2019年山东省潍坊市初三上册期末练习数学试卷(有答案)[精编]
2019年山东省潍坊市初三上册期末练习数学试卷(有答案)-优选
D EA潍坊市九年级第一学期期末练习含答案数 学学校 班级 姓名 成绩下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项填涂在答题卡相应的位置. 1.抛物线2(1)3y x =-+的顶点坐标是A .(1,3)B .(1-,3)C .(1-,3-)D .(1,3-) 2.如图,在△ABC 中,D 为AB 中点,DE ∥BC 交AC 于E 点,则△ADE 与△ABC的面积比为A .11B .12C .13D .143.方程20x x -=的解是A .0x =B .1x =C .1201x x ==,D .1201x x ==-, 4.如图,在△ABC 中,∠A =90°.若AB =8,AC =6,则cos C 的值为 A .35B .45C .34D .435.下列各点中,抛物线244y x x =--经过的点是A .(0,4)B .(1,7-)C .(1-,1-)D .(2,8) 6.如图,O 是△ABC 的外接圆,40OCB ∠=︒,则A ∠的大小为 A .40︒ B .50︒C .80︒D .100︒7.一个扇形的圆心角是120°,面积为3πcm 2,那么这个扇形的半径是CA BAB COA .1cmB .3cmC .6cmD .9cm 8.反比例函数3y x=的图象经过点(1-,1y ),(2,2y ),则下列关系正确的是 A .12y y <B .12y y >C .12y y =D .不能确定9.抛物线()21y x t =-+与x 轴的两个交点之间的距离为4,则t 的值是 A .1-B .2-C .3-D .4-10.当温度不变时,气球内气体的气压P (单位:Pa )是气体体积V (单位:m 3)的函数,下表记录了一组实验数据:P 与V 的函数关系可能是A .96P V =B .16112P V =-+C .21696176P V V =-+D .96P V=二、填空题(本题共18分,每小题3分) 11.已知A ∠为锐角,若sin 2A =,则A ∠的大小为 度.12.请写出一个图象在二,四象限的反比例函数的表达式 .13.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OD ,OB =3OC ),然后张开两脚,使A ,B 两个尖端分别在线段l的两个端点上,若 3.2CD =cm ,则AB 的长为 cm .14.如图,在平面直角坐标系Oy 中,以原点为位似中心,线段AB与线段A B ''是位似图形,若A (1-,2),B (1-,0),A '(2-,4)则B '的坐标为 .15.若关于的方程20x mx m -+=有两个相等实根,则代数式2281m m -+的值为.ECI16.下面是“用三角板画圆的切线”的画图过程.A ,AD . 三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:22sin 30-°0(π3)--+.18.如图,在△ABC 中,∠C =90°,E 是BC 上一点,ED ⊥AB ,垂足为D . 求证:△ABC ∽△EBD .19.若二次函数2y x bx c =++的图象经过点(0 1),和(1 2)-,两点,求此二次函数的表达式.20.已知蓄电池的电压U 为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示. (1)求这个反比例函数的表达式;(2)如果以此蓄电池为电的用电器的限制电流不能超过10A ,那么用电器的可变电阻R 应控制在什么范围?请根据图象,直接写出结果 .21.已知矩形的一边长为,且相邻两边长的和为10.(1)求矩形面积S与边长的函数关系式,并写出自变量的取值范围;(2)求矩形面积S的最大值.22.如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.23.在矩形ABCD中,AB=3,BC=6,P为BC边上一点,△APD为等腰三角形.(1)小明画出了一个满足条件的△APD,其中PA=PD,如图1所示,则tan BAP∠的值为;(2)请你在图2中再画出一个满足条件的△APD(与小明的不同),并求此时tan BAP∠的值.图1 图2 24.如图,直线4(0)y ax a=-≠与双曲线kyx=只有一个公共点A(1,2-).(1)求与a的值;(2)若直线+(0)y ax b a=≠与双曲线kyx=有两个公共点,请直接写出b的取值范围.25.如图,AB是⊙O的直径,弦CD⊥AB于点E,AM是△ACD的外角∠DAF的平分线.(1)求证:AM是⊙O的切线;(2)若∠D = 60°,AD = 2,射线CO与AM交于N写出求ON长的思路.26.有这样一个问题:探究函数1(1)(2)(3)2y x x x x =---+的性质.(1)先从简单情况开始探究:① 当函数为1(1)2y x x =-+时,y 随x 增大而 (填“增大”或“减小”); ② 当函数为1(1)(2)2y x x x =--+时,它的图象与直线y x =的交点坐标为;(2)当函数为1(1)(2)(3)2y x x x x =---+时,下表为其y 与的几组对应值.图象;②根据画出的函数图象,写出该函数的一条性质: .27.在平面直角坐标系xOy 中,抛物线2443y mx mx m =-++的顶点为A . (1)求点A 的坐标;(2)将线段OA 沿x 轴向右平移2个单位得到线段O A ''. ①直接写出点O '和A '的坐标;②若抛物线2443y mx mx m =-++与四边形AOO A '' 有且只有两个公共点,结合函数的图象,求m 的取 值范围.28.在△ABC 中,AB =AC ,∠BAC =α,点P 是△ABC 内一点,且2P A C P C A α∠+∠=.连接PB ,试探究PA ,PB ,PC 满足的等量关系.PAB C P'AB C P(1)当α=60°时,将△ABP 绕点A 逆时针旋转60°得到ACP '△,连接PP ',如图1所示.由ABP △≌ACP '△可以证得'APP △是等边三角形,再由30PAC PCA ∠+∠=︒可得 ∠APC 的大小为 度,进而得到CPP '△是直角三角形,这样可以得到PA ,PB ,PC 满足的等量关系为 ;(2)如图2,当α=120°时,请参考(1)中的方法,探究PA ,PB ,PC 满足的等量关系,并给出证明;(3)PA ,PB ,PC 满足的等量关系为 .图1 图229.定义:点P 为△ABC 内部或边上的点,若满足△PAB ,△PBC ,△PAC 至少有一个三角形与△ABC 相似(点P 不与△ABC 顶点重合),则称点P 为△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 为△ABC 的自相似点.在平面直角坐标系Oy 中,(1)点A 坐标为(2,), AB ⊥轴于B 点,在E (2,1),F (322),G (122)这三个点中,其中是△AOB 的自相似点的是 (填字母); (2)若点M 是曲线C :k y x=(0k >,0x >)上的一个动点,N 为轴正半轴上一个动点;① 如图2,k =M 点横坐标为3,且NM = NO ,若点P 是△MON 的自相似点,求点P 的坐标;② 若1k =,点N 为(2,0),且△MON 的自相似点有2个,则曲线C 上满足这样条件的点M 共有 个,请在图3中画出这些点(保留必要的画图痕迹).PB CA图1潍坊市九年级第一学期期末练习数 学 答 案一、选择题(本题共30分,每小题3分)11.45;12.1y x =-(答案不唯一);13.9.6;14.(2-,0);15.1;16.90°的圆周角所对的弦是直径,经过半径外端并且垂直于这条半径的直线是圆的切线. 三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=22112-⨯-+ -------------------------------------------4分. -------------------------------------------------5分 18.证明:∵ED ⊥AB ,∴∠EDB =90°. -------------------------------------------1分 ∵∠C =90°, -----------------------------------------------2分 ∴∠EDB =∠C . ------------------------------------------3分 ∵∠B =∠B , ---------------------------------------------4分 ∴ABC △∽EBD △. ----------------------------------5分19.解:∵二次函数2y x bx c =++的图象经过(0,1)和(1,2-)两点,∴121c b c =⎧⎨-=++⎩,. --------------------------------------------------2分解得41b c =-⎧⎨=⎩,. -------------------------------------------------------4分∴二次函数的表达式为241y x x =-+. --------------------------------------5分 20.(1)解:设反比例函数的表达式为()0I UU R=≠, EC由图象可知函数()0I UU R=≠的图象经过点(9,4), ∴49U =. ----------------------------------------------------------1分∴36U =. -----------------------------------------------------------2分∴反比例函数的表达式为36I R=(0R >). ------------------------3分 (2) 3.6R ≥.(答 3.6R >得1分,其它错误不得分) -------------------------5分 21.解:(1)()10S x x =-, -----------------------------------------------------2分其中010x <<; ---------------------------------3分(2)()10S x x =-=()2525x --+. -------------------------------------------------------4分∴当5x =时,S 有最大值25. ---------------------------5分22.解:∵90ADB ADC ∠=∠=°,30BAD ∠=°,60CAD ∠=°,AD =100, -------------------2分∴在Rt ABD △中,tan BD AD BAD =⋅∠=, --------------3分 在Rt ACD △中,tan CD AD CAD =⋅∠= --------------4分∴BC BD CD =+=------------------------------------------5分 23.(1)1. ----------------------------------------------2分(2)解法一:B P CA D----------------------------------3分∵矩形ABCD , ∴90B ∠=°.∵AP =AD =6,AB =3,∴在Rt ABP △中,BP = ---------------------4分∴tan BAP BPAB∠==. ----------------------------------5分解法二:B P CA D---------------------------------------------------3分∵矩形ABCD , ∴90B C ∠=∠=°.∵PD =AD =BC =6,AB =CD =3,∴在Rt CPD △中,CP = -----------------------4分∴6BP BC CP =-=-∴在Rt ABP △中,tan 2BAP BPAB∠== ------------------5分 24.(1)∵直线4y ax =-与双曲线y kx=只有一个公共点A (1,2-), ∴2421a k-=--=⎧⎪⎨⎪⎩,. -------------------------------------------1分 ∴22a k ==-⎧⎨⎩,.(2)4b <-或4b >.(答对一个取值范围得1分) ----------------------------5分 25.(1)证明:∵AB ⊥CD ,AB 是⊙O 的直径,∴BC BD =.∴112CAD ∠=∠.∵AM 是∠DAF 的角平分线,∴212DAF ∠=∠.∵180CAD DAF ∠+∠=°, ∴1290OAM ∠=∠+∠=°. ∴OA ⊥AM .∴AM 是⊙O 的切线.-------------------------------------------------2分21MNFAC D EBO----------------------------------------------------2分 --------------------------------------------------------------------------------------------------3分(2)思路:①由AB ⊥CD ,AB 是⊙O 的直径,可得BC BD =,AC AD =,1132CAD AC AD ∠=∠=∠=,;②由60D ∠=°,=2AD ,可得ACD △为边长为2的等边三角形,1330∠=∠=°;③由OA OC =,可得3430∠=∠=°; ④由3120CAN OAN ∠=∠+∠=°,可得5430∠=∠=°,2AN AC ==;⑤由OAN △为含有30°的直角三角形,可求ON 的长.(本题方法不唯一) ------------------------------------------------5分26.(1)①增大; ------------------------------------------------------------------------1分 ②(1,1),(2,2); -------------------------------------------------------3分(2)①--------------------------------------------------------------------------------4分(2)该函数的性质:①y 随的增大而增大;②函数的图象经过第一、三、四象限;54321MNFAC D EBO③函数的图象与轴y 轴各有一个交点. ……(写出一条即可) --------------------------------------------------------5分27.(1)∵()()2244323y m x x m x =-++=-+,∴抛物线的顶点A 的坐标为(2,3). --------------------------------2分 (2)O '(2,0), --------------------------------------------------------3分A '(4,3). -----------------------------------------------------------------4分 (3)依题意,0m <. --------------------------------------5分将(0,0)代入2443y mx mx m =-++中,得34m =-. --------------------------------------------6分∴304m -<<. --------------------------------------7分28.(1)150, -----------------------------------------------------1分222PA PC PB +=. ----------------------------------3分(2)如图,作120PAP '∠=°,使AP AP '=,连接PP ',CP '.过点A 作AD ⊥PP '于D 点. ∵120BAC PAP '∠=∠=°, 即BAP PAC PAC CAP '∠+∠=∠+∠, ∴BAP CAP '∠=∠. ∵AB =AC ,AP AP '=,∴BAP CAP '△≌△. --------------------------------4分 ∴P C PB '=,180302APD AP D PAP '∠=∠='-∠=°.∵AD ⊥PP ', ∴90ADP ∠=°.∴在Rt APD △中,cos PD AP APD AP =⋅∠=. ∴2PP PD '==. ∵60PAC PCA ∠+∠=°,DP'PB CA∴180120APC PAC PCA ∠=∠-∠=-°. ∴90P PC APC APD '∠=∠-∠=°. ∴在Rt P PC '△中,222P P PC P C ''+=.∴2223PA PC PB +=. -------------------------------------------------------6分 (3)22224sin 2PA PC PB α+=. ----------------------------------------------7分29.(1)F ,G .(每对1个得1分) ------------------------------------------------2分 (2)①如图1,过点M 作MH ⊥轴于H 点. ∵M 点的横坐标为3,∴y ==.∴3M (.∴OM =OM 的表达式为y x =. ∵MH ⊥轴,∴在Rt △MHN 中,90MHN ∠=°,222NH MH MN +=.设NM =NO =m ,则3NH OH ON m =-=-.∴()2223m m -+=.∴ON =MN =m =2. --------------------------------------------3分 如图2, 1PON △∽NOM △,过点1P 作1PQ ⊥轴于Q 点, ∴11PO P N =,112OQ ON ==. ∵1P 的横坐标为1,∴133y ==.∴11P ⎛ ⎝⎭. ------------------------------------------------4分如图3,2P NM NOM △∽△, ∴2P N MNON MO=.∴2P N =. ∵2P,∴33x =. ∴2x =.∴223P ⎛⎫⎪ ⎪⎝⎭,. ------------------------------------------------------5分综上所述,13P ⎛ ⎝⎭,或23⎛⎝⎭,. ②4. ---------------------------------------------------------------------------------6分(每标对两个点得1分)--------------------------------------------------------8分。
潍坊市九年级上学期期末数学试卷
潍坊市九年级上学期期末数学试卷姓名:________班级:________成绩:________一、 选择题: (共 12 题;共 24 分)1. (2 分) 在时钟上,每 10 分钟分针转过的角度是( )A . 15°B . 30°C . 40°D . 60°2. (2 分) (2017 九上·渭滨期末) 用配方法解一元二次方程 x2+4x﹣3=0 时,原方程可变形为( )A . (x+2)2=1B . (x+2)2=19C . (x+2)2=13D . (x+2)2=73. (2 分) (2019 九上·苍南期中) 如图,直角坐标系中,A 是反比例函数 y=(x>0)图象上一点,B是 y 轴正半轴上一点,以 OA,AB 为邻边作□ABCO,若点 C 及 BC 中点 D 都在反比例函数 y= 则 k 的值为 ( )(k<0,x<0)图象上,A . -3 B . -4 C . -6 D . -8 4. (2 分) 如图中,CA,CD 分别切圆 O1 于 A,D 两点,CB、CE 分别切圆 O2 于 B,E 两点.若∠1=60°,∠2=65°, 判断 AB、CD、CE 的长度,下列关系何者正确( )A . AB>CE>CD第 1 页 共 12 页B . AB=CE>CDC . AB>CD>CED . AB=CD=CE5. (2 分) 直线 a 上有一点到圆心 O 的距离等于⊙O 的半径,则直线 a 与⊙O 的位置关系是( )A . 相离B . 相切C . 相交D . 相切或相交6. (2 分) (2017 八上·兰陵期末) 下列计算,正确的是( )A . a2•a2=2a2B . a2+a2=a4C . (﹣a2)2=a4D . (a+1)2=a2+17. (2 分) (2018·广元) 如图,点 A 的坐标为(-1,0),点 B 在直线上运动,当线段 AB 最短时,点B 的坐标为( )A . (0,0)B.(,)C.( ,)D.(,)8. (2 分) 如图,直线 y=﹣x+3 与 y 轴交于点 A,与反比例函数 y= (k≠0)的图象交于点 C,过点 C 作 CB⊥x轴于点 B,AO=3BO,则反比例函数的解析式为( )A . y=第 2 页 共 12 页B . y=﹣ C . y= D . y=﹣ 9. (2 分) 若关于 x 的一元二次方程(k﹣1)x2+2x﹣2=0 有实数根,则 k 的取值范围是( ) A . k> B . k≥ C . k> 且 k≠1 D . k≥ 且 k≠1 10.(2 分)如图,将∠BAC 沿 DE 向∠BAC 内折叠,使 AD 与 A′D 重合,A′E 与 AE 重合,若∠A=30°,则∠1+∠2= ()A . 50° B . 60° C . 45° D . 以上都不对 11. (2 分) 如图为二次函数 y=ax2+bx+c 的图象,此图象与 x 轴的交点坐标分别为(-1,0)、(3,0).下列 说法正确的个数是( ) ①ac<0 ②a+b+c>0 ③方程 ax2+bx+c=0 的根为 x1=-1,x2=3 ④当 x>1 时,y 随着 x 的增大而增大.A.1第 3 页 共 12 页B.2 C.3 D.4 12. (2 分) 如图,⊙O 中,弦 AB 与直径 CD 相交于点 P,且 PA=4,PB=6,PD=2,则⊙O 的半径为( )A.9 B.8 C.7 D.6二、 填空题: (共 6 题;共 6 分)13. (1 分) (2016 九上·大石桥期中) 设 m,n 分别为一元二次方程 x2﹣2x﹣2015=0 的两个实数根,则 m2 ﹣3m﹣n=________14. (1 分) (2018·成都模拟) 有 4 张正面分别标有数字的不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将卡片上的数字记为 ,另有一个被均匀分成 4 份的转盘,上面分别标有数字,转动转盘,指针所指的数字记为 (若指针指在分割线上则重新转一次),则点落在抛物线与 轴所围成的区域内(不含边界)的概率是________.15. (1 分) (2015 九上·大石桥期末) 在反比例函数的图象的每一条曲线上,y 随着 x 的增大而增大,则 k 的取值范围是________.16. (1 分) (2019·惠民模拟) 如图,在 Rt△ABC 中,∠ACB=90°,∠B=60°,BC=2,△A'B'C 可以由△ABC绕点 C 顺时针旋转得到,其中点 A'与点 A 是对应点,点 B 与点 B 是对应点,连接 AB',且 A、B’、A'在同一条直线上,则 AA’的长为________.17. (1 分) (2011 七下·广东竞赛) 已知 P1(a-1,5)和 P2(2,b-1)关于 x 轴对称,则(a+b)2011 的值为________第 4 页 共 12 页18.(1 分)(2018 九上·无锡月考) 如图,中,,绕边 所在直线旋转一周,则所得几何体的表面积为________(结果保留 ).,若把三、 解答题: (共 5 题;共 59 分)19. (15 分) (2017 八下·日照开学考) 计算:(1) (π﹣3.14)0+| ﹣2|﹣+( ) ﹣2.(2)﹣4﹣( ﹣ ).(3) (x﹣3)(3﹣x)﹣(x﹣2)2.20. (5 分) 为丰富学生的学习生活,某校九年级 1 班组织学生参加春游活动,所联系的旅行社收费标准如下:如果人数超过 25 人, 每增加 1 人,人均活动 费用降低 2 元,但人均 活动费用不得低于 75 元。
2019年山东省潍坊市中考数学试题(含参考答案)(word版)
2019年山东省潍坊市中考数学试题(含参考答案与解析)(满分120分,考试时间120分钟)第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,共36分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)1.2019的倒数的相反数是()A.﹣2019 B.﹣C.D.20192.下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a93.“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿4.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变5.利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.96.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)27.小莹同学10个周综合素质评价成绩统计如下:这10个周的综合素质评价成绩的中位数和方差分别是()A.97.5 2.8 B.97.5 3 C.97 2.8 D.97 38.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MD C.∠OCD=∠ECD D.S四边形OCED=CD•OE9.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.10.关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2 B.m=3 C.m=3或m=﹣2 D.m=﹣3或m=2 11.如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC 交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8 B.10 C.12 D.1612.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11 B.t≥2 C.6<t<11 D.2≤t<6第Ⅱ卷(非选择题共84分)二、填空题(本题共6小题,满分18分。
潍坊市三中数学九年级上册期末试卷(含答案)
潍坊市三中数学九年级上册期末试卷(含答案)一、选择题1.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( ) A .B .2C .D .2.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=3.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙 B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定5.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离B .相切C .相交D .无法判断6.如图,等腰直角三角形ABC 的腰长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B 和A →C 的路径向点B 、C 运动,设运动时间为x (单位:s),四边形PBC Q 的面积为y(单位:cm 2),则y 与x(0≤x≤4)之间的函数关系可用图象表示为( )A .B .C .D .7.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503m 8.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1) B .(﹣2,﹣1) C .(2,﹣1) D .(0,1) 9.一元二次方程x 2=9的根是( )A .3B .±3C .9D .±9 10.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .411.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .1612.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =13.下列函数中属于二次函数的是( ) A .y =12x B .y =2x 2-1C .y 23x +D .y =x 2+1x+1 14.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x <B .2x >C .0x <D .0x >15.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( ) A .13B .14C .15D .16二、填空题16.平面直角坐标系内的三个点A(1,-3)、B(0,-3)、C(2,-3),___ 确定一个圆.(填“能”或“不能”)17.若m是方程2x2﹣3x=1的一个根,则6m2﹣9m的值为_____.18.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.19.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.20.某同学想要计算一组数据105,103,94,92,109,85的方差2S,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S,则2S______21S(填“>”、“=”或“<”).21.设1x,2x是关于x的一元二次方程240x x+-=的两根,则1212x x x x++=______. 22.二次函数y=x2−4x+5的图象的顶点坐标为.23.已知点11(,)A x y,22(,)B x y在二次函数2(1)1y x=-+的图象上,若121x x>>,则1y__________2y.(填“>”“<”“=”)24.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;25.如图,平行四边形ABCD中,60A∠=︒,32ADAB=.以A为圆心,AB为半径画弧,交AD于点E,以D为圆心,DE为半径画弧,交CD于点F.若用扇形ABE围成一个圆维的侧面,记这个圆锥的底面半径为1r;若用扇形DEF围成另一个圆锥的侧面,记这个圆锥的底面半径为2r,则12rr的值为______.26.抛物线2(-1)3y x=+的顶点坐标是______.27.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.28.抛物线228y x x m=++与x轴只有一个公共点,则m的值为________.29.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接CP,以 CP 为边,在 PC 的右侧作等边△CPQ,连接 AQ 交 BD 延长线于 E,当△CPQ 面积最小时,QE=____________.30.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD=____°.三、解答题31.如图,AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.(1)求证:DE是⊙O的切线;(2)若BD=3,AD=4,则DE=.32.我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=22AB=4.试判断点D是不是△ABC 边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.33.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D ,交AB 的延长线于点C . (1)求证:CD 是⊙O 的切线;(2)∠C =45°,⊙O 的半径为2,求阴影部分面积.34.已知抛物线y =x 2﹣2x ﹣3与x 轴交于点A 、B ,与y 轴交于点C ,点D 为OC 中点,点P 在抛物线上.(1)直接写出A 、B 、C 、D 坐标;(2)点P 在第四象限,过点P 作PE ⊥x 轴,垂足为E ,PE 交BC 、BD 于G 、H ,是否存在这样的点P ,使PG =GH =HE ?若存在,求出点P 坐标;若不存在,请说明理由. (3)若直线y =13x+t 与抛物线y =x 2﹣2x ﹣3在x 轴下方有两个交点,直接写出t 的取值范围.35.华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x 元(x 为正整数),每天的销售利润为y 元. (1)求y 与x 的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?四、压轴题36.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).37.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.38.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.39.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)40.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P是抛物线上一动点,过P作x轴的垂线,交直线BC于M.设点P的横坐标是t.①当PCM∆是直角三角形时,求点P的坐标;②当点P在点B右侧时,存在直线l,使点,,A C M到该直线的距离相等,求直线解析式y kx b=+(,k b可用含t的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为2m为负数,最大值为2n为正数.将最大值为2n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,2m=-(n-1)2+5,n=52, ∴m=118, ∵m <0,∴此种情形不合题意, 所以m+n=﹣2+52=12. 2.B解析:B 【解析】 【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断. 【详解】解:∵四边形ABCD 是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90° ∴AO=CO=BO=DO, ∴∠OCD=∠ODC=β,A 、BDC DCA β∠=∠=∠,故A 选项正确;B 、在Rt △ADC 中,cos ∠ACD=DCAC , ∴cos β=2a AO,∴AO=2cos a ,故B 选项错误;C 、在Rt △BCD 中,tan ∠BDC=BC DC , ∴ tan β=BCa∴BC=atan β,故C 选项正确; D 、在Rt △BCD 中,cos ∠BDC=DCDB , ∴ cos β=a BD∴cos a BD β=,故D 选项正确.故选:B. 【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.3.D解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<,解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.4.A解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.A解析:A 【解析】 【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断. 【详解】解:∵圆心O 到直线l 的距离d=6,⊙O 的半径R=4, ∴d>R , ∴直线和圆相离. 故选:A . 【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..6.C解析:C【解析】【分析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可.【详解】由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8),故选:C.【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.7.A解析:A【解析】∵堤坝横断面迎水坡AB 的坡比是1,∴BCAC ,∵BC=50,∴,∴100==(m ).故选A 8.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ),∴y =2(x ﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C .【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.9.B解析:B【解析】【分析】两边直接开平方得:3x =±,进而可得答案.【详解】解:29x =,两边直接开平方得:3x =±,则13x =,23x =-.故选:B .【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解. 10.B解析:B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12, ∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4,∴△ABC 的面积为:16,故选D .【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.13.B解析:B【解析】【分析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【详解】解:A. y=12x是正比例函数,不符合题意;B. y=2x2-1是二次函数,符合题意;C. yD. y=x2+1x+1不是二次函数,不符合题意.故选:B.【点睛】本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.14.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x的取值范围.【详解】222(1)1y x x x=-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x1<时,y随着x的增大而增大,【点睛】此题考查二次函数的性质,当a0a0<时,对称轴左增右减,当>时,对称轴左减右增. 15.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个,所以,取出红球的概率为2163 P==,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.19.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.20.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.21.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =. 22.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 23.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 24.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.25.1【解析】【分析】设AB=a ,根据平行四边形的性质分别求出弧长EF 与弧长BE ,即可求出的值.【详解】设AB=a ,∵∴AD=1.5a ,则DE=0.5a ,∵平行四边形中,,∴∠D=120解析:1【解析】【分析】设AB=a ,根据平行四边形的性质分别求出弧长EF 与弧长BE ,即可求出12r r 的值. 【详解】设AB=a , ∵32AD AB = ∴AD=1.5a ,则DE=0.5a ,∵平行四边形ABCD 中,60A ∠=︒,∴∠D=120°,∴l 1弧长EF=12020.5360a π⨯⨯⨯=13a π l 2弧长BE=602360a π⨯⨯⨯=13a π ∴12r r =12l l =1 故答案为:1.【点睛】此题主要考查弧长公式,解题的关键是熟知弧长公式及平行四边形的性质.26.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.27.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】 此题考查加权平均数,正确理解各数所占的权重是解题的关键.28.8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.29.【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相67解析:【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【详解】如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD =4,∵∠ACB =60°,DF ⊥BC ,∴∠CDF =30°,∴CF =12CD =2,DF =CF ÷tan30°= ∴BF =4,∴BD ,∵△CPQ 是等边三角形,∴S △CPQ 2, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD =, ∴6BP =,∴BP ,∴AQ =BP =7, ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC , ∴AE AD BC BD=, ∴6AE =,∴AE =7,∴QE =AQ−AE =7.. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP 的长是本题的关键. 30.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.三、解答题31.(1)见解析;(2)12 5【解析】【分析】(1)连接OD,如图,先证明OD∥AE,再利用DE⊥AE得到OD⊥DE,然后根据切线的判定定理得到结论;(2)证明△ABD∽△ADE,通过线段比例关系求出DE的长.【详解】(1)证明:连接OD∵AD平分∠BAC∴∠BAD=∠DAC∵OA=OD∴∠BAD=∠ODA∴∠ODA=∠DAC∴OD∥AE∴∠ODE+∠E=180°∵DE⊥AE∴∠E=90°∴∠ODE=180°-∠E=180°-90°=90°,即OD⊥DE∵点D在⊙O上∴DE是⊙O的切线.(2)∵AB是⊙O的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE ∠∠⎧⎨∠∠⎩, ∴△ABD ∽△ADE , ∴AB BD AD DE=,∵BD =3,AD =4,∴DE=345⨯=125. 【点睛】 本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.32.(1)是,理由见解析;(2)125;(3)D (0,42)或D (0,6) 【解析】【分析】(1)依据边长AC=AB=4,D 是边AB 的中点,得到AC 2=AD AB ,可得到两个三角形相似,从而得到∠ACD=∠B ;(2)由点D 是△ABC 的“理想点”,得到∠ACD=∠B 或∠BCD=∠A ,分两种情况证明均得到CD ⊥AB ,再根据面积法求出CD 的长;(3)使点A 是B ,C ,D 三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D 的坐标即可.【详解】(1)D 是△ABC 边AB 上的“理想点”,理由:∵AB=4,点D 是△ABC 的边AB 的中点,∴AD=2,∵AC 2=8,8AD AB •=,∴AC 2=AD AB ,又∵∠A=∠A ,∴△ADC ∽△ACB ,∴∠ACD=∠B ,∴D 是△ABC 边AB 上的“理想点”.(2)如图②,∵点D是△ABC的“理想点”,∴∠ACD=∠B或∠BCD=∠A,当∠ACD=∠B时,∵∠ACD+∠BCD=90︒,∴∠BCD+∠B=90︒,∴∠CDB=90︒,当∠BCD=∠A时,同理可得CD⊥AB,在Rt△ABC中,∵∠ACB=90︒,AB=5,AC=4,∴BC=222254AB AC-=-=3,∵1122AB CD AC BC⋅=⋅,∴11534 22CD,∴125 CD=.(3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90︒,∠ACM=45︒,∴∠AMC=∠ACM=45︒,∴AM=AC,∵∠MAH+∠CAO=90︒,∠CAO+∠ACO=90︒,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴MH BH OC OB,∴253aa,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴2111CD D A D B,∴226(2)(3)m m m,解得m=42,∴D1(0,42);②当∠BCA=∠CD2B时,点A是△BCD2“理想点”,可知:∠CD2O=45︒,∴OD2=OC=6,∴D2(0,6).综上,满足条件的点D的坐标为D(0,42)或D(0,6).【点睛】此题考查相似三角形的判定及性质,通过证明三角形相似得到点是三角形某条边上的“理想点”,通过点是三角形的“理想点”,从而证明出三角形相似,由此得到点的坐标,相互反推的思想的利用,注意后者需分情况进行讨论.33.(1)见解析;(2)2-2π【解析】【分析】(1)若要证明CD是⊙O的切线,只需证明CD与半径垂直,故连接OE,证明OE∥AD即可;(2)根据等腰直角三角形的性质和扇形的面积公式即可得到结论.【详解】解:(1)连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切线;(2)∵∠C=45°,∴△OCE是等腰直角三角形,∴CE=OE=2,∠COE=45°,∴阴影部分面积=S△OCE﹣S扇形OBE=12⨯2×2﹣2452360π⨯=2﹣2π.【点睛】本题综合考查了圆与三角形,涉及了切线的判定、等腰三角形的性质、扇形的面积,灵活的将图形与已知条件相结合是解题的关键.34.(1)A(﹣1,0),B(3,0),C(0,﹣3),D(0,﹣32);(2)存在,(12,﹣154);(3)﹣15736<t<﹣1【解析】【分析】(1)可通过二次函数的解析式列出方程,即可求出相关点的坐标;(2)存在,先求出直线BC和直线BD的解析式,设点P的坐标为(x,x2﹣2x﹣3),则E(x,0),H(x,12x﹣32),G(x,x﹣3),列出等式方程,即可求出点P坐标;(3)求出直线y=13x+t经过点B时t的值,再列出当直线y=13x+t与抛物线y=x2﹣2x﹣3只有一个交点时的方程,使根的判别式为0,求出t的值,即可写出t的取值范围.【详解】解:(1)在y=x2﹣2x﹣3中,当x=0时,y=﹣3;当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),C(0,﹣3),∵D为OC的中点,∴D(0,﹣32);(2)存在,理由如下:设直线BC的解析式为y=kx﹣3,将点B(3,0)代入y=kx﹣3,解得k=1,∴直线BC的解析式为y=x﹣3,设直线BD的解析式为y=mx﹣32,将点B(3,0)代入y=mx﹣32,解得m=12,∴直线BD的解析式为y=12x﹣32,设点P的坐标为(x,x2﹣2x﹣3),则E(x,0),H(x,12x﹣32),G(x,x﹣3),∴EH=﹣12x+32,HG=12x﹣32﹣(x﹣3)=﹣12x+32,GP=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,当EH=HG=GP时,﹣12x+32=﹣x2+3x,解得x1=12,x2=3(舍去),∴点P的坐标为(12,﹣154);(3)当直线y=13x+t经过点B时,将点B(3,0)代入y=13x+t,得,t=﹣1,当直线y=13x+t与抛物线y=x2﹣2x﹣3只有一个交点时,方程13x+t=x2﹣2x﹣3只有一个解,即x2﹣73x﹣3﹣t=0,△=(73)2﹣4(﹣3﹣t)=0,解得t=﹣157 36,∴由图2可以看出,当直线y=13x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点时,t的取值范围为:﹣15736<t<﹣1时.【点睛】本题考查了二次函数与一次函数的综合,涉及了求二次函数与坐标轴的交点坐标、一次函数的解析式、解一元二次方程、确定一次函数与二次函数的图像的交点个数,灵活运用一次函数与二次函数的图像与性质是解题的关键.35.(1)y=﹣5x2+110x+1200;(2) 售价定为189元,利润最大1805元【解析】【分析】利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵抛物线开口向下,∴当x=11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.四、压轴题。
2019年潍坊市九年级数学上期末试卷(及答案)
2019年潍坊市九年级数学上期末试卷(及答案)一、选择题1.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2B .1C .0D .﹣12.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( ) A .0<m <1 B .1<m ≤2 C .2<m <4 D .0<m <43.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足等式( )A .16(1+2x)=25B .25(1-2x)=16C .25(1-x)²=16D .16(1+x)²=254.已知m 、n 是方程2210x x --=的两根,且22(714)(367)8m m a n n -+--=,则a 的值等于A .5-B .5C .9-D .95.二次函数236yx x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+ B .()2313y x =--- C .()2313y x =-++D .()2313y x =-+-6.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .127.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( ) A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移3个单位8.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ②20a b +=;③9a-3b+c=0;④若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A .①③B .②④C .②③D .③④9.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x(x -1)=2070 B .x(x +1)=2070 C .2x(x +1)=2070D .(1)2x x -=2070 10.若关于x 的一元二次方程()26230a x x --+=有实数根,则整数a 的最大值是( ) A .4B .5C .6D .711.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >412.若20a ab -=(b ≠0),则aa b+=( ) A .0B .12 C .0或12D .1或 2二、填空题13.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.14.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).15.如图,抛物线y=﹣2x2+2与x轴交于点A、B,其顶点为E.把这条抛物线在x轴及其上方的部分记为C1,将C1向右平移得到C2,C2与x轴交于点B、D,C2的顶点为F,连结EF.则图中阴影部分图形的面积为______.16.心理学家发现:学生对概念的接受能力y与提出概念的时间x(分)之间的关系式为y=﹣0.1x2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________分钟.17.已知二次函数,当x_______________时,随的增大而减小.18.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.19.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为_____.20.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.三、解答题21.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?22.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.23.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由; (3)如果△ABC 是等边三角形,试求这个一元二次方程的根. 24.如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)求a 的值和图象的顶点坐标。
山东省潍坊市2019-2020学年九年级(上)期末数学试卷含解析
山东省潍坊市2019-2020学年九年级(上)期末数学试卷姓名座号题号一二三总分得分考后反思(我思我进步):一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.(3分)下列图象能表示y是x的函数的是()A.B.C.D.2.(3分)若反比例函数y=(k≠0)的图象经过点(﹣4,),则下列点在该图象上的是()A.(﹣5,2)B.(3,﹣6)C.(2,9)D.(9,2)3.(3分)如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,且DE将△ABC分成面积相等的两部分,那么的值为()A.﹣1B.+1C.1D.4.(3分)在Rt△ABC中,∠C=90°,tan A=,则cos B的值为()A.B.C.D.5.(3分)下列一元二次方程中两根之和为﹣3的是()A.x2﹣3x+3=0B.x2+3x+3=0C.x2+3x﹣3=0D.x2+6x﹣4=0 6.(3分)如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为()A.25°B.40°C.35°D.30°7.(3分)抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.8.(3分)如图,矩形ABCD中,BC=4,CD=2,O为AD的中点,以AD为直径的弧DE 与BC相切于点E,连接BD,则阴影部分的面积为()A.πB.C.π+2D.+49.(3分)如图,在平面直角坐标系内,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的正半轴上,点F在BA上,点B、E均在反比例函数y=(k≠0)的图象上,若点B的坐标为(1,6),则正方形ADEF的边长为()A.1B.2C.4D.610.(3分)二次函数y=ax2+bx+c的部分对应值如表x﹣3﹣2﹣1012y﹣705898利用该二次函数的图象判断,当函数值y>0时,x的取值范围是()A.0<x<8B.x<0或x>8C.﹣2<x<4D.x<﹣2或x>4 11.(3分)如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为()A.1B.2C.D.12.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x 轴的交点为(x1,0)、(x2,0),其中0<x2<1,有下列结论:①b2﹣4ac>0;②4a﹣2b+c >﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=0.其中,正确的结论有()A.①③④B.①②④C.③④⑤D.①③⑤二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分)13.(3分)抛物线y=x2﹣6x+5的顶点坐标为.14.(3分)圆内接正六边形的边长为6,则该正六边形的边心距为.15.(3分)如图,AB为⊙O的直径,点D是弧AC的中点,弦BD,AC交于点E,若DE =2,BE=4,则tan∠ABD=.16.(3分)点A(﹣2,y1),B(0,y2),C(,y3)是二次函数y=ax2﹣ax(a是常数,且a<0)的图象上的三点,则y1,y2,y3的大小关系为(用“<”连接).17.(3分)已知实数m,n满足等式m2+2m﹣1=0,n2+2n﹣1=0,那么求+的值是.18.(3分)如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则k=.三、解答题(本题共7小题,共66分,解答应写出文字说明、证明过程或推演步骤)19.(8分)已知关于x的方程x2﹣(m+2)x+2m=0.(1)若该方程的一个根为x=1,求m的值;(2)求证:不论m取何实数,该方程总有两个实数根.20.(8分)如图,一次函数y1=k1x+b与反比例函数y2=的图象交于点A(a,﹣2)和B(2,3),且直线AB交y轴于点C,连接OA、OB.(1)求反比例函数的解析式和点A的坐标;(2)根据图象直接写出:当x在什么范围取值时,y1<y2.21.(8分)某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆,据统计,第一个月进馆200人次,此后进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不得超过400人次,若进馆人次的月平均增长率不变,到第几个月时,进馆人数将超过学校图书馆的接纳能力,并说明理由.22.(8分)超速行驶被称为“马路第一杀手”,为了让驾驶员自觉遵守交通规则,市公路检测中在一事故多发地段安装了一个测速仪器,如图所示,已知检测点A设在距离公路BC20米处,∠B=45°,∠C=30°,现测得一辆汽车从B处行驶到C处所用时间为2.7秒.(1)求B,C之间的距离(结果保留根号);(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:1.7,≈1.4)23.(10分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA.24.(12分)果农周大爷家的红心猕猴桃深受广大顾客的喜爱,猕猴桃成熟上市后,他记录了10天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系如图所示,日销量P(千克)与时间第x天(x为整数)的部分对应值如表所示:时间第x天135710日销售量P(千克)220260300340400(1)请直接写出p与x的函数关系式及自变量x的取值范围;(2)求y与x的函数关系式,并写出自变量x的取值范围;(3)在这10天中,哪一天销售额达到最大,最大销售额是多少元.25.(12分)如图,抛物线y=x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,﹣3),对称轴为x=1,点D与C关于抛物线的对称轴对称.(1)求抛物线的解析式及点D的坐标;(2)点P是抛物线上的一点,当△ABP的面积是8时,求出点P的坐标;(3)点M为直线AD下方抛物线上一动点,设点M的横坐标为m,当m为何值时,△ADM的面积最大?并求出这个最大值.参考答案与试题解析一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.(3分)下列图象能表示y是x的函数的是()A.B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【解答】解:A、对每一个x的值,不是有唯一确定的y值与之对应,不是函数图象;B、对每一个x的值,不是有唯一确定的y值与之对应,不是函数图象;C、对每一个x的值,不是有唯一确定的y值与之对应,不是函数图象;D、对每一个x的值,都有唯一确定的y值与之对应,是函数图象;故选:D.2.(3分)若反比例函数y=(k≠0)的图象经过点(﹣4,),则下列点在该图象上的是()A.(﹣5,2)B.(3,﹣6)C.(2,9)D.(9,2)【分析】把点(﹣4,)代入反比例函数y=(k≠0)得到关于k的一元一次方程,解之,即可得到反比例函数的解析式,把各个选项的横坐标代入反比例函数的解析式,求纵坐标,即可得到答案.【解答】解:∵若反比例函数y=(k≠0)的图象经过点(﹣4,),∴k=﹣4×=﹣18,即反比例函数的解析式为:y=﹣,A.把x=﹣5代入y=﹣得y=﹣,即点(﹣5,2)不在反比例函数图象上,B.把x=3代入y=﹣得:y=﹣=﹣6,即点(3,﹣6)在反比例函数图象上,C.把x=2代入y=﹣得:y=﹣=﹣9,即点(2,9)不在反比例函数图象上,D.把x=9代入y=﹣得:y=﹣=﹣2,即点(9,2)不在反比例函数图象上,故选:B.3.(3分)如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,且DE将△ABC分成面积相等的两部分,那么的值为()A.﹣1B.+1C.1D.【分析】由条件DE∥BC,根据相似三角形判定的引理可得△ADE∽△ABC,又由DE将△ABC分成面积相等的两部分,可得S△ADE:S△ABC=1:2,根据相似三角形面积之比等于相似比的平方,可得答案.【解答】解:如图所示:∵DE∥BC,∴△ADE∽△ABC,设DE:BC=1:x,则由相似三角形的性质可得:S△ADE:S△ABC=1:x2又∵DE将△ABC分成面积相等的两部分,∴x2=2,∴x=,即==,故选:D.4.(3分)在Rt△ABC中,∠C=90°,tan A=,则cos B的值为()A.B.C.D.【分析】根据正切的定义有tan A==,可设BC=12x,AC=5x,根据勾股定理可计算出AB=12x,然后根据余弦的定义得到cos B=,代入可得结论.【解答】解:如图,∵∠C=90°,tan A=,∴tan A=,设BC=12x,AC=5x,∴AB===13x,∴cos B===.故选:A.5.(3分)下列一元二次方程中两根之和为﹣3的是()A.x2﹣3x+3=0B.x2+3x+3=0C.x2+3x﹣3=0D.x2+6x﹣4=0【分析】利用判别式的意义对A、B进行判断;根据根与系数的关系对C、D进行判断.【解答】解:A、△=(﹣3)2﹣4×3<0,方程没有实数解,所以A选项错误;B、△=32﹣4×3<0,方程没有实数解,所以B选项错误;C、方程x2+3x﹣3=0的两根之和为﹣3,所以C选项正确;D、方程x2+6x﹣4=0的两根之和为﹣6,所以D选项错误.故选:C.6.(3分)如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为()A.25°B.40°C.35°D.30°【分析】连接AC,OD,得到∠ACB是直角,求出∠ACD的度数,可求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【解答】解:连接AC,OD,∵AB是直径,∴∠ACB=90°,∴∠ACD=125﹣90°=35°,∴∠AOD=2∠ACD=70°,∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°,∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.7.(3分)抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c 的图象相比较看是否一致.【解答】解:A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y 轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选:D.8.(3分)如图,矩形ABCD中,BC=4,CD=2,O为AD的中点,以AD为直径的弧DE 与BC相切于点E,连接BD,则阴影部分的面积为()A.πB.C.π+2D.+4【分析】连接OE交BD于F,如图,利用切线的性质得到OE⊥BC,再证明四边形ODCE 和四边形ABEO都是正方形得到BE=1,∠DOE=∠BEO=90°,易得△ODF≌△EBF,所以S△ODF=S△EBF,然后根据扇形的面积公式,利用阴影部分的面积=S扇形EOD计算即可.【解答】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故选:A.9.(3分)如图,在平面直角坐标系内,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的正半轴上,点F在BA上,点B、E均在反比例函数y=(k≠0)的图象上,若点B的坐标为(1,6),则正方形ADEF的边长为()A.1B.2C.4D.6【分析】由点B的坐标利用反比例函数图象上点的坐标特征即可求出k值,设正方形ADEF 的边长为a,由此即可表示出点E的坐标,再根据反比例函数图象上点的坐标特征即可得出关于a的一元二次方程,解之即可得出结论.【解答】解:∵点B的坐标为(1,6),∵反比例函数y=的图象过点B,∴k=1×6=6.设正方形ADEF的边长为a(a>0),则点E的坐标为(1+a,a),∵反比例函数y=的图象过点E,∴a(1+a)=6,解得:a=2或a=﹣3(舍去),∴正方形ADEF的边长为2.故选:B.10.(3分)二次函数y=ax2+bx+c的部分对应值如表x﹣3﹣2﹣1012y﹣705898利用该二次函数的图象判断,当函数值y>0时,x的取值范围是()A.0<x<8B.x<0或x>8C.﹣2<x<4D.x<﹣2或x>4【分析】函数值y=0对应的自变量值是:﹣1、3,在它们之间的函数值都是正数.由此可得y>0时,x的取值范围.【解答】解:由表中的数据知,抛物线顶点坐标是(1,9),当x<1时,y的值随x的增大而增大,当x>1时,y的值随x的增大而减小,则该抛物线开口方向向上,所以根据抛物线的对称性质知,点(﹣2,0)关于直线直线x=1对称的点的坐标是(4,0).所以,当函数值y>0时,x的取值范围是﹣2<x<4.故选:C.11.(3分)如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为()A.1B.2C.D.【分析】作D点关于AB的对称点E,路径OC、OE、CE,CE交AB于P′,如图,利用对称的性质得到P′E=P′D,=,再根据两点之间线段最短判断点P点在P′时,PC+PD的值最小,接着根据圆周角定理得到∠BOC=60°,∠BOE=30°,然后通过证明△COE为等腰直角三角形得到CE的长即可.【解答】解:作D点关于AB的对称点E,路径OC、OE、CE,CE交AB于P′,如图,∵点D与点E关于AB对称,∴P′E=P′D,=∴P′C+P′D=P′C+P′E=CE,∴点P点在P′时,PC+PD的值最小,最小值为CE的长度,∵∠BOC=2∠CAB=2×30°=60°,而D为的中点,∴∠BOE=∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE为等腰直角三角形,∴CE=OC=,∴PC+PD的最小值为.故选:C.12.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x 轴的交点为(x1,0)、(x2,0),其中0<x2<1,有下列结论:①b2﹣4ac>0;②4a﹣2b+c >﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=0.其中,正确的结论有()A.①③④B.①②④C.③④⑤D.①③⑤【分析】根据函数图象和二次函数的性质,可以判断各个小题中的结论是否成立,本题得以解决.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,∴b2﹣4ac>0,故①正确;∵该函数图象的对称轴是x=﹣1,当x=0时的函数值小于﹣1,∴x=﹣2时的函数值和x=0时的函数值相等,都小于﹣1,∴4a﹣2b+c<﹣1,故②错误;∵该函数图象的对称轴是x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x2<1,∴﹣3<x,1<﹣2,故③正确;∵当x=﹣1时,该函数取得最小值,∴当m为任意实数时,a﹣b≤am2+bm,故④正确;∵﹣=﹣1,∴b=2a,∵x=1时,y=a+b+c>0,∴3a+c>0,故⑤错误;故选:A.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分)13.(3分)抛物线y=x2﹣6x+5的顶点坐标为(3,﹣4).【分析】用配方法将抛物线的一般式转化为顶点式,可求顶点坐标.【解答】解:∵y=x2﹣6x+5=(x﹣3)2﹣4,∴抛物线顶点坐标为(3,﹣4).故答案为(3,﹣4).14.(3分)圆内接正六边形的边长为6,则该正六边形的边心距为3.【分析】根据题意画出图形,利用等边三角形的性质及锐角三角函数的定义直接计算即可.【解答】解:如图所示,连接OB、OC,过O作OG⊥BC于G,∵此多边形是正六边形,∴△OBC是等边三角形,∴∠OBG=30°,∴边心距OG=OB•sin∠OBG=6×=3(cm);故答案为:3.15.(3分)如图,AB为⊙O的直径,点D是弧AC的中点,弦BD,AC交于点E,若DE =2,BE=4,则tan∠ABD=.【分析】根据圆周角定理得到∠DAC=∠B,得到△ADE∽△BDA,根据相似三角形的性质求出AD,根据正切的定义解答即可.【解答】解:∵点D是弧AC的中点,∴=,∴∠DAC=∠ABD,又∠ADE=∠BDA,∴△ADE∽△BDA,∴=,即=,解得,AD=2,∵AB为⊙O的直径,∴∠ADB=90°,∴tan∠ABD=tan∠DAE===,故答案为:.16.(3分)点A(﹣2,y1),B(0,y2),C(,y3)是二次函数y=ax2﹣ax(a是常数,且a<0)的图象上的三点,则y1,y2,y3的大小关系为y1<y3<y2(用“<”连接).【分析】求出抛物线的对称轴,求出A关于对称轴的对称点的坐标,根据抛物线的开口方向和增减性,即可求出答案.【解答】解:y=ax2﹣ax(a是常数,且a<0),对称轴是直线x=﹣=,即二次函数的开口向下,对称轴是直线x=,即在对称轴的左侧y随x的增大而增大,C点关于直线x=1的对称点是(1﹣,y3),∵﹣2<1﹣<0,∴y1<y3<y2,故答案为y1<y3<y2.17.(3分)已知实数m,n满足等式m2+2m﹣1=0,n2+2n﹣1=0,那么求+的值是2或﹣6.【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:m、n是方程x2+2x﹣1=0的两根,当m≠n时,∴m+n=﹣2,mn=﹣1,∴原式====﹣6,当m=n时,∴原式=1+1=2,故答案为:2或﹣6.18.(3分)如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则k=﹣8.【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根据相似三角形的性质得出比例式,再由tan∠CAB=2,可得出CF•OF的值,进而得到k的值.【解答】解:如图,连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,∵由直线AB与反比例函数y=的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴==,∵tan∠CAB==2,∴CF=2AE,OF=2OE.又∵AE•OE=2,CF•OF=|k|,∴k=±8.∵点C在第二象限,∴k=﹣8,故答案为﹣8.三、解答题(本题共7小题,共66分,解答应写出文字说明、证明过程或推演步骤)19.(8分)已知关于x的方程x2﹣(m+2)x+2m=0.(1)若该方程的一个根为x=1,求m的值;(2)求证:不论m取何实数,该方程总有两个实数根.【分析】(1)将x=1代入方程中即可求出答案.(2)根据根的判别式即可求出答案.【解答】解:(1)将x=1代入原方程可得1﹣(m+2)+2m=0,解得:m=1.(2)由题意可知:△=(m+2)2﹣4×2m=(m﹣2)2≥0,不论m取何实数,该方程总有两个实数根20.(8分)如图,一次函数y1=k1x+b与反比例函数y2=的图象交于点A(a,﹣2)和B(2,3),且直线AB交y轴于点C,连接OA、OB.(1)求反比例函数的解析式和点A的坐标;(2)根据图象直接写出:当x在什么范围取值时,y1<y2.【分析】(1)把点B的坐标代入y2=,利用待定系数法求反比例函数解析式即可,把点A的坐标代入反比例函数解析式进行计算求出a的值,从而得到点A的坐标;(2)写出一次函数图象在反比例函数图象下方的x的取值范围即可.【解答】解:(1)一次函数y1=k1x+b与反比例函数y2=的图象交于点B(2,3),∴3=,∴k2=6,∴反比例函数的解析式为y=,∵A(a,﹣2)在y=的图象上,∴﹣2=,∴a=﹣3,∴点B的坐标为A(﹣3,﹣2);(2)根据图象得,当x<﹣3或0<x<2时,y1<y2.21.(8分)某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆,据统计,第一个月进馆200人次,此后进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不得超过400人次,若进馆人次的月平均增长率不变,到第几个月时,进馆人数将超过学校图书馆的接纳能力,并说明理由.【分析】(1)先分别表示出第二个月和第三个月的进馆人次,再根据第三个月进馆达到288次,列方程求解;(2)根据(1)所计算出的月平均增长率,计算出第五个月的进馆人次,再与400比较大小即可.【解答】解:(1)设进馆人次的月平均增长率为x,根据题意,得:200 (1+x)2=288解得x1=0.2;x2=﹣2.2(舍去).答:进馆人次的月平均增长率为20%.(2)第四个月进馆人数为288(1+0.2)=345.6(人次),第五个月进馆人数为288(1+0.2)2=414.72(人次),由于400<414.72答:到第五个月时,进馆人数将超过学校图书馆的接纳能力.22.(8分)超速行驶被称为“马路第一杀手”,为了让驾驶员自觉遵守交通规则,市公路检测中在一事故多发地段安装了一个测速仪器,如图所示,已知检测点A设在距离公路BC20米处,∠B=45°,∠C=30°,现测得一辆汽车从B处行驶到C处所用时间为2.7秒.(1)求B,C之间的距离(结果保留根号);(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:1.7,≈1.4)【分析】(1)如图作AD⊥BC于D.则AD=20m,求出CD、BD即可解决问题.(2)求出汽车的速度和此地限速为80km/h比较大小,即可解决问题,注意统一单位.【解答】解:(1)如图作AD⊥BC于D.则AD=10m,在Rt△ABD中,∵∠B=45°,∴BD=AD=10m,在Rt△ACD中,∵∠C=30°,∴tan30°=,∴CD=AD=20m,∴BC=BD+DC=(20+20)m.(2)结论:这辆汽车没超速.理由如下:∵BC=BD+DC=(20+20)BC=≈54m,∴汽车速度==20m/s=72km/h,∵72km/h<80km/h,∴这辆汽车没超速.23.(10分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA.【分析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似即可得证;【解答】证明:(1)∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA.24.(12分)果农周大爷家的红心猕猴桃深受广大顾客的喜爱,猕猴桃成熟上市后,他记录了10天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系如图所示,日销量P(千克)与时间第x天(x为整数)的部分对应值如表所示:时间第x天135710日销售量P(千克)220260300340400(1)请直接写出p与x的函数关系式及自变量x的取值范围;(2)求y与x的函数关系式,并写出自变量x的取值范围;(3)在这10天中,哪一天销售额达到最大,最大销售额是多少元.【分析】(1)从表格中的数据上看,是成一次函数,且也是分段函数,同理可得p与x 的函数关系式;(2)是分段函数,利用待定系数法可得y与x的函数关系式;(3)根据销售额=销量×销售单价,列函数关系式,并配方可得结论;【解答】解:(1)由表格规律可知:p与x的函数关系是一次函数,∴设解析式为:p=kx+b,把(1,220)和(3,260)代入得:,∴,∴p=20x+200,综上,p与x的函数关系式为:p=20x+200(0<x≤10且x为整数)(2)当0<x≤8时,设AB的解析式为:y=kx+b(k≠0)把A(2,13)和B(8,10)代入得:,解得:,∴AB的解析式为:y=﹣x+14(k≠0);综上,y与x(x为整数)的函数关系式为:y=;(3)设销售额为w元,当0<x≤8时,w=py=(﹣x+14)(20x+200)=﹣10x2+180x+2800=﹣10(x﹣9)2+3610,∵x是整数且0<x≤8,∴当x=8时,w有最大值为:﹣80(4﹣9)2+3610=3600,当5<x≤10时,w=py=9(30x+200)=270x+1800,∵x是整数,270>0,∴当8<x≤10时,w随x的增大而增大,∴当x=10时,w有最大值为:200×10+2000=4000,∵3600<4000∴在这10天中,第10天销售额达到最大,最大销售额是4000元.25.(12分)如图,抛物线y=x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,﹣3),对称轴为x=1,点D与C关于抛物线的对称轴对称.(1)求抛物线的解析式及点D的坐标;(2)点P是抛物线上的一点,当△ABP的面积是8时,求出点P的坐标;(3)点M为直线AD下方抛物线上一动点,设点M的横坐标为m,当m为何值时,△ADM的面积最大?并求出这个最大值.【分析】(1)由抛物线y=x2+bx+c的对称轴为x=1,求出b的值,再由点C的坐标求出c的值即可;(2)先求出点A,点B的坐标,设点P的坐标为(s,t),因为△ABP的面积是S,根据三角形的面积公式可求出t的值,再将t的值代入抛物线解析式即可;(3)求出直线AD的解析式,过点M作MN∥y轴,交AD于点N,所以点M的坐标为(m,m2﹣2m﹣3),点N的坐标为(m,﹣m﹣1),用含m的代数式表示出△AMN的面积,由二次函数的图象及性质可确定当m=时,△AMD的最大值为.【解答】解:(1)∵抛物线y=x2+bx+c的对称轴为x=1,∴﹣=1,∴b﹣=2,∵抛物线与y轴交于点C(0,﹣3),∴c=﹣3,∴抛物线的解析式为y=x2﹣2x﹣3,∴抛物线的对称轴为直线x=1,∵点D与C关于抛物线的对称轴对称,∴点D的坐标为(2,﹣3);(2)当y=0时,x2﹣2x﹣3=0,解得,x1=﹣1,x2=3,∴点A的坐标为(﹣1,0),点B的坐标为(3,0),∴AB=3﹣(﹣1)=4,设点P的坐标为(s,t),∵△ABP的面积是8,∴AB•|y P|=8,即×4|t|=8,∴t=±4,当t=4时,s2﹣2s﹣3=4,解得,s1=1﹣2,s2=1+2,∴点P的坐标为(1﹣2,4)或(1+2,4);当t=﹣4时,s2﹣2s﹣3=﹣4,解得,s1=s2=1,∴点P的坐标为(1,﹣4);∴当△ABP的面积是8时,点P的坐标为(1﹣2,4)或(1+2,4)或(1,﹣4);(3)设直线AD的解析式为y=kx+b1,将A(﹣1,0),D(2,﹣3)代入y=kx+b1,得,,解得,,∴直线AD的解析式为y=﹣x﹣1,过点M作MN∥y轴,交AD于点N,∵点M的横坐标是m,(﹣1<m<2),∴点M的坐标为(m,m2﹣2m﹣3),点N的坐标为(m,﹣m﹣1),∴MN=﹣m﹣1﹣(m2﹣2m﹣3)=﹣m2+m+2,∴S△AMD=S△AMN+S△DMN=MN•(m+1)+MN•(2﹣m)=MN=(﹣m2+m+2)=﹣(m﹣)2+,∵﹣1<0,﹣1<<2,∴当m=时,S△AMD=,∴当m=时,△AMD的最大值为.。
(高清版)2019年山东省潍坊中考数学试卷
4.【答案】A 【解析】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图
和左视图没有发生改变;
【考点】简单组合体的三视图
5.【答案】B
【解析】解:∵ 7 2.646 ,∴与 7 最接近的是 2.6 ,
【考点】计算器基础知识
6.【答案】D
【解析】解:A、 3ax2 6ax 3axx 2 ,故此选项错误;
()
A.10.02 亿
B.100.2 亿
C.1 002 亿
D.10 020 亿
4.如图是由 10 个同样大小的小正方体摆成的几何体.将小正方体①
移走后,则关于新几何体的三视图描述正确的是 ( )
题 A.俯视图不变,左视图不变
B.主视图改变,左视图改变
C.俯视图不变,主视图不变
D.主视图改变,俯视图改变 无
B、 x2 y2 ,无法分解因式,故此选项错误;
数学试卷 第 9页(共 22页)
C、 a2 2ab 4b2 ,无法分解因式,故此选项错误;
D、 ax2 2ax a a x 12 ,正确.
【考点】提取公因式法以及公式法分解因式
7.【答案】B 【解析】解:这 10 个周的综合素质评价成绩的中位数是 97 98 97.5 (分),
分别为 1,2,3,…,按照“加 1”依次递增;一组平行线, l0 , l1 , l2 , l3 ,…都
与 x 轴垂直,相邻两直线的间距为 l ,其中 l0 与 y 轴重合若半径为 2 的圆与 l1 在第一
象限内交于点 P1 ,半径为 3 的圆与 l2 在第一象限内交于点 P2 ,…,半径为 n 1 的圆
D. ax2 2ax a= a x 12
7.小莹同学 10 个周的综合素质评价成绩统计如下:
九年级上册潍坊数学期末试卷测试题(Word版 含解析)
九年级上册潍坊数学期末试卷测试题(Word 版 含解析)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .247 2.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠ 3.方程 x 2=4的解是( )A .x 1=x 2=2B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-4 4.下列是一元二次方程的是( )A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 5.如图,等腰直角三角形ABC 的腰长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B 和A →C 的路径向点B 、C 运动,设运动时间为x (单位:s),四边形PBC Q 的面积为y(单位:cm 2),则y 与x(0≤x≤4)之间的函数关系可用图象表示为( )A .B .C .D .6.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,2 7.一元二次方程x 2=9的根是( )A .3B .±3C .9D .±9 8.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:19.△ABC 的外接圆圆心是该三角形( )的交点.A.三条边垂直平分线B.三条中线C.三条角平分线D.三条高10.将二次函数y=x2的图象沿y轴向上平移2个单位长度,再沿x轴向左平移3个单位长度,所得图象对应的函数表达式为()A.y=(x+3)2+2B.y=(x﹣3)2+2C.y=(x+2)2+3D.y=(x﹣2)2+3 11.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50°B.60°C.65°D.75°12.下列方程中,有两个不相等的实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=0二、填空题13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是_____cm2.14.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.15.O的半径为4,圆心O到直线l的距离为2,则直线l与O的位置关系是______. 16.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l 将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=________.17.已知三点A(0,0),B(5,12),C(14,0),则△ABC内心的坐标为____.18.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)19.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m . 20.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .21.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.22.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______.23.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 .24.如图,一次函数y =x 与反比例函数y =k x(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题25.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率:(1)两辆车中恰有一辆车向左转;(2)两辆车行驶方向相同.26.如图,在△ABC 中,AB=AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点,取EF 中点G ,连接DG 并延长交AB 于点M ,延长EF 交AC 于点N 。
潍坊市九年级上学期数学期末考试试卷
潍坊市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·宁波期末) 关于抛物线,下列说法错误的是()A . 顶点坐标为B . 对称轴是直线C . 若,则随的增大而增大D . 当时,2. (2分)如图,所示的几何体的主视图是()A .B .C .D .3. (2分) (2020九下·云南月考) 若关于x的方程有两个相等的实数根,则m的取值为()A . m=B . m=-C . m=D . 无法确定4. (2分)如图,在⊙O中,= ,∠AOB=40°,则∠ADC的度数是()A . 40°B . 30°C . 20°D . 15°5. (2分)(2017·曹县模拟) 某学习小组10名学生参加数学竞赛,他们的得分情况如下表:人数(人)2341分数(分)80859095那么这10名学生所得分数的众数和中位数分别是()A . 90,90B . 90,85C . 90,87.5D . 85,856. (2分)一个圆锥的侧面积是底面积的4倍,则圆锥侧面展开图的扇形的圆心角是A . 60°B . 90°C . 120°D . 180°7. (2分)以▱ABCD的四条边为边,在其形外分别作正方形,如图,连接EF、GH、IJ、KL.若▱ABCD的面积为5,则图中阴影部分四个三角形的面积和为()A . 5B . 10C . 15D . 208. (2分) (2019九上·温州期中) 如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是()A . y=x2+1B . y=x2﹣1C . y=(x+1)2D . y=(x﹣1)2 .9. (2分)(2015·金华) 如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A .B .C .D . 210. (2分) (2016九上·重庆期中) 抛物线y=x2﹣2x+1的对称轴是()A . 直线x=1B . 直线x=﹣1C . 直线x=2D . 直线x=﹣2二、填空题 (共6题;共7分)11. (1分)要使式子在实数范围有意义,则x的取值范围为________ .12. (1分)如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC=________.13. (1分) (2019八下·北京期中) 在平面直角坐标系中,过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长与面积相等,则这个点叫做“和谐点”.如图1,矩形ABOC的周长与面积相等,则点A是“和谐点”,(1)点,其中“和谐点”是________;(2)如图2,若点是双曲线上的“和谐点”,请直接写出所有满足条件的P点坐标________.14. (1分) (2017八下·无棣期末) 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为________.15. (1分) (2019八下·芜湖期末) 矩形ABCD内一点P到顶点A、B、C的长分别是1、2、3,则PD=________.16. (2分) (2019七下·长春期末) 如图,是等边三角形,点,分别在、边上,且.(1)求证:.(2)求的度数.三、解答题 (共8题;共88分)17. (5分)计算:|﹣3|﹣ + ﹣.18. (15分)(2017·河北模拟) 如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC (结果精确到1m).19. (10分)已知,如图:反比例函数y= 的图象经过点A(﹣3,b)过点A作x轴的垂线,垂足为B,S△AOB=3.(1)求k,b的值;(2)若一次函数y=ax+1的图象经过点A,且与x轴交于M,求AM的长.20. (7分) (2017七下·钦北期末) 体育委员统计了全班同学60秒跳绳的次数,并列出頻数分布表.次数60≤x<8080≤x<100100≤x<120120≤x<140140≤x<160160≤x<180頻数24211384(1)全班有多少学生?(2)组距是多少?组数是多少?(3)跳绳次数x在120≤x<160范围的学生有多少?21. (15分) (2018九上·杭州期末) 如图,等边△ABC中,点D是BC上任意点,以AD为边作∠ADE=∠ADF=60°,分别交AC,AB于点E,F.(1)求证:AD2=AE×AC(2)已知BC=2,设BD的长为x,AF的长为y,求y关于x的函数表达式.22. (15分)(2020·武汉模拟) 鄂尔多斯市某百货商场销售某一热销商品A,其进货和销售情况如下:用16000元购进一批该热销商品A,上市后很快销售一空,根据市场需求情况,该商场又用7500元购进第二批该商品,已知第二批所购件数是第一批所购件数的一半,且每件商品的进价比第一批的进价少10元.(1)求商场第二批商品A的进价;(2)商场同时销售另一种热销商品B,已知商品B的进价与第二批商品A的进价相同,且最初销售价为165元,每天能卖出125件,经市场销售发现,若售价每上涨1元,其每天销售量就减少5件,问商场该如何定售价,每天才能获得最大利润?并求出每天的最大利润是多少?23. (6分)(2017·六盘水) 已知函数y=kx+b,y= ,b、k为整数且|bk|=1.(1)讨论b,k的取值.(2)分别画出两种函数的所有图象.(不需列表)(3)求y=kx+b与y= 的交点个数.24. (15分)(2016·黔东南) 如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.(1)求该抛物线的解析式;(2)连接PB、PC,求△PBC的面积;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、13-2、14-1、15-1、16-1、16-2、三、解答题 (共8题;共88分) 17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
山东省2019年九年级中考考试数学试卷(有答案)
2019年九年级第一次模拟考试数学练习试卷一、选择题(48分):1、如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习2、已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>13、下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④4、一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×1085、如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是()A.62°B.108°C.118°D.152°6、如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.A.(﹣1,5)B.(﹣2,5)C.(﹣1,4)D.(﹣1,3)7、下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定8、下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4)B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2 D.x2﹣4x+4=(x+2)(x﹣2)9、欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10、如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.11、如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个12、如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B 作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.5二、填空题(40分):13、如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.14、已知a、b满足(a﹣1)2+=0,则a+b=.15、某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为.16、如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为.17、如图,平行四边形ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()18、如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是.19、如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=.20、如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为.21、如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.22、如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=.三、解答题(62分):23、计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)024、如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,求阴影部分的面积25、汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)26、对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大数,例如:M{﹣2,﹣1,0}=﹣1,max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=解决问题:(1)填空:M{sin45°,cos60°,tan60°}=,如果max{3,5﹣3x,2x﹣6}=3,则x的取值范围为;(2)如果2•M{2,x+2,x+4}=max{2,x+2,x+4},求x的值;(3)如果M{9,x2,3x﹣2}=max{9,x2,3x﹣2},求x的值.27、已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.28、为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?2019年九年级第一次模拟考试数学练习试卷参考答案一、选择题:1、B2、A3、C4、D5、C6、A7、C8、C9、B10、C11、A12、A二、填空题:13、540°或360°或180°14、-115、180元16、39°17、1518、110°19、15/4 或30/720、a+b﹣c21、x=222、()n三、解答题:23、4.24、25、该车没有超速.26、(1),;(2)x的值为﹣3或0;(3)x=3或﹣3.27、略28、(1)当4≤x≤6时,w1=﹣x2+12x﹣35,当6≤x≤8时,w2=﹣x2+7x﹣23;(2)即最快在第7个月可还清10万元的无息贷款.。
2018-2019学年九年级(上)期末数学试卷(有答案和解析)
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。
山东省潍坊市九年级上学期期末数学试卷(a卷)
山东省潍坊市九年级上学期期末数学试卷(a卷)姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019九上·西城期中) 将二次函数用配方法化成的形式,下列结果中正确的是()A .B .C .D .2. (2分)经计算整式与的积为,则的所有根为()A .B .C .D .3. (2分)如果点P1(a,3)和P2(﹣4,b)关于原点对称,则a+b的值为()A . 1B . -1C . 7D . -74. (2分)已知⊙O的半径为r,圆心O到直线l的距离为d.若直线l与⊙O有交点,则下列结论正确的是()A . d =rB . d <rC . d>rD . d ≤r5. (2分)如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB()A . 是正方形B . 是长方形C . 是菱形D . 以上答案都不对6. (2分)下列事件是随机事件的是()A . 购买一张福利彩票,中奖B . 在一个标准大气压下,加热到100℃,水沸腾C . 有一名运动员奔跑的速度是80米/秒D . 在一个仅装着白球和黑球的袋中摸球,摸出红球7. (2分)下列函数中,反比例函数是()A . y=x+1B . y=C . =1D . 3xy=28. (2分)(2016·海南) 某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是()A . 该村人均耕地面积随总人口的增多而增多B . 该村人均耕地面积y与总人口x成正比例C . 若该村人均耕地面积为2公顷,则总人口有100人D . 当该村总人口为50人时,人均耕地面积为1公顷二、填空题 (共7题;共7分)9. (1分) (2016八上·临海期末) 如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m<360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为________10. (1分) (2018九上·安定期末) 如图,某单位准备将院内一块长30m,宽20m的长方形花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图,要使种植花草的面积为532m2 ,设小道进出口的宽度为x m,根据条件,可列出方程:________.11. (1分) (2019九上·鱼台期末) 如图,点0为正六边形ABCDEF的中心,点M为AF中点,以点0为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON 的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2 ,则r1:r2=________12. (1分)某班学生分组做抛掷瓶盖实验,各组实验结果如下表:累计抛掷次数100200300400500盖面朝上次数54105158212264盖面朝上频率0.54000.52500.52670.53000.5280根据表中的信息,估计掷一枚这样的瓶盖,落地后盖面朝上的概率为________ .(精确到0.01)13. (1分)(2017·荔湾模拟) 双曲线y=﹣上有三点(﹣1,y1),(﹣,y2),(,y3),则y1、y2、y3的大小关系是________.(请用“>”连接)14. (1分)如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是________15. (1分)一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5(t ﹣1)2+6,则小球距离地面的最大高度是________ .三、解答题 (共8题;共78分)16. (15分)(2019·禅城模拟) 如图,平行四边形ABCD中,AC=BC ,过A、B、C三点的⊙O与AD相交于点E ,连接CE .(1)证明:AB=CE;(2)证明:DC与⊙O相切;(3)若⊙O的半径r=5,AB=8,求sin∠ACE的值.17. (10分) (2017九上·金华开学考) 如图,小华和小丽两人玩游戏,她们准备了A、B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜.(1)用树状图或列表法求小华、小丽获胜的概率;(2)这个游戏规则对双方公平吗?请判断并说明理由.18. (6分)(2018·安徽) 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)①在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段 ;②将线段绕点逆时针旋转90°得到线段 .画出线段 ;(2)以为顶点的四边形的面积是________个平方单位.19. (15分) (2018·东莞模拟) 如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.20. (5分)在学校组织的实践活动中,小明同学用纸板制作了一个如图所示的圆锥模型,它的底面积半径为1,高为,则这个圆锥的侧面积为.(结果保留π)21. (10分)已知抛物线y=﹣x2+2x+2(1)求该抛物线的对称轴、顶点坐标以及y随x变化情况;(2)在如图的直角坐标系内画出该抛物线的图象.22. (7分) (2016八下·洪洞期末) 如图,直线与轴、轴分别相交于点A和B.(1)直接写出坐标:点A________,点B________;(2)以线段AB为一边在第一象限内作□ABCD,其顶点D( , )在双曲线( > )上.①求证:四边形ABCD是正方形;②试探索:将正方形ABCD沿轴向左平移多少个单位长度时,点C恰好落在双曲线( > )上.23. (10分)(2017·浦东模拟) 已知:如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B、C 在第一象限,且四边形OABC是平行四边形,OC=2 ,sin∠AOC= ,反比例函数y= 的图象经过点C以及边AB的中点D.(1)求这个反比例函数的解析式;(2)四边形OABC的面积.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共7题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共78分)16-1、16-2、16-3、17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、22-1、22-2、23-1、23-2、。
山东省潍坊市潍城区九年级(上)期末数学试卷(解析版)
2019-2019学年山东省潍坊市潍城区九年级(上)期末数学试卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,满分36分、多选、不选、错选均记零分)1.tan60°的值等于()A.B.C.D.2.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°3.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=94.如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan∠CAB的值为()A.1B.C.D.5.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰6.半径为6,圆心角为120°的扇形的面积是()A.3πB.6πC.9πD.12π7.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b8.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BE C.BD=BC D.△BDE∽△CAE 9.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2B.x>4C.﹣2<x<4D.x>010.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点11.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm12.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.二、填空题(本题共6小题,要求将每小题的最后结果写在答题卡上每小题4分,满分24分)13.正六边形的每个外角是度.14.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x1+x2=.15.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.16.已知A(﹣1,y1)、B(﹣2,y2)都在抛物线y=x2+1上,试比较y1与y2的大小:y1y2.17.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为.18.如图,AB是圆O的直径,C是AB的一个四等分点,过C作AB的垂线交圆O于M,N两点,连结MB,则cos∠MBA=.三、解答题(本题共7小题,解答应写出文字说明、证明过程或推演步骤.共60分)19.(10分)对于抛物线y=x2﹣4x+3.(1)它与x轴交点的坐标为,与y轴交点的坐标为,顶点坐标为.(2)在坐标系中利用描点法画出此抛物线;x……y……20.(10分)某校中午学生用餐比较拥挤,为建议学校分年级错时用餐,李老师带领数学学习小组在某天随机调查了部分学生,统计了他们从下课到就餐结束所用的时间,并绘制成统计表和如图所示的不完整统计图.根据以上提供的信息,解答下列问题:(1)表中a=,b=,c=,补全频数分布直方图;(2)此次调查中,中位数所在的时间段是min.时间分段/min 频(人)数百分比10≤x<15820%14a15≤x<201025%20≤x<25b12.50%25≤x<3037.50%30≤x<35合计c100%(3)这所学校共有1200人,试估算从下课到就餐结束所用时间不少于20min的共有多少人?21.(7分)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,求调整后的楼梯AC的长.22.(8分)有两个构造完全相同(除所标数字外)的转盘A、B.(1)单独转动A 盘,指向奇数的概率是;(2)小红和小明做了一个游戏,游戏规定,转动两个转盘各一次,两次转动后指针指向的数字之和为奇数则小红获胜,数字之和为偶数则小明获胜,请用树状图或列表说明谁获胜的可能性大.23.(8分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°.求证:△ADE是等腰三角形.24.(8分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.25.(9分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?2019-2019学年山东省潍坊市潍城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,满分36分、多选、不选、错选均记零分)1.tan60°的值等于()A.B.C.D.【分析】求得60°的对边与邻边之比即可.【解答】解:在直角三角形中,若设30°对的直角边为1,则60°对的直角边为,tan60°==,故选:D.【点评】考查特殊角的三角函数值;熟练掌握特殊角的三角函数值是解决此类问题的关键.2.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=40°,再由圆周角定理即可得出结论.【解答】解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选:C.【点评】本题考查了圆心角、弧、弦的关系,圆周角定理;熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.3.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=9【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan∠CAB的值为()A.1B.C.D.【分析】根据正切是对边比邻边,可得答案.【解答】解:如图,tan∠CAB==,故选:C.【点评】本题考查了锐角三角函数的定义,利用正切函数等于对边比邻边是解题关键.5.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰【分析】不可能事件是指在一定条件下,一定不发生的事件.【解答】解:A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选:D.【点评】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.半径为6,圆心角为120°的扇形的面积是()A.3πB.6πC.9πD.12π【分析】根据扇形的面积公式S=计算即可.【解答】解:S==12π,故选:D.【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式S=是解题的关键.7.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b【分析】利用反比例函数的增减性可判断a和b的大小关系,可求得答案.【解答】解:∵k>0,∴当x>0时,反比例函数y随x的增大而减小,∵1<3,∴a>b,故选:D.【点评】本题主要考查反比例函数的性质,掌握反比例函数在各象限内的增减性是解题的关键.8.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BE C.BD=BC D.△BDE∽△CAE【分析】根据垂径定理及圆周角定理进行解答即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,故A正确;∵点E不一定是OB的中点,∴OE与BE的关系不能确定,故B错误;∵AB⊥CD,AB是⊙O的直径,∴BD=BC,故C正确;∵∠D=∠A,∠DEB=∠AEC,∴△BDE∽△CAE,故D正确.故选:B.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.9.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2B.x>4C.﹣2<x<4D.x>0【分析】由抛物线与x轴的交点坐标,结合图象即可解决问题.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,函数开口向下,∴函数值y>0时,自变量x的取值范围是﹣2<x<4,故选:C.【点评】本题考查抛物线与x轴的交点,解题的关键是学会根据图象确定自变量的取值范围,属于中考常考题型.10.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点式为y=a(x ﹣)2+,的顶点坐标是(﹣,),对称轴直线x=﹣b2a,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下.11.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm【分析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【解答】解:∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则=60π,解得:r=40cm,故选:A.【点评】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.12.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.【分析】分P在AB、BC、CD、AD上四种情况,表示出y与x的函数解析式,确定出大致图象即可.【解答】解:设正方形的边长为a,当P在AB边上运动时,y=ax;当P在BC边上运动时,y=a(2a﹣x)=﹣ax+a2;当P在CD边上运动时,y=a(x﹣2a)=ax﹣a2;当P在AD边上运动时,y=a(4a﹣x)=﹣ax+2a2,大致图象为:故选:C.【点评】此题考查了动点问题的函数图象,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二、填空题(本题共6小题,要求将每小题的最后结果写在答题卡上每小题4分,满分24分)13.正六边形的每个外角是60度.【分析】正多边形的外角和是360度,且每个外角都相等,据此即可求解.【解答】解:正六边形的一个外角度数是:360÷6=60°.故答案为:60.【点评】本题考查了正多边形的外角的计算,理解外角和是360度,且每个外角都相等是关键.14.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x1+x2=3.【分析】一元二次方程x2﹣3x﹣2=0的两个实数根分别为x1和x2,根据根与系数的关系即可得出答案.【解答】解:∵一元二次方程x2﹣3x﹣2=0的两个实数根分别为x1和x2,根据韦达定理,∴x1+x2=3,故答案为:3.【点评】本题考查了根与系数的关系,难度不大,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.15.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.【分析】先求出总球的个数,再根据概率公式即可得出答案.【解答】解:∵白球2只,红球6只,黑球4只,∴共有2+6+4=12只,∴取出黑球的概率是=;故答案为:.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.已知A(﹣1,y1)、B(﹣2,y2)都在抛物线y=x2+1上,试比较y1与y2的大小:y1>y2.【分析】先求得函数的对称轴为x=0,再判断A(﹣1,y1),B(﹣2,y2)在对称轴左侧,从而判断出y1与y2的大小关系.【解答】解:∵函数y=x2+1的对称轴为x=0,∴A(﹣1,y1),B(﹣2,y2)在对称轴左侧,∴抛物线开口向上,在对称轴左侧y随x的增大而减小.∵﹣1<﹣2∴y1>y2.故答案为:>.【点评】此题考查了二次函数图象上点的特征,利用已知解析式得出对称轴进而利用二次函数增减性得出是解题关键.17.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S=2,则k的值为4.△AOB【分析】根据S=2利用反比例函数系数k的几何意义即可求出k值,再根据函数在△AOB第一象限有图象即可确定k的符号,此题得解.【解答】解:∵AB⊥x轴于点B,且S=2,△AOB∴S=|k|=2,△AOB∴k=±4.∵函数在第一象限有图象,∴k=4.故答案为:4.【点评】本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.”是解题的关键.18.如图,AB是圆O的直径,C是AB的一个四等分点,过C作AB的垂线交圆O于M,N两点,连结MB,则cos∠MBA=.【分析】首先连接OM,由已知易得∠BOM=60°,继而可得△OBM是等边三角形,继而求得答案.【解答】解:连接OM,∵AB是圆O的直径,C是AB的一个四等分点,∴OC=OM,∵MN⊥AB,∴cos∠BOM==,∴∠BOM=60°,∵OB=OM,∴△OBM是等边三角形,∴∠MBA=60°,∴cos∠MBA=.故答案为:.【点评】此题考查了圆周角定理、等边三角形的判定与性质以及特殊角的三角函数问题.注意准确作出辅助线是解此题的关键.三、解答题(本题共7小题,解答应写出文字说明、证明过程或推演步骤.共60分)19.(10分)对于抛物线y=x2﹣4x+3.(1)它与x轴交点的坐标为(1,0)和(3,0),与y轴交点的坐标为(0,3),顶点坐标为(2,﹣1).(2)在坐标系中利用描点法画出此抛物线;x…01234…y…30﹣103…【分析】(1)利用待定系数法配方法即可解决问题;(2)利用描点法即可解决问题;【解答】解:(1)对于抛物线y=x2﹣4x+3令x=0得到y=3,令y=0得到x2﹣4x+3=0,解得x=1或3,∴与x轴交点的坐标为(1,0)和(3,0),与y轴交点的坐标为(0,3);∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点坐标(2,﹣1),故答案为:(1,0)和(3,0),(0,3),(2,﹣1);(2)取点(0,3),(1,0),(2,﹣1),(3,0),(4,3),利用描点法画出图象如图所示:故答案为0,1,2,3,4,3,0,﹣1,0,3;【点评】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(10分)某校中午学生用餐比较拥挤,为建议学校分年级错时用餐,李老师带领数学学习小组在某天随机调查了部分学生,统计了他们从下课到就餐结束所用的时间,并绘制成统计表和如图所示的不完整统计图.根据以上提供的信息,解答下列问题:(1)表中a=35%,b=5,c=40,补全频数分布直方图;(2)此次调查中,中位数所在的时间段是15≤x<20min.时间分段/min 频(人)数百分比10≤x<15820%15≤x<2014a20≤x<251025%25≤x<30b12.50%30≤x<3537.50%合计c100%(3)这所学校共有1200人,试估算从下课到就餐结束所用时间不少于20min的共有多少人?【分析】(1)根据10≤x<15的有8人,占20%,据此即可求得总人数,然后根据百分比的定义即可求得a,b的值;(2)确定第20和第21名所在的组,即可;(3)总人数乘以后3组人数占总人数的比例即可.【解答】解:(1)调查的总人数是:c=8÷20%=40(人),则a=×100%=35%,b=40×12.5%=5;故答案为:35%,5,40.(2)由(1)知,共40个数据,则其中位数在15≤x<20范围内,故答案为:15≤x<20.(2)所用时间不少于20min的共有:10+5+3=18(人),则估算从下课到就餐结束所用时间不少于20min的共有1200×=540(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(7分)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,求调整后的楼梯AC的长.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC=(m).【点评】本题考查了解直角三角形的应用﹣坡度坡角:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=tanα.22.(8分)有两个构造完全相同(除所标数字外)的转盘A、B.(1)单独转动A盘,指向奇数的概率是;(2)小红和小明做了一个游戏,游戏规定,转动两个转盘各一次,两次转动后指针指向的数字之和为奇数则小红获胜,数字之和为偶数则小明获胜,请用树状图或列表说明谁获胜的可能性大.【分析】(1)由单独转动A盘,共有3种情况,指向奇数的有2种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次转动后指针指向的数字之和为奇数与数字之和为偶数的情况,再利用概率公式即可求得答案.【解答】解:(1)∵单独转动A盘,共有3种情况,指向奇数的有2种情况,∴单独转动A盘,指向奇数的概率是:;故答案为:;(2)画树状图得:∵共有9种等可能的结果,两次转动后指针指向的数字之和为奇数的有5种情况,数字之和为偶数的有4种情况,∴P(小红获胜)=,P(小明获胜)=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°.求证:△ADE是等腰三角形.【分析】连接OD,根据切线的性质求出∠ODC=∠ODE=90°,求出∠A=∠E=30°,根据等腰三角形的判定得出即可.【解答】证明:连接OD,∵CD是⊙O的切线,切点为D,∴∠ODC=∠ODE=90°,∵∠ADC=60°,∴∠ODA=90°﹣60°=30°,∵OA=OC,∴∠A=∠ODA=30°,∴∠DOE=∠A+∠ODA=60°,∴∠E=90°﹣∠DOE=30°,∴∠A=∠E,∴△ADE是等腰三角形.【点评】本题考查了切线的性质、等腰三角形的判定和圆周角定理等知识点,能熟记切线的性质是解此题的关键,注意:圆的切线垂直于过切点的半径.24.(8分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【分析】(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A 点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t 的方程,则可求得P点坐标.【解答】解:(1)把A点坐标代入y=x+2,可得3=m+2,解得m=2,∴A(2,3),∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;(2)在y=x+2中,令y=0可求得x=﹣4,∴C(﹣4,0),∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S=×3|t+4|,△ACP∵△ACP的面积为3,∴×3|t+4|=3,解得t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).【点评】本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.25.(9分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【解答】解:(1)设y=kx+b ,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2019;(3)W=﹣2(x﹣65)2+2019,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.【点评】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.第21页/共21页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B CD EA潍坊市九年级第一学期期末练习含答案数 学学校 班级 姓名 成绩下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项填涂在答题卡相应的位置. 1.抛物线2(1)3y x =-+的顶点坐标是A .(1,3)B .(1-,3)C .(1-,3-)D .(1,3-) 2.如图,在△ABC 中,D 为AB 中点,DE ∥BC 交AC 于E 点,则△ADE 与△ABC 的面积比为 A .11 B .12 C .13D .143.方程20x x -=的解是A .0x =B .1x =C .1201x x ==,D .1201x x ==-, 4.如图,在△ABC 中,∠A =90°.若AB =8,AC =6,则cos C 的值为 A .35B .45C .34D .435.下列各点中,抛物线244y x x =--经过的点是A .(0,4)B .(1,7-)C .(1-,1-)D .(2,8) 6.如图,O 是△ABC 的外接圆,40OCB ∠=︒,则A ∠的大小为 A .40︒ B .50︒C .80︒D .100︒7.一个扇形的圆心角是120°,面积为3πcm 2,那么这个扇形的半径是A .1cmB .3cmC .6cmD .9cm 8.反比例函数3y x=的图象经过点(1-,1y ),(2,2y ),则下列关系正确的是 A .12y y <B .12y y >C .12y y =D .不能确定9.抛物线()21y x t =-+与x 轴的两个交点之间的距离为4,则t 的值是CA BAB COA .1-B .2-C .3-D .4-10.当温度不变时,气球内气体的气压P (单位:Pa )是气体体积V (单位:m 3)的函数,下表记录了一组实验数据:P 与V 的函数关系可能是 A .96P V =B .16112P V =-+C .21696176P V V =-+D .96P V=二、填空题(本题共18分,每小题3分) 11.已知A ∠为锐角,若sin 2A =,则A ∠的大小为 度.12.请写出一个图象在二,四象限的反比例函数的表达式 .13.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OD ,OB =3OC ),然后张开两脚,使A ,B 两个尖端分别在线段l 的两个端点上,若 3.2CD =cm ,则AB 的长为 cm . 14.如图,在平面直角坐标系Oy 中,以原点为位似中心,线段AB与线段A B ''是位似图形,若A (1-,2),B (1-,0),A '(2-,则B '的坐标为 .15.若关于的方程20x mx m -+=有两个相等实根,则代数式22m.16.下面是“用三角板画圆的切线”的画图过程.ECI画法:(1)如图2,将三角板的直角顶点放在圆上任一点C (与点A 不重合)处,使其一直角边经过点A ,另一条直角边与圆交于B 点,连接AB ;(2)如图3,将三角板的直角顶点与点A 重合,使一条直角边经过点B ,画出另一条直角边所在的直线AD .所以直线AD 就是过点A 的圆的切线.请回答:该画图的依据是______________________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:22sin 30-°0(π3)--+.18.如图,在△ABC 中,∠C =90°,E 是BC 上一点,ED ⊥AB ,垂足为D . 求证:△ABC ∽△EBD .19.若二次函数2y x bx c =++的图象经过点(0 1),和(1 2)-,两点,求此二次函数的表达式.20.已知蓄电池的电压U 为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示. (1)求这个反比例函数的表达式;(2)如果以此蓄电池为电的用电器的限制电流不能超过10A ,那么用电器的可变电阻R 应控制在什么范围?请根据图象,直接写出结果 .21.已知矩形的一边长为,且相邻两边长的和为10.(1)求矩形面积S 与边长的函数关系式,并写出自变量的取值范围; (2)求矩形面积S 的最大值.22.如图,热气球探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD 为100米,试求这栋楼的高度BC .23.在矩形ABCD中,AB=3,BC=6,P为BC边上一点,△APD为等腰三角形.(1)小明画出了一个满足条件的△APD,其中P A=PD,如图1所示,则tan BAP∠的值为;(2)请你在图2中再画出一个满足条件的△APD(与小明的不同),并求此时tan BAP∠的值.图1 图224.如图,直线4(0)y ax a=-≠与双曲线kyx=只有一个公共点A(1,2-).(1)求与a的值;(2)若直线+(0)y ax b a=≠与双曲线kyx=有两个公共点,请直接写出b的取值范围.25.如图,AB是⊙O的直径,弦CD⊥AB于点E,AM是△ACD的外角∠DAF的平分线.(1)求证:AM 是⊙O 的切线;(2)若∠D = 60°,AD = 2,射线CO 与AM 交于N写出求ON 长的思路.26.有这样一个问题:探究函数1(1)(2)(3)2y x x x x =---+的性质.(1)先从简单情况开始探究:① 当函数为1(1)2y x x =-+时,y 随x 增大而(填“增大”或“减小”); ② 当函数为1(1)(2)2y x x x =--+时,它的图象与直线y x =的交点坐标为;(2)当函数为1(1)(2)(3)2y x x x x =---+时,下表为其y 与的几组对应值.的图象;②根据画出的函数图象,写出该函数的一条性质:.27.在平面直角坐标系xOy 中,抛物线2443y mx mx m =-++的顶点为A . (1)求点A 的坐标;(2)将线段OA 沿x 轴向右平移2个单位得到线段O A ''. ①直接写出点O '和A '的坐标;②若抛物线2443y mx mx m =-++与四边形AOO A '' 有且只有两个公共点,结合函数的图象,求m 的取 值范围.28.在△ABC 中,AB =AC ,∠BAC =α,点P 是△ABC 内一点,且2PAC PCA α∠+∠=.连接PB ,试探究P A ,PB ,PC 满足的等量关系.P AB CP'AB C P(1)当α=60°时,将△ABP 绕点A 逆时针旋转60°得到ACP '△,连接PP ',如图1所示.由ABP △≌ACP '△可以证得'APP △是等边三角形,再由30PAC PCA ∠+∠=︒可得图1 图2∠APC 的大小为 度,进而得到CPP '△是直角三角形,这样可以得到P A , PB ,PC 满足的等量关系为 ;(2)如图2,当α=120°时,请参考(1)中的方法,探究P A ,PB ,PC 满足的等量关系,并给出证明;(3)P A ,PB ,PC 满足的等量关系为 .29.定义:点P 为△ABC 内部或边上的点,若满足△P AB ,△PBC ,△P AC 至少有一个三角形与△ABC 相似(点P 不与△ABC 顶点重合),则称点P为△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 为△ABC 的自相似点.在平面直角坐标系Oy 中,(1)点A 坐标为(2,), AB ⊥轴于B 点,在E (2,1),F (322),G (122)这三个点中,其中是△AOB 的自相似点的是 (填字母); (2)若点M 是曲线C :k y x=(0k >,0x >)上的一个动点,N 为轴正半轴上一个动点;① 如图2,k =M 点横坐标为3,且NM = NO ,若点P 是△MON 的自相似点,求点P 的坐标;② 若1k =,点N 为(2,0),且△MON 的自相似点有2个,则曲线C 上满足这样条件的点M 共有 个,请在图3中画出这些点(保留必要的画图痕迹).PB CA图1潍坊市九年级第一学期期末练习数 学 答 案一、选择题(本题共30分,每小题3分)11.45;12.1y x =-(答案不唯一);13.9.6;14.(2-,0); 15.1;16.90°的圆周角所对的弦是直径,经过半径外端并且垂直于这条半径的直线是圆的切线. 三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=22112-⨯-+ -------------------------------------------4分. -------------------------------------------------5分 18.证明:∵ED ⊥AB ,∴∠EDB =90°. -------------------------------------------1分 ∵∠C =90°, -----------------------------------------------2分∴∠EDB =∠C . ------------------------------------------3分 ∵∠B =∠B , ---------------------------------------------4分 ∴ABC △∽EBD △. ----------------------------------5分19.解:∵二次函数2y x bx c =++的图象经过(0,1)和(1,2-)两点,∴121c b c =⎧⎨-=++⎩,. --------------------------------------------------2分解得41b c =-⎧⎨=⎩,.-------------------------------------------------------4分∴二次函数的表达式为241y x x =-+. --------------------------------------5分 20.(1)解:设反比例函数的表达式为()0I UU R=≠, 由图象可知函数()0I UU R=≠的图象经过点(9,4), ECA D B∴49U =. ----------------------------------------------------------1分∴36U =. -----------------------------------------------------------2分∴反比例函数的表达式为36I R=(0R >). ------------------------3分 (2) 3.6R ≥.(答 3.6R >得1分,其它错误不得分) -------------------------5分 21.解:(1)()10S x x =-, -----------------------------------------------------2分其中010x <<; ---------------------------------3分(2)()10S x x =-=()2525x --+. -------------------------------------------------------4分∴当5x =时,S 有最大值25. ---------------------------5分22.解:∵90ADB ADC ∠=∠=°,30BAD ∠=°,60CAD ∠=°,AD =100, -------------------2分∴在Rt ABD △中,tan 3BD AD BAD =⋅∠=, --------------3分 在Rt ACD △中,tan CD AD CAD =⋅∠=. --------------4分∴3BC BD CD =+=. ------------------------------------------5分 23.(1)1. ----------------------------------------------2分(2)解法一:B P CA D----------------------------------3分∵矩形ABCD , ∴90B ∠=°.∵AP =AD =6,AB =3,∴在Rt ABP △中,BP ==. ---------------------4分∴tan BAP BPAB∠==. ----------------------------------5分 解法二:B P CA D---------------------------------------------------3分∵矩形ABCD , ∴90B C ∠=∠=°.∵PD =AD =BC =6,AB =CD =3,∴在Rt CPD △中,CP = -----------------------4分∴6BP BC CP =-=-∴在Rt ABP △中,tan 2BAP BPAB∠== ------------------5分 24.(1)∵直线4y ax =-与双曲线y kx=只有一个公共点A (1,2-), ∴2421a k-=--=⎧⎪⎨⎪⎩,. -------------------------------------------1分 ∴22a k ==-⎧⎨⎩,.(2)4b <-或4b >.(答对一个取值范围得1分) ----------------------------5分 25.(1)证明:∵AB ⊥CD ,AB 是⊙O 的直径,∴BC BD =.∴112CAD ∠=∠.∵AM 是∠DAF 的角平分线,∴212DAF ∠=∠.∵180CAD DAF ∠+∠=°, ∴1290OAM ∠=∠+∠=°. ∴OA ⊥AM .∴AM 是⊙O 的切线.-------------------------------------------------2分(2)思路:①由AB ⊥CD ,AB 是⊙O 的直径,可得BC BD =,AC AD =,1132CAD AC AD ∠=∠=∠=,;②由60D ∠=°,=2AD ,可得ACD △为21MNFAC D EBO----------------------------------------------------2分 --------------------------------------------------------------------------------------------------3分 54321MNFAO边长为2的等边三角形,1330∠=∠=°;③由OA OC =,可得3430∠=∠=°; ④由3120CAN OAN ∠=∠+∠=°,可得5430∠=∠=°,2AN AC ==;⑤由OAN △为含有30°的直角三角形,可求ON 的长.(本题方法不唯一) ------------------------------------------------5分26.(1)①增大; ------------------------------------------------------------------------1分 ②(1,1),(2,2); -------------------------------------------------------3分(2)①--------------------------------------------------------------------------------4分(2)该函数的性质:①y 随的增大而增大;②函数的图象经过第一、三、四象限; ③函数的图象与轴y 轴各有一个交点. ……(写出一条即可) --------------------------------------------------------5分27.(1)∵()()2244323y m x x m x =-++=-+,∴抛物线的顶点A 的坐标为(2,3). --------------------------------2分 (2)O '(2,0), --------------------------------------------------------3分A '(4,3). -----------------------------------------------------------------4分 (3)依题意,0m <. --------------------------------------5分将(0,0)代入2443y mx mx m =-++中,得34m =-. --------------------------------------------6分∴304m -<<. --------------------------------------7分28.(1)150, -----------------------------------------------------1分222PA PC PB +=. ----------------------------------3分(2)如图,作120PAP '∠=°,使AP AP '=,连接PP ',CP '.过点A 作AD ⊥PP '于D 点. ∵120BAC PAP '∠=∠=°, 即BAP PAC PAC CAP '∠+∠=∠+∠, ∴BAP CAP '∠=∠. ∵AB =AC ,AP AP '=,∴BAP CAP '△≌△. --------------------------------4分 ∴P C PB '=,180302APD AP D PAP '∠=∠='-∠=°.∵AD ⊥PP ', ∴90ADP ∠=°.∴在Rt APD △中,cos PD AP APD AP =⋅∠=. ∴2PP PD '==. ∵60PAC PCA ∠+∠=°,∴180120APC PAC PCA ∠=∠-∠=-°. ∴90P PC APC APD '∠=∠-∠=°. ∴在Rt P PC '△中,222P P PC P C ''+=.∴2223PA PC PB +=. -------------------------------------------------------6分 (3)22224sin 2PA PC PB α+=. ----------------------------------------------7分29.(1)F ,G .(每对1个得1分) ------------------------------------------------2分 (2)①如图1,过点M 作MH ⊥轴于H 点. ∵M 点的横坐标为3,DP'PA∴3y ==∴3M (.∴OM =OM 的表达式为3y x =. ∵MH ⊥轴,∴在Rt △MHN 中,90MHN ∠=°,222NH MH MN +=.设NM =NO =m ,则3NH OH ON m =-=-.∴()2223m m -+=.∴ON =MN =m =2. --------------------------------------------3分 如图2, 1PON △∽NOM △,过点1P 作1PQ ⊥轴于Q 点, ∴11PO P N =,112OQ ON ==. ∵1P 的横坐标为1,∴1y ==.∴11P ⎛ ⎝⎭. ------------------------------------------------4分如图3,2P NM NOM △∽△, ∴2P N MNON MO=.∴23P N =.∵2P ,x =. ∴2x =.∴22P ⎛ ⎝⎭. ------------------------------------------------------5分综上所述,13P ⎛ ⎝⎭,或23⎛⎝⎭,.②4.---------------------------------------------------------------------------------6分(每标对两个点得1分)--------------------------------------------------------8分。