空间向量课件
合集下载
空间向量基本定理--课件(共25张PPT)
都叫做基向量.空间任意三个不共面的向量都可以构成空间的一个
基底.
3.单位正交基底:如果空间的一个基底中的三个基向量两两垂直,
且长度都为1,那么这个基底叫做单位正交基底,常用 ,,
表示.
由空间向量基本定理可知,对空间中的任意向量a,均可以分解
为三个向量xi,yj,zk,使a=xi+yj+zk,像这样,把一个空间向量
1 2
1
A. a- b+ c
2 3
2
1 1 1
C. a+ b- c
2 2 2
2 1
1
B.- a+ b+ c
3 2
2
2 2 1
D. a+ b- c
3 3 2
答案:B
1
2
2
1
1
解析:显然 = − = 2 ( + )-3 =-3a+2b+2c.
探究一
探究二
探究三
当堂检测
应用空间向量基本定理证明线线位置关系
解析:只有不共面的三个向量才能作为一个基底,在三棱柱中,
,,1 不共面,可作为基底。
激趣诱思
知识点拨
微判断
判断下列说法是否正确,正确的在后面的括号内打“√”,错误
的打“×”.
(1)空间向量的基底是唯一的.(
)
(2)若a,b,c是空间向量的一个基底,则a,b,c均为非零向
量.(
)
(3)已知A,B,M,N是空间四点,若, , 不能构成空间的
=
1 1 1
1
+ - · --
2 2 2
3
2 √10
√3× 3
=
基底.
3.单位正交基底:如果空间的一个基底中的三个基向量两两垂直,
且长度都为1,那么这个基底叫做单位正交基底,常用 ,,
表示.
由空间向量基本定理可知,对空间中的任意向量a,均可以分解
为三个向量xi,yj,zk,使a=xi+yj+zk,像这样,把一个空间向量
1 2
1
A. a- b+ c
2 3
2
1 1 1
C. a+ b- c
2 2 2
2 1
1
B.- a+ b+ c
3 2
2
2 2 1
D. a+ b- c
3 3 2
答案:B
1
2
2
1
1
解析:显然 = − = 2 ( + )-3 =-3a+2b+2c.
探究一
探究二
探究三
当堂检测
应用空间向量基本定理证明线线位置关系
解析:只有不共面的三个向量才能作为一个基底,在三棱柱中,
,,1 不共面,可作为基底。
激趣诱思
知识点拨
微判断
判断下列说法是否正确,正确的在后面的括号内打“√”,错误
的打“×”.
(1)空间向量的基底是唯一的.(
)
(2)若a,b,c是空间向量的一个基底,则a,b,c均为非零向
量.(
)
(3)已知A,B,M,N是空间四点,若, , 不能构成空间的
=
1 1 1
1
+ - · --
2 2 2
3
2 √10
√3× 3
=
高中数学--空间向量基本定理--课件
问题1:.如何用 , , 表示向量 ?
[答案] .
问题2:.在图中任意找一个向量 ,是否都能用 , , 来表示?表示唯一吗?
[答案] 是,表示唯一.
问题3:.若 , , ,且 , , 两两成 的角,如何求 ?
[答案] , = .
新知生成
1.空间向量基本定理:如果向量 , , 是空间三个不共面的向量, 是空间任意一个向量,那么存在唯一的三元有序实数组 ,使得 ______________.
(3)下结论:利用空间向量的一组基 可以表示出空间所有向量.结果中只能含有 , , ,不能含有其他形式的向量.
1.设 , , ,且 是空间的一组基.给出下列向量组:① ;② ;③ ;④ .其中可以作为空间的基的向量组有____个.
3
[解析] 如图所示,设 , , ,则 , , , .由 , , , 四点不共面可知向量 , , 也不共面,同理可知 , , 不共面, , , 也不共面,可以作为空间的基.因为 ,所以 , , 共面,不能作为空间的基.
4.类比平面向量基本定理,猜想三个不共面的向量如何表示空间中的任意一个向量.
[答案] 如果三个向量 , , 不共面,那么对任意一个空间向量 ,存在唯一的三元有序实数组 ,使得 .
1.判断下列结论是否正确.(正确的打“√”,错误的打“×”)
(1) 只有两两垂直的三个向量才能构成空间的一组基.( )
[解析] 假设 , , 共面,则存在实数 , 使得 , . , , 不共面,∴ 此方程组无解, , , 不共面, 可以作为空间的一组基.
方法总结 空间向量有无数组基.判断给出的某一向量组中的三个向量能否作为一组基,关键是要判断它们是否共面,若从正面难以入手,则常用反证法或一些常见的几何图形来帮助我们进行判断.
[答案] .
问题2:.在图中任意找一个向量 ,是否都能用 , , 来表示?表示唯一吗?
[答案] 是,表示唯一.
问题3:.若 , , ,且 , , 两两成 的角,如何求 ?
[答案] , = .
新知生成
1.空间向量基本定理:如果向量 , , 是空间三个不共面的向量, 是空间任意一个向量,那么存在唯一的三元有序实数组 ,使得 ______________.
(3)下结论:利用空间向量的一组基 可以表示出空间所有向量.结果中只能含有 , , ,不能含有其他形式的向量.
1.设 , , ,且 是空间的一组基.给出下列向量组:① ;② ;③ ;④ .其中可以作为空间的基的向量组有____个.
3
[解析] 如图所示,设 , , ,则 , , , .由 , , , 四点不共面可知向量 , , 也不共面,同理可知 , , 不共面, , , 也不共面,可以作为空间的基.因为 ,所以 , , 共面,不能作为空间的基.
4.类比平面向量基本定理,猜想三个不共面的向量如何表示空间中的任意一个向量.
[答案] 如果三个向量 , , 不共面,那么对任意一个空间向量 ,存在唯一的三元有序实数组 ,使得 .
1.判断下列结论是否正确.(正确的打“√”,错误的打“×”)
(1) 只有两两垂直的三个向量才能构成空间的一组基.( )
[解析] 假设 , , 共面,则存在实数 , 使得 , . , , 不共面,∴ 此方程组无解, , , 不共面, 可以作为空间的一组基.
方法总结 空间向量有无数组基.判断给出的某一向量组中的三个向量能否作为一组基,关键是要判断它们是否共面,若从正面难以入手,则常用反证法或一些常见的几何图形来帮助我们进行判断.
1.2空间向量基本定理 课件(共16张PPT)
谢 谢
.
因此,如果 i,j,k 是空间三个两两垂直的向量, 那么对任意一个空间向量 p,存在唯一的有序实数组(x,y,z), 使得 p xi yj zk .我们称 xi,yj,zk 分别为向量 p 在 i,j,k 上的分向量.
探究二:空间向量的正交分解
特别地,如果空间的一个基底中的三个基向量两两垂直, 且长度都为 1,那么这个基底叫做单位正交基底, 常用{i,j,k}表示.由空间向量基本定理可知, 对空间中的任意向量 a,均可以分解为三个向量 xi,yj,zk, 使 a xi yj zk .像这样,把一个空间向量分解为三个两两垂直的向量, 叫做把空间向量进行正交分解.
22
22
222
练一练
2.在下列条件中,一定能使空间中的四点 M,A,B,C 共面的是( C )
A. OM 2OA OB OC
B. OM 1 OA 1 OB 1 OC 532
C. MA MB MC 0
D. OM OA OB OC 0
解析
要使空间中的四点 M,A,B,C 共面,只需满足 OM xOA yOB zOC ,且 x y z 1即可.
333
333
D 中, OM OA OB OC 0 ,则 OM OA OB OC , x y z 111 3 ,
故此时 M,A,B,C 四点不共面.故选 C.
练一练
3. 已知空间 A、B、C、D 四点共面,但任意三点不共线,若 P 为该平面外一点
且 PA 5 PB xPC 1 PD ,则实数 x 的值为( A)
第一章 空间向量与立体几何
1.2 空间向量基本定理
学习目标:
1. 了解空间向量基本定理及其推论; 2. 理解空间向量的基底、基向量的概念.
空间向量及其运算课件 课件
| AB | (x2 x1)2 ( y2 y1)2 , C(x, y)是AB的中点,则
x
y
x1 y1
2
x2 y2
2
空间向量
空间向量的坐标运算:
a (x1, y1, z1),b (x2 , y2 , z2 )
a b (x1 x2 , y1 y2 , z1 z2 );
a (x1, y1, z1), R;
空间向量
空间向量的夹角:
a (x1, y1, z1),b (x2 , y2 , z2 ) cos a,b a • b
| a || b |
x1x2 y1 y2 z1z2
x12 y12 z12 x22 y22 z22
垂直与平行:
a (x1, y1, z1),b (x2 , y2 , z2 ) a // b x1 y1 z1 (?)
(4)已知不共线的三点A、B、C,对平面 ABC外的任意一点O,若 OG 1 (OA OB OC) 则G是三角形ABC的重心 3
以上命题中,正确的是__________
已知三棱锥O—ABC中,G为△ABC的重心,OA=a,OB=b, OC=c,试用a , b , c 来表示OG.
(1)若AD是△ABC的中线,则有
平面的向量参数方程:
A, B,C是不共线的三点,P 平面ABC
存在唯一的实数对x, y,使 AP x
AB yAC
存在唯一的实数对x, y,使
OP (1 x y) OA yOC
存在唯一的实数对x, y, z
(x y z 1),使 OP x OA
yOB zOC
空间向量及其运算
• 空间向量的概念、表示、相等关系。 • 空间向量的加法、减法、数乘向量 • 加法交换律 • 加法结合律 • 数乘分配律
x
y
x1 y1
2
x2 y2
2
空间向量
空间向量的坐标运算:
a (x1, y1, z1),b (x2 , y2 , z2 )
a b (x1 x2 , y1 y2 , z1 z2 );
a (x1, y1, z1), R;
空间向量
空间向量的夹角:
a (x1, y1, z1),b (x2 , y2 , z2 ) cos a,b a • b
| a || b |
x1x2 y1 y2 z1z2
x12 y12 z12 x22 y22 z22
垂直与平行:
a (x1, y1, z1),b (x2 , y2 , z2 ) a // b x1 y1 z1 (?)
(4)已知不共线的三点A、B、C,对平面 ABC外的任意一点O,若 OG 1 (OA OB OC) 则G是三角形ABC的重心 3
以上命题中,正确的是__________
已知三棱锥O—ABC中,G为△ABC的重心,OA=a,OB=b, OC=c,试用a , b , c 来表示OG.
(1)若AD是△ABC的中线,则有
平面的向量参数方程:
A, B,C是不共线的三点,P 平面ABC
存在唯一的实数对x, y,使 AP x
AB yAC
存在唯一的实数对x, y,使
OP (1 x y) OA yOC
存在唯一的实数对x, y, z
(x y z 1),使 OP x OA
yOB zOC
空间向量及其运算
• 空间向量的概念、表示、相等关系。 • 空间向量的加法、减法、数乘向量 • 加法交换律 • 加法结合律 • 数乘分配律
空间向量基本定理PPT优秀课件
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
CA
/
a
b
c
OG
1
ab
1
c
2
2
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
e2
M
C 对向量a进行分
解:
a
e 1 OCOMON
O N
t1e1 t2e2
问题 情境
在空间向量中,我们还可以作怎样的推广呢? 即空间任一向量能用三个不共面的向量来 线性表示吗?
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
CA
/
a
b
c
OG
1
ab
1
c
2
2
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
e2
M
C 对向量a进行分
解:
a
e 1 OCOMON
O N
t1e1 t2e2
问题 情境
在空间向量中,我们还可以作怎样的推广呢? 即空间任一向量能用三个不共面的向量来 线性表示吗?
1.2 空间向量基本定理 课件(49张)
·
情
课
景 导
第一章 空间向量与立体几何
堂 小
学
结
·
探
提
新
素
知
1.2 空间向量基本定理
养
合
作
课
探
时
究
分
层
释
作
疑
业
难
·
返 首 页
·
情
景
学习目标
课
核心素养
堂
导 学
1.了解空间向量基本定理及其意义.
1.通过基底概念的学习,培
小 结
·
探
提
新 2.掌握空间向量的正交分解.(难点) 养学生数学抽象的核心素养. 素
提 素 养
合 作
C.D→1A1,D→1C1,D→1D
D.A→C1,A→1C,C→C1
课
探
时
究 释
C
[由题意知,
→ D1A1
,
→ D1C1
,
→ D1D
不共面,可以作为空间向量
分 层 作
疑
业
难 的一个基底.]
·
返 首 页
·
情
课
景 导
4.已知空间的一个基底{a,b,c},m=a-b+c,n=xa+yb
堂 小
导
小
学
(2)当基底确定后,空间向量基本定理中实数组(x,y,z)是否唯 结
·
探
提
新
素
知 一?
养
合 作
[提示] (1)不能.因为0与任意一个非零向量共线,与任意两个 课
探
时
究 非零向量共面.
分 层
释
作
疑 难
(2)唯一确定.
情
课
景 导
第一章 空间向量与立体几何
堂 小
学
结
·
探
提
新
素
知
1.2 空间向量基本定理
养
合
作
课
探
时
究
分
层
释
作
疑
业
难
·
返 首 页
·
情
景
学习目标
课
核心素养
堂
导 学
1.了解空间向量基本定理及其意义.
1.通过基底概念的学习,培
小 结
·
探
提
新 2.掌握空间向量的正交分解.(难点) 养学生数学抽象的核心素养. 素
提 素 养
合 作
C.D→1A1,D→1C1,D→1D
D.A→C1,A→1C,C→C1
课
探
时
究 释
C
[由题意知,
→ D1A1
,
→ D1C1
,
→ D1D
不共面,可以作为空间向量
分 层 作
疑
业
难 的一个基底.]
·
返 首 页
·
情
课
景 导
4.已知空间的一个基底{a,b,c},m=a-b+c,n=xa+yb
堂 小
导
小
学
(2)当基底确定后,空间向量基本定理中实数组(x,y,z)是否唯 结
·
探
提
新
素
知 一?
养
合 作
[提示] (1)不能.因为0与任意一个非零向量共线,与任意两个 课
探
时
究 非零向量共面.
分 层
释
作
疑 难
(2)唯一确定.
第1章 1.1 1.1.1 空间向量及其线性运算课件(共71张PPT)
·
情
课
景
堂
导
小
学
解答空间向量有关概念问题的关键点及注意点
结
·
探
提
新 知
(1)关键点:紧紧抓住向量的两个要素,即大小和方向.
素 养
合
(2)注意点:注意一些特殊向量的特性.
作
课
探 究
①零向量不是没有方向,而是它的方向是任意的,且与任何向
时 分
层
释 疑
量都共线,这一点说明了共线向量不具备传递性.
作 业
难
返 首 页
·
结 提
新
素
知
(2)若空间任意一点 O 和不共线的三点 A,B,C,满足O→P=13O→A 养
合
作
课
探 究
+13O→B+13O→C,则点 P 与点 A,B,C 是否共面?
时 分 层
释
作
疑
业
难
返 首 页
·
17
·
情 景
[提示]
(1)空间中任意两个向量都可以平移到同一个平面内,成
课 堂
导
小
学 为同一个平面的两个向量,因此一定是共面向量.
课 时
究
分
层
释
作
疑
业
难
返 首 页
·
12
·
情
课
景
堂
导
小
学
结
探
思考:向量运算的结果与向量起点的选择有关系吗?
·
提
新
素
知
养
[提示] 没有关系.
合
作
课
探
时
究
分
层
释
线性代数第-章向量空间PPT课件
3
子空间在映射下的变化
线性映射可以导致子空间中的向量发生旋转、平 移或拉伸等变化。
子空间与线性映射的相互影响
子空间对线性映射的限制
子空间的性质可以影响线性映射的作用范围和结果。
线性映射对子空间的构造
通过选择特定的线性映射,可以构造出具有特定性质的子空间。
子空间与线性映射的关系
子空间和线性映射之间存在密切的关系,它们在许多数学问题中都 扮演着重要的角色。
详细描述
子空间是向量空间的一个非空子集,这个子集中的向量之间同样可以进行加法运算和数乘运算,并且这些运算也 满足封闭性、结合性和交换性等性质。子空间的定义是为了研究向量空间的一个特定部分,以便更好地理解和应 用向量空间。
向量空间的基与维数
总结词
基是向量空间中线性无关的向量组,它能够生成整个向量空间;维数则是向量空间的基 所包含的向量个数。
向量空间的推广到矩阵空 间
将向量空间中的元素推广到矩阵,形成矩阵 空间,使得线性变换和矩阵运算的结合更加 紧密,为解决实际问题提供更多数学工具。
向量空间的推广到函数空 间
将向量空间的元素推广到函数,形成函数空 间,使得函数的线性组合、内积等运算成为 可能,为解决实际问题提供更多数学工具。
向量空间的应用前景
判定条件二
如果存在一个线性映射f:V→W,使得V和W的基底之间存在一一对应关系,并且 这种对应关系保持向量加法和标量乘法的运算关系,则称V和W同构。
同构的应用场景
线性变换
几何变换
同构映射可以应用于线性变换中,将 一个向量空间中的线性变换转移到另 一个向量空间中。
同构映射可以应用于几何变换中,如 旋转、平移等,将一个向量空间中的 几何变换转移到另一个向量空间中。
1.4 空间向量的应用 课件(可编辑图片版)(共31张PPT)
(2,-1,1).
[方法技巧] 求平面法向量的三个注意点 (1)选向量:在选取平面内的向量时,要选取不共线的两个向量. (2)取特值:在求→n 的坐标时,可令 x,y,z 中一个为一特殊值 得另两个值,就是平面的一个法向量. (3)注意 0:提前假定法向量→n =(x,y,z)的某个坐标为某特定 值时一定要注意这个坐标不为 0.
解析:∵μ·a=-12+16-4=0, ∴μ⊥a,∴l⊂α或l∥α. 答案:l⊂α或l∥α
题型一 求平面的法向量
如图,已知 ABCD 是直角梯形,∠ABC=90°,SA⊥平面 ABCD,
SA=AB=BC=1,AD=1,试建立适当的坐标系. 2
(1)求平面 ABCD 的一个法向量; (2)求平面 SAB 的一个法向量; (3)求平面 SCD 的一个法向量.
[方法技巧] 1.在空间中,一个向量成为直线 l 的方向向量,必须具备以下 两个条件:(1)是非零向量;(2)向量所在的直线与直线 l 平行或重合. 2.与直线 l 平行的任意非零向量→a 都是直线的方向向量,且直 线 l 的方向向量有无数个. 3.给定空间中任意一点 A 和非零向量→a ,就可以确定唯一一 条过点 A 且平行于向量→a 的直线. 4.表示同一条直线的方向向量,由于它们的模不一定相等, 因此,它们不一定相等;虽然这些方向向量都与直线平行,但它们
3.若平面α,β的一个法向量分别为m=(-
1 6
,
1 3
,-1),n=
(12,-1,3),则( )
A.α∥β
B.α⊥β
C.α与β相交但不垂直 D.α∥β或α与β重合
解析:∵n=-3m,∴m∥n,∴α∥β或α与β重合.故选D. 答案:D
4.若直线l的方向向量a=(2,2,-1),平面α的法向量μ=(- 6,8,4),则直线l与平面α的位置关系是________.
《空间向量的应用》课件
向量的向量积运算性质
总结词:反交换律
详细描述:空间向量的向量积满足反交换律,即对于任意向量$mathbf{a}$和 $mathbf{b}$,有$mathbf{a} times mathbf{b} = -mathbf{b} times mathbf{a}$。
向量的向量积运算性质
总结词
与数量积的分配律不兼容
数乘的性质
结合律和分配律成立,即k(a+b)=(ka)+(kb)和(k+l)a=ka+la。
向量的模与向量的数量积
向量的模的性质
非负性、正定性、齐次性、三角不等式成立 。
向量的数量积
两个向量的数量积表示它们的夹角,记作 a·b,计算公式为$|a||b|cosθ$。
数量积的性质
交换律和分配律成立,即a·b=b·a和(k a)·b=k(a·b)。
04
空间向量的坐标表示
向量的坐标表示方法
固定原点
选择一个固定的点作为原点,并确定三个互相垂直的 坐标轴。
向量表示
将向量表示为坐标系中的有序实数组,例如向量A可 以表示为[a, b, c]。
长度和方向
向量的长度可以通过其坐标的模计算,方向可以通过 其分量表示。
向量在坐标系中的变换
平移变换
将向量在坐标系中沿某一轴平移一定 的距离,例如向量A平移d个单位后 变为[a+d, b, c]。
工程学的应用
总结词
在工程学中,空间向量被广泛应用于解决实际问题和设计复和土木工程等领域,空间向量被用于描述物体的位置、方向和运动状态,以及进行各 种物理量(如力、速度、加速度等)的分析和计算。此外,空间向量还被用于解决实际工程问题,如结构分析、 流体动力学和控制系统等。
空间向量基本定理课件(共23张PPT)
空间向量基本定理
基底 空间任意三个不共面的向量
单位正交基底 正交分解
两两垂直,且长度都为1的基地
本课结束 课后要记得巩固哦!
P k
O
i
j
α
Q
目
录
3 题型
03 题型1-空间向量基底的理解
解: ×, × ,√,×.
03 题型1-空间向量基底的理解
对于任意一组向量,如 何判断是否不共面呢?
03 题型1-空间向量基底的理解
∴e1+2e2-e3=λ(-3e1+e2+2e3)+μ(e1+e2-e3) =(-3λ+μ)e1+(λ+μ)e2+(2λ-μ)e3,
∵e1,e2,e3不共面,则ቤተ መጻሕፍቲ ባይዱ
03 题型2-用基底表示空间向量
03 题型2-用基底表示空间向量
A
∵M 为 A1C1 的中点,A→B=a,B→C=b,A→A1=c, ∴N→M=A→A1=c,B→N=12(B→A+B→C) =12(-A→B+B→C)=-12a+12b,∴B→M=B→N+N→M=-21a+12b+c=-12a+12b+c.
P ka iO j
Q
01 新知探究
探究2 如何用三个两两垂直的向量表示空间中任意一个向量?
P k
O
i
j
α
Q
01 新知探究
OA a,O B b,OC c
O
A A′
C′ C
P p B B′
P′
01 新知1——空间向量基本定理
1.空间向量基本定理
目
2 单位正交基底和正交分解
录
01 新知1——单位正交基底与正交 2.单分位解正交基底与正交分解
03 题型3-证明平行和垂直
例6 如图,在平行六面体ABCD-A′B′C′D′中,E, F,G分别是A′D′,DD′,D′C′的中点,请选择恰 当的基底向量证明:EG∥AC;
基底 空间任意三个不共面的向量
单位正交基底 正交分解
两两垂直,且长度都为1的基地
本课结束 课后要记得巩固哦!
P k
O
i
j
α
Q
目
录
3 题型
03 题型1-空间向量基底的理解
解: ×, × ,√,×.
03 题型1-空间向量基底的理解
对于任意一组向量,如 何判断是否不共面呢?
03 题型1-空间向量基底的理解
∴e1+2e2-e3=λ(-3e1+e2+2e3)+μ(e1+e2-e3) =(-3λ+μ)e1+(λ+μ)e2+(2λ-μ)e3,
∵e1,e2,e3不共面,则ቤተ መጻሕፍቲ ባይዱ
03 题型2-用基底表示空间向量
03 题型2-用基底表示空间向量
A
∵M 为 A1C1 的中点,A→B=a,B→C=b,A→A1=c, ∴N→M=A→A1=c,B→N=12(B→A+B→C) =12(-A→B+B→C)=-12a+12b,∴B→M=B→N+N→M=-21a+12b+c=-12a+12b+c.
P ka iO j
Q
01 新知探究
探究2 如何用三个两两垂直的向量表示空间中任意一个向量?
P k
O
i
j
α
Q
01 新知探究
OA a,O B b,OC c
O
A A′
C′ C
P p B B′
P′
01 新知1——空间向量基本定理
1.空间向量基本定理
目
2 单位正交基底和正交分解
录
01 新知1——单位正交基底与正交 2.单分位解正交基底与正交分解
03 题型3-证明平行和垂直
例6 如图,在平行六面体ABCD-A′B′C′D′中,E, F,G分别是A′D′,DD′,D′C′的中点,请选择恰 当的基底向量证明:EG∥AC;
空间向量课件
空间向量课件
目录
• 空间向量基本概念 • 空间坐标系与向量坐标表示 • 空间向量数量积与夹角计算 • 空间向量外积与叉乘运算 • 空间向量混合积及其几何意义 • 空间向量在解决实际问题中应用案例
01
空间向量基本概念
向量定义及表示方法
定义
既有大小又有方向的量称为向量,用有向线段表示,可用 字母a、b、c等表示,也可用表示向量的有向线段的起点 和终点字母表示。
力学中力、速度、加速度等矢量合成问题
力的合成
多个力作用于同一物体时,可用空间向量表示各个力,通过向量加法求解合力。
速度与加速度的合成
物体在多个方向上有速度和加速度时,可用空间向量表示各方向上的速度和加速度,通过向量加法求 解合速度和合加速度。
电磁学中电场、磁场等矢量分析问题
要点一
电场强度与电势差的计算
向量坐标性质
向量坐标具有唯一性,即空间中任意 一个向量都可以用一个有序实数组 (x,y,z)来表示。同时,向量坐标具有加 法和数乘运算性质。
向量坐标运算性质
加法运算
若有两个向量a=(x1,y1,z1)和 b=(x2,y2,z2),则它们的和 a+b=(x1+x2,y1+y2,z1+z2)。
数乘运算
性质3
与标量乘法结合律,即 (ka)·b=a·(kb)=k(a·b),其中k
为实数。
夹角计算公式推导及应用举例
01
02
03
夹角计算公式
cosθ=(a·b)/(||a||*||b||), 其中θ为两向量夹角,||a|| 和||b||分别为两向量的模 长。
应用举例1
计算两个给定向量的夹角 。
应用举例2
要点二
目录
• 空间向量基本概念 • 空间坐标系与向量坐标表示 • 空间向量数量积与夹角计算 • 空间向量外积与叉乘运算 • 空间向量混合积及其几何意义 • 空间向量在解决实际问题中应用案例
01
空间向量基本概念
向量定义及表示方法
定义
既有大小又有方向的量称为向量,用有向线段表示,可用 字母a、b、c等表示,也可用表示向量的有向线段的起点 和终点字母表示。
力学中力、速度、加速度等矢量合成问题
力的合成
多个力作用于同一物体时,可用空间向量表示各个力,通过向量加法求解合力。
速度与加速度的合成
物体在多个方向上有速度和加速度时,可用空间向量表示各方向上的速度和加速度,通过向量加法求 解合速度和合加速度。
电磁学中电场、磁场等矢量分析问题
要点一
电场强度与电势差的计算
向量坐标性质
向量坐标具有唯一性,即空间中任意 一个向量都可以用一个有序实数组 (x,y,z)来表示。同时,向量坐标具有加 法和数乘运算性质。
向量坐标运算性质
加法运算
若有两个向量a=(x1,y1,z1)和 b=(x2,y2,z2),则它们的和 a+b=(x1+x2,y1+y2,z1+z2)。
数乘运算
性质3
与标量乘法结合律,即 (ka)·b=a·(kb)=k(a·b),其中k
为实数。
夹角计算公式推导及应用举例
01
02
03
夹角计算公式
cosθ=(a·b)/(||a||*||b||), 其中θ为两向量夹角,||a|| 和||b||分别为两向量的模 长。
应用举例1
计算两个给定向量的夹角 。
应用举例2
要点二
空间向量及其线性运算ppt课件
1 OA 2 MN
23
1 OA 2 MA AB BN
23
1 2
OA
2 3
1 2
OA
OB
OA
1 2
BC
1 2
OA
2 3
OB
1 2
OA
1 2
OC OB
1 OA 1 OB 1 OC 633
1 6
a+
13b+
1
c3
学习目标
新课讲授
课堂总结
技巧归纳 空间向量加法、减法运算的两个技巧 (1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关 键,灵活运用相反向量可使向量首尾相接; (2)巧用平移:利用三角形法则和平行四边形法则进行向量加法、减法运算 时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移 获得运算结果.
B b A
AQ M
a
O
λa(λ<0)
PN
λa(λ>0)
学习目标
新课讲授
课堂总结
运算律的类比(其中λ,μ∈R):
平面向量
空间向量
交换律
a+b=b+a
a+b=b+a
结合律 分配律
(a+b)+c = a(+b+c) , (a+b)+c =a(+b+c) ,
λ(μa) = (λμ)a
λ(μa) = (λμ)a
学习目标
新课讲授
课堂总结
利用数乘运算进行向量表示的技巧 (1)数形结合:利用数乘运算解题时,要结合具体图形,利用向量的三角形 法则、平行四边形法则,将目标向量转化为已知向量; (2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.
学习目标
新课讲授
课堂总结
高二数学——空间向量全部课件共面定理
(2)求证:面ABCD∥EFGH。
D
C
A
B
H
G
E
F
组ur(x,ry)使r得: p = xa + yb
则三个向量共面
rr 共 么面upr 定与理ar:, br 如共果面a的, b充两要个条向件量是不存共在线一,对那
有序实数组(ur x,yr)使得r: p = xa + yb
例1:已知矩形ABCD和矩形ADEF所在平
面互相垂直,点M,N分别在对角线BD,
AE上,且BD=3BM,AE=3AN,求证:
MN∥平面CDE。 F
E
N
A
D
M B
例2:设空间任意一点O和不共线的三点A,
B,Cu,uur若点Pu满uur足关系uuur uuur OP = xOA + yOB + zOC
(x+y+z=1)试问:P,A,B,C四点是 否共面?
例向3量:已知OuuEu平r 行kO四uuAur边,Ouu形Fur ABkCOuDuB,ur ,Ou从uGur平面kOuAuCuCr外,Ouu一Hur 点 kOOu引uDur 求证(1)四点E、F、G、H共面; O
共面向量定理
复习
1.空间向量的定义;
2.空间向量的加减法则;
3. 空间向量的加法和数乘运算满足运算律:
rr rr (1)a + b = b + a
rr r r rr (2)(a + b) + c = a + (b + c)
rr r r (3)l (a + b) = l a + l b
4.平面向量的共线定理。
新授
D1 A1
空间向量基本定理ppt课件
定理的必要性是由平面向量基本定理保证的,而充分性只要
注意到当 xa 与 xb 不共线时,xa,xb,xa+xb 分别是平行四边形的
两条邻边和一条对角线即可.
例 1 如图所示,已知斜三棱柱
= ,
=
1
= ,在
1上和
−
1
1 1 中,
上分别有一点 和 ,且
,其中 0⩽ ⩽1. 求证:
,a,c 共面.
= ,
( x y )e1 ( x 2 y )e2 ( x 2 y )e3 .因为 e1, e2 , e3 是空间的一组基底,所以
5
x
,
2
k x y,
1
x 2 y 3, 解得 y , 故选 D.
4
x 2 y 2,
9
k
AC1 113 .
9.如图,在三棱柱 ABC A1B1C1 中,BC1 与 B1C 交于点 O,A1 AB A1 AC 60 ,
BAC 90 , A1 A 4 , AB AC 2 , AO xAB yAC z AA1 ,则
xyz _________, | AO | __________.
第一章 空间向量与立体几何
课标要点
核心素养
1.理解共线向量
数学抽象
2.了解共面向量定理
数学运算
3.了解空间向量基本定理
数学运算
共线向量基本定理 如果 a≠0 且 b∥a,则存在唯一的实数 λ,使得
b=λa.
平面向量基本定理 如果平面内两个向量 a 与 b 不共线,则对该平
课件1:3.1.2空间向量的基本定理
点,点G在MN上,且MG=2GN,设
→ OA
=a,
→ OB
=b,
→ OC
=c,
试求向量O→G在基底{a,b,c}下的分解式.
【解】 如图所示,由线段中点的向量表达式,得O→G=O→M
+
M→G
=
O→M
+
2 3
M→N
=
1 2
O→A
+
2 3
(
M→O
+
O→C
+
C→N
)
=
1 2
a
+
2 3
-12a+c+12
b-c
1.判断三个(或以上)向量共面,主要使用空间向量共面定 理,即其中一个向量能用另两个向量线性表示即可.通常应结合 图形,选择其中某两个向量作为基向量,其他向量都用这两个基 向量线性表示.当然,必要时也可选择目标向量以外的一组基底, 通过待定系数法,建立这三个向量的一个线性关系式.
2.向量共面向量所在的直线不一定共面,只有这些向量都 过同一点时向量所在的直线才共面(向量的起点、终点共面).
2.证明空间三个向量共面,常用如下方法: ①设法证明其中一个向量可以表示成另两个向量的线 性组合,即若a=xb+yc,则向量a、b、c共面; ②寻找平面α,证明这些向量与平面α平行.
1.在下列条件下,使M与A,B,C一定共面的是( ) A.O→M=3O→A-2O→B-O→C B.O→M+O→A+O→B+O→C=0 C.M→A+M→B+M→C=0 D.O→M=14O→B-O→A+12O→C
2.在图中任找一向量p,是否都能用a,b,c来表示? 【提示】 是.
如果三个向量 a,b,c 不共面,那么对空间任一向量 p, 存在有序实数组{x,y,z},使得 p= xa+yb+zc .
1.2 空间向量基本定理(课件)
我们把{a,b,c}叫做空间的一个 基底 ,a,b,c 都叫做基向量.
自主学习
二.空间向量的正交分解 1.单位正交基底
如果空间的一个基底中的三个基向量 两两垂直 ,且长度都是 1 ,那么这个基
底叫做单位正交基底,常用{i,j,k}表示. 2.向量的正交分解 由空间向量基本定理可知,对空间任一向量 a,均可以分解为三个向量 xi,yj, zk 使得 a=xi+yj+zk.像这样把一个空间向量分解为三个两两垂直的向量,叫 做把空间向量进行正交分解.
经典例题
题型一 基底的判断
总结
判断三个空间向量是否共面,若共面,则不能构成基底;若不共面, 则能构成基底. 方法:①如果向量中存在零向量,则不能作为基底;如果存在一个向量可 以用另外的向量线性表示,则不能构成基底. ②假设 a=λb+μc,运用空间向量基本定理,建立 λ,μ 的方程组,若有解, 则共面,不能作为基底;若无解,则不共面,能作为基底.
小试牛刀
2.设 p:a,b,c 是三个非零向量;q:{a,b,c}为空间的一个基底,则 p 是 q
的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
B 解析:当三个非零向量 a,b,c 共面时不能作为基底,正推不成立;反过 来,若{a,b,c}是一个基底,必有 a,b,c 都是非零向量,逆推成立,故 选项 B 符合题意.
自主学习
解读: 1.一个基底是一个向量组,一个基向量是指基底中的某一个向量, 二者是相关联的不同概念. 2.基底的选择一般有两个条件: (1)基底必须是不共面的非零向量; (2)在进行基底选择时要尽量选择已知夹角和长度的向量,这样会 让后续计算比较方便.
小试牛刀
自主学习
二.空间向量的正交分解 1.单位正交基底
如果空间的一个基底中的三个基向量 两两垂直 ,且长度都是 1 ,那么这个基
底叫做单位正交基底,常用{i,j,k}表示. 2.向量的正交分解 由空间向量基本定理可知,对空间任一向量 a,均可以分解为三个向量 xi,yj, zk 使得 a=xi+yj+zk.像这样把一个空间向量分解为三个两两垂直的向量,叫 做把空间向量进行正交分解.
经典例题
题型一 基底的判断
总结
判断三个空间向量是否共面,若共面,则不能构成基底;若不共面, 则能构成基底. 方法:①如果向量中存在零向量,则不能作为基底;如果存在一个向量可 以用另外的向量线性表示,则不能构成基底. ②假设 a=λb+μc,运用空间向量基本定理,建立 λ,μ 的方程组,若有解, 则共面,不能作为基底;若无解,则不共面,能作为基底.
小试牛刀
2.设 p:a,b,c 是三个非零向量;q:{a,b,c}为空间的一个基底,则 p 是 q
的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
B 解析:当三个非零向量 a,b,c 共面时不能作为基底,正推不成立;反过 来,若{a,b,c}是一个基底,必有 a,b,c 都是非零向量,逆推成立,故 选项 B 符合题意.
自主学习
解读: 1.一个基底是一个向量组,一个基向量是指基底中的某一个向量, 二者是相关联的不同概念. 2.基底的选择一般有两个条件: (1)基底必须是不共面的非零向量; (2)在进行基底选择时要尽量选择已知夹角和长度的向量,这样会 让后续计算比较方便.
小试牛刀
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)在正方体 ABCD − A1 B1C1 D1 中,必有 AC = A1C1 ; )
rr a= a、满足| a |=| b |,则 uuur buuuur; b
ur r r u r 满足 m = n, n = p ,则
ur r u r (4)若空间向量 m、 p ) n、
ur u r m= p
;
复 习 平 面 向 量 量 向 间
空
练
习
一、平面向量复习
⒈定义:既有大小又有方向的量叫向量. 定义 几何表示法:用有向线段表示; 字母表示法:用字母a、b等或者用有向线段 的起点与终点字母 AB 表示 相等的向量:长度相等且方向相同。
⒉平面向量的加减法运算
⑴向量的加法: 向量的加法:
b
a a 三角形法则(首尾相连 三角形法则 首尾相连) 首尾相连
加法交换律 a + b = b + a 加法结合律
加法交换律 a + b = b + a 加法结合律
( a + b ) + c = a + (b + c )
( a + b ) + c = a + (b + c )
A1
A2
A3 An
An −1
A4
⑵首尾相接的若干向量构成一个封闭图形, 首尾相接的若干向量构成一个封闭图形, 则它们的和为零向量. 则它们的和为零向量.即:
A1 A2 + A2 A3 + A3 A4 + L + An −1 An + An A1 = 0
A1
A2
A3 An
An −1
A4
二、空间向量及其加减运算
⒈空间向量: 空间向量: 定义:空间中具有大小 方向的量叫做向量 大小和 ⑴定义:空间中具有大小和方向的量叫做向量 表示方法: ⑵表示方法 空间向量的表示方法和平面向量一样; ①空间向量的表示方法和平面向量一样; ②同向且等长的有向线段表示同一向量或 相等的向量; 相等的向量; ③空间任意两个向量都可以用同一平面 内的两条有向线段表示. 内的两条有向线段表示.
2.空间向量的加法、减法向量 空间向量的加法、 空间向量的加法
C
α
B
b
Ob aA源自OB = OA + AB = a + b CA = OA − OC = a - b
⒊空间向量加法运算律
⑴加法交换律: a + b = b + a 加法交换律: ⑵加法结合律: (a + b) + c =a + (b + c); 加法结合律: a b c a b c
平行四边形法则
⑵向量的减法: 向量的减法 三角形法则 b a 减向量终点指向被减向量终点 减向量终点指向被减向量终点 终点指向被减向量 a-b
⒊平面向量的加法运算律
加法交换律: 加法交换律: a+b=b+a
加法结合律: (a+b)+c=a+(b+c) 加法结合律:
推广
⑴首尾相接的若干向量之和,等于由起始向量 首尾相接的若干向量之和, 的起点指向末尾向量的终点的向量. 的起点指向末尾向量的终点的向量. 即:A1 A2 + A2 A3 + A3 A4 + L + An −1 An = A1 An
解:⑴ AB + BC = AC
⑵ AB + AD + AA' AC + CC ' = = AC + AA' = AC '
A
D’ B’
C’
A’
D B
C
小结
平面向量
类比、数形结合
空间向量
具有大小和方向的量
概念 定义 表示法 相等向量 加法 加法:三角形法则或 减法 平行四边形法则 数乘 减法:三角形法则 运算 运 算 律
注意: 注意
⒈空间向量的运算就是平面向量运算的推广. 空间向量的运算就是平面向量运算的推广. ⒉两个向量相加的平行四边形法则在空间仍 然成立. 然成立. ⒊空间向量的加法运算可以推广至若干个向 量相加. 量相加.
练习: 练习
例1、给出以下命题: 、给出以下命题:
(1)两个空间向量相等,则它们的起点、终点相同; )两个空间向量相等,则它们的起点、终点相同; r r r r (2)若空间向量 )
(5)空间中任意两个单位向量必相等。 )空间中任意两个单位向量必相等。 其中不正确命题的个数是 (C) ) A.1 B.2 C.3 D.4
例2、 已知平行六面体ABCD − A ' B ' C ' D ',化简下 列向量表达式,并标出化简结果的向量:
⑴ AB + BC ; ⑵ AB + AD + AA';