数的图像,需要能准确地画出各种函数的图像,例如一次函数、二次函数、指数函数、对数函数等。
2.三角函数三角函数也是高考数学的重要考点。
需要掌握正弦、余弦、正切等三角函数的基本概念、性质、图像、变化规律等。
同时,需要掌握三角函数的复合函数和反函数。
3.数列与数学归纳法数列是高考数学中的基础考点,需要掌握等差数列、等比数列及其前n项和公式。
同时,还需要掌握数学归纳法,能够独立完成数列题目。
4.导数与微积分导数和微积分也是高考数学考试的重点考点。
需要掌握导数的概念、求导法则及其应用,了解微积分的基本概念,包括定积分和不定积分的概念、性质、计算方法和应用。
5.平面向量平面向量也是数学考试中的重要考点之一。
需要掌握向量的基本概念、向量的坐标表示法、向量之间的运算、平面向量的模、方向角、共面、垂直等性质,了解向量的应用。
二、备考技巧1.掌握数学基础知识数学考试需要掌握扎实的数学基础知识,能够准确地理解和应用数学概念和定理,同时能够熟练地使用各种数学公式和计算方法。
2.积累做题经验高考数学考试不仅考查数学知识,还考验考生的解题能力和考场应变能力。
因此,平时需要多做数学题,积累做题经验,提高解题速度和正确率。
3.养成良好的复习习惯高考数学考试不能临时抱佛脚,需要平时持续地进行复习和巩固。
要养成良好的复习习惯,每天安排一定的复习时间,按照计划有序地进行复习。
4.注意考试策略高考数学考试一般建议从易到难顺序答题,先做易题,留出时间做难题。
同时,需要掌握一些答题技巧,如画图、分类讨论、化简等,提高解题效率。
总之,数学是高考的重要科目之一,需要考生在平时的备考中认真总结归纳考点,熟练掌握各种数学知识和解题技巧,做好充分的准备,才能在高考中取得好成绩。
2019年高考数学试题(附答案)
2019年高考数学试题(附答案)2019年高考数学试题在考试结束后,引起了广泛的讨论和关注。
数学试题一直是高考的难点之一,也是考生和家长们关注的焦点。
在这篇文章中,我们将对2019年高考数学试题进行分析和讨论,帮助读者更好地理解试题内容和解题思路。
首先,让我们来看一下2019年高考数学试题的整体情况。
2019年高考数学试题分为选择题和非选择题两部分,其中选择题包括了单选题和多选题,非选择题包括了填空题和解答题。
整体难度较大,涉及的知识点比较广泛,考查了考生对数学知识的掌握和运用能力。
接下来,我们将对2019年高考数学试题的一些典型题目进行分析和解答,帮助读者更好地理解试题内容和解题思路。
1. 选择题。
单选题,已知函数$f(x)=\log_a(x-2)+\log_a(x+2)-2\log_a(x)$,其中$a>0$且$a\neq1$,则$f(x)$的定义域是(A)$(-\infty,-2)\cup(2,+\infty)$ (B)$(-2,2)$ (C)$(-\infty,-2)\cup(2,+\infty)$ (D)$(-\infty,-2)\cup(-2,2)\cup(2,+\infty)$。
解答,首先,我们要确定函数的定义域,即确定$x$的取值范围。
由于对数函数的定义域是正实数,所以我们要求$x-2>0$,$x+2>0$,$x>0$,即$x>2$。
所以函数的定义域是$(2,+\infty)$。
因此,答案为(C)。
多选题,已知集合$A=\{x|x^2-3x+2=0\}$,$B=\{x|x^2-4x+3=0\}$,则$A\capB=$(A)$\{1\}$ (B)$\{2\}$ (C)$\{1,3\}$ (D)$\{2,3\}$。
解答,首先,我们要求出集合$A$和$B$的元素,即方程$x^2-3x+2=0$和$x^2-4x+3=0$的解。
通过解方程,我们可以得出$A=\{1,2\}$,$B=\{1,3\}$。
高考数学技巧如何利用数学归纳法解决问题
高考数学技巧如何利用数学归纳法解决问题数学归纳法是一种常见且重要的数学技巧,在高考数学中经常被用于解决一些复杂的问题。
通过合理运用数学归纳法,可以简化问题的复杂性,从而更好地解决数学题。
本文将探讨高考数学中如何利用数学归纳法解决问题的技巧和方法,并通过一些例题进行说明。
一、数学归纳法的基本原理数学归纳法是一种证明数学命题的方法。
它的基本原理是:设n为一个正整数,如果能证明当n取某个值时命题成立,而且如果在命题成立的情况下可以推导得到n+1的情况也成立,那么就可以得出结论:当n为任意正整数时,命题都成立。
二、数学归纳法的步骤数学归纳法主要包括三个步骤:基础步骤、归纳假设和归纳步骤。
1.基础步骤:首先需要证明当n取某个值时命题成立。
这个值通常是最小的正整数,可以是1或任意不为0的正整数。
2.归纳假设:假设当n取k(其中k为正整数)时命题成立,即假设命题P(k)为真。
3.归纳步骤:在已知P(k)为真的情况下,利用此假设证明P(k+1)为真。
通过推理和运算,将P(k+1)的真实性转化为某个已知条件的真实性,即从P(k)推导得到P(k+1)。
三、利用数学归纳法解决高考数学问题的技巧1.明确问题类型:在高考数学中利用数学归纳法解题,首先要明确问题的类型。
常见的问题类型包括数列、方程、不等式、集合等。
2.观察规律:利用数学归纳法解题的关键在于观察规律。
通过对问题的分析和计算,观察数列、方程等中数值、系数的变化规律,总结出规律的特点。
3.列出基础步骤:根据观察所得的规律,找到问题中的基础步骤。
基础步骤通常是证明当n取某个值时命题成立。
4.假设并证明:在观察到的规律的基础上,假设命题P(k)为真,并通过计算和推理证明该命题成立。
5.归纳得出结论:在已知P(k)为真的情况下,运用数学归纳法的归纳步骤,将P(k+1)的真实性转化为已知条件的真实性,进而得出结论。
四、数学归纳法解题的例子【例题】已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,则证明:a_n=n^2。
2019年高考数学试题(附答案)
2019年高考数学试题(附答案)2019年高考数学试题是许多学生备战高考的重要参考资料。
在这份试题中,涵盖了数学的各个方面,包括代数、几何、概率与统计等。
这些试题不仅考察了学生对数学知识的掌握程度,也考察了他们的逻辑思维能力和解决问题的能力。
下面我们将对2019年高考数学试题进行详细分析,并附上相应的答案,希望能对广大学生有所帮助。
一、选择题部分。
1. 已知集合$A=\{x | -1\leq x\leq 3\}$,$B=\{x | 2\leq x\leq 4\}$,则$A\cap B$的元素个数为()。
A. 0B. 1C. 2D. 3。
解析,$A\cap B$表示集合A和集合B的交集,即同时属于A和B的元素组成的集合。
根据题意可知,$A\cap B=\{x | 2\leq x\leq 3\}$,所以$A\cap B$的元素个数为1,故选B。
2. 曲线$y=\ln x$和直线$y=x-2$的交点坐标为()。
A. (1, -1)B. (1, 1)C. (2, 0)D. (2, 1)。
解析,曲线$y=\ln x$和直线$y=x-2$的交点坐标即为满足方程$\ln x=x-2$的点的坐标。
通过计算可得,当x=2时,$\ln 2=2-2=0$,所以交点坐标为(2, 0),故选C。
3. 在$\triangle ABC$中,已知$\angle A=30^\circ$,$\angle B=45^\circ$,$AB=4$,则$AC$的长度为()。
A. $2\sqrt{2}$B. $2\sqrt{3}$C. $3\sqrt{2}$D. $4\sqrt{2}$。
解析,根据正弦定理可知,$\frac{AB}{\sin B}=\frac{AC}{\sin A}$,代入已知数据可得$AC=\frac{4\sin 30^\circ}{\sin 45^\circ}=2\sqrt{3}$,故选B。
4. 设随机变量X的概率密度函数为$f(x)=\begin{cases} kx^2 & 0<x<1 \\ 0 & others \end{cases}$,则k的值为()。
2019年高考数学文真题分类解析(共16部分,138页)
第一章 集合与常用逻辑用语1.【2019高考新课标Ⅰ,文2】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A IA. {}1,6B. {}1,7C. {}6,7D. {}1,6,7【答案】C 【解析】 【分析】先求U A ð,再求U B A ⋂ð.【详解】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C .【点睛】本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案.2.【2019高考新课标Ⅱ,文1】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A. (–1,+∞) B. (–∞,2) C. (–1,2) D. ∅【答案】C 【解析】 【分析】本题借助于数轴,根据交集的定义可得. 【详解】由题知,(1,2)A B =-I ,故选C .【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019高考新课标Ⅲ,文1】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B =I ( )A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A 【解析】 【分析】先求出集合B 再求出交集.【详解】21,x ≤∴Q 11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B =-I , 故选A .【点睛】本题考查了集合交集的求法,是基础题.4.【2019高考北京卷,文1】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A. (–1,1) B. (1,2)C. (–1,+∞)D. (1,+∞)【答案】C 【解析】 【分析】根据并集的求法直接求出结果.【详解】∵{|12},{|1}A x x B x =-<<=> , ∴(1,)A B ⋃=+∞ , 故选C.【点睛】考查并集的求法,属于基础题.5.【2019高考天津卷,文1】设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈<… ,则()A C B =I UA. {2}B. {2,3}C. {-1,2,3}D. {1,2,3,4}【答案】D 【解析】 【分析】先求A C I ,再求()A C B I U 。
2019年普通高考数学真题汇编答案解析(精)
2019年普通高等学校招生全国统一考试数学分类汇编一、选择题(共17题)1.(安徽卷)如果实数x y 、满足条件⎪⎩⎪⎨⎧≤++≥+≥+-01,01,01y x y y x 那么2x y -的最大值为A .2B .1C .2-D .3- 解:当直线2x y t -=过点(0,-1)时,t 最大,故选B 。
2.(安徽卷)直线1x y +=与圆2220(0)x y ay a +-=>没有公共点,则a 的取值范围是A.1)- B.1) C.(1) D.1) 解:由圆2220(0)x y ay a +-=>的圆心(0,)a 到直线1x y +=大于a ,且0a >,选A 。
3.(福建卷)已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于 (A )2 (B )1 (C )0 (D )1-解析:两条直线2y ax =-和(2)1y a x =++互相垂直,则(2)1a a +=-,∴ a =-1,选D.4.(广东卷)在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35x ≤≤时,目标函数32z x y =+的最大值的变化范围是A.[6,15]B. [7,15]C. [6,8]D. [7,8]解析:由⎩⎨⎧-=-=⇒⎩⎨⎧=+=+42442s y sx x y s y x 交点为)4,0(),,0(),42,4(),2,0(C s C s s B A '--, (1)当43<≤s 时可行域是四边形OABC ,此时,87≤≤z (2)当54≤≤s 时可行域是△OA C '此时,8max =z ,故选D.5.(湖北卷)已知平面区域D 由以(1,3),(5,2),(3,1)A B C 为顶点的三角形内部&边界组成。
若在区域D 上有无穷多个点(,)x y 可使目标函数z =x +my 取得最小值,则m = A .-2 B .-1 C .1 D .4 解:依题意,令z =0,可得直线x +my =0的斜率为-1m,结合可行域可知当直线x +my =0与直线AC 平行时,线段AC 上的任意一点都可使目标函数z =x +my 取得最小值,而直线AC 的斜率为-1,所以m =1,选C6.(湖南卷)若圆2244100x y x y +---=上至少有三个不同点到直线l :0ax by +=的距离为则直线l 的倾斜角的取值范围是( )x +yA.[,124ππ] B.[5,1212ππ] C.[,]63ππD.[0,]2π解析:圆0104422=---+y x y x 整理为222(2)(2)x y -+-=,∴圆心坐标为(2,2),半径为32,要求圆上至少有三个不同的点到直线0:=+by ax l 的距离为22,则圆心到直线的距离应小于等于2, ∴2()4()1a ab b ++≤0,∴ 2()2ab --+≤()a k b=-,∴ 22k ≤l 的倾斜角的取值范围是]12512[ππ,,选B.7.(湖南卷)圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是A .36B . 18 C. 26 D . 25 解析:圆0104422=---+y x y x 的圆心为(2,2),半径为32,圆心到直线014=-+y x 的距离=2,圆上的点到直线的最大距离与最小距离的差是2R =62,选C. 8.(江苏卷)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0【正确解答】直线ax+by=022(1)(1x y -++=与相切1=,由排除法,选C,本题也可数形结合,画出他们的图象自然会选C,用图象法解最省事。
数学高考几大知识点总结
数学高考几大知识点总结在数学高考中,有几大重要的知识点,它们是考生备考的重点和难点。
下面将对这几大知识点进行总结,帮助考生复习备考。
一、函数和方程函数和方程是数学高考中的重要内容,也是考试中的必考点。
在这一部分中,考生需要了解各种类型的函数和方程,包括一元一次函数、二次函数、指数函数、对数函数等。
考生需要掌握函数的性质、图像和变化规律,以及方程的解法和应用。
二、数列与数学归纳法数列是数学高考中的另一个重要知识点。
考生需要了解数列的概念、性质和常用的数列类型,如等差数列、等比数列和特殊的递推数列等。
考生还需要学会使用数学归纳法证明数列的性质和定理。
三、几何与向量几何与向量是数学高考中考察的重点之一。
考生需要熟悉各种几何图形的性质和特点,包括点、线、面的性质,以及三角形、四边形、圆等的性质。
此外,考生还需要掌握向量的概念和运算法则,并能灵活运用向量解决几何问题。
四、概率与统计概率与统计是数学高考中的一大知识点。
考生需要了解基本的概率概念和方法,包括事件、样本空间、概率计算等。
此外,考生还需掌握统计学中的数据整理、分析和解释方法,包括频数表、频率分布表、直方图等。
五、三角函数与解三角形三角函数与解三角形也是数学高考中的必考内容。
考生需要掌握基本的三角函数的定义和性质,包括正弦、余弦、正切等。
同时,考生还需要学会应用三角函数解决实际问题,解三角形的各种问题。
以上就是数学高考几大知识点的总结。
考生在备考过程中,应该注重掌握这几大知识点的概念、性质和解题方法,并通过大量的练习来加强自己的能力。
希望考生们能够通过努力,取得优异的成绩!。
2019年高考数学题型全归纳:斐波那契数列(含答案)
2019年⾼考数学题型全归纳:斐波那契数列(含答案)⾼考数学精品复习资料2019.5斐波那契数列每⼀对兔⼦过了出⽣第⼀个⽉之后,每个⽉⽣⼀对⼩兔⼦。
现把⼀对初⽣⼩兔⼦放在屋内,问⼀年后屋内有多少对兔⼦?先不在这⾥考虑兔⼦能否长⼤,或是某些⽉份没有⽣⼩兔⼦⼀类的问题,完全只由数学⾓度去考虑这问题,意⼤利数学家斐波那契(Fibonacci)解了这个题⽬,其内容⼤约是这样的:在第⼀个⽉时,只有⼀对⼩兔⼦,过了⼀个⽉,那对兔⼦成熟了,在第三个⽉时便⽣下⼀对⼩兔⼦,这时有两对兔⼦。
再过多⼀个⽉,成熟的兔⼦再⽣⼀对⼩兔⼦,⽽另⼀对⼩兔⼦长⼤,有三对⼩兔⼦。
如此推算下去,我们便发现⼀个规律:不难发现,每个⽉成熟兔⼦的数⽬是上个⽉的兔⼦总数,⽽初⽣兔⼦的数⽬是上个⽉成熟兔⼦的数⽬,也即是两个⽉前的兔⼦总数,因此每个⽉的兔⼦总数刚好是上个⽉和两个⽉前的的兔⼦总数之和。
由此可得每个⽉的兔⼦总数是 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 23, 377...,由此可知⼀年后有 377 对兔⼦。
若把上述数列继续写下去,得到的数列便称为斐波那契数列,数列中每个数便是前两个数之和,⽽数列的最初两个数都是 1。
若果设 F0=1, F1=1, F2=2, F3=3, F4=5, F5=8, F6=13... 则成⽴这个关系式:当 n ⼤于 1,Fn+2=Fn+1+ Fn,⽽ F0=F1=1。
下⾯是⼀个古怪的式⼦:(1)Fn看似是⽆理数,但当 n 是⾮负整数时,Fn都是整数,⽽且组成斐波那契数列,因为F0=F1=1,并且Fn+2=Fn+1+ Fn,这可⽤数学归纳法来证明。
利⽤斐波那契数列解决兔⼦数⽬的问题似乎没有甚么⽤途,因为不能保证兔⼦真的每⽉只⽣⼀对⼩兔⼦⼀类的问题,但事实上这个数列的应⽤⼗分⼴泛。
例如⼀个⾛梯级的问题,若某⼈⾛上⼀段梯级,他每⼀步可以⾛上⼀级,或是跳过⼀级⽽⾛到第⼆级,若他要⾛上六级,有多少个不同⾛法?我们可以考虑,若果设 Fn是⾛ n 级梯级的⾛法的数⽬,若他在第n级,他可以⾛到第 n-1 级,或是跳过第n-1级,⾛到第 n-2 级,他在第 n-1 级有 Fn-1个⾛法,⽽在第 n-2 级有 Fn-2个⾛法,因此在第n级时的⾛法是 Fn-2+Fn-1个⾛法,即Fn=Fn-2+Fn-1,⽽他在第⼆级和第三级的⾛法分别有 1 个和 2 个,因此可知⾛法的数⽬与斐波那契数列有关。
高考数学总复习:数学归纳法(讲义+解题技巧+真题+详细解答)
1.证明:当 n 取第一个值 n0(如 n0=1 或 2 等)命题正确; 2.假设当 n=k(k∈N*,且 k≥n0)时命题成立,以此为前提,证明当 n=k+1 时命题也成立. 根据步骤 1,2 可以断定命题对于一切从 n0 开始的所有正整数 n 都成立. 其中第一步是命题成立的基础,称为“归纳基础”(或称特殊性),第二步是递推的证 据,解决的是延续性问题(又称传递性问题)。 注意: (1)不要弄错起始 n0:n0 不一定恒为 1,也可能为其它自然数(即起点问题). (2)项数要估算正确:特别是当寻找 n=k 与 n=k+1 的关系时,项数的变化易出现错误 (即跨度问题). (3)必须利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就过
由归纳假设,凸
k
边形
A1A2A3…Ak
的对角线的条数为
1 2
k(k-3);对角线
A1Ak
是一条;而顶点 Ak+1 与另外(k-2)个顶点 A2、A3、…、Ak-1 可画出(k-2)条对角线,
所以凸(k+1)边形的对角线的条数是: 1 k(k-3)+1+(k-2)= 1 (k+1)(k-2)= 1
2
2
2.原理 数学归纳法首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有
效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。把这个方法 想成多米诺效应也许更容易理解一些。例如:你有一列很长的直立着的多米诺骨牌,如果你 可以:
① 证明第一张骨牌会倒。 ② 证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。 ③ 那么便可以下结论:所有的骨牌都会倒下。
【解析】
[精品]三年高考(2019)高考数学试题分项版解析 专题30 推理与证明 理(含解析)
专题30 推理与证明考纲解读明方向考纲解读分析解读 1.能利用已知结论类比未知结论或归纳猜想结论并加以证明.2.了解直接证明与间接证明的基本方法,体会数学证明的思想方法.3.掌握“归纳—猜想—证明”的推理方法及数学归纳法的证明步骤.4.归纳推理与类比推理是高考的热点.本章在高考中的推理问题一般以填空题形式出现,分值约为5分,属中档题;证明问题一般以解答题形式出现,分值约为12分,属中高档题.2017年高考全景展示1. 【2017课标II,理7】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。
老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩。
看后甲对大家说:我还是不知道我的成绩。
根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【考点】合情推理【名师点睛】合情推理主要包括归纳推理和类比推理。
数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向。
合情推理仅是“合乎情理”的推理,它得到的结论不一定正确。
而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下)。
2.(2017北京,14,5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是;②记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.答案①Q1②p23.(2017江苏,19,16分)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d'.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d',在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d',所以数列{a n}是等差数列.4.(2017北京,20,13分)设{a n}和{b n}是两个等差数列,记c n=max{b1-a1n,b2-a2n,…,b n-a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n-1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.解析本题考查等差数列,不等式,合情推理等知识,考查综合分析,归纳抽象,推理论证能力.(1)c1=b1-a1=1-1=0,c2=max{b1-2a1,b2-2a2}=max{1-2×1,3-2×2}=-1,c3=max{b1-3a1,b2-3a2,b3-3a3}=max{1-3×1,3-3×2,5-3×3}=-2.当n≥3时,(b k+1-na k+1)-(b k-na k)=(b k+1-b k)-n(a k+1-a k)=2-n<0,所以b k-na k关于k∈N*单调递减.所以c n=max{b1-a1n,b2-a2n,…,b n-a n n}=b1-a1n=1-n.所以对任意n≥1,c n=1-n,于是c n+1-c n=-1,所以{c n}是等差数列.(2)设数列{a n}和{b n}的公差分别为d1,d2,则b k-na k=b1+(k-1)d2-[a1+(k-1)d1]n=b1-a1n+(d2-nd1)(k-1).所以c n=①当d1>0时,取正整数m>,则当n≥m时,nd1>d2,因此c n=b1-a1n.此时,c m,c m+1,c m+2,…是等差数列.②当d1=0时,对任意n≥1,c n=b1-a1n+(n-1)max{d2,0}=b1-a1+(n-1)(max{d2,0}-a1).此时,c1,c2,c3,…,c n,…是等差数列.③当d1<0时,当n>时,有nd1<d2.所以==n(-d1)+d1-a1+d2+≥n(-d1)+d1-a1+d2-|b1-d2|.对任意正数M,取正整数m>max,故当n≥m时,>M.2016年高考全景展示1.【2016高考新课标2理数】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.【答案】1和3考点:逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式.。
19年数学高考大题知识点
19年数学高考大题知识点数学一直是高考中的一门重要科目,对于考生来说,掌握数学的基本知识和解题技巧是取得好成绩的关键。
本文将针对2019年数学高考大题中的一些知识点进行详细论述,希望能帮助广大考生更好地备战。
一、平面向量平面向量是高考数学中的重要内容之一,涉及到向量的表示、运算、共线、垂直等多个方面的知识点。
在2019年数学高考大题中,平面向量的应用较多。
首先,我们来讨论平面向量的表示和运算。
平面向量一般用字母加上箭头表示,如向量AB记作→AB。
向量可以进行加法、减法和乘法运算。
加法运算遵循平行四边形法则,即将两个向量的起点连在一起,将两个向量的终点连在一起,连接起始点和终止点,所得到的向量即为两个向量的和。
减法运算可视为加法运算的逆运算,即将被减数加上减向量的负向量。
向量与标量的乘法是指用一个实数来放大或缩小向量的长度。
其次,我们关注平面向量的共线和垂直。
两个非零向量共线的充要条件是它们的方向相同或相反;两个非零向量垂直的充要条件是它们的内积为零。
二、几何证明几何证明是高考数学中的另一重要内容,要求考生具备一定的几何知识和推理能力。
通过几何证明,可以深入理解几何定理和性质,拓宽数学思维。
在2019年的数学高考大题中,几何证明的题目较多,涉及到平行线、相似三角形、圆等几何概念。
在几何证明中,需要应用到的知识点有:等腰三角形的性质、直角三角形的性质、两角平分线的性质等等。
考生在备考过程中,要熟练掌握这些几何知识点,结合定理使用灵活。
三、数列与数学归纳法数列是高考数学中的重要考点之一,对于考生来说,了解数列的基本概念、计算方法以及性质是必不可少的。
数列中的重要概念包括等差数列、等比数列、递推公式等。
在2019年数学高考大题中,数列的应用较多,包括求和、推导递推公式等。
对于这些题目,考生需要熟练掌握数列的求和公式,对于等差数列和等比数列应用不同的求和公式。
数学归纳法是解决数列问题的一种重要思想方法,可以通过归纳证明来推导出数列的通项公式。
考点30 数学归纳法【2019年高考数学真题分类】
温馨提示:此题库为Word版, 请按住Ctrl, 滑动鼠标滚轴, 调节合适的观看比例, 关闭Word文档返回原板块。
考点30 数学归纳法一、解答题1.(2019·北京高考理科·T20)已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i1<i2<…<i m),若a a1<a a2<…<a aa ,则称新数列a a1,a a2,…,a aa为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列.(2)已知数列{a n}的长度为p的递增子列的末项的最小值为a a0,长度为q的递增子列的末项的最小值为a a.若p<q,求证:a a0<a a.(3)设无穷数列{a n}的各项均为正整数,且任意两项均不相等.若{a n}的长度为s的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有2s-1个(s=1,2,…),求数列{a n}的通项公式.【命题意图】考查集合、数列,逻辑推理的综合应用,意在考查知识的综合应用以及新概念的理解,培养学生的知识整合能力与逻辑推理能力,体现了逻辑推理、数学运算、数据分析的数学素养.【解析】(1)1,3,5,6.(或1,3,5,9;或1,5,6,9;或3,5,6,9.)(2)反证法:若a a0≥a a,则存在一个长度为q的递增数列{b n},满足b1<b2<…<b q=a n,12又因为p <q ,取c 1=b 1,c 2=b 2,…,c p =b p <b q =a a 0.则{c n }是一个长度为p 的递增数列,且c p =a a 0<a a 0,与假设矛盾,所以a a 0<a a 0.(3)令s =1,则{a n }长度为1的递增子列末项最小值为1,长度为1末项为1的递增子列有20=1个,所以{a n }中有1;令s =2,则{a n }长度为2的递增子列末项最小值为3,所以{a n }中有3,长度为2末项为3的递增子列有21=2个,所以{a n }中有2,且2在1前,{a n }为2,1,…;令s =3,则{a n }长度为3的递增子列末项最小值为5,所以{a n }项中有5,长度为3末项为5的递增子列有22=4个,所以{a n }中有4,且4在3前在1后,{a n }为2,1,4,3,…;……归纳可得数列{a n }为:2,1,4,3,6,5,…,用数学归纳法可证明成立.所以{a n }通项公式为a n ={a +1,a =2a -1,a -1,a =2a ,a ∈N *.。
2019高考数学分类汇编解析版(2)
2019高考数学分类汇编解析版(2)专题06 三角函数及解三角形 专题07 平面向量 专题08 数列专题09 不等式、推理与证明 专题10 概率与统计专题06 三角函数及解三角形1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称,2sin cos ++x xx x排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ; 作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确;作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B , 故选A .图1图2图34.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B .5C 3D 5【答案】B 【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin α∴=选B .5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】Dπ6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x.若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B . CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2.8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==11sin 222ABC S ac B ==⨯=△ 9.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式22112()1()33[1()13⨯-+---+综上,πsin 2410α⎛⎫+= ⎪⎝⎭10.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【答案】5,10【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以5BD =.ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-()sin 1202sin A C C ︒+-=,即1cos sin 2sin 222C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 602C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【答案】(1)B =60°;(2)(82. 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,ABC S <<△. 因此,△ABC面积的取值范围是82⎛⎫ ⎪ ⎪⎝⎭.13.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =.(2)由1cos 2B =-得sin 2B =.由正弦定理得sin sin c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin B C B C B C -=-=. 14.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值.【答案】(1)14-;(2)716-.【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a aa cb B ac a a +-+-===-⋅⋅.(2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 15.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【答案】(1)3c =(2)5. 【解析】(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以3c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭. 16.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+. 【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM ==,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a=4+Q(4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q(4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q两点间的距离为17+. 17.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[122-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π1223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[1,122-+.专题07 平面向量1.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B . 2.【2019年高考全国II 卷理数】已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .−3 B .−2 C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .3.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,即22||||AB AC AC AB +>-,因为AC AB BC -=,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C .4.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________. 【答案】23【解析】因为2=c a ,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c22133⋅==⨯⋅a c a c . 5.【2019年高考天津卷理数】在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________. 【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BEy x =-, 直线AE的斜率为y x =.由(3y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-,所以1)E -.所以35(,)(3,1)12BD AE =-=-.6.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____..【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-, ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=7.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】0;则(1,0),(0,1),(1,0),(0,1),(1,1),(1,1)AB BC CD DA AC BD ===-=-==-(AB BC CD DA AC BD λλλλλλ+++++=(1,2,3,4,5,6)i i λ=可取遍1±,所以当1256341,1λλλλλλ======-时,有最大值max y ==.故答案为0;专题08 数列1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =- 【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A . 2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A4.【2019年高考全国I 卷理数】记S n 为等比数列{a n }的前n 项和.若21463a a a ==,,则S 5=____________. 【答案】1213【解析】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--.5.【2019年高考全国III 卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4【解析】设等差数列{a n }的公差为d ,因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d ⨯+==⨯+. 6.【2019年高考北京卷理数】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n的最小值为__________. 【答案】 0,10-.【解析】等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=,由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.7.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 8.【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(I )证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (II )求{a n }和{b n }的通项公式. 【答案】(I )见解析;(2)1122n n a n =+-,1122n n b n =-+.【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+. 又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.9.【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(Ⅲ)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s-1个(s =1,2,…),求数列{a n }的通项公式. 【答案】(Ⅰ) 1,3,5,6(答案不唯一);(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)1,3,5,6.(答案不唯一) (Ⅱ)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -.由p <q ,得10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a , 又12,,,p r r r a a a 是{}n a 的长度为p 的递增子列,所以0p m r a a ≤.所以00m n a a <·(Ⅲ)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数). 假设2m 排在2m −1之后. 设121,,,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m .因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中. 又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m.与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件. 所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.10.【2019年高考天津卷理数】设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .【答案】(Ⅰ)31n a n =+;32nn b =⨯(Ⅱ)(i )()221941n n n a c -=⨯-(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n n n n a n n b -=+-⨯=+=⨯=⨯. 所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(Ⅱ)(i )()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n nnni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑ ()()2114143252914nn n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .11.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =.由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.12.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(I )求数列{},{}n n a b 的通项公式; (II )记,n c n *=∈N 证明:12+.n c c c n *++<∈N【答案】(I )()21n a n =-,()1n b n n =+;(II )证明见解析. 【解析】(I )设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N .所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(II)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<那么,当1n k =+时,121k k c c c c +++++<<<==.即当1n k =+时不等式也成立. 根据(i )和(ii),不等式12n c c c +++<*n ∈N 成立.13.【四川省峨眉山市2019届高三高考适应性考试数学试题】在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于A .66B .132C .-66D .- 32【答案】D【解析】因为3a ,9a 是方程224120x x ++=的两根,所以3924a a +=-,又396242a a a +=-=,所以612a =-,61111111211()13222a a a S ⨯⨯+===-,故选D.专题09 不等式、推理与证明1.【2019年高考全国II 卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD【答案】D 【解析】由rRα=,得r R α= 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得3α=所以3.r R α==2.【2019年高考全国II 卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3bC .a 3−b 3>0D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .3.【2019年高考北京卷理数】若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为 A .−7 B .1C .5D .7【答案】C【解析】由题意1,11yy x y-≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C .4.【2019年高考北京卷理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为A . 1010.1B . 10.1C . lg10.1D . 10–10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选:A .5.【2019年高考天津卷理数】设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……,则目标函数4z x y =-+的最大值为 A .2 B .3C .5D .6【答案】D【解析】已知不等式组表示的平面区域如图中的阴影部分. 目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值. 由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -,所以max 4(1)15z =-⨯-+=. 故选C.6.【2019年高考天津卷理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【解析】化简不等式,可知 05x <<推不出11x -<, 由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件, 故选B.7.【2019年高考浙江卷】若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是A . 1-B . 1C . 10D . 12【答案】C【解析】画出满足约束条件的可行域如图中阴影部分所示。
2019年-2019年浙江省高考数学试题(理)分类解析汇编-数列、数学归纳法共11页word资料
2019年-2019年浙江省高考数学试题(理)分类解析汇编专题3:数列、数学归纳法锦元数学工作室 编辑一、选择题1. (浙江2019年理5分)已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =【 】 (A) –4 (B) –6 (C) –8 (D) –10【答案】B 。
【考点】等差数列;等比数列。
【分析】利用已知条件列出关于1a 的方程,求出1a ,代入通项公式即可求得2a :∵416a a =+,314a a =+,且1a ,3a ,4a 成等比数列,∴2314a a a =⋅,即()()211146a a a +=+。
解得18a =-。
∴2126a a =+=-。
故选B 。
2.(浙江2019年理5分)lim n →∞2123nn ++++=【 】(A) 2 (B) 4 (C) 21(D)0【答案】C 。
【考点】极限及其运算,等差数列求和公式。
【分析】()2211231112limlim lim 122n n n n n n n n n →∞→∞→∞+++++⎛⎫==+= ⎪⎝⎭。
故选C 。
3.(浙江2019年理5分)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =【 】 A .16(n --41) B .16(n --21) C .332(n --41) D .332(n--21)【答案】C 。
【考点】等比数列的前n 项和。
【分析】由335211==2=42a a q q q =⋅⇒,∴数列{}1n n a a +仍是等比数列:其首项是12=8a a ,公比为14。
∴()12231181432==141314n n n n a a a a a a -+⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦+++--。
故选C 。
4.(浙江2019年理5分)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =【 】 (A )11 (B )5 (C )8- (D )11- 【答案】D 。
2019年高考数学全国卷(含文理)总结
2019年高考数学全国卷(含文理)总结2019年高考数学全国卷总结2019年高考数学全国卷分为文科和理科卷两个版本,题型包括选择题、填空题、解答题和应用题等。
下面对2019年全国卷的数学考试内容进行总结。
首先,文理科通用部分的选择题考查范围主要集中在数列与数列的性质、平面向量和向量组、平面的位置关系、几何体的体积、立体的位置关系、矩阵的运算和特点等方面。
这部分试题相对来说考查的基础知识较为直接,难度适中,学生只要熟悉这些知识点,理解原理,掌握一定的解题方法,就能够较好地完成这部分题目。
其次,文科卷和理科卷的选择题内容主要有一些针对文科和理科学生的专业知识。
比如,文科卷的选择题主要涉及到函数与导数的性质与应用、概率与统计、解析几何等内容。
而理科卷的选择题涉及到微积分、常微分方程、向量代数与空间解析几何等内容。
这部分试题较为考查学生对数学知识的理解和运用能力,要求学生能够将所学的理论知识应用到具体问题中去,并灵活运用解题方法。
填空题方面,2019年全国卷主要考查的内容包括函数与方程、向量与三角形、概率与统计等。
填空题相对于选择题来说更加灵活,需要学生熟练掌握各种解题方法,特别是在解方程和解向量三角形问题上,常规解法和巧妙解法都可能出现,所以考生需要具备一定的解题技巧。
解答题方面,2019年全国卷主要考查的内容有函数与方程、向量和立体几何等。
解答题是考查学生对所学知识的掌握程度和运用能力的重要途径,要求学生能够对问题进行全面的分析,并给出合理的解决方案。
在解答题中,要注意清晰的表达思路和步骤,并给出正确的答案和结论。
应用题方面,2019年全国卷主要涉及到概率与统计、解析几何、微积分和复数等内容。
应用题的特点是综合性强,需要学生将多个知识点进行整合,运用数学知识解决实际问题。
在应用题的解答中,学生需要确定解答问题的数学模型,选择正确的解题方法,并进行合理的计算和分析,最后给出合理的解答。
综上所述,2019年高考数学全国卷在题型和内容上比较全面,覆盖了中学数学的各个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此题库为Word版, 请按住Ctrl, 滑动鼠标滚轴, 调节合适的观看比例, 关闭Word文档返回原板块。
考点30 数学归纳法
一、解答题
1.(2019·北京高考理科·T20)已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i1<i2<…<i m),若a i
1<a i
2
<…
<a i
m ,则称新数列a i
1
,a i
2
,…,a i
m
为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度
为1的递增子列.
(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列.
(2)已知数列{a n}的长度为p的递增子列的末项的最小值为a m
0,长度为q的递增子列的末项的最小值为a n
.
若p<q,求证:a m
0<a n
.
(3)设无穷数列{a n}的各项均为正整数,且任意两项均不相等.若{a n}的长度为s的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有2s-1个(s=1,2,…),求数列{a n}的通项公式.
【命题意图】考查集合、数列,逻辑推理的综合应用,意在考查知识的综合应用以及新概念的理解,培养学生的知识整合能力与逻辑推理能力,体现了逻辑推理、数学运算、数据分析的数学素养.
【解析】(1)1,3,5,6.(或1,3,5,9;或1,5,6,9;或3,5,6,9.)
(2)反证法:若a m
0≥a n
,则
存在一个长度为q的递增数列{b n},满足b1<b2<…<b q=a n,又因为p<q,取c1=b1,c2=b2,…,c p=b p<b q=a n
.
则{c n}是一个长度为p的递增数列,且c p=a m
0<a n
,与假设矛盾,
所以a m
0<a n
.
(3)令s=1,则{a n}长度为1的递增子列末项最小值为1,长度为1末项为1的递增子列有20=1个,所以{a n}中有1;
令s=2,则{a n}长度为2的递增子列末项最小值为3,所以{a n}中有3,长度为2末项为3的递增子列有21=2个,所以{a n}中有2,且2在1前,{a n}为2,1,…;
令s=3,则{a n}长度为3的递增子列末项最小值为5,所以{a n}项中有5,长度为3末项为5的递增子列有22=4个,所以{a n}中有4,且4在3前在1后,{a n}为2,1,4,3,…;
……
归纳可得数列{a n}为:2,1,4,3,6,5,…,
用数学归纳法可证明成立.
所以{a n}通项公式为a n={n+1,n=2k-1,
n-1,n=2k,k∈N*.。