专题复习++化归与转化思想
化归与转化的数学思想解题举例
化归与转化的数学思想解题举例在数学问题中,化归与转化是一种常用的解题思路。
它们可以帮助我们将原问题转化为一个简化的形式,从而更容易得到解答。
本文将通过几个具体的例子来说明化归与转化在数学问题中的应用。
一、化归化归是将一个复杂的问题转化为一个更简单的等价问题的过程。
它通常是通过引入新变量或假设,将原问题转化为一个更易于处理的形式。
例子1:求解一元二次方程的解对于一元二次方程ax^2 + bx + c = 0,如果a不等于0,我们可以通过化归的方法求解其根。
首先,我们可以将方程中的未知数x改写为y = x + p,其中p是一个常数。
这样,我们将原来的方程转化为了ay^2 + dy + e = 0(其中d 和e是和p相关的常数)。
接下来,我们可以通过求解新方程来得到原方程的解。
由于新方程中的y是一个平移的变量,我们可以通过平方完成对y的消除。
最后,我们将得到一个新的一次方程: Cy + F = 0(C和F是和p 相关的常数)。
求解这个一次方程,我们就可以得到原方程的解。
通过化归,我们将原本复杂的问题转化为了一个简单的一次方程的求解问题,从而更容易得到解答。
二、转化转化是将一个问题转换为一个具有相同解的等价问题的思想。
它可以通过改变问题的表述方式或者引入新的概念来实现。
例子2:求解无穷几何级数的和对于一个无穷几何级数a + ar + ar^2 + ar^3 + ...(其中| r | < 1),我们可以使用转化的思想来求它的和。
首先,我们可以将级数的和S表示为S = a + ar + ar^2 + ar^3 + ...,这是一个无穷级数。
接下来,我们将级数的每一项都乘以公比r,得到rS = ar + ar^2 + ar^3 + ar^4 + ...,这是另一个等价的无穷级数。
然后,我们将这两个等式相减,得到(S - rS) = a,进一步化简得到S = a / (1 - r)。
通过这样的转化,我们得到了无穷几何级数的和的数学表达式,简化了求解过程。
专题四转化与化归思想
则a≥ x ,x∈(0, ]恒成立.
返回目录
模拟训练
【点评】 本题主要考查转化思想和分类整合思想,分类讨论实 质上也是一种转化思想. 解法1 采用的是分类讨论的方法, 将比较复杂问题通过分类转化 为一些较简单的问题进行求解, 而每一分类中又将恒成立的问题又转 化为最值问题.
1 (0,], 变为不等式一边为参数 , 另一边为含有x的代数式,a只要大 2 1 1 于或等于y= x ,x∈(0, ]的最大值就满足上式要求. x 2
消去x2得2 x12
2 1 x1 2 6m 1 0 , m m
返回目录
模拟训练
2 1 ∴x1∈R,∴Δ= 8 2 6m 1>0, m m 1 ∴(2m+1)(6m2-2m+1)<0,∴m< . 2 1 即当m< 时,抛物线上存在两点关于直线y=m(x-3)对称. 2
x12 满足 2 x1 x 1
2 x2 x1 x 2 m 3 , 2 2 2 x2 1 . x2 m
2 x12 x 2 m( x1 x 2 6), ∴ 1 x x . 1 2 m
行转化, 使问题逐次达到规范化、模式化,直至问题的解决.
返回目录
模拟训练
1. 函数f (x)=cos2x-2 3 sinxcosx的最小正周期是__________.
π 【解析】 ∵f(x) =cos2x-2 3 sinxcosx=cos2x- 3 sin2x=-2sin 2x ,
祝您高考成功!
作文成绩
语文作文课上, 老师布置了一篇500字的作文。
下课铃响了, 一学生发现自己只写了250字, 灵机一动,在
竞赛辅导--化归转化思想
学生辅导----化归转化思想方法化归转化思想是指在解决问题的过程中,对问题进行转化,使之成为简单、熟知问题的数学思想方法,它是使一种数学对象在一定条件下转化为另一种数学对象的思想和方法。
其核心就是将有待解决的问题转化为已有明确解决程序的问题,以便利用已有的理论、技术来加以处理,从而培养学生用联系的、发展的、运动变化的观点观察事物、认识问题、解决问题。
转化与化归的原则:(1)熟悉化原则:即陌生问题--熟悉问题,也就是常说的通过旧知解决新知(2)简单化原则:即复杂问题--简单问题,(3)具体化原则:即抽象问题--具体问题或直观问题(4)极端化原则:即运用极端化位置或状态的特性引出一般位置上或状态下的特性,从而获得解决问题的思路。
(5)和谐化原则:即对问题进行转化时要注意把条件和结论的表现形式转化为更具数、式和形内部固有和谐统一特点的形式,以帮助我们去确定解决问题的方法。
转化与化归的主要途径有:(1)正与反、一般与特殊的转化;(2)常量与变量的转化;(3)数与形的转化;(4)数学各分支之间的转化;(5)相等与不相等之间的转化;(6)实际问题与数学模型的转化.典型题例:一、计算中的转化技巧-----字母与数互化,简化形式,突出特征。
1、1987×20002000-2000×198719872、1992×19941994-1994199319933、19971996199319911995)39851994)(20001994(22⨯⨯⨯⨯+- 4、- 5、2200612008200720062005-+⨯⨯⨯6、3005200520052003200330052003200420034008200220034004200322⨯+⨯-⨯-⨯-⨯+⨯- 7、试说明22222007200720062006+⨯+是一个完全平方数8、20002000200020001998357153)37(++⨯(因式分解转化) 1919191901901900190093939393093093009300--9、279318629311263842421⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ 10、)200611()311)(211(222-⋅⋅⋅-- 11、201320121431321211⨯+⋅⋅⋅+⨯+⨯+⨯(裂项法) 12、2012211432113211211+⋅⋅⋅+++⋅⋅⋅+++++++++ 二、代数式求值转化技巧---整体换元13、代数式的求值:如果,6232=-x x 则12692--x x 的值是_____.14、已知2-=x 时,973=-+bx ax ,则2=x 时,23++bx ax 的值为_____.15、已知012=-+m m ,那么代数式2008223-+m m 的值是_______.16、已知0132=+-x x ,那么10423+--x x x 的值为________.17、如果311=-y x ,求分式yxy x y xy x ---+2232的值。
2023年新高考数学大一轮复习专题八思想方法第4讲转化与化归思想(含答案)
新高考数学大一轮复习专题:第4讲 转化与化归思想 思想概述 转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.方法一 特殊与一般的转化一般问题特殊化,使问题处理变得直接、简单,也可以通过一般问题的特殊情形找到一般思路;特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果;对于某些选择题、填空题,可以把题中变化的量用特殊值代替,得到问题答案.例1 (1)(2020·青岛模拟)“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆,若椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12,则椭圆C 的蒙日圆的方程为( ) A .x 2+y 2=9B .x 2+y 2=7 C .x 2+y 2=5D .x 2+y 2=4 答案 B 解析 因为椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12, 所以1a +1=12,解得a =3, 所以椭圆C 的方程为x 24+y 23=1, 所以椭圆的上顶点A (0,3),右顶点B (2,0),所以经过A ,B 两点的切线方程分别为y =3,x =2,所以两条切线的交点坐标为(2,3),又过A ,B 的切线互相垂直,由题意知交点必在一个与椭圆C 同心的圆上,可得圆的半径r =22+32=7,所以椭圆C 的蒙日圆方程为x 2+y 2=7.(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C 1+cos A cos C等于( )A.45B.15C.35D.25 思路分析 求cos A +cos C 1+cos A cos C→考虑正三角形ABC 的情况 答案 A 解析 令a =b =c ,则△ABC 为等边三角形,且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C=12+121+12×12=45. 一般问题特殊化,使问题处理变得直接、简单,特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.方法二 命题的等价转化将题目已知条件或结论进行转化,使深奥的问题浅显化、繁杂的问题简单化,让题目得以解决.一般包括数与形的转化、正与反的转化、常量与变量的转化、图形形体及位置的转化.例2 (1)由命题“存在x 0∈R ,使01ex --m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的值是( )A .(-∞,1)B .(-∞,2)C .1D .2 思路分析 命题:存在x 0∈R ,使01ex --m ≤0是假命题→任意x ∈R ,e |x -1|-m >0是真命题→m <e |x -1|恒成立→求m 的范围→求a答案 C解析 由命题“存在x 0∈R ,使01ex --m ≤0”是假命题,可知它的否定形式“任意x ∈R ,e |x -1|-m >0”是真命题,可得m 的取值范围是(-∞,1),而(-∞,a )与(-∞,1)为同一区间,故a =1.(2)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是________.思路分析 g x 在t ,3上总不为单调函数→先看g x 在t ,3上单调的条件→补集法求m 的取值范围答案 ⎝ ⎛⎭⎪⎫-373,-5 解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立, 所以m +4≥2t-3t 恒成立,则m +4≥-1, 即m ≥-5;由②得m +4≤2x-3x 在x ∈(t,3)上恒成立, 则m +4≤23-9,即m ≤-373. 所以使函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5. 根据命题的等价性对题目条件进行明晰化是解题常见思路;对复杂问题可采用正难则反策略,也称为“补集法”;含两个变量的问题可以变换主元.方法三 函数、方程、不等式之间的转化函数与方程、不等式紧密联系,通过研究函数y =f (x )的图象性质可以确定方程f (x )=0,不等式f (x )>0和f (x )<0的解集.例3 (2020·全国Ⅱ)若2x -2y <3-x -3-y ,则( )A .ln(y -x +1)>0B .ln(y -x +1)<0C .ln|x -y |>0D .ln|x -y |<0 答案 A解析 ∵2x -2y <3-x -3-y ,∴2x -3-x <2y -3-y. ∵y =2x -3-x =2x -⎝ ⎛⎭⎪⎫13x 在R 上单调递增, ∴x <y ,∴y -x +1>1,∴ln(y -x +1)>ln1=0.例4 已知函数f (x )=eln x ,g (x )=1ef (x )-(x +1).(e =2.718……) (1)求函数g (x )的极大值;(2)求证:1+12+13+ (1)>ln(n +1)(n ∈N *). 思路分析 g x 的极值→ln x <x -1→赋值叠加证明结论(1)解 ∵g (x )=1e f (x )-(x +1)=ln x -(x +1), ∴g ′(x )=1x-1(x >0). 令g ′(x )>0,解得0<x <1;令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1).取t =1n(n ∈N *)时, 则1n >ln ⎝ ⎛⎭⎪⎫1+1n =ln ⎝ ⎛⎭⎪⎫n +1n , ∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝ ⎛⎭⎪⎫n +1n , ∴叠加得1+12+13+…+1n >ln ⎝ ⎛⎭⎪⎫2×32×43×…×n +1n =ln(n +1).即1+12+13+ (1)>ln(n +1)(n ∈N *). 借助函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值值域问题,从而求出参变量的范围.。
化归与转化思想在高考数学解题中的运用
GUAN GDONG JIAO YU GAO ZHONG2021年第2化归与转化思想在高考数学解题中的运用■甘肃省秦安县第二中学罗文军yxo化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图像、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法.1.化归与转化的思想方法:解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的.2.化归与转化应遵循的基本原则:(1)熟悉化原则;(2)简单化原则;(3)和谐化原则;(4)直观化原则;(5)正难则反原则3.化归与转化的途径:(1)从问题的反面思考;(2)局部向整体的转化;(3)未知向已知转化;(4)固定向重组的转化;(5)抽象向具体转化;(6)个别向一般的转化;(7)数向形的转化;(8)定量向定性的转化;(9)主元向辅元的转化.以下结合一些经典试题,谈谈化归与转化思想在高三解题中的运用.题型一:化归与转化思想简单化原则的体现化归与转化思想简单化原则在解题中的体现主要有:(1)将比较代数式的大小的问题,运用同构法,通过构造函数,化归为利用函数的单调性根据自变量的大小比较函数值的大小或者根据函数值的大小比较自变量的大小;(2)将概率与统计问题化归为集合间的基本关系与基本运算问题.例1.若2a +log 2a =4b +2log 4b ,则()A.a >2b B.a <2b C.a >b 2 D.a <b 2【解析】由指数幂的运算性质和对数的运算性质可得,2a +log 2a =4b +2log 4b =22b +log 2b ,又因为22b +log 2b <22b +log 22b =22b +1+log 2b ,所以2a +log 2a <22b +log 22b .令f(x)=2x +log 2x,由指数函数和对数函数性质以及函数单调性的性质可得f(x)在(0,+∞)上单调递增,由f(a )<f(2a ),可得a <2b .【评析】本题考查了指数幂和对数的运算,函数的单调性的性质,构造函数后,把问题化归与转化为根据函数单调性,由函数值的大小比较自变量的大小,体现了化归与转化思想的简单化原则.例2.设命题p ∶4x-3≤1,命题q ∶x 2-(2a+1)x +a (a +1)≤0.若劭p 是劭q 的必要不充分条件,则实数a 的取值范围是__________.【解析】由4x-3≤1,得12≤x ≤1,记A ={x │12≤x ≤1};由x 2-(2a+1)x+a (a+1)≤0,可得a ≤x ≤a +1,记B ={x │a ≤x ≤a +1}.因为劭p 是劭q 的必要不充分条件,所以q 是p 的必要不充分条件,所以p 是q 的充分不必要条件,所以A 芴B ,所以a ≤12,a+1≥11,解得0≤a ≤12,所以实数a 的取值范围是[0,12].【评注】本题的解答中,先把两个命题中的不等式的解集分别用集合A 和集合B 表示,再由劭p 是劭q 是的必要不充分条件转化为p 是q 的充分不必要条件,再转化为集合A 为集合B 的真子集,解得a 的范围.题型二:化归与转化思想直观化原则的体现化归与转化思想直观化原则在解题中的体现主要有:(1)画出函数图像后,利用函数图像研究函数的性质,进而直观的解决与函数有关的问题;(2)立体几何问题中,将立体问题平面化,画出轴截面或者中截面,利用平面几何问题破解题目.例3.设a ,b ∈R ,则|“a >b ”是“a a >b b ”的()A.充要不必要条件B.必要不充分条件C.充要条件D.既不充要也不必要条件【解析】构造函数f(x)=x x =x2,x≥0-x 2,x<1函数图像如图1,由图像可知f(x)=x x 在R 上单调递增.当a >b 时,f(a )>f(b ),即a a >b b ,a >b 圯a a >b b .当f(a )>f(b ),即a a >b b 时,a >b ,a a >b b 圯a >b ,所以a >b 圳a a >b b ,“a >b ”是“a a >b b ”的充要条件,故选C.【评注】本题是一道比较复杂的充分必要条件问题,通过观察题目,通过类比和联想,运用化归与转化思想,构造函数f(x)=x x 后,画出这个函数的图像,运用图像法判断这个函数在其定义域R 上为单调递增函数,把a 和b 看成这个函数的两个自变量,a a 和b b 分别看成这个函数的函数值f(a )29数学有数和f(b),由增函数的性质可以得出,a>b圳a a>b b,所以a>b是a a>b b的充分必要条件,体现了化归与转化思想的简单化和直观化原则.例4.已知某个机械零件是由两个有公共底面的圆锥组成的,且这两个圆锥有公共点的母线互相垂直,把这个机械零件打磨成球形,该球的半径最大为1,设这两个圆锥的高分别为h1,h2,则h1+h2的最小值为________.【答案】22姨.【解析】由题意可知,打磨后所得半径最大的球是由这两个圆锥构成的组合体的内切球,内切球的半径R=1,如图为这个组合体的轴截面示意图,圆O为内切球的轴截面,E,F,G,H分别为切点,连接OA,OB,OC,OD,OE,OF,OG,OH,由题意可知AB⊥BC,AD⊥DC,AC=h1+h2,R=OE=OF=OG=OH=1,则S四边形ABCD=S△AOB+S△BOC+S△COD+S△AOD,即AB×BC=12R×AB+12R×BC+12R×CD+12R×AD=12R(2AB+2BC)=R(AB+BC),所以AB×BC=AB+BC.由基本不等式可得AB×BC=AB+BC≥2AB×BC姨,则AB×BC≥4,当且仅当AB=BC时等号成立.所以(h1+h2)2=AC2=AB2+BC2≥2AB×BC≥8,当且仅当AB=BC时等号成立,故h1+h2的最小值为22姨.【评注】本题的解答运用了化归与转化的思想,通过研究组合体和其内切球的轴截面,把空间立体几何问题化归为平面几何问题,做到了把问题直观化的原则.题型三:化归与转化思想熟悉化原则的体现化归与转化思想熟悉化原则在解题中的体现主要有:(1)不等式题目中,把含一个参数的不等式恒成立问题,通过分离变量,化归为求函数在给定区间上的最值问题;(2)立体几何题目中,利用长方体或者正方体模型,把一些三棱锥、四棱锥和三棱柱的外接球问题化归为熟悉的长方体或者正方体的外接球问题.例5.若对任意的x∈(0,+∞),ax-ln(2x)≥1恒成立,则实数a的最小值是_______【解析】由已知可得,对任意的x∈(0,+∞),a≥ln(2x)+1x恒成立,令g(x)=ln(2x)+1x,g′(x)=1x·x-ln(2x)x2=1-ln(2x)x2,令g′(x)=0,则1-ln(2x)=0,则x=e2,当0<x<e2时,g′(x)>0,g(x)单调递增;当x>e2时,g′(x)<0,g(x)单调递减,所以当x=e2时,g(x)取得最大值g(x)max=g(e2)=ln e+1e2=4e,所以a≥4e,所以a的最小值为4e.【评注】本题的解答运用了分离变量法,分离变量后,构造函数后,把a≥g(x)在(0,+∞)上恒成立等价转化为a≥[g(x)]max(x∈(0,+∞)),转化为求函数g(x)在(0,+∞)上的最大值问题,g(x)的最大值即为a的最小值,本题体现了化归与转化思想的熟悉化原则.例6.设数列{a n}的前n项为S n,a1=1,当n≥2时,a n=2a n S n-2S2n.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1姨对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.解:(1)因为当n≥2时,a n=2a n S n-2S2n,所以a n=2S2n2S n-1,n≥2,所以(S n-S n-1)(2S n-1)=2S2n,所以S n-S n-1=-2S n S n-1,所以1S n-1S n-1=2,n≥2,所以数列{1S n}是以1S1=1为首项,以2为公差的等差数列,所以1S n=1+2(n-1)=2n-1,所以S n=12n-1,所以,当n≥2时,a n=S n-S n-1=12n-1-12n-3=-2(2n-1)(2n-3),因为a1=S1=1,所以a n=1,n=1-2(2n-1)(2n-3).n≥≥2(2)设f(n)=(1+S1)(1+S2)…(1+S n)2n+1姨,则f(n+1)f(n)=2n+22n+1姨2n+3姨=4n2+8n+44n2+8n+3姨>1,所以f(n)在n∈N鄢上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,因为f(n)min=f(1)=23姨3,所以0<k≤23姨3.【评注】第(1)问运用了数列的前n项和S n与通项a n之间的关系a n=S n-S n-1(n≥2),把a n转化为S n-S n-1,再合并同类项后运用取倒数法,再根据等差数列的定义得出数列{1S n}的通项公式,再得出数列{a n}的通项公式;第(2)问分离变量后构造函数f(n),用作商法判断f(n)的单调性,把不等式f(n)≥k在n∈N鄢上恒成立等价转化为f(n)min≥k(n∈N鄢),两问都运用到了化归与转化思想.AEBFHDGOC302021年第2GUAN GDONG JIAO YU GAO ZHONG2021年第2题型四:化归与转化思想和谐化原则的体现化归与转化思想和谐化原则在解题中的体现主要有:(1)解三角形问题中利用正弦定理实现边角的互化;(2)在三角函数问题中,将形如y=a sin x+b cos x 的函数问题利用辅助角公式化归为形如y=A sin (棕x+渍)的函数问题;(3)解析几何中,将两直线垂直化归为斜率乘积为-1或者方向向量的数量积为0;(4)将形如滋=y -b x -a形式的最值问题,转化为动直线斜率的最值问题.例7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b -c =a ·cos C -c ·cos A .(1)求角A ;(2)若a =3,求b +2c 的最大值.【解析】(1)因为b -c =a ·cos C -c ·cos A ,由正弦定理可得,sin B -sin C =sin A cos C -sin C cos A ,所以sin B -sin C =sin (A -C )所以sin (A +C )-sin C =sin (A -C ),所以sin A cos C +cos A sin C -sin C =sin A cos C -cos A sin C ,所以cos A =12,因为0<A <仔,所以A =仔3.(2)由(1)可得,C =2仔3-B ,由正弦定理得,a sin A =b sin B =c sin C=2R ,所以3sin 仔3=b sin B =c sin (2仔3-B ),所以b =23姨sin B ,c =23姨sin (2仔3-B ),所以b +2c =23姨sin B +43姨sin (2仔3-B )=23姨(2sin B +3姨cos B )=221姨sin (B +渍),其中tan 渍=3姨2,渍∈(0,仔2),由B ∈(0,2仔3),存在B 使得B +渍=仔2,所以sin (B +渍)的最大值为1,所以b+2c 的最大值为221姨.【评注】第(1)问运用正弦定理实现边转化为角,再逆用两角差的正弦公式,运用内角和定理以及诱导公式,再运用两角和的正弦公式和两角差的正弦公式,得出cos A 的值,得出角A 的值;第(2)问运用了正弦定理将关于边的最值问题化为角的最值问题,运用三角形内角和定理以及诱导公式,再运用辅助角公式,化为三角函数在给定范围上的最值问题;两问都运用了化归与转化思想,体现了和谐化原则.例8.已知函数f (x)=x2x-1,则f (12019)+f (22019)+f (32019)+…+f (20182019)的值为_____.【解析】由于直接计算有困难,先探求一般的规律,因为f (x)=x2x-1,所以f (1-x)=1-x2(1-x)-1=1-x1-2x=x-12x-1,所以f (x)+f (1-x)=1,倒叙相加可得f (12019)+f (22019)+f (32019)+…+f (20182019)=1009.【评注】本题的解答中体现了特殊问题转化为一般化,运用了化归与转化思想,先通过探究在宏观上把握问题的一般规律,再将特殊问题破解.题型五:化归与转化思想的正难则反原则在解题中的体现化归与转化思想的正难则反原则在高中数学解题中的体现主要有:(1)间接证明方法中的反证法在解题中的运用;(2)概率问题中对立事件和互斥事件的概率公式的运用.例9.等差数列{a n }的前n 项和为S n ,a 1=1+2姨,S 3=9+32姨.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N 鄢),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解析】(1)设公差为d ,由已知得a1=2姨+1,3a1+3d =9+32姨姨,所以d =2,故a n =2n -1+2姨,S n =n (n +2姨).(2)证明:由(1)得b n =S n n=n +2姨.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2姨)2=(p +2姨)(r +2姨),所以(q 2-pr )+(2q -p-r )2姨=0.因为p ,q ,r ∈N 鄢,所以q 2-pr =0,2q-p-r =0姨,所以(p+r 2)2=pr ,(p-r )2=0,所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.【评注】本题的解答的第(2)问中运用了反证法,先反设假定要证的结论不成立,而设出结论的反面成立,将这个反设作为条件,运用等比数列的定义和通项公式,通过推理,得出p =r 与已知条件相矛盾,所以反设错误,所以要证明的结论成立,反证法归属于间接证明方法,第(2)问运用了化归与转化的思想.例10.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B 发生的概率为____.【答案】23.【解析】掷一个骰子的试验有6种可能结果,依题意P (A )=26=13,P (B )=46=23,所以P (B )=1-P (B )=1-23=13,显然A 与B 互斥,从而P (A+B )=P (A )+P (B )=13+13=23.【评注】先由古典概型概率公式求出事件A 和事件B 的概率,再由对立事件概率公式求出事件B 的对立事件B 的概率,再由互斥事件概率公式,把事件A+B 的概率化归为求P (A )和P (B )的和,运用了化归与转化思想.责任编辑徐国坚31。
高考数学专题复习 化归与转化思想
2008高考数学专题复习 化归与转化思想一、 考点回顾化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想。
转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。
化归转化思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中。
转化有等价转化与不等价转化。
等价转化后的新问题与原问题实质是一样的,不等价转则部分地改变了原对象的实质,需对所得结论进行必要的修正。
应用化归转化思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化。
常见的转化有:1、等与不等的相互转化等与不等是数学中两个重要的关系,把不等问题转化成相等问题,可以减少运算量,提高正确率;把相等问题转化为不等问题,能突破难点找到解题的突破口。
2、正与反的相互转化对于那些从“正面进攻”很难奏效或运算较难的问题,可先攻其反面,从而使正面问题得以解决。
3、特殊与一般的相互转化对于那些结论不明或解题思路不易发现的问题,可先用特殊情形探求解题思路或命题结论,再在一般情况下给出证明,这不失为一种解题的明智之举。
4、整体与局部的相互转化整体由局部构成,研究某些整体问题可以从局部开始。
5、高维与低维的相互转化事物的空间形成,总是表现为不同维数且遵循由低维想高维的发展规律,通过降维转化,可把问题有一个领域转换到另一个领域而得以解决,这种转化在复数与立体几何中特别常见。
6、数与形的相互转化通过挖掘已知条件的内涵,发现式子的几何意义,利用几何图形的直观性解决问题,使问题简化。
7、函数与方程的转化二、 经典例题剖析例1、(2007安徽卷 理)设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>. (Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.解析:(Ⅰ)讨论()F x 在(0)+,∞内的单调性并求极值只需求出()F x 的导数'()F x 即可解决; (Ⅱ)要证当1x >时,恒有2ln 2ln 1x x a x >-+,可转化为证1x >时2ln 2ln 10x x a x -+->,亦即转化为1x >时()0f x >恒成立;因(1)0f =,于是可转化为证明()(1)f x f >,即()f x 在(1,)+∞上单调递增,这由(Ⅰ)易知。
数学思想方法梳理(3)——化归与转化思想
数学思想方法梳理(3)——化归与转化思想解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的.化归与转化思想的实质是揭示联系,实现转化,是具有较高思维能力要求的压轴题中重点考查的数学思想方法。
1.求函数y ax =可以设t 则原函数转化为关于t 的二次函数 ;2.若lg y u =的定义域为R ,其中()u f x =,则问题等价于不等式 恒成立;若lg ()y f x =的值域为R ,则问题等价于函数()u f x =在(0,)+∞能 ;3.对于[,]x a b ∀∈,总有()()f x g x <等价于函数()h x = 在[,]a b 上的最大值小于零;对于1[,]x a b ∀∈,2[,]x a b ∀∈总有12()()f x g x <等价于max min [()],[()]f x g x 之间满足 ;4.对于12,[,]x x a b ∈,1122()()()()f x g x f x g x -<-等价于函数()()y f x g x =-在[,]a b 上 ;实数,m n 分别满足320am bm cm d +++=,320an bn cn d +++=,可构造()f x = 且()()0f m f n ==.5. 当遇到四个变量1122,,,x y x y ,满足11220,0ax by c ax by c ++=++=时,则1122(,),(,)x y x y 可以可视为直线 上的两个的不同点的坐标,该直线也就是过两定点1122(,),(,)x y x y 的直线; 当遇到两个变量,x y ,满足22,(0)x y m x y n n +=+=>,则可理解为 有公共点;6. ()()()()f x g x f x g x ''+是 的导数; ()()()()0f x g x f x g x ''->(0)(≠x g )说明函数 在定义域的某个区间上单调增;()()0xg x g x '+<说明函数 在定义域内单调减;7.已知实数[,]k m n ∈, 若210kx kx ++≥恒成立,构造关于k 的一次函数()f k = ,问题等价于不等式 在[,]k m n ∈上恒成立;已知210ax bx ++=,其中[,]x m n ∈,欲求22a b +的最小值,可以视方程为直线:l ,22a b +的最小值就等价于坐标原点到直线l 的的距离d = 的平方的最小值;8.如图(1),A 、B 在直线L 的异侧,在直线L 上任取一点M ,M A M B AB +≥,当且仅当点M与M '重合时有MA MB AB ''+=,所以MA+MB 的最小值是 .简单地说,就是“异侧和最小”;9.如图(2),A ,B 在直线L 的同侧,在直线L 上任取一点M ,AB MB MA ≤-,当且仅当点M 在AB 的延长线与L 的交点处时有MA MB AB ''-=,此时MA-MB 的最大值是 .简单地说,就是“同侧差最大”【例1】已知曲线2(),()21a f x g x ax b x+==++.(1)若1,1a b ==为常数,点(,)x y 为直线()y g x =的最小值;(2)若,,0a b a ∈≠R ,关于x 的方程()()f x g x =在[3,5]【解析】(1的最小值,等价于原点到直线30x y -+=的距离d ==2; (2)方程整理得2(21)20ax b x a ++--=,即2220x a xb a x +--+=,以aOb 建立平面坐标系,的最小值 ,设()x ϕ=,其中[3,5]x ∈.2221()51252x t x x t t t t ϕ-====+++++,2t x =-, 设5()2h t t t =++,[1,3]t ∈,225()t h t t-'=,当()0h t '>3t ≤,函数()h t 单调增; 当()0h t '<,1t ≤<()h t 单调减。
转化与化归思想(适合小学、初中)
转化与化归思想化归与转化的思想是指在解决数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种解题策略,一般情况,总是将未解决的问题化归转化为已解决的问题.化归与转化的思想方法是数学中最基本的思想方法,也是在解决数学问题过程中无处不存在的的基本思想方法,各种变换方法、分析法、反证法、待定系数法、构造法等都是转化的手段.高考中十分重视对化归与转化思想的考查,要求考生熟悉化归与转化各种变换方法,并有意识地运用变换方法解决有关的数学问题.化归与转化的原则是:将不熟悉和难解的问题转化为熟知的易知的易解的或已经解决的问题;将抽象的问题转化为具体的直观的问题;将复杂的问题转化为简单的问题;将一般性的问题转化为直观的特殊的问题,将实际问题转化为数学问题,使问题便于解决.题例1题例2 比较下图面积大小题例3回忆:我们在推导图形的面积或体积公式时用过哪些转化策略?题例1用分数表示各图中的涂色部分( )( )圆面积推导题例4 把一个圆剪拼成一个近似的长方形,已知长方形的周长是33.12cm,求阴影部分的面积.练习一1.1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90=2.在一列数2,7,14,23,……中的第十个数为____。
3.两数相除,商是4余数是8,被除数,除数,商和余数的和是415,则被除数是多少?4.一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为。
5.小明卖出一批苹果得到一笔钱。
如果小明多卖出10个苹果且所得到的钱的总数相同的话,则每个苹果的售价将比原售价少2元。
如果小明少卖出10个苹果且所得到的钱的总数相同的话,则每个苹果的售价将比原售价多4元。
请问a) 小明卖出几个苹果?b) 每个苹果原来的售价是多少元?6. 五个连续偶数之和是完全平方数,中间三个偶数之和是立方数(即一个整数的三次方),这样一组数中的最大数的最小值是多少?7. P 、Q 两城市相距625公里,小华从P 市于上午5:30出发,以每小时100公里之速度驶向Q 市。
专题:数学思想方法突破 转化与化归思想的应用
[解析] 由题意,知 ,令 , .因为对 ,恒有 ,即 ,所以 即 解得 .故当 时,对任意 都有 .
技法秘籍 在处理多变量的数学问题中,在常量(或参数)在某一范围取值的前提下求变量 的范围时,经常进行常量与变量之间的转化,即可以选取其中的参数,将其看作是变量,而把变量看作是常量,从而达到简化运算的目的.
(2)是否存在点 ,当将 沿 折起到 时,二面角 的余弦值等于 ?若存在,求出 的长;若不存在,请说明理由.
[解析] 存在点 使得二面角 的余弦值等于 ,此时 理由如下:因为 , ,且 , 平面 , 平面 ,所以 平面 ,又 ,所以 平
面 ,因为 平面 , 平面 ,所以 , ,又 ,所以以 为坐标原点, , , 所在的直线分别为 轴, 轴, 轴建立空间直角坐标系,如图所示.
A. B. C. D.
D
[解析] 因为点 与点 关于直线 对称,所以 必满足 ,解得 ,从而可以排除A,B,C.故选D.
技法秘籍 一般问题特殊化,使问题处理变得直接、简单,也可以通过一般问题的特殊情形找到一般思路;特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果;对于某些选择题、填空题,可以把题中变化的量用特殊值代替,从而得到问题的答案.
(法二:补形法)因为几何体有两对相对面互相平行,如图正方体体积的一半.又正方体的体积 ,故所求几何体的体积为 .
技法秘籍 形体位置关系的转化是通过切割、补形、等体积转化等方式转化为便于观察、计算的常用几何体,由于新的几何体是转化而来的,一般需要对新几何体的位置关系、数据情况进行必要分析,准确理解新几何体的特征.
应用1 正与反的转换
例1 (2022·河南驻马店模拟)已知从甲袋内摸出1个红球的概率是 ,从乙袋内摸出1个红球的概率是 ,从两袋内各摸出1个球,则2个球中至少有1个红球的概率是( ).
化归转化思想
专题13 化归转化思想【规律总结】化归思想,将一个问题由难化易,由繁化简,由复杂化简单的过程称为化归,它是转化和归结的简称。
化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。
一般总是将复杂问题通过变换转化为简单问题;将难解的问题通过变换转化为容易求解的问题;将未解决的问题通过变换转化为已解决的问题。
总之,化归在数学解题中几乎无处不在,化归的基本功能是:生疏化成熟悉,复杂化成简单,抽象化成直观,含糊化成明朗。
说到底,化归的实质就是以运动变化发展的观点,以及事物之间相互联系,相互制约的观点看待问题,善于对所要解决的问题进行变换转化,静,由抽象到具体等转化思想。
【经典例题】例题1 “一般的,如果二次函数y=ax2+bx+c的图像与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”判断方程实数根的情况()A. 有三个实数根B. 有两个实数根C. 有一个实数根D. 无实数根【分析】本题考查利用函数的图像解方程的根,考查化归与转化思想,数形结合思想,属于中档题.−1=(x−1)2,由此设出两个函数关系式,在同一坐标系中画出两函可先将方程转化为1x数的图像,由图像的交点个数即可判断方程实数根的情况.【解析】−1=(x−1)2,将原方程变形为1x−1,y2=(x−1)2,设y1=1x因为一元二次方程根的个数相当于二次函数与x轴交点的个数,−2根的个数相当于y1和y2交点的个数,则方程x2−2x=1x在坐标系中画出两个函数的图像如图所示:可看出两个函数有一个交点(1,0),−1有一个实数根,故方程(x−1)2=1x−2有一个实数根,即方程x2−2x=1x故选C.例题2 已知a2+a−3=0,那么a2(a+4)的值是___________【分析】此题主要是考查化归思想和整体代入法求代数式的值,先把条件化为a2+a=3,再把原式转化为含a2+a的式子,进行整体代入求值.【解析】因为a2+a−3=0,所以a2+a=3.原式=a3+4a2=a3+a2+3a2=a(a2+a)+3a2=3a+3a2=3(a2+a)=3×3=9.例题3 阅读材料: 关于x 的方程:x +1x =c +1c 的解为:x 1=c,x 2=1c x −1x =c −1c (可变形为x +−1x=c +−1c)的解为x 1=c,x 2=−1cx +2x =c +2c 的解为:x 1=c,x 2=2c x +3x =c +3c 的解为:x 1=c,x 2=3c…根据以上材料解答下列问题:(1)①方程x +1x =2+12的解为______________. ②方程x −1+1x−1=2+12的解为______________. (2)解关于x 的方程:x −3x−2=a −3a−2(a ≠2) 【答案】x 1=2,x 2=12;x 1=3,x 2=32【解析】(1)①方程x +1x =2+12的解为:x 1=2,x 2=12; ②根据题意得;x −1=2,x −1=12,解得:x 1=3,x 2=32. 故答案为:①x 1=2,x 2=12;②x 1=3,x 2=32; (2)两边同时减2变形为x −2−3x−2=a −2−3a−2, 解得:x −2=a −2,x −2=−3a−2, 即x 1=a ,x 2=2a−7a−2.(1)①本题可根据给出的方程的解的概念,来求出所求的方程的解. ②本题可根据给出的方程的解的概念,来求出所求的方程的解.(2)本题要求的方程和题目给出的例子中的方程形式不一致,可先将所求的方程进行变形.变成式子中的形式后再根据给出的规律进行求解.本题考查了分式方程的解,要注意给出的例子中的方程与解的规律,还要注意套用列子中的规律时,要保证所求方程与例子中的方程的形式一致.【巩固提升】1. 关于a ,b 的方程组{(k −1)a −3b =ka −3b =2有无数组解,那么k 的值是( ).A . 2B . 1C . 3D . 不存在【分析】本题考查了二元一次方程组的解,属于基础题,关键是要理解方程组有无数组解的含义.由关于x ,y 的方程组有无数组解,两式相减求出关于a ,b 的等式,再根据题意判断即可. 【解析】{(k −1)a −3b =k a −3b =2①②, ①−②得,(k −2)a = k −2,∵方程组有无数组解,∴k −2 = 0,∴k = 2, 选A .2. 已知方程x +1x =a +1a 的两根分别为a,1a ,则方程x +1x−1=a +1a−1的根是( ) A . a,1a−1B . 1a−1,a −1C . 1a ,a −1D . a,aa−1【分析】本题考查了分式方程的解,解分式方程,涉及了转化思想和整体代入的数学方法,考查了学生的观察能力,属于中档题.首先观察已知方程x +1x =a +1a 的特点,然后把方程x +1x−1=a +1a−1变形成具有已知方程x +1x =a +1a 的特点的形式,从而得出所求方程的根. 【解析】方程x +1x−1=a +1a−1可以写成x −1+1x−1=a −1+1a−1的形式, ∵方程x +1x =a +1a 的两根分别为a 、1a ,∴方程x −1+1x−1=a −1+1a−1的两根的关系式为:x −1=a −1,x −1=1a−1, 即方程的根为:x =a 或x =aa−1,故方程x +1x−1=a +1a−1的根为a ,aa−1, 选D3. 如图,已知点A(1,2),B(5,n)(n >0),点P 为线段AB 上的一个动点,反比例函数y =k x(x >0)的图象经过点P.点P 从点A 运动至点B 的过程中,关于k 值的变化:甲说:“当n =1时,点P 在点A 位置时,k 的值最小.” 乙说:“当n =1时,k 的值先增大再减小.”丙说:“若要使k 的值逐渐增大,n 的取值范围是n >2.” 三个人的结论中,判断正确的是 ( )A . 甲和乙B . 甲和丙C . 乙和丙D . 都正确【分析】此题属于反比例函数的综合题,涉及的知识有:待定系数法求函数解析式,反比例函数的性质,熟练掌握待定系数法是解本题的关键.若n =1,求出正确k 的最大值与最小值即可判断甲、乙的结论;把A 与B 坐标代入反比例解析式,并列出不等式,求出解集即可确定出n 的范围. 【解析】当n =1时,B(5,1),设线段AB 所在直线的函数表达式为y =ax +b , 把A(1,2)和B(5,1)代入得:{a +b =25a +b =1,解得:{a =−14b =94, 则线段AB 所在直线的函数表达式为y =−14x +94; k =xy =x(−14x +94)=−14(x −92)2+8116,∵1≤x ≤5,∴当x =1时,k 取最小值,k min =2; 当x =92时,k 取最大值,k max =8116, 故甲,乙的结论是正确的;当n =2时,A(1,2),B(5,2),符合k 的值逐渐增大;当n≠2时,线段AB所在直线的函数表达式为y=n−24x+10−n4,k=x(n−24x+10−n4)=n−24(x−n−102n−4)2+(10−n)216(2−n),当n<2时,k随x的增大而增大,则有n−102n−4≥5,此时109≤n<2;当n>2时,k随x的增大而增大,则有n−102n−4≤1,此时n>2,综上,若要使k的值逐渐增大,n的取值范围是n≥109.故丙的结论是错误的,则甲乙都是正确的,丙的结论是错误的,选A4.从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作能验证的等式是()A. (a−b)2=a2+2ab+b2B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. a2+ab=a(a+b)【分析】本题考查了平方差公式的运用,解此题的关键是用代数式表示图形的面积,运用了转化思想,把实际问题转化成数学问题,并用数学式子表示出来.分别求出从边长为a的正方形内去掉一个边长为b的小正方形后剩余部分的面积和拼成的长方形的面积,根据剩余部分的面积相等即可得出算式,即可选出选项.【解析】因为从边长为a的正方形内去掉一个边长为b的小正方形,剩余部分的面积是:a2−b2,且拼成的长方形的面积是:(a+b)(a−b),∴根据剩余部分的面积相等得:a2−b2=(a+b)(a−b),选B5.从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是()A. (a−b)2=a2−2ab+b2 B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2 D. a2+ab=a(a+b)【分析】本题考查了平方差公式的运用,解此题的关键是用代数式表示图形的面积,运用了转化思想,把实际问题转化成数学问题,并用数学式子表示出来.分别求出从边长为a的正方形内去掉一个边长为b的小正方形后剩余部分的面积和拼成的长方形的面积,根据剩余部分的面积相等即可得出算式,即可选出选项.【解析】因为从边长为a的正方形内去掉一个边长为b的小正方形,剩余部分的面积是:a2−b2,且拼成的长方形的面积是:(a+b)(a−b),∴根据剩余部分的面积相等得:a2−b2=(a+b)(a−b),故选B.6.如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,则五边形ABCDE 的面积为().A. 7B. 6C. 5D. 4【分析】此题考查全等三角形的判定与性质,三角形的面积公式和转化思想.首先延长DE至F,使EF=BC,连AC,AD,AF,可得△ABC≌△AEF,然后再证得△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,最后根据三角形的面积公式求结论即可.【解析】延长DE至F,使EF=BC,连AC,AD,AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,∴CD=EF+DE=DF,在△ABC与△AEF中,{AB=AE∠ABC=∠AEFBC=EF,∴△ABC≌△AEF(SAS),∴AC=AF,在△ACD与△AFD中,{AC=AFCD=DFAD=AD,∴△ACD≌△AFD(SSS),∴五边形ABCDE的面积是:S=2S△ADF=2×12·DF·AE=2×12×2×2=4.选D7.小明在解方程√24−x−√8−x=2时采用了下面的方法:由(√24−x−√8−x)(√24−x+√8−x)=(√24−x)2−(√8−x)2=(24−x)−(8−x)=16,又有√24−x−√8−x=2,可得√24−x+√8−x=8,将这两式相加可得{√24−x=5√8−x=3,将√24−x=5两边平方可解得x=−1,经检验x=−1是原方程的解.请你学习小明的方法,解方程√x2+42+√x2+10=16,则x=_______.【分析】此题主要考查了二次根式在解方程中的应用,要熟练掌握,解答此题的关键是在解决实际问题的过程中能熟练应用有关二次根式的概念、性质和运算的方法.首先把根式√x2+42+√x2+10有理化,然后分别求出根式√x2+42+√x2+10和它的有理化因式的值是多少;再根据求出的根式√x2+42+√x2+10和它的有理化因式的值,求出方程√x2+42+√x2+10=16的解是多少即可.【解析】(√x2+42+√x2+10)(√x2+42−√x2+10)=(√x2+42)2−(√x2+10)2=(x²+42)−(x²+10)=32.∵√x2+42+√x2+10=16.∴√x2+42−√x2+10=32÷16=2.∴{√x2+42=7√x2+10=7.∵(√x2+42)²=x²+42=8²=81.∴x=±√39.经检验x=±√39都是原方程的解,故答案为±√39.8.如图所示,在ΔABC中,DE、MN是边AB、AC的垂直平分线,其垂足分别为D、M,分别交BC于E、N(点E在点N的左侧).若AB=8,AC=9,设ΔAEN周长为m,则m的取值范围为_____________.【分析】本题考查了线段垂直平分线的性质、三角形三边关系、三角形内角和定理、大边对大角、勾股定理及其应用.此题难度适中,注意掌握数形结合思想与转化思想的应用,解题时由DE、MN是边AB、AC的垂直平分线,根据线段垂直平分线的性质,即可得AE=BE,AN=CN,即可得△AEN周长等于BC的长,∠BAE=∠B,∠CAN=∠C,由三角形三边关系即可求得1<BC<17,然后由三角形内角和定理,即可求得∠BAE+∠CAN<90°,则∠BAC>90°,当∠BAC=90°时由勾股定理易得BC=√AB2+AC2=√145,由“大角对大边”易得BC>√145,进而可得△AEN周长的范围.【解析】∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴BC=BE+EN+CN=AE+EN+AN=C△AEN=m,∠BAE=∠B,∠CAN=∠C,∵AB=8,AC=9,∴1<BC<17,∵∠B+∠C+∠BAC=180°,∠BAC=∠BAE+∠CAN+∠EAN,∴∠B+∠C=∠BAE+∠CAN<90°,∴∠BAC>90°,当∠BAC=90°时由勾股定理易得BC=√AB2+AC2=√145,由“大角对大边”易得BC>√145,综上可知√145<BC<17,即√145<m<17,故答案为√145<m<17.9.如图,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=13CE时,EP+BP=_________.【分析】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点。
专题三 第4讲 转化与化归思想
返回
[应用体验] 设 y=(log2x)2+(t-2)log2x-t+1,若 t∈[-2,2]时,y 恒取正 值,则 x 的取值范围是________.
第4讲 转化与化归思想
Contents
1 应用1 正与反的转化 2 应用2 常量与变量的转化 3 应用3 特殊与一般的转化 4 应用4 函数、方程、不等式间的转化 5 应用5 形体位置关系的相互转化
返回
“抓基础,重转化”是学好中学数学的金钥匙.事实上, 数学中的转化比比皆是,如未知向已知转化,复杂问题向简单 问题转化,新知识向旧知识转化,命题之间的转化,数与形的 转化,空间向平面转化,高维向低维转化,多元向一元转化, 高次向低次转化,函数与方程的转化等,都是转化思想的体现.
则①g′(x)≥0在(t,3)上恒成立,或②g′(x)≤0在(t,3)上恒成
立.
由①得3x2+(m+4)x-2≥0,即m+4≥
2 x
-3x在x∈(t,3)上
恒成立,∴m+4≥2t -3t恒成立,则m+4≥-1,即m≥-5;
返回
由②得 m+4≤2x-3x 在 x∈(t,3)上恒成立, 则 m+4≤23-9,即 m≤-337. ∴函数 g(x)在区间(t,3)上总不为单调函数的 m 的取值范 围为-337<m<-5.
答案:B
返回
2.设四边形 ABCD 为平行四边形,|―A→B |=6,|―A→D |=4.若点
M,N 满足―BM→=3―M→C ,―D→N =2―N→C ,则―AM→·―NM→=
A.20
B.15
高考复习资料:化归与转化的思想
第7讲化归与转化的思想在解题中的应用一、知识整合1.解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。
2.化归与转化思想的实质是揭示联系,实现转化。
除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。
从这个意义上讲,解决数学问题就是从未知向已知转化的过程。
化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。
数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。
3.转化有等价转化和非等价转化。
等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。
4.化归与转化应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。
(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。
(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。
(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。
(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
二、例题分析例1.某厂2001年生产利润逐月增加,且每月增加的利润相同,但由于厂方正在改造建设,元月份投入资金建设恰好与元月的利润相等,随着投入资金的逐月增加,且每月增加投入的百分率相同,到12月投入建设资金又恰好与12月的生产利润相同,问全年总利润m与全年总投入N的大小关系是()A. m>NB. m<NC.m=ND.无法确定[分析]每月的利润组成一个等差数列{a n },且公差d >0,每月的投资额组成一个等比数列{b n },且公比q >1。
高中数学-化归与转化思想
一、 考点回顾化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想。
转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。
化归转化思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中。
转化有等价转化与不等价转化。
等价转化后的新问题与原问题实质是一样的,不等价转则部分地改变了原对象的实质,需对所得结论进行必要的修正。
应用化归转化思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化。
常见的转化有: 1、等与不等的相互转化等与不等是数学中两个重要的关系,把不等问题转化成相等问题,可以减少运算量,提高正确率;把相等问题转化为不等问题,能突破难点找到解题的突破口。
2、正与反的相互转化对于那些从“正面进攻”很难奏效或运算较难的问题,可先攻其反面,从而使正面问题得以解决。
3、特殊与一般的相互转化对于那些结论不明或解题思路不易发现的问题,可先用特殊情形探求解题思路或命题结论,再在一般情况下给出证明,这不失为一种解题的明智之举。
4、整体与局部的相互转化整体由局部构成,研究某些整体问题可以从局部开始。
5、高维与低维的相互转化事物的空间形成,总是表现为不同维数且遵循由低维想高维的发展规律,通过降维转化,可把问题有一个领域转换到另一个领域而得以解决,这种转化在复数与立体几何中特别常见。
6、数与形的相互转化通过挖掘已知条件的内涵,发现式子的几何意义,利用几何图形的直观性解决问题,使问题简化。
7、函数与方程的转化 二、经典例题剖析例1、设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.解析:(Ⅰ)讨论()F x 在(0)+,∞内的单调性并求极值只需求出()F x 的导数'()F x 即可解决;(Ⅱ)要证当1x >时,恒有2ln 2ln 1x x a x >-+,可转化为证1x >时2ln 2ln 10x x a x -+->,亦即转化为1x >时()0f x >恒成立;因(1)0f =,于是可转化为证明()(1)f x f >,即()f x 在(1,)+∞上单调递增,这由(Ⅰ)易知。
高考复习课件专题十二化归与转化思想
∵a1≠0,∴2qk=qk 1+qk 1.∵q≠,∴q2-2q+1=0,
- +
∴q=1,这与已知矛盾.∴假设不成立,故{an+1}不是等比数列.
例 4(14,北京)如图,在三棱柱 ABC—A1B1C1 中,侧棱垂直于底面, AB⊥BC,AA1=AC=2,BC=1,E,F 分别是 A1C1,BC 的中点. (1)求证:平面 ABE⊥平面 B1BCC1; (2)求证:C1F∥平面 ABE;
化归与转化思想
主讲教师:李应 华南师范大学附属中学
学习指导与备考策略
转化与化归思想体现在我们日常的解题中,由已知逐步推导出需
求的过程,其实就是一个逐渐转化的过程,通过转化使问题得以
解决。化归思想可以引导我们把陌生的问题情境,转化为熟悉的
问题,从而使问题得以解决。
例 1 若 x、y∈R ,且 2x+8y-xy=0.求 x+y 的最小值.
例 3 设{an}是公比为 q 的等比数列.设 q≠1,证明数列{an+1}不是 等比数列.
证明:假设{an+1}是等比数列,则对任意的 k∈N*, (ak+1+1)2=(ak+1)(ak+2+1), a2 k+1+2ak+1+1=akak+2+ak+ak+2+1,
2k k k 1 a2 · a1qk 1+a1qk 1+a1qk 1, 1q +2a1q =a1q
例2 将7个相同的小球放入4个不同的盒子中,
3 C 1 不出现空盒时的放入方式共有多少种? 6 20. 3 2 可出现空盒时的放入方式共 有多少种? C10 120.
y1 y2 y3 y4 7, x1 , x2 , x3 , x4 N y1 y2 y3 y4 7, x1 , x2 , x3 , x4 N
二轮复习-----转化与化归思想---课件(27张)(全国通用)
x≤-1或x≥0
a∈[-1,1]恒成立,则x的取值范围为
.
解析 ∵f(x)在R上是增函数,
∴由f(1-ax-x2)≤f(2-a),
得1-ax-x2≤2-a,a∈[-1,1].
∴a(x-1)+x2+1≥0对a∈[-1,1]恒成立.
用、变形用)、角度的转化、函数的转化、通过正、余弦定理实现边
角关系的相互转化.
(2)换元法是将一个复杂的或陌生的函数、方程、不等式转化为简
单的或熟悉的函数、方程、不等式的一种重要的方法.
(3)在解决平面向量与三角函数、平面几何、解析几何等知识的交
汇题目时,常将平面向量语言与三角函数、平面几何、解析几何语言
解析 设 f(p)=(x-1)p+x2-4x+3,则当 x=1 时,f(p)=0.所以 x≠1.
(0) > 0,
f(p)在 0≤p≤4 上恒正,等价于
(4) > 0,
(-3)(-1) > 0,
即 2
解得 x>3 或 x<-1.
-1 > 0,
第一部分
四、转化与化归思想
思想方法•聚焦诠释
命题热点一
∴-4<2C-4 <
2].
高频考点•探究突破
预测演练•巩固提升
-10-
第一部分
四、转化与化归思想
思想方法•聚焦诠释
命题热点一
命题热点二
命题热点三
高频考点•探究突破
预测演练•巩固提升
-11-
命题热点四
题后反思在应用化归与转化的思想方法去解决数学问题时,没有
化归与转化思想,函数与方程思想、归纳、抽象概
初中数学教材中蕴含的数学思想方法很多,比较基本的有:用字母表示数的思想、整体和换元思想、数形结合思想、分类讨论思想、化归与转化思想,函数与方程思想、归纳、抽象概括思想,特殊与一般思想、数学模型思想、分解组合思想以及图形运动思想,等等。
实践证明,只有掌握了这些基本的数学思想方法,学生方能在运用数学解决问题时自觉运用数学思想方法分析问题、解决问题,掌握了这些基本思想方法,也就相当于抓住了初中数学知识的精髓。
数学思想方法是借助于数学知识、技能为载体而体现出来的,思想要融入内容和应用中,才成为思想,就思想方法讲思想方法,学生自然会感到枯燥无味,是不能真正掌握数学思想方法的。
只有在教学中反复渗透,方能“随风潜入夜,润物细无声”,让学生在不知不觉中领会、掌握,才能自觉运用,形成能力。
那么,在那么初中数学课堂教学中,究竟该如何向学生渗透数学思想,进而培养他们的数学思维能力呢?下面就本人在教学中的实践,谈谈个人的一些不成熟的看法。
1、分类讨论思想分类讨论是根据教学对象的本质属性将其划分为不同种类,即根据教学对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类。
分类是数学发现的重要手段。
在教学中,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。
例如,教材中给实数的定义是“有理数与无理数统称为实数”,这个定义揭示了实数的内涵与外延,这本身就体现出分类思想方法。
因此,在学完实数的概念后,可以如此分类:尔后一提到实数,就会想到它可能是有理数,也可能是无理数;一提到有理数,就会想到它可能是整数,也可能是分数等。
又如,实数的绝对值定义也是采用分类法给出的,在这个定义中选择 a = 0作为分类的标准。
在每一类中,其结果都不包含绝对值符号。
因此定义也给出了脱去绝对值符号的一种方法。
再如,在同一个圆中,一条弧所对的圆周角等于它所对圆心角的一半。
为了验证这个猜想,教学时常将圆对折,使折痕经过圆心和圆周角的顶点,这时可能出现三种情况:⑴折痕是圆周角的一条边,⑵折痕在圆周角的内部,⑶折痕在圆周角的外部。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012届高考数学专题复习 化归与转化思想在解决数学问题时,常遇到一些问题直接求解较为困难,需将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”.下面就一些题目谈谈一些处理策略. 1.陌生与熟悉的转化例1 若关于x 的方程 01234=++++ax ax ax x 有实数根,求实数a 的取值范围. 解析:点评 将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决.2.复杂与简单的转化例2 在平面直角坐标系xoy 中,有一个以)3,0(1-F 和)3,0(2F 2的椭圆,设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x y 、轴的交点分别为A 、B ,且向量OM OA OB =+.求点M 的轨迹方程.解析:在求得曲线C 的方程)0,0(1422>>=+y x yx 后,将其转化为函数)10(122<<-=x xy 的图像来认识,通过导数得y '=-2x 1-x2设P(x 0,y 0),因P 在C 上,有0<x 0<1, y 0=21-x 02, y '|x=x0= - 4x 0y 0 ,得切线AB 的方程为: y=- 4x 0y 0(x-x 0)+y 0。
于是得A(1x 0,0)和B(0,4y 0),设M(x ,y),由O M O A O B =+ 得:x=1x 0y=4y 0,所以x x 10=,y y 40=,代入14220=+y x 得点M 的轨迹方程为: 1x 2 + 4y 2 =1 (x>1,y>2)。
点评 此题表面上为解析几何的试题,看似与函数无关,因此很容易想到用解析法确定椭圆切线方程的方法,这样就会陷入繁杂的计算之中,事实上,联想到函数切线的几何意义以后,将问题转化到函数的导数,问题得到了大大简化。
3.变量与常量的转化 例3 对于满足40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,试求x 的取值范围. 解析:习惯上把x 当作自变量,记函数p x p x y -+-+=3)4(2,于是问题转化为: 当[]4,0∈p 时,0>y)恒成立,求x 的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的.设函数)34()1()(2+-+-=x x p x p f ,显然1≠x ,则)(p f 是p 的一次函数,要使0)(>p f 恒成立,当且仅当0)0(>f ,且0)4(>f 时,解得x 的取值范围是),3()1,(+∞⋃--∞.点评 本题看上去是一个不等式问题,但是经过等价转化,把它化归为关于p 的一次函数,利用一次函数的单调性求解,解题的关键是转换变量角色.在有几个变量的问题中,常常有一个变元处于主要地位,我们称之为主元,由于思维定势的影响,在解决这类问题时,我们总是紧紧抓住主元不放,这在很多情况下是正确的.但在某些特定条件下,此路往往不通,这时若能变更主元,转移变元在问题中的地位,就能使问题迎刃而解.4.空间与平面的转化例4 如图,直线l ⊥平面α,垂足为O ,正四面体ABC D 的棱长为4,C 在平面α内,B 是直线l 上的动点,则当O 到AD 的距离为最大时,正四面体在平面α上的射影面积为__________________. 解析: 4+5.数与形的转化 例5 求函数3712134)(22+-++-=x x x x x f 的最小值.解析:=+-++-=3712134)(22x x x x x f 22)10()6(-+-x ,设())0,(),1,6(,3,2x P B A 题转化为求PB PA +的最小值,如图点A 关于x 点为)3,2(-C ,因为BC PB PC PB PA ≥+=+所以)(x f 的最小值为24.点评 本题如果直接对原式进行变形,是有一定运算量的,效率也不高,但将式子转化为这种点与点距离公式之后,它的几何意义就凸现出来了,利用数形结合的方法,把代数问题转化为几何问题.6.方程与函数的转化例6 若关于x 的方程02sin 42cos =-++a x a x 在区间[]π,0上有两个不同的解,则实数a 的取值范围是 .解析:2sin 4sin212sin 42cos 2-++-=-++a x a x a x a x1sin 4sin22-++-=a x a x令x t sin =,[]1,0∈t ,则原题转化为方程01422=-++-a at t 在[]1,0上有两个根.令142)(2-++-=a at t t f ,由二次函数图象可知:⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤>∆14400)1(0)0(0a f f 解得:5321≤<a点评 本题涉及到多种转化,一是三角函数的异名化同名,三角函数转化为代数问题,二是方程的问题转化为函数的问题.αlODCBA课堂练习:1.设y 的实数,05442=+++x xy y 则x 的取值范围是:___________分析:把05442=+++x xy y 看作是关于y 的二次方程,则利用△≥0求解x 的范围。
略解:把05442=+++x xy y 看作是关于y 的二次方程,因为y 的实数,所以方程有解。
∴△=)6(4)4(22+-x x ≥0 ∴{x | x ≤-2或x ≥3}2.设对于任意实数]2,2[-∈x ,函数)3lg()(2x ax a x f --=总有意义,求实数a 的取值范围。
解法一:)(x f 有意义,有032>--x ax a ,即032<-+a ax x 在]2,2[-∈x 时总成立,设a ax x x g 3)(2-+=,即当]2,2[-∈x 时,0)(<x g 总成立。
依抛物线)(x g y =的特征,将其定位,有,040540)2(0)2(⎩⎨⎧<-<-⇒⎩⎨⎧<<-a a g g 解得:4>a解法二:不等式可化成6393)(--+-=>xx x h a只要6393)(--+-=xx x h 的最大值即可。
设x t -=3,]5,1[∈t ,6)(+x h 的图象如图,可知6)(+x h 的最大值为10,故最小值为4.故4>a[点评] 通过数与形的转化,抓住了抛物线的特征,建立了实数a 的不等式组,从而求出a 的范围。
解法二是通过分离参数的方法,再通过换元,利用函数uu 1+的特征求其最值,同样体现了数形结合的特点。
3.若0sin cos sin cos 4a b παβααββ<<<+=+=,,,则( )A .a b <B .a b >C .1ab <D .2ab >【解析】若直接比较a 与b 的大小比较困难,若将a 与b 大小比较转化为22a b 与的大小比较就容易多了.因为221sin 21sin 2a b αβ=+=+, 又因为0222παβ<<<所以sin 2sin 2αβ<,所以22a b < 又因为0a b >,,所以a b <故选(A ).4.已知函数ln ()1a xb f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x>+-,求k 的取值范围。
解:(Ⅰ)221(ln )'()(1)x x b xf x x xα+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩ 解得1a =,1b =。
(Ⅱ)由(Ⅰ)知ln 11x x x++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x xxx---+=+--。
考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x xh x x-++=。
(i)设0k ≤,由222(1)(1)'()k x x h x x+--=知,当1x ≠时,'()0h x <。
而(1)0h =,故当(0,1)x ∈时,()0h x >,可得21()01h x x>-;当x ∈(1,+∞)时,h (x )<0,可得211x- h (x )>0 从而当x>0,且x ≠1时,f (x )-(1ln -x x +xk)>0,即f (x )>1ln -x x +xk .(ii )设0<k<1.由于当x ∈(1,k-11)时,(k-1)(x 2 +1)+2x>0,故h ’ (x )>0,而h (1)=0,故当x ∈(1,k-11)时,h (x )>0,可得211x-h (x )<0,与题设矛盾。
(iii )设k ≥1.此时h ’ (x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得211x- h (x )<0,与题设矛盾。
综合得,k 的取值范围为(-∞,0].5.设函数f(x)=x 2-mlnx,h(x)=x 2-x+a.(I ) 当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m 的取值范围;(II ) 当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数 a 的取值范围;(III ) 是否存在实数m ,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m 的值,若不存在,说明理由。
解:(1)由a=0,f(x)≥h(x)可得-mlnx ≥-x ,即ln x m x≤记ln x xϕ=,则f(x)≥h(x)在(1,+∞)上恒成立等价于m in ()m x ϕ≤.求得2ln 1'()ln x x xϕ-=当(1,)x e ∈时;'()0x ϕ<;当(,)x e ∈+∞时,'()0x ϕ> 故()x ϕ在x=e 处取得极小值,也是最小值, 即m in ()()x e e ϕϕ==,故m e ≤.(2)函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同的零点等价于方程x-2lnx=a ,在[1,3]上恰有两个相异实根。
令g(x)=x-2lnx,则2'()1g x x=-当[1,2)x ∈时,'()0g x <,当(2,3]x ∈时,'()0g x > g(x)在[1,2]上是单调递减函数,在(2,3]上是单调递增函数。