1分式定义和它的基本性质

合集下载

分式方程知识点归纳总结(二)

分式方程知识点归纳总结(二)

分式方程知识点归纳总结(二)引言:分式方程是数学中常见的一种方程形式,它涉及到分数的运算和求解。

本文将对分式方程的知识点进行归纳总结,旨在帮助读者更好地掌握和应用分式方程的解题方法。

正文:一、分式方程的定义和基本性质1. 分式方程的定义:分式方程是包含有分式的方程,其中分子和分母至少有一个是变量。

2. 分式方程的性质:分式方程具有以下性质,a. 变量出现在分式中,需要通过运算将变量移到方程的一侧。

b. 分母为0时,分式方程无解。

c. 分式方程的解需要满足原方程中分式的定义域。

二、分式方程的求解方法1. 消除分式:通过乘以合适的值将方程两边的分式消除,使方程中只剩下整式。

a. 对于含有一个分式的方程,可通过乘以分母的最小公倍数来消除分式。

b. 对于含有多个分式的方程,可通过求得它们的最小公倍数,将每个分式的分子分别乘以最小公倍数再相加。

2. 分解分式:将复杂的分式方程分解为简单的分式方程,然后逐个求解。

a. 对于含有分式的方程,可将其分解为多个小的分式方程,分别进行求解。

b. 分式方程的分子或分母是多项式的情况,可利用待定系数法分解分式。

3. 代入法:将已知的值代入分式方程中,通过验证来确定是否为方程的解。

a. 对于一元分式方程,代入法是常用的求解方法。

b. 对于多元分式方程,代入法可将其中的一个变量看作常量,再进行代入求解。

4. 替换法:通过引入新的变量,将复杂的分式方程转化为简单的代数方程。

a. 对于含有多个分式的方程,可引入新的变量和方程进行替换。

b. 替换法可以简化分式方程的求解过程。

5. 变量换元法:通过引入新的变量,将复杂的分式方程转化为简单的线性方程。

a. 对于含有多个分式的方程,可引入新的变量并进行变量换元。

b. 变量换元法可以将分式方程转化为简单的线性方程,从而简化求解过程。

总结:分式方程是数学中常见的一种方程形式,通过本文对分式方程的知识点进行归纳总结,我们了解了分式方程的定义和基本性质,并学习了多种求解方法,如消除分式、分解分式、代入法、替换法和变量换元法等。

分式及分式的基本性质

分式及分式的基本性质
分式及分式如A/B(A,B是整式,且B中含有字母,B≠0)的式子叫分式。
2、分式有意义的条件:当B≠0时,分式有意义)。
3、分式的值为零的条件:当A=0,B≠0时,分式值为0。
4、有理式:整式和分式统称为有理式。
5、分式的基本性质:分式的分子、分母同乘以或除以一个不为0的整式,分式的值不变。
注:(1)约分和通分的依据都是分式的基本性质
(2)分式的约分和通分都是互逆运算过程。
①约分——最简分式②通分——最简公分母
6、分式的约分步骤:
(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
7、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式。约分时,一般将一个分式化为最简分式。
8、分式的通分步骤:
先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母。同时各分式按照分母所扩大的倍数,相应扩大各自的分子。
注:最简公分母的确定方法:
系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积。

分式和分式的基本性质

分式和分式的基本性质

分式和分式的基本性质(一)一、知识要点1.分式的意义一般地,如果A﹑B表示两个整式,并且B中含有字母,那么代数式AB叫做分式,其中A是分式的分子,B是分式的分母。

说明:(1)分式是两个整式相除的商式,其中分子是被除式,分母是除式,而分数线起着除号和括号的作用。

(2)分式的分子可以含有字母,也可以不含有字母,但分式的分母中一定要含有字母。

(3)分式的分母不能为0是分式概念的重要组成部分。

2.有理式的概念及分类有理式是整式和分式的统称。

3.分式有意义、无意义、值为零的条件(1)分式AB有意义的条件是:_________________________;(2)分式AB无意义的条件是:_________________________;(3)分式AB值为零的条件是:_________________________。

4.分式的基本性质分式的分子和分母都乘以(或除以)同一个不等于0的整式,分式的值不变。

用式子表示就是______________________________________________________________________。

5.分式的变号法则分式的分子、分母及分式本身的符号,改变其中任何两个,分式的值不变,即A A A AB B B B--==-=---。

6.将分数系数化成整数系数分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于0的数,使分子、分母中的数全都化为整数。

7.分式的约分根据分式的基本性质,把一个分式的分子和分母分别除以它们的公因式叫做分式的约分。

8.分式的通分根据分式的基本性质,把几个不同分母的分式化成同分母的分式叫做分式的通分。

说明:(1)最简公分母的概念:异分母通分时,我们常取各分母的系数的最小公倍数和所有因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母。

(2)求最简公分母的步骤与方法①取各分母系数的最小公倍数;②凡在各分母中出现的以字母(或含有字母的式子)为底的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取指数最大的。

分式的基本概念及性质

分式的基本概念及性质

分式的概念:当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.整式与分式统称为有理式.在理解分式的概念时,注意以下三点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.如:分式1x,当0x≠时,分式有意义;当0x=时,分式无意义.分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质:分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a amb bm=,a a mb b m÷=÷(0m≠).注意:①在运用分式的基本性质时,基于的前提是0m≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】在下列代数式中,哪些是分式?哪些是整式?1 t ,(2)3xx+,2211x xx-+-,24xx+,52a,2m,21321xx x+--,3πx-,323a aa+【例2】代数式22221131321223x x x a b a b abm n xyx x y+--++++,,,,,,,中分式有()A.1个B.1个C.1个D.1个分式的基本概念及性质二、分式有意义的条件【例3】求下列分式有意义的条件:⑴1x⑵33x+⑶2a ba b+--⑷21nm+⑸22x yx y++⑹2128x x--⑺293xx-+【例4】x为何值时,分式2141xx++无意义?【例5】x为何值时,分式2132x x-+有意义?【例6】x为何值时,分式211xx-+有意义?【例7】要使分式23xx-有意义,则x须满足的条件为.【例8】x为何值时,分式1111x++有意义?【例9】要使分式241312aaa-++没有意义,求a的值.【例10】x为何值时,分式1122x++有意义?【例11】x为何值时,分式1122xx+-+有意义?【例12】若分式25011250xx-++有意义,则x;若分式25011250x x-++无意义,则x ;【例13】 若33aa-有意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对【例14】 x 为何值时,分式29113x x-++有意义?【例15】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ;⑵ 若分式216(3)(4)x x x --+无意义,则x ;三、分式值为零的条件【例16】 当x 为何值时,下列分式的值为0?⑴1x x+ ⑵211x x -+ ⑶33x x -- ⑷237x x ++ ⑸2231x x x +--⑹2242x x x-+【例17】 当x 为何值时,下列分式的值为0?⑴213x x -+ ⑵223(1)(2)x x x x --++ ⑶2656x x x --- ⑷221634x x x -+-⑸288xx + ⑹2225(5)x x -- ⑺(8)(1)1x x x -+-【例18】 若分式41x x +-的值为0,则x 的值为 .【例19】 若分241++x x 的值为零,则x 的值为________________________.【例20】 若分式242x x --的值为0,则x 的值为 .【例21】 若分式 242a a -+ 的值为0,则a 的值为 .【例22】 若分式221x x -+的值为0,则x = .【例23】 (2级)(2010房山二模)9. 若分式221x xx +-的值为0,则x 的值为 .【例24】 若分式231x x ++的值为零,则x = ________________.【例25】 (2级)(2010平谷二模)已知分式11x x -+的值是零,那么x 的值是( ) A .1 B. 0 C. 1- D. 1±【例26】 若分式2532x x -+的值为0,则x 的值为 .【例27】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【例28】 若分式()()321x x x +-+的值不为零,求x 的取值范围.【例29】 若22x x a-+的值为0,则x = .【例30】 x 为何值时,分式29113x x-++分式值为零?【例31】 若22032x xx x +=++,求21(1)x -的值.【例32】 x 为何值时,分式23455x xx x ++-+值为零?【例33】 若分式2160(3)(4)x x x -=-+,则x ;【例34】 若分式233x x x--的值为0,则x = .【巩固】 若分式250011250x x-=++,则x .【例35】 若2(1)(3)032m m m m --=-+,求m 的值.四、分式的基本性质【例36】 填空:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++=(4)()222x y x y x xy y +=--+【例37】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴x y x y +- ⑵xy x y - ⑶22x y x y -+【例38】 把下列分式中的字母x 和y 都扩大为原来的5倍,分式的值有什么变化?(1)2x y x y ++ (2)22923x x y +【例39】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴2222x y x y +-⑵3323x y⑶223x y xy-【例40】 不改变分式的值,把下列各式的分子与分母的各项系数都化为整数. ⑴1.030.023.20.5x y x y +- ⑵32431532x yx y -+【例41】 不改变分式的值,把下列各式分子与分母的各项系数都化为整数。

分式1 分式定义和分式的基本性质

分式1            分式定义和分式的基本性质

分式定义和分式的基本性质一、基础知识:1. 分式定义:(1)、代数式:用运算符号(包括加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫做代数式;单独一个数或一个字母 代数式;(2)、单项式:只含 运算的代数式叫做单项式;单独一个数或一个字母 单项式; 单项式中的叫做单项式的系数,单项式中所有字母指数的叫做单项式的次数;(3)、多项式:几个 的和叫做多形式;多形式中的每个单项式叫做多形式的 ,多形式里含有几项,就把这个多形式叫做 ,其中次数最高的项的次数叫做这个多形式的 ,不含字母的项叫做 ; (4)、整式: 和 统称为整式;(5)、分式:一般地,如果A 、B 表示两个整式,并且B 中含有 ,那么代数式 叫做分式,其中A 是分式的分子,B 是分式的分母。

2.分式的基本性质:(1)、分式的基本性质:分式的分子和分母都乘(或除以) 一个不等于 的整式,分式的值 ; 即A B =A×CB×C , A B =A÷CB÷C (其中C 是不等于0的整式); (2)、有关概念:①分式的约分:根据分式的基本性质,把一个分式的分子和分母分别除以它们的 ,叫做分式的约分;约分的目的是把分式 ;②最简分式:分子和分母没有 的分式叫做最简分式;③分式的通分:根据分式的基本性质,把几个 分母的分式变形成 分母的分式,叫做分式的通分,变形后的分母叫做这几个分式的公分母;④最简公分母:几个分式中各分母系数(都是整数)的最小 与所有字母的最高次幂的 叫做这几个分式的最简公分母。

二、经典例题: 题型一:考查分式的定义例1、下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,分式有: 个。

变式训练:下列各式中哪些是分式:9x+4, x 7 , 209y +, 54-m , 238y y -,91-x题型二:考查分式有意义的条件 例2、当x 有何值时,下列分式有意义(1)44+-x x (2)122-x (3)xx 11-变式训练:当x 有何值时,下列分式有意义 (1)232+x x(2)3||6--x x题型三:考查分式的值为0的条件 例3、当x 取何值时,下列分式的值为0. (1)31+-x x(2)42||2--x x (3)653222----x x x x变式训练:当x 取何值时,下列分式的值为0. (1)x x 37+ (2)xx 3217- (3)x 2−1x 2−x题型四:考查分式的值为正、负的条件例4、(1)当x 时,分式x-84为正; (2)当x 时,分式2)1(35-+-x x 为负;变式训练:当x 时,分式32+-x x 为非负数. 题型五:化分数系数、小数系数为整数系数例5、不改变分式的值,把分子、分母的系数化为整数. (1)y x yx 41313221+- (2)ba ba +-04.003.02.0变式训练:不改变分式的值,把分子、分母的系数化为整数. yx yx 5.008.02.003.0+-题型六:分数的系数变号例6、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a---(3)b a ---变式训练:不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317ba ---题型七:约分例7、将下列各式 化为最简分式:(1)c ab bc a 2321525- (2)96922++-x x x (3)yx y xy x 33612622-+-变式训练:将下列各式 化为最简分式:(1)ac bc 2 (2)22)(y x xyx ++ (3)b a b ab a +++36922题型八:通分例8、通分:(1)xab ,yac ; (2)yx (y +1) ,xy (y +1); (3)aab−b ,bab +a.变式训练:通分:(1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--;题型九:化简求值题例9、已知:511=+y x ,求yxy x yxy x +++-2232的值. 变式训练:已知:311=-b a ,求a ab b b ab a ---+232的 ;例10、已知:21=-x x ,求221xx +的值. 变式训练:已知:31=+x x ,求1242++x x x 的值.例11、若0)32(|1|2=-++-x y x ,求yx 241-的值.变式训练:若0106222=+-++b b a a ,求ba ba 532+-的值.三、巩固练习:1.当x 取何值时,下列分式有意义:(1)3||61-x(2)1)1(32++-x x2.当x 为何值时,下列分式的值为零: (1)4|1|5+--x x(2)562522+--x x x3.解下列不等式 (1)012||≤+-x x (2)03252>+++x x x4.不改变分式的值,把分式b a ba 10141534.0-+的分子、分母的系数化为整数. 5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.6.分式11−x ,11+x ,12x1+x 的最简公分母为四、课后作业:1.当x 取何值时,分式x111+有意义:2当x 为何值时,分式 的值为零x x x --213.约分: (1)2)(xy yy x + (2)222)(y x y x --(3)b a abc ab 22369+ (4)122362+-x x4.通分:(1)22,21,1222--+--x x x x xx x ; (2)aa -+21,25.已知:31=+x x ,求1242++x x x 的值.。

分式的性质

分式的性质

分式的性质一、分式的定义(1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式.(2)因为0不能做除数,所以分式的分母不能为0.(3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.(4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看符合分式概念的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.二、分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.三、分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.四、分式的值分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.五、分式的基本性质(1)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.(2)分式中的符号法则:分子、分母、分式本身同时改变两处的符号,分式的值不变.【方法技巧】利用分式的基本性质可解决的问题1.分式中的系数化整问题:当分子、分母的系数为分数或小数时,应用分数的性质将分式的分子、分母中的系数化为整数.2.解决分式中的变号问题:分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.3.处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.六、最简分式最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.和分数不能化简一样,叫最简分数.七、约分(1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.(2)确定公因式要分为系数、字母、字母的指数来分别确定.①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.(3)规律方法总结:由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.。

分式讲义

分式讲义

分式一、基本知识1、分式定义:形如BA的式子叫分式,其中A 、B 是整式,且B 中含有字母。

(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。

(2)分式的值为0:A=0,B ≠0时,分式的值等于0。

(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。

方法是把分子、分母因式分解,再约去公因式。

(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

分式运算的最终结果若是分式,一定要化为最简分式。

(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。

(6)最简公分母:各分式的分母所有因式的最高次幂的积。

(7)有理式:整式和分式统称有理式。

2、分式的基本性质: (1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。

(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。

(3)除:除以一个分式等于乘上它的倒数式。

(4)乘方:分式的乘方就是把分子、分母分别乘方。

二、例题讲析 1、 (2011黑龙江黑河,18,3分)分式方程=--11x x)2)(1(+-x x m 有增根,则m 的值为 ( )A 0和3B 1C 1和-2D 3 【答案】D2、 (2011年铜仁地区,4,4分)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A.60512601015-=+x x B.60512601015+=-x x C.60512601015-=-x x D.5121015-=+x x .【答案】A3、(2011内蒙古包头,17,3分)化简122144112222-++÷++-⋅-+a a a a a a a ,其结果是 . 【答案】11-a 4. (2011广西梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?【答案】解:(1)设今年甲型号手机每台售价为x 元,由题意得, 80000x+500=60000x . 解得x =1500. 经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元. (2)设购进甲型号手机m 台,由题意得, 17600≤1000m +800(20-m )≤18400, 8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一: 设总获利W 元,则W =(1500-1000)m +(1400-800-a )(20-m ), W =(a -100)m +12000-20a .所以当a =100时,(2)中所有的方案获利相同. 方法二:由(2)知,当m =8时,有20-m =12.此时获利y 1=(1500-1000)×8+(1400-800-a )×12=4000+(600-a )×12 当m=9时,有20-m=11此时获利y 2=(1500-1000)×9+(1400-800-a )×11=4500+(600-a )×11 由于获利相同,则有y 1= y 2.即4000+(600-a )×12=4500+(600-a )×11,解之得a =100 .所以当a =100时,(2)中所有方案获利相同. 5. (2011贵州黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:单位 清淤费用(元/m 3) 清淤处理费(元)甲公司18 5000 乙公司20 0 (1)若剑江河首批需要清除的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由。

分式及基本性质

分式及基本性质

分式及基本性质一、分式的概念1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。

2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。

其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。

3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。

4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。

即,使B A=0的条件是:A=0,B ≠0。

5、有理式整式和分式统称为有理式。

单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。

二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

用式子表示为:AB=A·MB·M=A÷MB÷M,其中M(M≠0)为整式。

2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是:确定几个分式的最简公分母。

确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的最大公约数,相同字母的最低次幂;如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。

分式归纳总结

分式归纳总结

分式归纳总结分式是数学中常见的一种表达方式,它由一个分子和一个分母组成,分子和分母都是数或者代数式。

在日常生活和学习中,我们经常遇到各种各样的分式,学会对分式进行归纳总结,可以帮助我们更好地理解和应用分式。

一、分式的基本概念和性质1. 分式的定义:分式是由分子和分母用横线分隔表示的数或者代数式。

2. 分式的性质:分式可以进行加、减、乘、除等运算。

分式可以化简为最简形式,即分子与分母没有公因数。

二、分式的分类和举例1. 真分式:分子的绝对值小于分母的绝对值,如1/2、3/4等。

2. 假分式:分子的绝对值大于等于分母的绝对值,如5/4、7/2等。

3. 显分式:分子为非零数,如3/1、4/1等。

4. 隐分式:分子为零,如0/5、0/9等。

三、分式的运算与应用1. 分式的加法和减法:对于相同分母的分式,可以直接对分子进行加或减。

对于不同分母的分式,需要先通分再进行运算。

例如:1/2 + 1/3 = 3/6 + 2/6 = 5/63/4 - 1/5 = 15/20 - 4/20 = 11/202. 分式的乘法和除法:将分子与分母分别相乘或相除。

例如:(2/3) * (3/4) = 6/12 = 1/2(4/5) / (2/3) = (4/5) * (3/2) = 12/10 = 6/53. 分式的应用:分式在实际生活中有很多应用,如比例、百分数、利润分成等问题。

例如:根据工资比例计算两人的收入比例:小明工资是2000元,小红工资是3000元,求两人工资的比例。

小明的工资比例为:2000 / (2000+3000) = 2000 / 5000 = 2/5小红的工资比例为:3000 / (2000+3000) = 3000 / 5000 = 3/5四、分式的化简与扩展1. 分式的化简:通过约分化简一个分式,使得分子与分母互质。

例如:8/12 = 2/3,可以将分式8/12化简为2/3。

2. 分式的扩展:将一个分式拆分为多个分式的和或差,扩展了分式的表达形式。

分式知识点归纳总结

分式知识点归纳总结

分式知识点归纳总结一、基本概念1. 分式的定义分式是由分子和分母组成的表达式,分子和分母都是整式。

通常写作a/b的形式,其中a为分子,b为分母,b不为0。

例如:3/4,7x/5y等都是分式。

2. 分式的分类根据分子和分母的形式,分式可以分为以下几类:a) 真分式:分子的次数小于分母的次数,例如:2/3。

b) 假分式:分子的次数大于或等于分母的次数,例如:x^2+1/x。

c) 反比例函数:分子和分母中都含有变量,例如:x/y。

3. 分式的性质a) 若分子和分母互换位置,分式的值不变,这就是分式的对称性质。

b) 分式的值只有在分母不为0时才有定义,即分式的定义域是除了分母为0的所有实数。

二、分式的化简1. 分子分母的最小公因式分式的化简首先要找出分子分母的最小公因式,然后进行约分。

例如:将分式6x^2y/9xy化简为2x/3。

2. 分式的通分当分母不同时,可以通过通分将分母变为相同的多项式,从而进行比较、运算。

例如:将1/2+2/3进行通分,得到3/6+4/6=7/6。

3. 整式转化为分式可以将整式转化为分式,只需将分子为整式,分母为1的形式即可。

例如:将5x^2+3x+1转化为分式为(5x^2+3x+1)/1。

三、分式的运算1. 分式的加减法分式的加减法需要先进行通分,然后对分子进行加减,最后合并分子。

例如:(2/3)+(3/4),首先通分为8/12+9/12=17/12。

2. 分式的乘法分式的乘法是将分子乘以分子,分母乘以分母,然后进行约分。

例如:(2/3)*(3/4)=6/12=1/2。

3. 分式的除法分式的除法需要将除号改为乘以被除数的倒数,然后进行乘法运算。

例如:(3/4)÷(2/3)=(3/4)*(3/2)=9/8。

四、分式的应用1. 分式的实际问题在实际问题中,分式常用于解决各种比例、速度、浓度等问题,可以帮助我们解决生活中的实际问题。

2. 分式与方程分式的化简与运算经常用于解决各种方程,需要将方程中的分式进行合并、化简、求值等操作。

分式的定义与性质

分式的定义与性质

分式的定义与性质一、分式的定义如果整式A 除以整式B,可以表示成A/B 的形式.且除式B 中含有字母,那么称式子A/B 为分式.其中,A 叫做分式的分子,B 叫做分式的分母。

例题1、判断下列各式哪些是整式,哪些是分式?(1)9x+4, (2)x 7 , (3)209y +,(4) 54-m , (5) 238y y -,(6)91-x 是分式的有 ;2、下列各式中使分式的是______________.πm y x x x 2)3(;8)2(;)1(2+ 3、列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .二、分式有意义的条件对任意一个分式,若使分式有意义,则分母都不能为零。

例1、当x 取何值时,下列分式有意义?(1)x 25 (2)x x 235-+ (3)2522+-x x 答案:(1) ;(2) ;(3) ;2.使分式224x x +-等于0的x 值为( ) A .2 B .-2 C .±2 D .不存在3 、 对于分式5312-+x x , (1)当 时,分式有意义;(2)当 时,分式的值为0;(3)当 时,分式的值为1;2、 当x 为何值时,分式x x x --21|| 的值为0?三、分式的基本性质分式的分子分母同时乘以或除以同一个不为0的数或者式子,分式的值不变1、(1)填充分子,使等式成立;()222(2)a a a -=++(2)填充分母,使等式成立:()2223434254x x x x -+-=---2、不改变分式的值,把下列各式的分子和分母中各项系数都化为整数。

(1)0.010.50.30.04x y x y -+; (2)322283a ba b--3、把分式xx y +(x ≠0,y ≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值()A .扩大2倍B .缩小2倍C .改变D .不改变4、下列等式正确的是 ( )A .22b b a a =B .1a ba b -+=--C .0a ba b +=+ D .0.10.330.22a ba ba b a b --=++5、将分式22x x x +化简得1xx +,则x 必须满足_________________________。

分式知识点总结

分式知识点总结

分式知识点总结分式是数学中的一个重要概念,它在实际应用中十分常见。

本文将对分式的定义、基本性质以及常见的操作进行总结和讲解。

一、分式的定义分式由分子和分母组成,通常形式为a/b,其中a和b为整数,b不等于0。

分子表示了被分割的数量,分母表示了每份的份数。

二、分式的基本性质1. 分式的值是一个有理数,可以是正数、负数或零。

2. 分式的值可以是一个整数、真分数或带分数。

3. 分式可以化简,即将分子和分母同时除以一个公因数,得到一个等价的分式。

4. 分式可以相互比较大小,分子相乘,分母相乘,得到的积的大小关系不变。

三、分式的运算1. 分式的加法和减法:- 分式加法:将两个分式的分母找到一个公倍数,分别乘以这个公倍数后得到新的分数,然后将它们的分子相加,分母保持不变。

- 分式减法:与分式加法类似,将两个分式的分母找到一个公倍数,分别乘以这个公倍数后得到新的分数,然后将它们的分子相减,分母保持不变。

2. 分式的乘法和除法:- 分式乘法:将两个分式的分子相乘,分母相乘,得到的分子作为新分数的分子,得到的分母作为新分数的分母。

- 分式除法:将第一个分式的分子与第二个分式的分母相乘,作为新分数的分子;将第一个分式的分母与第二个分式的分子相乘,作为新分数的分母。

3. 分式的化简:- 将分式的分子和分母同时除以一个公因数,直到分子和分母没有公因数为止,得到一个等价的分式。

四、分式的应用场景1. 比例和比例分配问题:比例可以用分式来表示,通过求解分式可以解决比例分配问题。

2. 股票涨跌问题:利用分式可以计算股票的涨跌幅度。

3. 质量问题:分式可以用来表示物体的质量与体积之间的关系,解决质量问题。

通过以上对分式的定义、基本性质以及常见的操作进行总结和讲解,相信读者对分式的概念及其应用有了更深入的理解。

在实际问题中,对分式的灵活运用可以帮助我们更好地解决各种计算和应用问题。

分式的基本性质与运算

分式的基本性质与运算

分式的基本性质与运算1. 分式的基本性质分式是数学中一种特殊的表示形式,由分子和分母组成,分子与分母之间用分数线分隔。

分式在代数运算中有着重要的地位,它具备以下基本性质:1.1. 分式的定义域分式的定义域是指使分式中的分母不为零的实数集合。

因为在分式运算中,分母为零的情况是不合法的,会导致分式无法计算。

所以在定义分式运算时,需要排除分母为零的情况。

1.2. 分式的约束条件分式的约束条件是指对分子和分母的进行约束,使分式保持在最简形式。

一个约束条件是分子与分母的最大公约数为1,即分子和分母没有共同的因子。

另一个约束条件是分式的分子没有负号,而负号只出现在分式的整体前面。

1.3. 分式的唯一性分式在满足定义域和约束条件的前提下,具备唯一性。

即给定一个分式,它的分子和分母确定后,分式的值也就确定了。

这个性质在分式的运算中是非常重要的,保证了分式的计算结果是确定的。

2. 分式的运算分式的运算包括加法、减法、乘法和除法四种基本运算。

下面分别对这四种运算进行讨论。

2.1. 分式的加法两个分式的加法可以通过通分的方式来实现。

通分是指使两个分式的分母相同,然后将它们的分子相加。

通分的方法是将两个分式的分母取最小公倍数,然后分别将分子乘以相应的倍数。

最后得到的分式就是它们的和。

2.2. 分式的减法分式的减法与加法类似,也可以通过通分来实现。

通分的方法与加法相同,只是将分子相减而不是相加。

最后得到的分式就是它们的差。

2.3. 分式的乘法分式的乘法可以通过将两个分式的分子相乘,分母相乘来实现。

最后得到的分式就是它们的乘积。

2.4. 分式的除法分式的除法可以通过将一个分式的分子乘以另一个分式的倒数来实现。

倒数是指将分子和分母交换位置得到的新的分式。

最后得到的分式就是它们的商。

3. 分式的简化与展开在分式的运算中,有时需要将分式进行简化来得到最简形式。

分式的简化可以通过约分来实现,即将分子和分母同时除以它们的最大公约数。

分式函数的基本概念与性质

分式函数的基本概念与性质

分式函数的基本概念与性质分式函数是指由两个多项式表达的函数,其中分母不为零。

分式函数既可以是有理函数的特例,也可以理解为多项式除法的推广形式。

在数学中,分式函数有其独特的基本概念和性质,本文将从多个角度来探讨这些内容。

一、基本概念1. 分式函数的定义:分式函数是指可以表达为两个多项式的比值形式,其中分母不为零的函数。

常见的分式函数形式包括有理分式函数和整式函数的除法。

2. 分式的形式:分式函数通常由分子和分母组成,分子和分母都是多项式。

分式函数的一般形式为f(x) = P(x) / Q(x),其中P(x)和Q(x)分别代表分子和分母的多项式。

3. 定义域:由于分式函数中不能出现使分母为零的数值,因此定义域需要排除这些值。

定义域是函数的取值范围,一般使用不等式或条件表示。

二、性质探究1. 零点与奇点:分式函数的零点是指使分式函数取零值的自变量的值。

零点可以通过求解分子为零的方程得到。

分式函数的奇点是指使分母为零的自变量的值,奇点可能导致函数不存在或无穷大。

2. 函数的平移与伸缩:分式函数的平移和伸缩可以通过对分子和分母的多项式进行操作实现。

平移是指在自变量维度上对函数整体进行横向或纵向移动,伸缩是指通过改变分式函数的系数来改变函数的幅度。

3. 函数的性态分析:通过对分式函数的分子、分母进行求导,可以得到函数的导数表达式。

通过导数的符号变化和驻点的分析,可以判断分式函数的增减性、最值和拐点等重要性质。

4. 函数的图像特征:分式函数的图像通常会具有水平、垂直渐近线等特征。

水平渐近线是指当自变量趋近于无穷时,函数趋于某个常数值或无穷大;垂直渐近线是指当自变量趋近于某个特定值时,函数趋于无穷大或无穷小。

5. 函数的应用:分式函数在实际问题中具有广泛的应用。

比如在经济学中,利润函数、边际成本函数等都可以表达为分式函数的形式,通过对这些分式函数进行分析,可以帮助决策者在经济活动中进行决策。

综上所述,分式函数作为一个重要的数学概念,具有其独特的基本概念和性质。

湘教版八年级数学第1章《分式》 知识清单

湘教版八年级数学第1章《分式》 知识清单

第1章分式1.1分式知识点1 分式的概念1.分式的定义:类似地,一个整式f 除以一个非零整式g(g 中含有字母),所得的商记作fg,把代数式f g叫作分式,其中f是分式的分子,g是分式的分母,g≠0. 分式的三要素:(1)形如fg的式子;(2)f为整式,g为非0整式;(3)分母g中含有字母2.分式与分数、整式的关系:(1)分式中分母含有字母,由于字母表示不同的数,因此分式比分数更具有一般性。

分数是分式中字母取特定值时的特殊情况. (2)分式与整式的根本区别是分式的分母中含有字母.知识点2 分式的值存在、不存在的条件1.分式的值存在(分式有意义)的条件:分式的分母表示除数,由于除数不能为0,因此分式的分母不能为即当g≠0时,分式fg才有意义.分式的分母不为0,并不是说分母中的字母不能为0,而是表示分母的整式的值不能为0.2.分式的值不存在(分式无意义)的条件:分式的分母为0,即g=0时,分式fg无有意义.求法:当分式的值不存在时,根据分式中分母的值为0的条件转化为解方程问题.知识点3 分式的值为0的条件分式的值为0的条件:1.当分式的分子等于0且分母不等于0时,分式的值为0.即对于分式fg,当f=0且g≠0时,fg=0.2.对于分式fg,常见的特殊分式值的情况讨论:(1)若fg的值为1,则f=g,且g≠0;反过来若f=g,且g≠0,则fg的值为1.(2)若fg的值为-1,则f=-g,且g≠0;反过来若f=-g,且g≠0,则fg的值为-1.知识点4 分式的基本性质1.分式的基本性质:(1)分式的分子与分母都乘同一个非零整式,所得分式与原分式相等,即对于分式fg,有fg=f·ℎg·ℎ(h≠0).(2)分式得分子与分母都除以他们的一个公因数,所得分式与原分式相等.3.分式的符号法则:分式的分子、分母与分式本身的符号,同时改变其中两个,分式的值不变.用字母表示如下:(1)fg = −f−g= −f−g=−−fg(2)−fg= −−f−g= −fg= f−g知识点5 分式的约分1.分式的约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去(即分子与分母都除以他们的公因式),叫作分式的约分.2.找公因式的方法:(1)当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式.(2)当分子、分母都是多项式时,先把多项式分解因式,再按(1)中的方法找公因式.3.约分的方法(1)若分式的分子、分母都是单项式,就直接约去分子、分母的公因式;(2)若分子或分母含有多项式,应先分解因式,再确定公因式并约去.4.最简分式分子与分母没有公因式的分式叫作最简分式.注意事项:①约分式针对分式的分子和分母整体进行的,而不是针对其中的某些项,因此约分前一定要确认分子和分母都是乘积形式;②约分一定要彻底,其结果必须是最简分式或整式;③注意发现分式的分子与分母的一些隐藏的公因式(如互为相反数的式子)④当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面.1.2分式的乘法和除法知识点1分式的乘法1.分式的乘法运算法则:分式乘分式,把分子乘分子、分母乘分母分别作为积的分子、分母.即fg·uv= fugv2.法则的运用方法:(1)若分子、分母都是单项式,可直接利用乘法运算法则运算后再约分;(2)若分子、分母有多项式,可先对分子、分母因式分解,约分后,再进行乘法运算;(3)若分式乘整式,可把整式看成分母为1的“分式”进行运算. (4)运算的结果应为最简分式或整式.3.分式乘法运算的基本步骤:第一步:确定积的符号,写在积中分式的前面.第二步:运用法则,将分子与分母分别相乘,多项式要带扩号;第三步:约分,将结果化成最简分式或正式.知识点2 分式的除法1.分式的除法运算法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即f g÷ u v= f g× v u=fv gu(u ≠0).2. 法则的运用方法:(1)分式的除法需转化成乘法,再利用分式乘法运算法则计算; (2)当除式是整式时,可以将整式看成分母是1的“分式”进行运算.3.分式除法运算的基本步骤:第一步:将分子、分母是多项式的进行因式分解,并约分; 第二步:将除法转化成乘法;第三步:利用分式的乘法运算法则计算。

分式知识点总结与分式方程的应用

分式知识点总结与分式方程的应用

分式知识点总结与分式方程的应用一、分式的定义和基本性质分式是指两个整数的比的形式,分子和分母都可以是整数。

分式的一般形式为a/b,其中a为分子,b为分母。

分式也可以是带有字母的表达式。

1.分式的定义:分式表示两个数的比。

分子表示比的被除数,分母表示比的除数。

2.分式的基本性质:①分式的值是确定的:分式的值只与分子和分母有关,而与分子和分母的选取方法无关。

②分式的约定:分式的分母不能为0,即b≠0。

③分式的约分:分式a/b可以约分为最简分式的条件是a和b都有因数c,这样a和b都可以被c整除。

④分式的最简形式:分式a/b的最简形式是分子分母互为质数⑤分式的倒数:若分式a/b不等于0,则它的倒数为b/a。

⑥分式的乘法:若a/c和b/d是两个非零分式,则a/c与b/d的乘积为(a·b)/(c·d)。

⑦分式的除法:分式a/b除以c/d可真分式以d/c乘,得(a·d)/(b·c)。

⑧分式的加法:根据通分的定义,可得a/c+b/d=(a·d+b·c)/(c·d)⑨分式的减法:根据通分的定义,可得a/c-b/d=(a·d-b·c)/(c·d)分式方程的一般形式为:分子中含有未知数的为分式方程。

例如:2/x=3/41.解分式方程的基本步骤:(1)去分母:将分式方程中的每个分式的分母去掉,得到一个整式方程。

(2)解整式方程:使用解整式方程的方法解方程。

(3)检验解:将求得的解代入原分式方程,检验是否满足。

2.分式方程的常见类型:(1)一次分式方程:分子和分母的最高次幂都是1(2)整式方程:分式方程中的分子和分母都是整式。

(3)二次分式方程:分子和分母的最高次幂都是2(4)退化分式方程:当方程中出现0/0的情况,方程可能退化为整式方程或无解。

3.分式方程的注意事项:(1)除法的解答有条件:可能有解,也可能无解。

(2)变量的取值范围:要满足约束条件。

分式方程知识点归纳

分式方程知识点归纳

分式方程知识点归纳1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。

2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。

3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

用式子表示 其中A 、B 、C 为整式(0≠C )注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。

(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。

(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。

3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。

2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。

4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。

4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。

用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。

5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。

例:已知 ,则求 2)参数法:当出现连比式或连等式时,常用参数法。

例:若 ,则求6. 分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

八年级上册分式

八年级上册分式

八年级上册分式
摘要:
一、分式的基本概念
1.分式的定义
2.分式的构成
二、分式的性质
1.分式的基本性质
2.分式的运算性质
三、分式的运算
1.分式的加减法
2.分式的乘除法
四、分式的应用
1.实际问题中的应用
2.数学问题中的应用
正文:
在八年级上册的数学课程中,我们学习了分式这一新的数学概念。

分式是一个非常重要的数学工具,它在解决实际问题和数学问题中都发挥着关键的作用。

首先,我们学习了分式的基本概念。

分式是由分子和分母组成的,分子和分母都可以是整式或者代数式。

分式的定义是:如果A 和B 都是整式,并且B 不等于0,那么我们称A/B 为一个分式。

接着,我们学习了分式的性质。

分式的基本性质是指,当分式的分子和分母同时乘以或者除以一个非零整式时,分式的值不变。

而分式的运算性质则是指,分式可以进行加减乘除四种运算,运算的结果仍然是一个分式。

在学习完分式的性质后,我们开始学习如何进行分式的运算。

分式的加减法需要将分式通分,然后按照整式的加减法进行运算。

而分式的乘除法则需要将分式约分,然后按照整式的乘除法进行运算。

最后,我们学习了分式的应用。

在实际问题中,我们常常需要通过设立分式来表示一些量之间的关系。

例如,速度可以表示为路程除以时间,这就可以用一个分式来表示。

在数学问题中,分式也有着广泛的应用,例如在解方程时,我们常常需要使用分式来表示方程的解。

分式 知识点及典型例题

分式 知识点及典型例题

分式知识点及典型例题正文:分式,又称有理数,是数学中的一个重要概念,它由分子和分母组成,表示两个数的比值关系。

在分式的运算中,我们需要了解一些基本知识点,并且通过典型的例题来加深理解。

一、分式的定义和基本性质分式可以用“a/b”的形式表示,其中a为分子,b为分母。

分子和分母都可以是整数、小数或者其他分式。

分式也可以是正数、负数或者零。

分式的基本性质有:1. 当分子为0时,分式的值为0,即0/b=0。

2. 当分母为1时,分式的值等于分子本身,即a/1=a。

3. 当分子和分母互为相反数时,分式的值为-1,即(-a)/a=-1。

二、分式的运算1. 分式的加减运算分式的加减运算遵循相同分母则分子相加减的原则。

具体步骤如下:(1)将两个分式的分母化为相同的分母;(2)将两个分式的分子按照相同分母相加减;(3)将结果化简为最简形式。

例如:计算1/3 + 1/4 - 1/6。

解:首先将三个分式的分母化为12,得到4/12 + 3/12 - 2/12,再将分子相加减,得到5/12。

2. 分式的乘除运算分式的乘除运算遵循分子相乘除,分母相乘除的原则。

具体步骤如下:(1)将两个分式的分子相乘或相除;(2)将两个分式的分母相乘或相除;(3)将结果化简为最简形式。

例如:计算2/3 × 5/8 ÷ 4/5。

解:根据乘除法的原则,分子相乘得到10,分母相乘得到24,再将结果化简为最简形式,得到5/12。

三、分式的简化分式的简化是将分子和分母的公因式约去,使其达到最简形式。

具体步骤如下:(1)求分子和分母的最大公因数;(2)将分子和分母分别除以最大公因数。

例如:将12/18简化为最简分式。

解:求12和18的最大公因数为6,将分子和分母都除以6,得到最简分式2/3。

四、分式的应用举例1. 问题:小明爸爸买了一块布长3米,要均分给他和他妹妹,他分到几分之几的布?解:设小明分到的布的长度为x米,他妹妹分到的布的长度为y米,则由题意可得分式x/y=3/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1分式和它的基本性质
知识点:
1、 分式的概念:(1)分母中含有字母。

(2)分子、分母都为整式。

2、 分式有意义的条件:分母不为0.
3、 分式的值等于0的条件:(1)分母不为0。

(2)分子等于0。

两者缺一不可。

4、 分式的基本性质:分式的分子与分母同时乘以或除以同一个不等于0的数或式,分
式的值不变。

5、 分式中的符号变化:第一项用“正”号表示,一般按多项式的降幂排列。

基础题:
1、下列各式中哪些是分式,哪些不是分式。

(分式的定义)
1x

x
π

22x y x y
+-,
5a
-,
2
a b -, 4a
2、当x 取何值时,下列分式有意义? (1)
23x
(2)
1
x x - (3)
2
1
x x - (4)
2
2
215
x x x +++
3、当x 取何值时,下列分式等于0? (1)
12
x x -+ (2)
2335
x x +- (3)
||3
(1)(3)
x x x --+ (4)
2
42
x x ---
4、若分式2a a b
+中,a ,b 的值同时扩大到原来的10倍,则此分式的值( )
A:是原来的20倍 B: 是原来的10倍 C: 是原来的
110
D: 不变
5、若分式
2
a
a b
+中,a ,b 的值同时扩大到原来的2倍,则此分式的值( )
A:是原来的2倍 B: 是原来的4倍 C: 是原来的12
D: 不变
6、(1)当x 取何值时,分式72x x +-的值为正数?
(2)当x 取何值时,分式
26x x
--的值为负数?当x 取何值时,分式
226
x x -+的值为负数?
7、(1)若2
3
5
x y z =
=
-,求
232x y z
x
++的值。

(2)若111a
b
-
=,求
2322a ab b a ab b
+---的
值。

8、给出一列数123
4
5
6
,,,
,
,
...,3815243548
根据其中的规律推测第n 个数(n 为正整数)。

课后练习:
1、下列式子是分式的是( ) A:
2
x B:
2
x x + C:
2
x y + D:
3
x
2、要使分式432
x x +-有意义,则x 的取值范围是____________________.
3、分式
2
2
2ab a b
+有意义的条件是____________. 4、当分式
12x x -+的值为0时,x 的值是_________. 5、使分式
714x --的值为正数的条件是_________。

6、若
13
a b b
-=,则
a b
等于________.
7、不改变分式0.510.32
x x -+的值,把它的分子和分母中各项的系数都化为整数,则得到
_________. 8、如果分式
x x y
+中的x 和y 都扩大为原来的3倍,那么分式的值( )
A:扩大为原来的3倍 B:不变 C: 缩小到原来的1
3
D: 缩小到原来的1
6
9、若分式
2
11
x x -+的值为0,则x 的值等于_______。

10、有一列数:1
234
,,,,...,3579
-
-则它的第7个数字是_______;第n 个数是_______. 11、已知:
111
x =-,求
211
x x +--的值。

12、(1)已知
2
13a a
+=,求2
2
1a a
+
的值。

(2)若113,x
y
-
=求
2322x xy y x xy y
----的值。

13、当分式
||11x x
--的值为0时,求代数式1
x x
-的值。

14、一列货车送货上山,上山的速度为x 千米/时,下山的速度为y 千米/时,则该货车的平均速度( )千米/时。

(难)。

相关文档
最新文档