最新微积分5习题答案

合集下载

大学数学微积分练习题及答案

大学数学微积分练习题及答案

大学数学微积分练习题及答案本文为大学数学微积分练习题及答案的整理,旨在帮助读者巩固和提高微积分的知识和技能。

以下是一些常见的微积分练习题及其解答,供读者参考。

1. 求函数f(x) = 3x^2 - 2x + 1的导数。

解答:我们可以使用导数的定义来求解。

根据定义,导数f'(x)为函数在任意一点x处的斜率,可以通过求极限得到。

根据导数的性质,多项式的导数等于各项的导数之和。

因此,我们可以按照导数的定义,先求出各项的导数,然后相加得到f'(x)。

f'(x) = (3x^2)' - (2x)' + (1)'= 6x - 2所以,函数f(x) = 3x^2 - 2x + 1的导数为f'(x) = 6x - 2。

2. 求函数f(x) = e^x的不定积分。

解答:根据指数函数e^x的积分规则,不定积分∫e^xdx等于e^x再乘上一个常数C。

因此,∫e^xdx = e^x + C3. 求函数f(x) = sin(x)的定积分∫(0 to π/2)sinx dx。

解答:我们可以利用定积分的定义来求解。

根据定积分的定义,∫(0 to π/2)sinx dx表示在区间[0, π/2]上sinx的面积。

因为sinx在[0, π/2]上是正值,所以∫(0 to π/2)sinx dx等于sinx在[0, π/2]上的图像所围成的面积。

又因为sinx在[0, π/2]上是递增的,所以面积等于∫(0 to π/2)sinx dx等于单位圆上π/2对应的弧长,即π/2。

所以,∫(0 to π/2)sinx dx = π/2。

4. 求函数f(x) = x^3在[1, 2]上的平均值。

解答:函数f(x) = x^3在[1, 2]上的平均值可以通过计算积分的平均值得到。

根据积分的定义,函数在区间[1, 2]上的平均值等于函数在该区间上的积分除以区间的长度。

平均值= ∫(1 to 2)x^3 dx / (2 - 1)= [1/4*x^4] (1 to 2) / 1= (2^4-1^4) / 4= (16-1) / 4= 15/4所以,函数f(x) = x^3在[1, 2]上的平均值为15/4。

微积分练习题及答案

微积分练习题及答案

微积分练习题及答案微积分练习题及答案微积分是数学中的一门重要学科,它研究函数的变化率和积分的概念。

在学习微积分的过程中,练习题是非常重要的。

通过解答练习题,可以帮助我们巩固所学的知识,提高问题解决能力。

本文将介绍一些微积分的练习题及其解答,希望对广大学习者有所帮助。

一、求导题1. 求函数f(x) = 3x^2 - 2x + 1的导数。

解答:对于多项式函数,求导的方法是将每一项的指数乘以系数,并将指数减一。

所以f'(x) = 6x - 2。

2. 求函数g(x) = e^x - 2x的导数。

解答:对于指数函数e^x,其导数仍为e^x。

对于多项式函数-2x,其导数为-2。

所以g'(x) = e^x - 2。

3. 求函数h(x) = ln(x^2 + 1)的导数。

解答:对于自然对数函数ln(x),其导数为1/x。

对于复合函数,需要使用链式法则。

所以h'(x) = (2x)/(x^2 + 1)。

二、定积分题1. 计算定积分∫(0 to 1) x^2 dx。

解答:根据定积分的定义,我们可以先求出不定积分,然后计算上限减去下限的差值。

所以∫(0 to 1) x^2 dx = [x^3/3] (0 to 1) = 1/3 - 0 = 1/3。

2. 计算定积分∫(1 to 2) e^x dx。

解答:指数函数e^x的积分仍为e^x。

所以∫(1 to 2) e^x dx = [e^x] (1 to 2) =e^2 - e^1 = e^2 - e。

3. 计算定积分∫(0 to π/2) sin(x) dx。

解答:正弦函数sin(x)的积分为-cos(x)。

所以∫(0 to π/2) sin(x) dx = [-cos(x)] (0to π/2) = -cos(π/2) + cos(0) = -1 + 1 = 0。

三、微分方程题1. 求解微分方程dy/dx = 2x。

解答:对于一阶线性微分方程dy/dx + Py = Q,其通解为y = e^(-∫Pdx) *(∫Qe^(∫Pdx)dx + C)。

微积分练习题带答案

微积分练习题带答案

微积分练习题带答案微积分是数学的分支之一,它研究的是函数的变化规律。

在微积分中,经常会出现各种各样的练习题,这些练习题有助于我们加深对微积分概念和原理的理解。

在这篇文章中,我们将分享一些微积分练习题,并附带答案,希望对你的学习有所帮助。

1. 求函数f(x) = 2x^3 - x^2 + 3x - 5的导数。

答案:f'(x) = 6x^2 - 2x + 32. 求函数g(x) = e^x * sin(x)的导数。

答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2)的导数。

答案:h'(x) = 2/x4. 求函数i(x) = ∫(0到x) t^2 dt的导数。

答案:i'(x) = x^25. 求函数j(x) = ∫(x到1) t^2 dt的导数。

答案:j'(x) = -x^26. 求函数k(x) = ∫(0到x) e^t * sin(t) dt的导数。

答案:k'(x) = e^x * sin(x)7. 求函数l(x) = e^(-x)的不定积分。

答案:∫ e^(-x) dx = -e^(-x) + C (C为常数)8. 求函数m(x) = 1/(x^2+1)的不定积分。

答案:∫ 1/(x^2+1) dx = arctan(x) + C (C为常数)9. 求函数n(x) = 2x * cos(x^2)的不定积分。

答案:∫ 2x * cos(x^2) dx = sin(x^2) + C (C为常数)10. 求函数o(x) = ∫(1到x) e^(t^2) dt的原函数。

答案:o(x) = ∫(1到x) e^(t^2) dt + C (C为常数)以上是一些微积分练习题及其答案。

通过解答这些题目,我们可以巩固对微积分概念和原理的理解,并提升解题能力。

微积分是应用广泛的数学工具,在物理、工程、经济等领域都有重要的应用,掌握微积分对于进一步深入学习这些领域十分必要。

微积分综合练习题与参考答案完美版

微积分综合练习题与参考答案完美版

微积分综合练习题与参考答案完美版综合练习题1(函数、极限与连续部分)1.填空题(1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k(5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim0=→kxxx ,则=k .答案:2=k 2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( )A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x(3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线x x f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知x x x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若x x x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e2)(='')0(f 2-(1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=-答案:C(2)设y x =lg2,则d y =( ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x +B .a x 6sin +C .x sin -D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-=综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .x sin B .xe C .2xD .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

《微积分》课后习题答案五

《微积分》课后习题答案五

习题五 (A )1.求函数)(x f ,使)3)(2()(x x x f --=',且0)1(=f .解:6x 5x )(f 2++-='xC x x x x f +++-=⇒62531)(236230625310)1(=⇒=+++-⇒=C C f 62362531)(23+++-=x x x x f2.一曲线)(x f y =过点(0,2),且其上任意点的斜率为x x e 321+,求)(x f .解:x e x x f 321)(+=C e x x f x ++=⇒341)(21232)0(-=⇒=+⇒=C C f1341)(2-+=⇒x e x x f3.已知)(x f 的一个原函数为2e x ,求⎰'x x f d )(.解:222)()(x x xe e x f ='=⎰+=+='C xe C x f dx x f x 22)()(4.一质点作直线运动,如果已知其速度为t t dtdxsin 32-=,初始位移为20=s ,求s 和t 的函数关系.解:t t t S sin 3)(2-=C t t t S ++=⇒cos )(31212)0(=⇒=+⇒=C C S1cos )(3++=⇒t t t S5.设[]211)(ln x x f +=',求)(x f .解:[]12arctan )(ln 11)(ln C x x f xx f +=⇒+=')0()(arctan arctan 1>==⇒+C Ce e x f x C x6.求函数)(x f ,使5e 1111)(22+--++='x x xx f 且0)0(=f .解:C x e x x x f e x x x f x x ++-++=⇒--++=+521arcsin 1ln )(1111)(252 21002100)0(=⇒=++-+=C C f 21521arcsin 1ln )(2++-++=⇒x e x x x f x7.求下列函数的不定积分 (1)⎰-x xx x d 2(2)⎰-)1(t a dt(3)⎰mn x x d (4)⎰+-x xx d 112(5)⎰++x xx d 1124 (6)⎰++x xx xd cos sin 2sin 1(7)⎰+x x x x d cos sin 2cos (8)⎰++x xxd 2cos 1cos 12(9)⎰x x x xd cos sin 2cos 22(10)x x x d sin 2cos 22⎰⎪⎭⎫⎝⎛+(11)⎰-x xx x d cos sin12cos 22(12)⎰+-x xx d 1e 1e 2 (13)⎰⨯-⨯x xx d 85382 (14)x x x d 105211⎰-+-(15)⎰-x x x -x x d )e (e (16)⎰++x x x x d )31)(2e ((17)x x xx x d 1111⎰⎪⎪⎭⎫⎝⎛+-+-+ (18)⎰----x x x x x x d 151)1(222 (19)x xx d 1142⎰-+ (20)⎰-+-x xx xd sincos 1cos 1222(21)⎰+-+x x x x x d )1(1223 (22)⎰+-x xx x d 1224解:(1)=⎰+-=-C x x dxx x 252323215232)( (2)=⎰+-=--C tatt d a212)1(2)1()1(.1(3)=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+=-=+=≠-≠++=⎰⎰⎰+0 0 , m C x dx n m C x In dx x m n m C x m n m dx x m n m m n m n(4)=⎰+-=⎪⎪⎭⎫⎝⎛+-C x x dx x arctan 2 1212 (5)=C x x x dx x x x x ++-=++-+⎰arctan 2311)1(32222(6)=⎰⎰++=+++dx xx x x dx xx xx x x cos sin )cos (sin cos sin cos sin 2cos sin 222=⎰+-=+C x x dx x x cos sin )cos (sin (7)=⎰⎰-=+-dx x x dx xx xx )sin (cos cos sin sin cos 22=C x x ++cos sin (8)=⎰⎰++=⎪⎪⎭⎫⎝⎛+=+C x x dx x dx xx2tan 21 1cos 121cos 2cos 1222 (9)=⎰⎰+--=⎪⎪⎭⎫ ⎝⎛-=-C x x dx x x dx x x xx tan cot cos 1sin 1cos sin sin cos 222222 (10)=⎰⎰⎪⎭⎫ ⎝⎛+-=-++dx x x dx x x 122cos 2cos 22cos 121cos =C x x x +-+2sin 41sin 21(11)=⎰⎰+-=-=---C x dx x dx xx xx x x tan 2cos 12cos sin sin cos sin cos 2222222(12)=()⎰+-=-C x e dx e x x 1(13)=⎰⎰+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-C x dx dx xx85ln 85328532(14)=⎰⎰++-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛--C dx dx x x xx22ln 5155ln 22151512(15)=⎰+-=⎪⎭⎫⎝⎛-C x e dx x e x x ln 1(16)=[]⎰+++++=+++C e e dx e e xx x xxxxx6ln 63ln l )3(2ln 2)3(26(17)=⎰⎰+=-=--++C x dx xdx xx x arcsin 211211122(18)=⎰+--=⎪⎪⎭⎫⎝⎛---C x x x dx x xx arcsin 5ln 21151222 (19)=⎰+=-C x dx xarcsin 112(20)=⎰⎰+-=⎪⎪⎭⎫⎝⎛-=-C x x dx x dx xx2tan 211cos 121cos2cos 1222 (21)=⎰⎰+++=⎪⎪⎭⎫ ⎝⎛++-=+-+C x x x dx x x x dx x x x x arctan 1ln 1111)1(1)1(22222 (22)=⎰⎰++-=⎪⎪⎭⎫ ⎝⎛++-=+++--C x x x dx x x dx x x x arctan 22312212)1(13222248.用换元积分法计算下列各题. (1)⎰+-x x x d 24 (2)⎰-x x d )23(8(3)x xxd e3e 42⎰+ (4)⎰⎪⎭⎫ ⎝⎛+32cos d 2πx x(5)⎰-x xx d 432 (6)⎰+-52xd 2x x(7)⎰+xe ed (8)⎰-xe ed(9)⎰-1tan cos d 2x xx (10)⎰)ln -(1d x x x(11)⎰-xx x2ln 1d (12)⎰-x xx d e9e 2(13)⎰+x xxx d sin2cos sin 2(14)⎰-x x x d 212(15)x x x x d 1arctan 2⎰++ (16)⎰+xxe1d(17)x x x d 11arctan2⎰+ (18)⎰+--x x x x d e )1(422(19)⎰+x xx d 1335(20)⎰+x xxx d ln 2ln(21)⎰+x xx d sin 1sin 2 (22)⎰+-x x xx d 2sin 1cos sin(23)⎰+2)cos 2(sin d x x x(24)⎰x xx xd cos sin tan ln(25)⎰+xx x22cos 3sin d (26)⎰-++1212d x x s(27)⎰+++3)1(1d x x x (28)⎰++52d 24x xxx(29)⎰+x x x x d )ln 1( (30)x x x x d 12⎰-+(31)⎰+)1(ln ln d 2x x x x(32)x x x xd )1(arcsin ⎰- (33)⎰x x x x cos sin d (34)x x x d )1(x arctan ⎰+(35)⎰+x xxd cos1cos 2(36)⎰xdx x 3cos 2sin(37)x x x x ⎰-d 2cos )sin (cos (38)x xxx d sin1cos sin 4⎰+ (39)⎰x xd sin14(40)⎰xdx 3tan解:(1)=C x x x d x x dx x x ++-+=+⎪⎪⎭⎫ ⎝⎛+-+=+-+⎰⎰2123)2(12)2(32)2(262262(2)=⎰+-=--C x x d x 98)23(271)23()23(31 (3)=()()⎰+=+C e e e d x xx3arctan3213212222(4)=C x x x d +⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎰32tan 2132cos 32212πππ(5)=⎰⎰+--=---=-C x x x d x x d 333334324)4(314)(31(6)=C x x x d +-=+--⎰21arctan 214)1()1(2(7)=⎰+=+C e ee d x xx arctan 1)(2(8)=C e e e e d xx x x ++-=-⎰11ln 211)(2(9)=⎰+-=--C x x x d 21)1(tan 21tan )1(tan(10)=C xx d +--=---⎰lnx 1ln ln 1)ln 1((11)=⎰+=-C x x x d ln arcsin ln 1)(ln 2(12)=C e e e d x x x +=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛⎰3arcsin2922222(13)=C x xx d x x xd ++=++=+⎰⎰22sin 2ln 21sin 2)sin 2(21sin 2)(sin sin (14)=C x x x d +--=---⎰222212121)21(41(15)=C x x x d x x x d +++=+++⎰⎰23222)(arctan 32)1ln(21)(arctan arctan 1)1(21(16)=⎰⎰⎰⎰+⎪⎪⎭⎫⎝⎛+=++-=+=+C e e e e d e e d e e e d dx e e e x x xx xx xxx xxx1ln 1)1()()1()()1( (17)=C x d x xx d x +⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=+⎪⎭⎫⎝⎛-⎰⎰2221arctan 211arctan 1arctan 111arctan (18)=⎰+=+-+-+-C e x x d e x x x x 422422221)42(21 (19)=)(131)(131333333t d tttx x d xx ⎰⎰+=+令⎰⎰⎰⎪⎪⎪⎭⎫ ⎝⎛+-+=+-+=-)()1()()1(31)(1113131323t d t t d t t d t t C x x C t t ++-+=++-+=3233533235)1(21)1(51)1(21)1(51 (20)⎰⎰+=+=tt td txx xd 2)(ln ln 2)(ln ln 令⎰⎰⎰++-++=+-+=tt d t d t tt d t 2)2(2)2()2(2)(2221C x x C t t ++-+=++-+=21232123)ln 2(4)ln 2(32)2(4)2(32(21)⎰+-=--=C x xx d 2cos arcsincos 2)(cos 2(22)C x x x x x x d ++=++-=-⎰12)cos (sin )cos (sin )cos (sin(23)C x x x d ++-=++=-⎰12)2(tan )2(tan )2(tan(24)⎰⎰+===C x x xd x d x x 2)tan (ln 21)tan (ln tan ln )(tan tan tan ln (25)⎰⎰+=+=+=C x x x d xx d )tan 3tan(31)tan 3(1)tan 3(31tan31)(tan 22(26)C x x dx x x +⎥⎥⎦⎤⎢⎢⎣⎡--+=--+=⎰2323)12(32)12(324121212C x x +⎥⎥⎦⎤⎢⎢⎣⎡--+=2323)12()12(61(27)⎰⎰+=+++++=dt tt tt x x x x d 3321)1(1)1(令 ⎰++=+=+=C x C t dt t1arctan 2arctan 21122(28)⎰++=+++=C x xx d 21arctan 414)1()1(212222 (29)()⎰⎰+=+==+=C x C e e d dx x e x x x x x x x ln ln ln l )ln 1( (30)⎰⎰⎰++-=++-=+-=C x x x d x dx x dx x x x 23232222)1(3131)1(121)1((31)⎰⎰+=+=)1()(ln 令)1(ln ln )(ln 22tt t d tx x x d⎰++=⎪⎪⎭⎫ ⎝⎛++-=C t t t t d t t d 1ln 211)1()(21222222 C x x C x x ++-=++=)1ln(ln 21ln ln 1ln ln ln 21222(32)t x ==arcsin 令,则tdt t dt cos sin 2=⎰⎰+=+==C x C t dt t tdt t tt t 232322)(arcsin 34342cos sin 2cos sin(33)⎰⎰+===C x xx d xx x d tan ln 2tan )(tan cos sin)(2(34)⎰⎰+==+=C x x d x x d x x22)(arctan arctan arctan 2)(1arctan 2 (35)⎰+-+=-=C xx xx d sin 2sin 2ln221sin2)(sin 2(36)⎰⎰+-=-==C x x xd xdx x x 543cos 52cos cos 2cos cos sin 2 (37)⎰⎰---=+-=)sin (cos )sin (cos )sin (cos )sin (cos 22x x d x x dx x x x xC x x +--=3)sin (cos 31(38)⎰+=+=C x x x d 242sin arctan 21sin 1)(sin 21(39)⎰⎰⎰+--=+-=-==C x x x d x xx d dx xx cot cot 31)(cot )1(cot sin )(cot sinsin 132222 (40)⎰⎰⎰+-=-=-=C x x xdx x xd xdx x cos ln )(tan 21tan tan tan tan )1(sec 229.求下列函数的不定积分 (1)⎰+)1(d 7x x x(2)⎰-x x xd 12(3)⎰+-x x d 3211 (4)⎰+x x x-1)(1d(5)⎰+3d xx x (6)⎰-+x x xx d 21 (7)x x xd 11632⎰++(8)x x d e 1⎰+(9)⎰+-+x x x x d 4222(10)x x x d )1(323⎰-解:(1)⎰⎰++-=+=+=C x x x x dx dx x x x 77777761ln 71ln )1(71)1( (2)令t x =-1,则tdt dx t x 2 , 16-=-=⎰⎰+++-=+--=--=C t t t dt t t t dt t t t )315271(2)2(2)2()1(3572462(3)令t x =-21,则tdt dx t x -=-= , 212⎰⎰++-+--=+++-=+---+=C x C t t dt t dt t t 321ln 3213ln 3)331()(31 (4)令t x =-1,则tdt dx t x 2 , 12-=-=⎰⎰+---+-=+-+-=-=--=C xx C tt tdtdt tt t1212ln221.222ln221.222).2(222(5)令t x =6,则dt t dx t x 566 , ==⎰⎰⎰+-+-=+=+=dt t t t dt t t dt tt t 11)1(616623235C t t t t ++-+-=)1ln 2131(623 C t t t t ++-+-=1ln 663223(6)令t x =-2,则tdt dx t x 2 , 22=+=⎰⎰++=++=++=C t t dt t tdt tt 2arctan22)211(22.23222C x x +-+-=22arctan222(7)令t x =+312)1(,则dt t xds 232=⎰⎰+++-=++-=+=C t t t dt t t dt t t )1ln 21(9111919222C x x x +++++-+=1)1(ln )1()1(29312312322 (8)令t e x =+1,则12 , )1ln(22-=-=t tdt dx t x⎰++++-++=++-+=-=C e e e C t t t dt t t x x x)1111ln 211(2)11ln 21(21222(9)令t x =-1,则dt dx t x =+= , 1⎰⎰⎰+++++=+++=++=C t t tdt t dt t t dt t t 3ln 3)3(333332212223C x x x x x++-+-++-=421ln 3)42(2212(10)令t x =2,则t x =⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡-+--=-+--=-=dt t t dt t t dt t t3233)1(1)1(121)1(1121)1(21 C t t C t t +-+-=+⎥⎥⎦⎤⎢⎢⎣⎡-----=22)1(141)1(21)1(1211121 C x x C x x +--=+-+-=222222)1(412)1(141)1(2110.设⎰⎰+=+=x xb x a xx x xb x a xx F d cos sin cos )G( , d cos sin sin )(求)()(x bG x aF +;)()(x bF x aG -;)(x F ;)(x G .解:⎰+=++=+C x dx xb x a xb x a x bG x aF cos sin cos sin )()(⎰⎰++=++=+-=-C x b x a dx xb x a x b x a d dx xb x a xb x a x bF x aG cos sin ln cos sin )cos sin (sin sin sin cos )()(C bx x b x a a b a x G +++-=⇒)cos sin ln (1)(22C ax x b x a b b a x F +++--=)cos sin ln (1)(11.用三角代换求下列不定积分. (1)⎰-221xd x x(2)⎰32)-(1d x x(3)⎰-x x x d 122(4)⎰-x xa x d 22 (5)⎰-322)1(d x xx(6)x x x d )1(2101298⎰-解:(1)令t x sin =,则)2t ( cos π<=tdt dx⎰⎰+--=+-=+-===C x x C x C t t dtdt tt t2221)cot(arcsin cot sin cos sincos(2)令t x sin =,则)2t ( cos π<=tdt dxC xx C x C t tdtdt tt+-=+=+===⎰⎰2231)tan(arcsin tan cos cos cos(3)令t x sin =,则)2t ( cos π<=tdt dxC t t dt t tdt dt t t t +-=-===⎰⎰⎰2sin 412122cos 1sin cos cos sin 22 C x x x C x x +--=+-=2141arcsin 21)(arcsin 2sin 41arcsin 21 (4)令t a x sec =,则t a dx tan sec =,)20(π<<t⎰⎰⎰+-=-===C t a dt t a tdt a dt ta tt a t a )1(tan )1(sec tan sec tan sec .tan 22C saa a x C xaa a x a +--=+--=arccos )arccos (2222(5)令t x sin =,则tdt dx cos = 2π<t⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛+-=-===dt t t dt t t dt tt dt tt t22222232cos 1cos 11cos )cos 1(1cos sin1cos sincosC xx x x C t t +---=++-=2211tan cot (6)令t x sin =,则tdt dx cos = 2π<t⎰⎰⎰+⎪⎪⎭⎫ ⎝⎛-=+====C x x C td dt t dt tt t 992999810098101981991tan 991tan tan cos sin cos cos sin12.用分部积分法计算下列积分.(1)⎰++x x x x d e )31(2 (2)⎰--x x x d e 1 (3)⎰-x x x x d )sin (cos e (4)⎰x x x d cos (5)⎰x x d arcsin (6)⎰+x x d )4ln(2 (7)⎰x x x x d cos sin 4 (8)x x d l arctan 2⎰- (9)⎰x xx d )ln(ln (10)⎰x x x d sec 22 (11)⎰x xx d arctan 2(12)x x d )(arccos 2 (13)⎰+-x x xx d 44ln 2(14)⎰+x x xx d arctan 122(15)⎰+x x x x d arctan )1(632 (16)⎰x x xd cos tan ln 2(17)⎰∙x x x d sin sec ln (18)⎰∙x x x d tan ln 2sin(19)x x x x d ln 32ln 22⎰⎪⎭⎫ ⎝⎛+ (20)⎰x x x d arctan 2解:(1)⎰⎰+-++=++=dx x e e x x de x x x x x )32()31()31(22⎰++-++=dx e x e e x x x x x 2)32()31(2(2)C ex C dx e xe xde e x x x x ++-=+⎪⎭⎫ ⎝⎛--=-=+----⎰⎰)1()1(311 (3)⎰⎰⎰⎰-=-=xdx e xde xdx e xdx e x x x x sin cos sin cos⎰⎰+=-+=C x e xdx e xdx e x e x x x x cos sin sin cos(4)⎰⎰++=-==C x x x xdx x x x sd cos sin sin sin sin(5)⎰⎰--+=--=2221)1(21arcsin 1arcsin xx d x x xx x xC x x x +-+=21arcsin(6)⎰⎰⎰⎪⎪⎭⎫ ⎝⎛+--+=+-+=+=dx x x x dx x x x x dx x 2222224412)4ln(42)4ln()4ln( C xx x x ++-+=2arctan 42)4ln(2(7)⎰⎰+--=+-=-=C x x x xdx x x x xd 2sin 212cos 2cos cos 2cos(8)⎰⎰---=-+---=dx x x s dx x xx x x x 111arctan )1(121121.1arctan 222222C x x x x +-+--=1ln 1arctan 22(9)⎰⎰+-====C t t t tdt e x t x x d x tln ln ln )(ln )ln(lnCx x C x x x +-=+-=)1)(ln(ln ln ln )ln(ln .ln(10)⎰⎰++=-==C x x x xdx x x x xd cos ln 2tan 2tan 2tan 2)(tan 2 (11)⎰⎰⎰⎪⎪⎭⎫ ⎝⎛+-+-=++-=-=dx x x x xxdx x x x x xxd 2211arctan 111arctan )1(arctanC x x x x ++-+-=)1ln(21ln arctan 2 (12)⎰⎰-=--===tdt t t t tdt t tdtdx tx .cos 2cos sin sin arccos 22⎰⎰+--=--=-=C t t t t t tdt t t t t t td t t cos 2sin 2cos )sin sin (2cos sin 2cos 222C x x x x x +---=21arccos 2arccos 2(13)⎰⎰⎰-+--=⎪⎭⎫⎝⎛--=-=dx x x x x x xd dx x x21.121.ln 21ln )2(ln 2 C xx x x dx x x x x +-+--=⎪⎭⎫⎝⎛--+--=⎰2ln 212ln 121212ln (14)⎰⎰⎰+-=⎪⎪⎭⎫⎝⎛+-=xdx x xdx xdx x arctan 11arctan arctan 11122 ⎰⎰-+-=)(arctan arctan 1arctan 2x xd dx x xx xC x x x x +-+-=22arctan 21)1ln(21arctan(15)()()()dx x x x x x xd 223232311.1arctan 11arctan ++-+=⎥⎦⎤⎢⎣⎡+=⎰⎰()⎰+++-+=dx x x x x x112arctan 123623()⎰⎪⎪⎭⎫ ⎝⎛+-++--+=dx x x x x x x x 1212arctan 122423()()C x x x x x x x +++--+-+=1ln 3151arctan 1223523 (16)⎰==t x x xd tan )(tan tan ln 令⎰+-=+-==C x x x C t t t tdt tan tan ln .tan ln ln(17)()⎰⎰+-=-=xdx xx x x x x xd tan .cos 1.cos .cos cos .sec ln cos sec ln ⎰+--=+-=C x xdx x x cos sec ln .cos sin cos .sec ln()C e x x ++=22121(18)()⎰⎰-==dx xx xx x x xd cos sin 1sin tan ln .sin sin tan ln 222⎰++=-=C x x x xdx x x cos ln tan ln .sin tan tan ln .sin 22(19)()⎰⎰⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=dx x x x x x x x x d x x 1321.ln 231ln 32ln 31ln 32ln 3132332 ⎰⎰--⎪⎭⎫ ⎝⎛+=dx x xdx x x x x 222392ln 32ln 32ln 31 ()⎰⎰--⎪⎭⎫ ⎝⎛+=dx x x xd x x 232392ln 92ln 32ln 31 ⎰⎰-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=dx x dx x x x x x 2232392.ln 92ln 32ln 31 C x x x x x x x +=-⎪⎭⎫ ⎝⎛+=23323ln 31.ln 92ln 32ln 31 (20)()⎰⎰+-==dx x xx x x x d x 233.21.1131arctan 31arctan 31 ⎰⎰⎪⎪⎪⎪⎭⎫ ⎝⎛+-++--=+-=dx x x x x x x x dx x x x x 1161arctan 31161arctan 312121233253 C x x x x x x ++-+-=arctan 313191151arctan 31212325313.计算下列有理函数的不定积分. (1)⎰+x x x d )31(1 (2)⎰---)32)(1)((d x x x x(3)x x x x x d )2()1(122---- (4)⎰-++x x xx d 32322(5)⎰-1d 4xx(6)⎰++++x x x xx d 2541232 (7)⎰-+-x x x xxd 123(8)⎰+---x x xx x d )1)(1(122(9)⎰+++x x x xx d 14 (10)⎰+---x x x x x d )2()1(18332解:(1)C xC x x dx x x++=++-=⎪⎭⎫⎝⎛+-=⎰311ln31ln ln 311313 (2)C x x x dx x x x +---=⎪⎪⎭⎫⎝⎛-+--+-=⎰2)2()3)(1(ln 21)3(2121)1(21 (3)C x x dx x x +---=⎥⎥⎦⎤⎢⎢⎣⎡-+-=⎰112ln 21)2(12(4)C x x dx x x +--+=⎥⎦⎤⎢⎣⎡-++=⎰1ln 453ln 43)1(45)3(43(5)⎰+--+-=⎪⎪⎭⎫ ⎝⎛+--=C x x x dx x x arctan 2111ln 4111112122 (6)C x x x dx x x x ++++-+-=⎥⎥⎦⎤⎢⎢⎣⎡+++++-=⎰2ln 51ln 41225)1(2142 (7)⎰⎰⎥⎦⎤⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛+-+-=⎥⎥⎦⎤⎢⎢⎣⎡-++-=dx x x x x dx x xx)1(2111121)1(21)1(21222()C x x x +-+++-=1ln 21arctan 211ln 412 (8)⎰⎰⎰⎰+-++----=⎪⎪⎭⎫⎝⎛+-+-+-=dx x xdx x x x dx x dx x x x x 1123121111211C x x x x +⎪⎪⎭⎫ ⎝⎛-++---=312arctan 31ln 211ln 2 (9)()()()()⎰⎰⎰++++-+-=⎥⎥⎦⎤⎢⎢⎣⎡+++-=dx x dx x x x x dx x x x 121121211111222 ()⎰⎰++++++⎪⎭⎫ ⎝⎛-+-=1ln 2111211141212222x dx x x x d x x ()C x x x x x +++-++-=arctan 211ln 411ln 212122(10)()()⎰⎰⎰+--+-=--+-+--=C x x x dx x dx x dx x 21ln 1121111223(B )1.填空题(1)设x x f 21)(ln +=',则)(x f = . (2)设函数)(x f 满足下列条件 ①2)0(=f ,0)2(=-f ;②)(x f 在1-=x ,5=x 处有极值;③)(x f 的导数是x 的二次函数,则)(x f = . (3)若C x x x xf x +=⎰e d )(2,则⎰x x f xd )(e = . (4)设2ln)1(222-=-x x x f ,且[]x x f ln )(=ϕ,则=⎰x x d )(ϕ .(5)设x x f ln )(=,则='⎪⎪⎭⎫⎝⎛-⎰-x f x x xx d )e (e -2e e 43 . (6)='⎰x x f xx f d )(ln )(ln .(7)设)(x f 的一个原函数为xxsin ,则='⎰x x f x d )2( . (8)若⎰⎰-=x x f x f x x x f d )(cos )(sin d )(sin ,则=)(x f .解:(1)()C e x x f x ++=2()()()C e x x f e x f e x x f x x x ++=⇒+='⇒+=+='2212121ln ln(2)215623+--x x x由已知可设d cx bx ax x f +++=23)( 有()C bx ax x f ++='232()()()()⎪⎪⎩⎪⎪⎨⎧=-=-==⇒⎪⎪⎩⎪⎪⎨⎧=++==+-=-'=+-+-=-==⇒2156101075502310248220d c b a c b a f c b a f d c b a f d f()215623+--=⇒x x x x f(3)C x ++2ln()()()x x x x xxe e x f e x xe x xf C ex dx x xf +=⇒+=⇒+=⎰2222 ⎰⎰++=+=⇒C x dx xdx x f e x2ln 21)( (4)C x x +++1ln 21)(1)(ln 11ln)(1111ln2ln)1(22222-+⇒-+=⇒--+-=-=-x x x x x f x x x x x f ϕϕ ⎰⎰⎰+-+=-+=-+=⇒-+=⇒C x x dx x dx x x dx x x x x 1ln 2)121(11)(11)(ϕϕ (5)C e e e x x x ++-+--22ln 24121222⎰⎰++-+-=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=---C e e e dx e e e dx ee e e x x x x x x x x x x 22ln 2412121.222242243原式 (6)C xf +)(ln 2C x f x f x f d +==⎰)(ln 2)(ln ))(ln (原式(7)C xxx +-42sin 42cos ⎰-=⇒+=sin cos )(sin )(x xx x c f C x x dx x f C x xx x x x x x x x dx x f x xf x f xd +-=--=-==⎰⎰42sin 42cos 22sin 4142sin 2cos 2.21)2(41)2(21))2((212原式 (8)x ln⎰⎰'-=dx x f x f x x f x dx x g )()(cos )(sin )(sinC x x f xx f +=⇒='∴ln )(1)(,取x x f ln )(=2.选择题(1)设x x f 2cos )(sin =',则⎰=dx x f )(( B ) A .C x x +-331 B .1421212C Cx x x ++- C .C x x ++421212 C .C x x ++421212(2)设)()( , )(1)()( , )(1)()(2x g x F x f x f x g x f x f x F ='+=-=,且14=⎪⎭⎫⎝⎛πf ,则=)(x f ( A ) A .x tan B .x cot C .x arctan D .x arc cot (3)若⎰+=C x x x f 2sin d )(,则⎰=--dx x x xf 12)12(22( B )A .C x +22sin 41B .C x +-)12sin(212 C .C x +-)12(sin 2122 D .C x +-)12sin(412(4)设⎰⎰+∙=xdx x f x g dx xx f 22cot )()(sin)(,则)(x f ,)(x g 分别是( D )A .x x f cos ln )(=,x x g tan )(=B .x x f cos ln )(=,x x g cot )(-=C .x x f sin ln )(=,x x g tan )(=D .x x f sin ln )(=,x x g cot )(-= 解:(1)BC +-=⇒-='⇒-=='322x 31x )x (f x 1)x (f x sin 1x cos )x (sin f⎰++-=⇒142C x x 1212x f(x)dx C(2)A根据1)4f(=π,首先排除C 、D ,再将选项A 、B 分别代入原条件中,得A(3)B)1x 2sin(1x 2212x f 2xsinx f(x)2222--=-⇒= ⎰⎰+--=--=-=⇒C )1x 2sin(21)1d(2x )1x 2sin(2.41dx )1xsin(2x 22222原式,得B (4)D⎰⎰-=cotx)f(x)d(dx x sin f(x)2取cotx g(x)-=则⎰+=xdf(x)cot f(x)g(x)上式 与条件比较,得cotxg(x) ,lnsinx f(x)cotx df(x)-==⇒=,得D3.计算下列不定积分(1)x xx x d 11ln 112-+-⎰(2)x x x x d cos 1)sin 1(e ⎰++(3)⎰+)e1(e d x(4)x xx d cos sin1⎰(5)⎰x x x x d cos e (6)⎰+++x x x x d 112(7)⎰xx4cos d (8)⎰++x aax x xd 22(9)⎰-+293d x x (10)⎰-xx1 (提示 令t x 2sin =) (11)x x x d 283⎰++ (12)⎰-x xxxd 1arcsin 22(提示 令t x =arcsin ,t x sin =,再用分部积分法)(13)⎰x x x d )(arctan 2 (14)x xxx d e 1arctan arctan 2⎰+(15)⎰+x xxx d )3(ln 22(16)x x x d )sin(ln 3⎰(提示 经过两次分部积分,又出现原积分形式,移项后便可得到所要结果)解:(1)C xxx x d x x ++-=+-+-=⎰11ln 41)11(ln 11ln 212 (2)dx x tg x tg e dx x xx e x x )2221(212cos )2cos 2(sin222++=+=⎰⎰⎰⎰++=dx e x tg dx e x tg e x x x 2212212 ⎰⎰+=++-+=C x tg e dx e x tg dx x tg e e x tg e x x x x x 2221)12(2122122 (3)⎰⎰+-=+=x xxxxxde eee ede )111()1(2222C e e x x +--=-arctan(4)C x x dx x+--==⎰cot cot 31sin 13C x x C x x x d x +--=⎥⎦⎤⎢⎣⎡+--=⎰2cot 382cot 82cot 2cot 31822sin 18313 (5)=[]c x x x x e x++-cos sin )1(21 (6)⎰⎰⎰+++++++=++-+=dx x x x x x d dx x x x 22222)23()21(1211)1(2112121C x x x x x C x x x x x ++++++++=++++++++=121ln 211121ln 2112.212222 (7)⎰⎰++=+==C x x x d x x d x322tan 31tan tan )tan 1()(tan cos 1(8)⎰⎰⎰++-+++++=++-+=dx aax x a aax x a ax x d dx a ax x aa x 222222221)2()(2122C a ax x ax a a ax x +++++-++=22222ln 2(9)t x sin 3==令,20π<<t 则⎰⎰⎰+-=+=+dt tdt t t dt t t )cos 111(cos 1cos cos 33cos 3⎰+-=-C tt t d t 2arctan )2(2cos 12C x x x C xx+-+-=+-=2933arcsin 23arcsintan3arcsin(10)t x 2sin ==令,20π<<t ,则⎰⎰⎰+==dt ttdt tdt t t t 22cos 12cos 2cos sin 2sin cos 2 C x x x t t dt t +-+=+=+=⎰2arcsin 2sin 21)2cos 1((11)C x x x dx x x dx x x x ++-=++=++++=⎰⎰4342)42(2)42)(22(232(12)t x =arcsin 令,t x sin =,则⎰⎰⎰⎰+-=-===tdt t t t td dt tttdt tt tcot cot )cot (sincos cos sin22C x x xx C t t t ++--=++-=ln arcsin 1sin ln cot 2(13)xdx x x x x x d x arctan 1)(arctan 21)()(arctan 21222222⎰⎰+-==⎰⎰++-=xdx x xdx x x arctan 11arctan )(arctan 21222 C x x x x x x ++++-=2222)(arctan 21)1ln(21arctan )(arctan 21 (14)⎰⎰==dt te t x x d xe t x arctan )(arctan arctan arctan 令⎰⎰+-=+-=-==C e x C e t de te tde x t t t t arctan )1(arctan )1((15)⎰⎰⎰+++-=+-=++=dx xx x x x xd x d x x )3(1213ln 21)31(ln 21)3()3(ln 21222222C x x x x dx x x x x ++-++-=+-++-=⎰)3ln(121ln 613ln 21)311(613ln 212222 (16)⎰⎰+-=-=dx xx x x x d x 322ln cos 21)sin(ln 21)1()sin(ln 21 dx x xx xx x⎰---=322ln sin 41ln cos 41)sin(ln 21[]C x x x ++-=⇒ln cos ln sin 2512原式。

《微积分》各章习题及详细答案

《微积分》各章习题及详细答案

第一章 函数极限与连续一、填空题1、已知x xf cos 1)2(sin+=,则=)(cos x f 。

2、=-+→∞)1()34(lim 22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分课后题答案习题详解

微积分课后题答案习题详解

第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立. 证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。

微积分5习题答案

微积分5习题答案

一、填空题1.设C x F dx x f +=⎰)()(,则=⋅⎰dx x f x )(cos sin C x F +-)(cos2.设C x F dx x f +=⎰)()(,则=⎰xdx x f cos )(sin C x F +)(sin 3.设C x F dx x f +=⎰)()(,则=⎰dx x xf )(' C x F x xf +-)()(4.如果等式C e dx e x f xx +-=⎰-11)(成立,则函数=)(x f x e x 2215.若C x F dx x f +=⎰)()(,则=⎰--dx e f e x x )( C e F x+--)(6.若xe-是)(x f 的一个原函数,则=⎰dx x xf )( C ex x++-)1(7.若xex f -=)(,则⎰=dx x x f )(ln ' C x+18.若C x dx x f +=⎰2)(,则=-⎰dx x xf )1(2 C x +--2221)1(9.如果22)]([)(12x f dx d x f x=+,且0)0(=f ,则=)(x f x arctan 10.=+⎰dx x x 321 C x ++233)1(92 C x x +-+|1|ln 2↓11.若函数2ln )1(222-=-x x x f ,且x x f ln )]([=ϕ,则=⎰dx x )(ϕ12.设x x f +='1)(ln (0>x ),则=)(x f C e x x++ 二、单项选择题1. 设()x f 是()x g 的原函数,则下列各式中正确的是 BA .()()C x g dx x f +=⎰B .()()C x f dx x g +=⎰ C .()()C x g dx x f +=⎰'D .()()C x f dx x g +=⎰'2. 函数()x x f 2=是函数()xx g 21=的 CA .反函数B .导函数C .原函数D .不定积分3. 下列各式中等于()x f 的是 D A .()⎰x df B .()dx x f d⎰ C .()dx x f ⎰' D .()()'dx x f ⎰’4. 设C x dx x f ++=⎰12)(2,则=+⎰dx x xf )12(2DA .C x x ++122B .C x ++12212 C .C x ++12412 D .C x +++1)12(24125.设导数)(')('x f x g =,则下列各式中正确的是 BA .)()(x f x g =B .C x f x g +=)()(C .dx x f dx x g ⎰⎰=)()(D .C dx x f dx x g +=⎰⎰)()(6.函数x 2cos π的一个原函数是_______________ A A .x 2sin2ππB .x 2sin2ππC .x 2sin2ππ-D .x 2sin2ππ-7.⎰=dx e x x 3_________________ DA .()c e x+3 B .()c e x+331 C .c e x +3 D .()c e x++3ln 13 8.⎰=-xdx 21__________________ BA .c x +-21B .c x +--21C .c x +--2121D .c x +--212 9.设C x dx x f x ++=⎰)1ln()(,则=⎰dx xx f )( D A .C x ++)1ln(1 B .C xx ++)1ln( C .C x x ++3232 D .C x x ++22 10.在区间),(b a 内,如果)(')('x g x f =,则下列各式中一定成立的是 A .)()(x g x f = B .1)()(+=x g x fC .[][]')(')(⎰⎰=dx x g dx x f D .dx x g dx x f ⎰⎰=)(')('11.若x 2sin 是)(x f 的一个原函数,则=⎰dx x f x )( D A .sin 2cos2x x x C ++ B .sin 2cos2x x x C -+C .C x x x +-2cos 212sin D .C x x x ++2cos 212sin 12.设C x F dx x f +=⎰)()(在],[b a 上成立,则 DA .)(x f 在],[b a 上必连续,但不一定可导B . )(x f 在],[b a 上必可导C .)(x F 在],[b a 上必连续,但不一定可导D . )(x F 在],[b a 上必可导13.不定积分=⎰dx x22sin CA .C x+22cos2 B .C x x ++sin C .C x x +-)sin (21 D .C x+-22sin 21 14.设sin 2()24x x f x ''⎛⎫+= ⎪⎝⎭,则()d f x x =⎰A .1cos 222x C ++B .sin 224x xC ++ C .2cos 248x x C -+ D .2cos 244x x C -+ 三、求下列不定积分1.dx xx x ⎰+⋅-4312 C x x x ++-=4312134534132454 2.⎰--62x x dxC x x ++-=23ln51 3.dx x x ⎰⋅210sec tan C x +=11tan 111 4.dx xx x ⎰+⋅32sin 1cos sin ()C x ++=3sin 1ln 315.dx x ⎰5sin C x x x +-+-=53cos 51cos 32cos6.dx xx ⎰sin C x +-=cos 2()+++311x x 8.⎰-241x dxC x +=2arcsin 219.()⎰-221arcsin xx dxC x +-=a r c s i n 110.⎰+dx xx 2sin 2sin 1 C x x ++-=sin ln 2cot 11.dx x x ⎰+⋅49 ()()C x x ++-+=4549953699412.⎰++222x x dxC x x x +++++=221ln 213.dx a x ⎰-22 C a x x a a x x +-+--=22222ln 221 14.dx x ⎰arccos C x x x +--=21arccos15.dx x x ⎰sin 2C x x x x x +++-=cos 2sin 2cos 216.⎰xxdx2sin C x x x ++-=sin ln cot17.dx xx ⎰-1arcsin C x x x +++--=14arcsin 1218.dx x ⎰ln cos ()C x x x ++=ln sin ln cos 2119.⎰-+xx e e dx C e x+=arctan 20.dx x e x ⎰-cos ()C x x e x+-=-cos sin 2121.⎰+x e dx 1 C e e x x +⎪⎪⎭⎫⎝⎛++-+=1111ln 22.()dx xx x⎰+1arctan ()C x+=2arctan23.()⎰+46x x dx C x x +⎪⎪⎭⎫⎝⎛+=4ln 24166 24.dx ex⎰3()C x xex ++⋅-=223332325.dx x xx ⎰+++2222()()C x x x +++++=1arctan 22ln 212 26.dx x x x ⎰++2211tan C x ++-=21cos ln 27.⎰+xedx 1 ()C e x x++-=1ln+x sin 129.()⎰+2221x dx x ()C x xx ++-=2212arctan 2130.()dx x x ⎰-+1ln 2 ()C x x x x +---+=11ln 2231.dx x x ⎰)ln(ln =C x x +-⋅)1ln (ln ln32.dx x ⎰arcsin =C x x x x x +---⋅)1(21arcsin 21arcsin33.dx x x x ⎰+221arctan =C x x x x +-+-22)(arctan 21|1|ln 21arctan 34.dx exe xx ⎰+1 =C e e e e x xx xx +++-+-+-+1111ln2141235.dx x ⎰sinC x x x ++-=s i n 2c o s 236.⎰+x dx x cos 1 C xx x ++=2cos ln 22tan 37.⎰+dx x x )cos (sin 5 C x x x x +++--=sin )cos 51cos 32(cos 5338.⎰+dx xx 33C x x x x ++-+-3ln 27923323= 39.⎰+dx x x )sin (sin 23 C x x x x +-+-=2sin 4121cos cos 31340.⎰++)1)(1(2x x dx C x x x +++-+=arctan 211ln 411ln 21241.⎰+xx xln 1ln C x x ++-+2123)ln 1(2)ln 1(32=42.dx ex⎰C ex x+-)1(2=43.dx x ⎰-24 C x x x +-+=24212arcsin 244.()ln arctan d x x x x +⎰ =()()21ln 11arctan 2x x x x x c ⎡⎤-++-+⎣⎦四、解答题1.求xex f +=11)(的原函数 C e x++--|1|ln。

高等数学第五章习题答案

高等数学第五章习题答案

第五章 不定积分与定积分 第一节 定积分的概念及性质1.=S 61 2.(1)1;(2)4π. 3.(1)⎰102dx x >⎰12dx x ;(2)⎰12dx e x <⎰1dx e x . 4.利用积分中值定理证明.5.利用定积分估值定理证明.第二节 微积分基本公式1.(1)0; (2)0; (3)2cos x ; (4)2e x-; (5)24sin sin 2x x x -.2.2232y xe x y --='3.(1)1; (2)42π; (3)0; (4)1sin ; (5)11+p .4.(1)6π; (2)1; (3)4; (4)35.5.利用双曲函数表达式及原函数的定义证明.第三节 不定积分的概念与性质1.(1)x x cos 2ln 2+; (2)23x ; (3)C x +-sin .2.(1)C x +36; (2)C x+3ln 3; (3)C x ++1e ; (4)C x x +-cos sin ; (5)C x +arctan 3; (6)C x +arcsin 2;(7)C t t+-34433e ; (8)C x x +--tan cot ; (9)C x +158815; (10)C t +20ln 20; (11)C e x x x ++e -33ln 313; (12)C x x +--arctan 1; (13)C x x +-sin ; (14)C x x ++arctan ; (15)C x x ++arctan 212; (16)C x x x +--cot 9tan 4. 3.x x y +=3.第四节 换元积分法1.(1)C x +-32ln 21; (2)C e x+--22; (3)C x a a+)22arctan(21;(4)C x +--22121; (5)C x ++)4ln(212; (6)C x +4)(arcsin 41;(7)C x +)arctan(sin 212; (8)C x x ++cos ln sin ln ; (9)C x ++14; (10)C x x x ++-53sin 51sin 32sin ; (11)C x x ++sin cos ln ; (12)C x x +-ln 1.2.(1)0; (2)31; (3)2; (4)1; (5)2)2(ln 21; (6)2332a .3.(1)C x a x a x a +--2222arcsin 2; (2)C x +1arccos ; (3)C xx++21;(4)C x x ++-)21ln(2; (5)C e e x x+++-+1111ln; (6)C xa x a +--3223223)(. 4.(1)2π; (2)3322-; (3)61; (4)32ln 22+; (5)e e+12ln .5.2ln .6.(1)0; (2)3ln .第五节 分部积分法1.(1)C x x x +-2ln ; (2)C x x x ++-)41ln(412arctan 2; (3)C x x x ++-)21(e 2122; (4)C x x x ++)3cos 23sin 3(e 1312; (5)C x x x ++-2sin 412cos 21; (6)C x x x x ++-2arctan 8142arctan 22; (7)C x x x ++-]2ln 2)[(ln 2; (8)C x x ex++-)22(33323;(9))1()1(112+++n ne n ; (10))11(2e -; (11)5e ; (12)463ππ-. 第六节 有理函数的积分及应用1.(1)C x x +++-111ln 212; (2)C x x x x +-++--+312arctan 3)1ln(211ln 2; (3)C x x x ++--1ln 2)2(ln ;(4)C x x x x x x ++---+++1ln 41ln 3ln 8213123; (5)⎪⎪⎪⎪⎭⎫ ⎝⎛+512tan 3arctan 51x ; (6)C x x ++)2tan 3(2tan ln 312; (7)C x ++-tan 11; (8)C x x +-+-32)11(43.第七节 广义积分1.答:不正确.因为该积分是以0=x 为瑕点的广义积分,且该积分是发散的. 2.答:不正确.奇函数在对称区间上的定积分为零是以积分存在为前提的,而dxxx ⎰∞+∞-+21是发散的. 3.1>k 时dx x)x(k⎰∞+2ln 1收敛,1≤k 时dx x)x(k ⎰∞+2ln 1发散.4.(1)4π; (2)82π-; (3)π55; (4)38; (5)91-; (6)23.总复习题五1.(1)A ; (2)A ; (3)C ; (4)C ; (5)D ; (6)D . 2.(1)C x x +-cos ; (2)61; (3)0; (4)1-; (5)2)1(2--x ; (6)c x x x +-sin cos . 3.(1)C x+20ln 20; (2)C x x x x ++-arctan arctan ; (3)2; (4))1(411--e ; (5)π; (6)1. 4.C x x dx x +-+=⎰1ln 2)(ϕ. 5.1=α,1=β.6.提示:利用闭区间上连续函数的最值定理、定积分的估值定理、闭区间上连续函数的介值定理证明.。

微积分习题课参考答案(三重积分概念、性质、计算,重积分应用)_883402960

微积分习题课参考答案(三重积分概念、性质、计算,重积分应用)_883402960
3
2 2

2 2
2 2
2
2
I = ∫∫∫ f ( x, y, z )dV =

x2 + y 2 1
∫∫

dx ∫ 2
2 − x2 + y 2
x + y2
f ( x, y, z )dz
= ∫ dx ∫
−1
1
1− x 2
− 1− x
dy ∫ 2 2
2 − x2 + y 2
x + y2
f ( x, y, z )dz
Ω1 Ω2
, w( x, − y, z) = w( x, y, z) ,
2 2
.(化三重积分为累次积分) 设函数 f ( x, y, z) 连续, Ω 由曲面 z = x + y 和曲面 z = 2 − x + y 围成,将三重积分 I = ∫∫∫ f ( x, y, z )dV 分别在直角坐标系、柱坐标系和球坐 标系下化为累次积分. x + y ≤ z ≤ 2 − x + y , 解:在直角坐标系中,积分域 Ω 可以表示为 Ω : 所以 x + y ≤1,
4

2z
0
( r 2 + z ) ⋅ rd r 256π 3
= 4π ∫ z 2 dz =

9
. (交换积分次序) 设 D = {( x, y) 1≤ x
u
0 2
+ y2
sin( z x + y ) 1 ≤ 4} ,求极限 I = lim 2π ∫ dz ∫∫ x + y dxdy .
u
2 2
u →+∞
Ω Ω

微积分习题集带参考答案(5)

微积分习题集带参考答案(5)

微积分习题集带参考答案综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

《微积分》各章习题及详细答案

《微积分》各章习题及详细答案

第一单元 函数与极限一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sinlim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、____________22lim22=--++∞→x x n 。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分习题答案经济数学微积分主编张建梅马庆华.ppt

微积分习题答案经济数学微积分主编张建梅马庆华.ppt

上一页
下一页
目 录
2.
上一页
下一页
目 录
2.
上一页
下一页
目 录
4.
上一页
下一页
目 录
5.
上一页
下一页
目 录
6.
上一页
下一页
目 录
7.
(6).
上一页
下一页
目 录
7.
7)
上一页
下一页
目 录
7.
(9)
上一页
下一页
目 录
7.
(10)
上一页
下一页
目 录
7.
(11)
上一页
下一页
目 录
7.
(12)
上一页下一页目录logowwwthemegallerycomwwwthemegallerycom广东外语外贸大学logowwwthemegallerycom更多精品狂点?感谢阅读
第五章 部分习题解答
本节内容:
§5.1习题答案
§5.2习题答案 §5.3习题答案
§5.1 部分习题答案
4.
上一页
下一页
目 录
5 (3 )

下一页
目 录
6.
上一页
下一页
目 录
6.
上一页
下一页
目 录
7.
上一页
下一页
目 录
§5.2 部分习题答案
3.
上一页
下一页
目 录
4.
上一页
下一页
目 录
5 (4 )
上一页
下一页
目 录
8.
上一页
下一页
目 录
上一页
下一页

微积分各章习题及详细答案

微积分各章习题及详细答案

第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分练习题及答案

微积分练习题及答案

微积分练习题及答案在学习微积分的过程中,练习题是不可或缺的一部分。

通过练习题的解答,可以巩固知识点,并提升解题的能力。

本文将提供一些微积分的练习题及其答案,以帮助读者更好地理解和应用微积分的知识。

一、函数与极限1. 计算以下极限:(1) lim(x→1) (x^2 - 1)/(x - 1)(2) lim(x→∞) (4x^3 - 2x + 1)/(3x^3 + 5x^2 - x + 2)答案:(1) 这是一个常见的极限问题,可以通过因式分解进行求解。

将被除数和除数同时因式分解,得到 (x + 1)(x - 1)/(x - 1),可见分母中的 (x - 1) 可以约去,因此极限的结果为lim(x→1) (x + 1) = 2。

(2) 这是一个求无穷大极限的问题,可以通过比较最高次项的系数来求解。

最高次项的系数对应的是 x^3,因此极限的结果为lim(x→∞) (4x^3 - 2x + 1)/(3x^3 + 5x^2 - x + 2) = 4/3。

2. 计算以下函数的导数:(1) f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1(2) g(x) = e^x + ln(x)答案:(1) 对 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 求导,使用求导法则可得 f'(x) = 12x^3 - 6x^2 + 10x - 4。

(2) 对 g(x) = e^x + ln(x) 求导,使用求导法则可得 g'(x) = e^x + 1/x。

二、微分与积分1. 求下列函数的不定积分:(1) ∫(2x^3 - 3x^2 + 4x - 1)dx(2) ∫e^xsin(x)dx答案:(1) 按照积分的求导法则,我们可以得到∫(2x^3 - 3x^2 + 4x - 1)dx = (1/4)x^4 - (1/2)x^3 + 2x^2 - x + C,其中 C 为积分常数。

微积分习题及答案

微积分习题及答案

微积分习题及答案微积分习题及答案微积分作为数学的重要分支,是研究变化和积分的学科。

它是现代科学和工程领域中不可或缺的工具。

在学习微积分的过程中,习题是非常重要的一部分,通过解答习题可以加深对概念和原理的理解,并提升解决实际问题的能力。

下面将介绍几个常见的微积分习题及其答案。

一、极限习题1. 求极限:lim(x→0) (sinx/x)解答:当x趋近于0时,sinx/x的值趋近于1。

这是因为sinx/x的极限定义为1,所以该极限的值为1。

2. 求极限:lim(x→∞) (1+1/x)^x解答:当x趋近于无穷大时,(1+1/x)^x的值趋近于e,其中e是自然对数的底数。

这是因为(1+1/x)^x的极限定义为e,所以该极限的值为e。

二、导数习题1. 求函数f(x) = x^2的导数。

解答:根据导数的定义,f'(x) = 2x。

所以函数f(x) = x^2的导数为2x。

2. 求函数f(x) = e^x的导数。

解答:根据导数的定义,f'(x) = e^x。

所以函数f(x) = e^x的导数为e^x。

三、积分习题1. 求∫(x^2 + 2x + 1)dx。

解答:根据积分的定义,∫(x^2 + 2x + 1)dx = (1/3)x^3 + x^2 + x + C,其中C为常数。

2. 求∫(sinx + cosx)dx。

解答:根据积分的定义,∫(sinx + cosx)dx = -cosx + sinx + C,其中C为常数。

四、微分方程习题1. 求解微分方程dy/dx = 2x。

解答:对方程两边同时积分,得到y = x^2 + C,其中C为常数。

2. 求解微分方程dy/dx = 3x^2。

解答:对方程两边同时积分,得到y = x^3 + C,其中C为常数。

通过解答以上习题,可以加深对微积分概念和原理的理解。

同时,通过解决实际问题的能力的提升,可以将微积分应用于科学和工程领域中的实际问题。

微积分的习题和答案是学习过程中的重要参考资料,希望以上内容对大家有所帮助。

微积分课后习题答案 第五章

微积分课后习题答案 第五章

第五章习题5-11.求下列不定积分:(1)25)x -d x ;(2) 2⎰x ; (3)3e x x⎰d x ; (4) 2cos 2x⎰d x ; (5) 23523x xx⋅-⋅⎰d x ; (6) 22cos 2d cos sin xx x x ⎰.解5151732222222210(1)5)(5)573d d d d x x x x x x x x x x C -=-=-=-+⎰⎰⎰113222221132223522(2)(2)24235d d d d x x x x x xx x x x x x x x C--==-+=-+=++⎰⎰⎰⎰213(3)3(3)(3)ln(3)1ln 31cos 1111(4)cos cos sin 222222235222(5)[25()]25()333125225()223(ln 2ln 3)3ln()3e e d e d e e d d d d d d d d x x xxxxx x x xx xx xx x C Cx x x x x x x x x Cx x x x x C x C ==+=+++==+=++⋅-⋅=-⋅=-⋅=-⋅+=-+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222222222cos 2cos sin (6)(csc sec )cos sin cos sin csc sec cot tan d d d d d x x x x x x x x x x x xx x x x x x C-==-=-=--+⎰⎰⎰⎰⎰2. 解答下列各题:(1) 一平面曲线经过点(1,0),且曲线上任一点(x ,y )处的切线斜率为2x -2,求该曲线方程; (2) 设sin x 为f (x )的一个原函数,求()f x '⎰d x ;(3) 已知f (x )的导数是sin x ,求f (x )的一个原函数;(4) 某商品的需求量Q 是价格P 的函数,该商品的最大需求量为1000(即P=0时,Q =1000),已知需求量的变化率(边际需求)为Q ′(P )=-10001()3Pln3,求需求量与价格的函数关系. 解 (1)设所求曲线方程为y =f (x ),由题设有f′(x )=2x -2,2()(22)2d f x x x x x C ∴=-=-+⎰又曲线过点(1,0),故f (1)=0代入上式有1-2+C =0得C =1,所以,所求曲线方程为2()21f x x x =-+.(2)由题意有(sin )()x f x '=,即()cos f x x =, 故 ()sin f x x '=-, 所以()sin sin cos d d d f x x x x x x x C '=-=-=+⎰⎰⎰.(3)由题意有()sin f x x '=,则1()sin cos d f x x x x C ==-+⎰于是12()(cos )sin d d f x x x C x x C x C=-+=-++⎰⎰.其中12,C C 为任意常数,取120C C ==,得()f x 的一个原函数为sin x -.注意 此题答案不唯一.如若取121,0C C ==得()f x 的一个原函数为sin x x --. (4)由1()1000()ln 33PQ P '=-得111()[1000()ln 3]1000ln 3()1000().333d d P P P Q P x x C =-=-⋅=⋅+⎰⎰将P =0时,Q =1000代入上式得C =0所以需求量与价格的函数关系是1()1000()3PQ P =.习题5-21.在下列各式等号右端的空白处填入适当的系数,使等式成立: (1) d x = d(ax +b )(a ≠0); (2) d x = d(7x -3); (3) x d x = d(52x ); (4) x d x = d(1-2x ); (5) 3x d x = d(3x 4-2); (6) 2e xd x = d(2e x); (7) 2ex -d x = d(1+2ex -); (8)d xx= d(5ln |x |);(9)= d(1-arcsin x ); (10)= d(11)2d 19x x += d(arctan3x ); (12) 2d 12xx +=d(arctan );(13) (32x -2)d x = d(2x -3x ); (14) cos(23x -1)d x = dsin(23x -1).解 1(1)()(0)()d d d d ax b a x a x ax b a +=≠∴=+22224334222221(2)(73)7(73)71(3)(5)10(5)101(4)(1)2(1)21(5)(32)12(32)121(6)()2()2(7)(1)d dd d d dd d d d d d d d d d de e d e d d e d e e x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ---=∴=-=∴=-=-∴=---=∴=-=⋅∴=+=222221()2(1)251(8)(5ln )(5ln )5(9)(1arcsin )(1arcsin )(10)1(2)3(11)(arctan 3)19d e d d e d d d d d d d d d d d x x x x x x x x x x x x x x x x x x x x x --⋅-∴=-+=∴=-==---=-==-=+222322231(arctan 3)193(12)))1212(13)(2)(23)(32)(32)(2)222232(14)sin(1)cos(1)cos(1)sin(1)333323d d d d d d d d d d d dd x x x x x x x x x x x x x x x xx x x x x x ∴=+=∴=++-=-=--∴-=---=-∴-=- 2.求下列不定积分: (1)5e d t t ⎰; (2) 3(32)x -⎰d x ; (3)d 12xx -⎰; (4)(5)t ; (6)d ln ln ln xx x x ⎰;(7)102tan sec d x x x ⎰; (8) 2e d x x x -⎰;(9)dsin cos x x x ⎰; (10) ⎰; (11)de e x x x-+⎰; (12)x ;(13) 343d 1x x x-⎰; (14) 3sin d cos xx x ⎰;(15)x ; (16) 32d 9x x x +⎰; (17)2d 21xx -⎰; (18) d (1)(2)xx x +-⎰;(19 2cos ()d t t ωϕ+⎰); (20) 2cos ()sin()d t t t ωϕωϕ++⎰; (21) sin2cos3d x x x ⎰; (22) cos cos d 2x x x ⎰; (23)sin5sin 7d x x x ⎰; (24) 3tansec d x x x ⎰;(25)x ; (26);(27)ln tan d cos sin xx x x ⎰; (28)21ln d (ln )xx x x +⎰;(29)2,0x a >; (30)(31)d xx⎰; (32)(33); (34),0x a >;(35)x ; (36) x ; (37)2sec ()d 1tan x x x +⎰; (38) (1)d (1e )x x x x x ++⎰(提示:令xt e =). 解 5555111(1)5(5)555e d e d e d e tt t tt t t C =⋅==+⎰⎰⎰33411(2)(32)(32)(32)(32)28d d x x x x x -=---=--⎰⎰122333111(3)(12)ln 121221221131(4)(23)(23)()(23)(23)3322(5)22sin 111(6)(ln ln )ln ln l ln ln ln ln ln ln ln ln d d d d d d d d x x C x x x x x x C x Ct t C x x x x x x x x x x-=--=-+---=---=--+=--+===-=⋅==⎰⎰⎰⎰⎰⎰⎰222210210112n 1(7)tan sec tan (tan )tan 11111(8)(2))222(9)22csc 22sin cos 2sin cos sin 2ln ln csc 2cot 2tan sin c d d e d e d e d(-e d d d d d 或x x x x Cx x x x x x x Cx x x x x Cx x xx xx x x x x C C x x x x x ----+⋅==+=-⋅-=-=-+===⋅⋅=+=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2cos 1tan ln tan os sin cos tan d d x x x Cx x x x x=⋅==+⎰⎰⎰22234(10)ln 1(11)()arctan 11()11(12)631333(13)14d d e d d e e e e e e d x x xx xx x Cx x C x x xCx x x -==-+===++++'=-=-=-==--⎰⎰⎰⎰⎰⎰⎰3444432334313(1)ln 11414sin sin 1(14)cos cos cos cos cos 2(15)1218)23812d d d d d d d x x x C x x x x x x x x x x C x x x x xx x x---=--=-+----=-=-=+=-=+-=⎰⎰⎰⎰⎰122221(94)(94)38)d x x x -+--⎰12arcsin 23x C =3322222222999(16)()9999119(9)ln(9)2922111(17)212221)1)x x x x xx x x x x x xx x x x x C x x x x xx +-==-+++=-+=-+++==--=-+⎰⎰⎰⎰⎰⎰⎰d d d d d d d2111111111(18)()(2)(1)(1)(2)32132311112ln ln ln 2133311cos(22)11(19)cos ()cos(22224C Cx x x x x x x x x x x C Cx x x t t t t t t ωϕωϕωω=-+=+++=-=--++--+-+-=-+=+-+++++==++⎰⎰⎰⎰⎰⎰ d d d d d d d 223)(2)11cos(22)(22)2411sin(22)241(20)cos ()sin()cos ()cos()1cos ()3(21)sin 2cos3t t t t t t Ct t t t t t C x x ϕωωϕωϕωωϕωωϕωϕωϕωϕωωϕω⋅=+++=+++++=-++=-++⎰⎰⎰⎰⎰d d d d 111(sin 5sin )sin 55sin 210211cos5cos 10213133(22)cos cos (cos cos )cos ()cos ()22223222213sin sin 3221(23)sin 5sin 7(cos12x x x x x x x xx x Cx x x x x x xx x x x xCx x x =-=-=-++=+=+=++=-⎰⎰⎰⎰⎰⎰⎰⎰d d d d d d d d d 2cos 2)11cos12(12)cos 2(2)24411sin12sin 2244x x xx x x x x x C-=-+=-++⎰⎰⎰⎰d d d322322(24)tan sec tan(sec)(sec1)sec1sec sec3(25)2arctan2(arctan1(26)(arcsin)d d ddddx x x x x x xx x Cx x xCx==-=-+===+=⎰⎰⎰⎰⎰1(arcsin)arcsinx Cx=-+⎰2222222ln tan1(27)ln tan seccos sin tan1ln tan(ln tan)(ln tan)21ln111(28)(1ln)(ln)(ln)ln(ln)ln(29)d ddd d ddxx x x xx x xx x x Cxx x x x x C x x x x x x x xx a=⋅⋅==++=+==-+==-⎰⎰⎰⎰⎰⎰⎰x⎰利用教材§5.2例16及公式(20)可得:原式=22211arcsin arcsin arcsin2222x a x a xa C Ca a a--=-.(30)令tan,(,)22ππx t t=∈-,则2secd dx t t=.所以2sec cos sinsecd dd dtt t t t t Ct====+⎰⎰tan,sin原式x t t C=∴=∴=+.(31)令3sec,(0,)2πx t t=∈,可求得被积函数在x>3上的不定积分,此时3sec tan3tand dx t t t t=⋅=故223tan3sec tan3tan3(sec1)3secd d dtx t t t t t t tt=⋅⋅==-⎰⎰⎰3tan3t t C=-+.由3sec,(0,)2πx t t=∈得tan3t=,又由3secx t=得33sec,cos,arccos3xt t tx x===,333arccos 3arccos )x C C x x∴=+=+ 又令x =3sec t ,类似地可得被积函数在x <-3上的不定积分.11333arccos 3(arccos )33arccos d π x C C x x x Cx=+=-+=+⎰综上所述有33arccos x C x=+. (32)令sin ,(,)22ππx t t =∈-,则cos d d x t t =. 11cos sin cos sin cos sin cos 2sin cos 11111(sin cos )ln sin cos 22sin cos 2211arcsin ln .22d d d d d t t t tt t tt t t tt t t t C t t t t x C x ++-=⋅=++=++=++++=++⎰⎰⎰⎰ (33)令sin ,(,)22ππx t t =∈-,则cos ,d d x t t =2cos 1(1)sec ()1cos 1cos 22tan arcsin .2d d d d t t tt t t t t t t C x C ∴==-=-++=-+=-⎰⎰⎰(34)21(2d d x a x x a =+=+⎰arcsinxa C a=⋅. (35)令2sin ,(,),2cos 22ππd d x t t x t t =∈-=,所以2222cos 2cos cot csc 4sin d d d d tx t t t t t t t t=⋅==-⎰⎰⎰⎰cot arcsin 2x t t C C x =--+=--+.(36)2d x x x ==12(1)ln12d xx Cxx=+=+++⎰由被积函数知x≤-2或x>0,令1xt=,当x>0时,(此时t>0)221222211222(12)(12)2.d dddx t tt ttt t CC C Cxx--==-=-=-++=-=-=-+=-+⎰当x≤-2时,此时12t-≤<221233311222(12)(12).d ddx t tt ttt t t CC C Cx--==-==++===+=+⎰综上所述:原式= ln1Cx+.(37)2222sec sec11()(1tan)1tan(1tan)(1tan)1tand d dx xx x x C x x x x==+=-+ ++++⎰⎰⎰.(38)令e x=t,则x=ln t,d x=1td t.11ln1111(ln)(ln)(1)ln(1ln)ln(1ln)ln1ln11(ln)(1ln)ln lnln1lnln1lnln ln ln ln ln ln111d d d ded dee e ee xxx x xx x tx t t t t t x x t t t t t t t t t t t tt t t t Ct t t tt t t txC C x Cxx x xx ++⎡⎤=⋅==-⎢⎥++++⎣⎦=-+=-+++=-+=+-+=+++++⎰⎰⎰⎰⎰⎰习题5-31.求下列不定积分:(1) sin dx x x⎰; (2) e d x x x-⎰;(3) arcsin d x x ⎰; (4) ecos d xx x -⎰;(5) 2e sin d 2xx x -⎰; (6) 2tan d x x x ⎰; (7) 2e d t t t -⎰; (8)2(arcsin )d x x ⎰; (9)2e sin d x x x ⎰;(10) x ⎰;(11)cos(ln )d x x ⎰; (12)2(1)sin 2d x x x -⎰;(13)ln(1)d x x x -⎰; (14)22cosd 2x x x ⎰; (15)32ln d xx x⎰; (16)sin cos d x x x x ⎰;(17)2cot csc d x x x x ⎰; (18)22(1)e d xx x x +⎰; (19)1(ln ln )d ln x x x+⎰; (20)e ln(1e )d x x x +⎰; (21) 23sin d cos x x x ⎰;(22)22ln(d (1)x x x x +⎰; (23)2e d (1)x x x x +⎰; (24)arctan 322e d (1)xx x x +⎰. 解 (1)sin cos cos cos cos sin d d d x x x x x x x x x x x x C =-=-+=-++⎰⎰⎰(2)()(1)e d de e e d e e d e e e x x x x x x xxxx x x x x x x x C x C---------=-=-+=---=--+=-++⎰⎰⎰⎰21(3)arcsin arcsin arcsin (1)2arcsin d x x x x x x x x x x x C=-=+-=+⎰⎰⎰(4)cos cos cos (sin )cos sin cos sin cos e d de e e d e de e e e d x x x x x x x x x x x x x x x x x x x x x---------=-=-+-=-+=-+-⎰⎰⎰⎰⎰12cos (sin cos )(sin cos )cos 2e d e e e d x x x xx x x x C x x x x C----∴=-+-∴=+⎰⎰22221111(5)sin sin sin cos 22222222e d de e e d x x x x x x x xx x ----=-=-+⋅⎰⎰⎰2222222211sin cos 22821111sin cos (sin )2282822111sin cos sin 2282162e de e e e d e e e d x xx x x x x x x xx x x x x x x x--------=--=--+-=---⎰⎰⎰2221221711sin sin cos 16222822sin (cos 4sin )21722e d e e e d e x x x x x x x xx C x x xx C-----∴=--+∴=-++⎰⎰222222222222221(6)tan (sec )sec 211(tan )tan tan 221tan ln cos 2111(7)2221111(2)2424d d d d de d de e e d e e d e t t t t t t t x x x x x x x x x x x x x x x x x x x x x x Cx t t t t tt t t -------=-=-=-=--=+-+=-=-+=---=--⎰⎰⎰⎰⎰⎰⎰⎰222222(8)(arcsin )(arcsin )2arcsin (arcsin )2arcsin (arcsin )2(arcsin )2e d d t Cx x x x x x xx x x x x x xx x x x -+=-⋅=+=+-=+-⎰⎰⎰⎰⎰22(arcsin )21cos 211(9)sin cos 222211cos 222e d e d e d e d e e d x x x x x x x x x x Cx x x x x x xx x=+-+-==-=-⎰⎰⎰⎰⎰而cos 2cos 2cos 22sin 2cos 22sin 2e d de e e d e de x x x x x xx x x x x x x x ==+=+⎰⎰⎰⎰cos 22sin 24cos 2e e e d x x x x x x x =+-⎰11cos 2(cos 22sin 2),511111(cos 22sin 2)(sin 2cos 2).2102510e d e 原式e e e x x x x x x x x x C x x C x x C ∴=++∴=-++=--+⎰(10)t =,则32,3d d x t x t t ==22222223336363663663(22)32)e d de e e d e de e e e d e e e e t t t t t t t t t t t t t x t t t t t tt t t t t t t C t t C C===-=-=-+=-++=-++=+⎰⎰⎰⎰⎰⎰(11)令ln x =t ,则,e d e d ttx x t ==,cos(ln )cos cos de e cos e sin e cos sin e e cos e sin e cos cos(ln )sin(ln )cos(ln )cos(ln )[cos(ln )sin(ln )]2d e d d d d d d t t t ttttttx x t t t t t t t t t t t tx x x x x xxx x x x C===+=+=+-=+-∴=++⎰⎰⎰⎰⎰⎰⎰⎰22222211(12)(1)sin 2sin 2sin 2cos 2sin 2(2)2211cos 2cos 2cos 222111cos 2cos 2sin 222211cos 2cos 2sin 222d d d d d d d x x x x x x x x x x x x x x x x x xx x x x xx x x x -=-=--=-++=-++=-++⎰⎰⎰⎰⎰⎰⎰2212sin 22111cos 2cos 2sin 2cos 2222413()cos 2sin 2222d x x xx x x x x x Cxx x x C-=-++++=--++⎰2222222221(13)ln(1)ln(1)()ln(1)2221111111ln(1)ln(1)(1)2212221111ln(1)()ln 122221(1)ln(1)2d d d d d d x x x x x x x x xx x x x x x x x x xx x x x x x Cx x x -=-=----+=--=--+---=--+-+-=--⎰⎰⎰⎰⎰⎰211.42x x C --+ 2222232321cos 11(14)cos cos 22221111sin sin sin 6262d d d d d d x x x x x x x x x x xx x x x x x x x x+=⋅=+=+=+-⎰⎰⎰⎰⎰⎰3232321111sin cos sin cos cos 626211sin cos sin .62d d x x x x x x x x x x x x x x x x x x C =++=++-=++-+⎰⎰333222323223232232ln 111(15)ln ()ln 3ln 11131ln 3ln ()ln ln 6ln 131ln ln 6ln ()1361ln ln ln 613ln ln d d d d d d d x x x x x xx x x xx x x x x xx x x x x x x x x x x x x x xx x x x x x x =-=-+=--=--+=---=---+=--⎰⎰⎰⎰⎰⎰⎰3266ln 1(ln 3ln 6ln 6) x x Cx x x x x Cx --+=-++++ 11(16)sin cos sin 2cos 22411cos 2cos 2cos 2cos 2244481cos 2sin 248d d d d d x x x x x x x x x x x x x x x x x x x x C==-=-+=-+=-++⎰⎰⎰⎰⎰()222221(17)cot csc csc csc csc 211csc csc csc cot 2222d d d d x x x x x x x x x x x x x x x x C=-=-=-+=--+⎰⎰⎰⎰222222222222222222211(18)(1)(1)(1)221111(1)2(1)()2222111(1)222e d e d de e e d e e d e e e x x x x x x x x x x x x x x x x x x x x x x C x C+=+=+=+-⋅=+-=+-+=+⎰⎰⎰⎰⎰11111(19)(ln ln )ln ln ln ln ln ln ln ln 11ln ln ln ln ln ln d d d d d d d x x x x x x x x x x x x x x xx x x x x x Cx x+=+=-⋅⋅+=-+=+⎰⎰⎰⎰⎰⎰⎰(20)ln(1)ln(1)(1)(1)ln(1)(1)1(1)ln(1)(1)ln(1)e e e d e d e e e e d e e e e d e e e xxxxxxxxxx x x x x x x x x C +=++=++-+⋅+=++-=++-+⎰⎰⎰⎰2233sin (21)tan sec tan (sec )tan sec sec cos d d d d x x x x x x x x x x x x=⋅==-⎰⎰⎰⎰ 2223323cos sin sin tan sec tan sec sec cos cos sin tan sec ln sec tan cos d d d d x x xx x x x x x x x x xxx x xx x x+=-=--=--+⎰⎰⎰⎰ 于是 213sin 2tan sec ln sec tan cos d xx x x C x x x =-++⎰, 所以 23sin 11tan sec ln sec tan cos 22d x x x x C x x x =-++⎰. 22211(22)ln(()211121ln(12(1)2d d d x x x x x x x =-++=+++=-++⎰⎰⎰令x =tan t , (,)22ππt ∈-,则d x =sec 2t dt21131sec cos sin sec d d d t t t t t C C t =⋅==+=+⎰⎰ ∴原式=2ln(2(1)x C x +. 211(23)()(1)111111e e d e d e e d e e ee d e x x x x xxxxx x x x x x x x x x x x x x x C C x x x=-=-+⋅+++++=-+=-++=++++⎰⎰⎰⎰arctan arctan arctan arctan 322(24)(1)e e d e xx xx x x x x ==+⎰⎰arctan arctan arctan arctan arctan 322(1)e 1e e e x x x x xx x =-=+⎰于是arctan arctan 13222(1)e e d x xx x C x =++⎰,所以arctan arctan 322(1)e e d x x x x C x =++⎰.习题5-4求下列不定积分:(1) 21d 1x x +⎰; (2)5438d x x x x x +--⎰;(3)sin d 1sin xx x +⎰; (4) cot d sin cos 1xx x x ++⎰.解 (1)令322111(1)(1)11A Bx Cx x x x x x x +==+++-++-+ 则 2331()()()11A B x B C A x A C x x +++-++=++ 从而 001A B B C A A C +=⎧⎪+-=⎨⎪+=⎩ 解得 131323A B C ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩于是2322222123(1)3(1)1112111331612()2411ln ln 11361(1)ln 61d d d d d x x x x x x x x x x x x x x x Cx x x x Cx x -⎡⎤-=⎢⎥+-++⎣⎦-=-++-+-+=-++-++=-+⎰⎰⎰⎰⎰542233323323288(2)(1)11832111111ln 8()13221218ln 3ln 4ln 1132d d d d d x x x x x x x x x x x xx x x x xx x xx x x xx x x x x x x Cx x x +-+-=+++--=+++---=+++--++⋅--+=+++--+-+⎰⎰⎰⎰⎰ 222sin sin (1sin )1(3)cos (sec 1)1sin cos cos 1tan sec tan cos d d d d x x x x x x x x x x xx x C x x x Cx-==---+=-++=-++⎰⎰⎰⎰注 本题亦可用万能代换法(4)令tan2xt =,则 222222112sin ,cos ,cot ,2arctan ,1121d d t t t x x x x t x t t t t t--=====+++ 则222221cot 21111221sin cos 112221111111ln ln tan tan 222222d d d d d t x t t x t t t t t t x x t t t t t x x t C Ct --=⋅==--+++++++=-+=-+⎰⎰⎰⎰⎰。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题1.设C x F dx x f +=⎰)()(,则=⋅⎰dx x f x )(cos sin C x F +-)(cos2.设C x F dx x f +=⎰)()(,则=⎰xdx x f cos )(sin C x F +)(sin 3.设C x F dx x f +=⎰)()(,则=⎰dx x xf )(' C x F x xf +-)()(4.如果等式C e dx e x f xx +-=⎰-11)(成立,则函数=)(x f x e x 2215.若C x F dx x f +=⎰)()(,则=⎰--dx e f e x x )( C e F x+--)(6.若xe-是)(x f 的一个原函数,则=⎰dx x xf )( C ex x++-)1(7.若xex f -=)(,则⎰=dx x x f )(ln ' C x+18.若C x dx x f +=⎰2)(,则=-⎰dx x xf )1(2 C x +--2221)1(9.如果22)]([)(12x f dx d x f x=+,且0)0(=f ,则=)(x f x arctan 10.=+⎰dx x x 321 C x ++233)1(92 C x x +-+|1|ln 2↓11.若函数2ln )1(222-=-x x x f ,且x x f ln )]([=ϕ,则=⎰dx x )(ϕ12.设x x f +='1)(ln (0>x ),则=)(x f C e x x++ 二、单项选择题1. 设()x f 是()x g 的原函数,则下列各式中正确的是 BA .()()C x g dx x f +=⎰B .()()C x f dx x g +=⎰ C .()()C x g dx x f +=⎰'D .()()C x f dx x g +=⎰'2. 函数()x x f 2=是函数()xx g 21=的 CA .反函数B .导函数C .原函数D .不定积分3. 下列各式中等于()x f 的是 D A .()⎰x df B .()dx x f d⎰ C .()dx x f ⎰' D .()()'dx x f ⎰’4. 设C x dx x f ++=⎰12)(2,则=+⎰dx x xf )12(2DA .C x x ++122B .C x ++12212 C .C x ++12412 D .C x +++1)12(24125.设导数)(')('x f x g =,则下列各式中正确的是 BA .)()(x f x g =B .C x f x g +=)()(C .dx x f dx x g ⎰⎰=)()(D .C dx x f dx x g +=⎰⎰)()(6.函数x 2cos π的一个原函数是_______________ AA .x 2sin2ππB .x 2sin2ππC .x 2sin2ππ-D .x 2sin2ππ-7.⎰=dx e x x 3_________________ DA .()c e x+3 B .()c e x+331 C .c e x +3 D .()c e x++3ln 13 8.⎰=-xdx 21__________________ BA .c x +-21B .c x +--21C .c x +--2121D .c x +--212 9.设C x dx x f x ++=⎰)1ln()(,则=⎰dx xx f )( D A .C x ++)1ln(1 B .C xx ++)1ln( C .C x x ++3232 D .C x x ++22 10.在区间),(b a 内,如果)(')('x g x f =,则下列各式中一定成立的是 A .)()(x g x f = B .1)()(+=x g x fC .[][]')(')(⎰⎰=dx x g dx x f D .dx x g dx x f ⎰⎰=)(')('11.若x 2sin 是)(x f 的一个原函数,则=⎰dx x f x )( D A .sin 2cos2x x x C ++ B .sin 2cos2x x x C -+C .C x x x +-2cos 212sin D .C x x x ++2cos 212sin 12.设C x F dx x f +=⎰)()(在],[b a 上成立,则 DA .)(x f 在],[b a 上必连续,但不一定可导B . )(x f 在],[b a 上必可导C .)(x F 在],[b a 上必连续,但不一定可导D . )(x F 在],[b a 上必可导 13.不定积分=⎰dx x 22sin CA .C x +22cos2 B .C x x ++sin C .C x x +-)sin (21 D .C x+-22sin 21 14.设sin 2()24x x f x ''⎛⎫+= ⎪⎝⎭,则()d f x x =⎰A .1cos 222x C ++B .sin 224x xC ++ C .2cos 248x x C -+ D .2cos 244x x C -+ 三、求下列不定积分1.dx xx x ⎰+⋅-4312 C x x x ++-=4312134534132454 2.⎰--62x x dxC x x ++-=23ln51 3.dx x x ⎰⋅210sec tan C x +=11tan 111 4.dx x x x ⎰+⋅32sin 1cos sin ()C x ++=3sin 1ln 315.dx x ⎰5sin C x x x +-+-=53cos 51cos 32cos6.dx xx ⎰sin C x +-=cos 2()+++311x x 8.⎰-241x dxC x +=2arcsin 219.()⎰-221arcsin xx dxC x +-=arcsin 110.⎰+dx xx 2sin 2sin 1 C x x ++-=sin ln 2cot 11.dx x x ⎰+⋅49 ()()C x x ++-+=4549953699412.⎰++222x x dxC x x x +++++=221ln 213.dx a x ⎰-22 C a x x a a x x +-+--=22222ln 221 14.dx x ⎰arccos C x x x +--=21arccos15.dx x x ⎰sin 2C x x x x x +++-=cos 2sin 2cos 216.⎰xxdx2sin C x x x ++-=sin ln cot17.dx xx ⎰-1arcsin C x x x +++--=14arcsin 1218.dx x ⎰ln cos ()C x x x ++=ln sin ln cos 2119.⎰-+xx e e dx C e x+=arctan 20.dx x e x ⎰-cos ()C x x e x+-=-cos sin 2121.⎰+x e dx 1 C e e x x +⎪⎪⎭⎫⎝⎛++-+=1111ln 22.()dx xx x⎰+1arctan ()C x+=2arctan23.()⎰+46x x dx C x x +⎪⎪⎭⎫⎝⎛+=4ln 24166 24.dx ex⎰3()C x xex ++⋅-=223332325.dx x xx ⎰+++2222()()C x x x +++++=1arctan 22ln 212 26.dx x x x ⎰++2211tan C x ++-=21cos ln 27.⎰+xedx 1 ()C e x x++-=1ln+x sin 129.()⎰+2221x dx x ()C x xx ++-=2212arctan 2130.()dx x x ⎰-+1ln 2 ()C x x x x +---+=11ln 2231.dx x x ⎰)ln(ln =C x x +-⋅)1ln (ln ln32.dx x ⎰arcsin =C x x x x x +---⋅)1(21arcsin 21arcsin33.dx x x x ⎰+221arctan =C x x x x +-+-22)(arctan 21|1|ln 21arctan 34.dx exe xx ⎰+1 =C e e e e x xx xx +++-+-+-+1111ln2141235.dx x ⎰sinC x x x ++-=sin2cos 236.⎰+x dx x cos 1 C xx x ++=2cos ln 22tan 37.⎰+dx x x )cos (sin 5 C x x x x +++--=sin )cos 51cos 32(cos 5338.⎰+dx x x 33 C x x x x ++-+-3ln 27923323= 39.⎰+dx x x )sin (sin 23 C x x x x +-+-=2sin 4121cos cos 31340.⎰++)1)(1(2x x dx C x x x +++-+=arctan 211ln 411ln 21241.⎰+xx xln 1ln C x x ++-+2123)ln 1(2)ln 1(32=42.dx ex⎰C ex x+-)1(2=43.dx x ⎰-24 C x x x +-+=24212arcsin 244.()ln arctan d x x x x +⎰ =()()21ln 11arctan 2x x x x x c ⎡⎤-++-+⎣⎦四、解答题1.求xex f +=11)(的原函数 C e x++--|1|ln。

相关文档
最新文档