Dynamic Facial Expression Recognition Using A Bayesian Temporal Manifold Model

合集下载

多模态人机交互综述(译文)

多模态人机交互综述(译文)

多模态⼈机交互综述(译⽂)Alejandro Jaimes, Nicu Sebe, Multimodal human–computer interaction: A survey, Computer Vision and Image Understanding, 2007.多模态⼈机交互综述摘要:本⽂总结了多模态⼈机交互(MMHCI, Multi-Modal Human-Computer Interaction)的主要⽅法,从计算机视觉⾓度给出了领域的全貌。

我们尤其将重点放在⾝体、⼿势、视线和情感交互(⼈脸表情识别和语⾳中的情感)⽅⾯,讨论了⽤户和任务建模及多模态融合(multimodal fusion),并指出了多模态⼈机交互研究的挑战、热点课题和兴起的应⽤(highlighting challenges, open issues, and emerging applications)。

1. 引⾔多模态⼈机交互(MMHCI)位于包括计算机视觉、⼼理学、⼈⼯智能等多个研究领域的交叉点,我们研究MMHCI是要使得计算机技术对⼈类更具可⽤性(Usable),这总是需要⾄少理解三个⽅⾯:与计算机交互的⽤户、系统(计算机技术及其可⽤性)和⽤户与系统间的交互。

考虑这些⽅⾯,可以明显看出MMHCI 是⼀个多学科课题,因为交互系统设计者应该具有⼀系列相关知识:⼼理学和认知科学来理解⽤户的感知、认知及问题求解能⼒(perceptual, cognitive, and problem solving skills);社会学来理解更宽⼴的交互上下⽂;⼯效学(ergonomics)来理解⽤户的物理能⼒;图形设计来⽣成有效的界⾯展现;计算机科学和⼯程来建⽴必需的技术;等等。

MMHCI的多学科特性促使我们对此进⾏总结。

我们不是将重点只放在MMHCI的计算机视觉技术⽅⾯,⽽是给出了这个领域的全貌,从计算机视觉⾓度I讨论了MMHCI中的主要⽅法和课题。

人脸表情识别英文参考资料

人脸表情识别英文参考资料

二、(国外)英文参考资料1、网上文献2、国际会议文章(英文)[C1]Afzal S, Sezgin T.M, Yujian Gao, Robinson P. Perception of emotional expressions in different representations using facial feature points. In: Affective Computing and Intelligent Interaction and Workshops, Amsterdam,Holland, 2009 Page(s): 1 - 6[C2]Yuwen Wu, Hong Liu, Hongbin Zha. Modeling facial expression space for recognition In:Intelligent Robots and Systems,Edmonton,Canada,2005: 1968 – 1973 [C3]Y u-Li Xue, Xia Mao, Fan Zhang. Beihang University Facial Expression Database and Multiple Facial Expression Recognition. In: Machine Learning and Cybernetics, Dalian,China,2006: 3282 – 3287[C4] Zhiguo Niu, Xuehong Qiu. Facial expression recognition based on weighted principal component analysis and support vector machines. In: Advanced Computer Theory and Engineering (ICACTE), Chendu,China,2010: V3-174 - V3-178[C5] Colmenarez A, Frey B, Huang T.S. A probabilistic framework for embedded face and facial expression recognition. In: Computer Vision and Pattern Recognition, Ft. Collins, CO, USA, 1999:[C6] Yeongjae Cheon, Daijin Kim. A Natural Facial Expression Recognition Using Differential-AAM and k-NNS. In: Multimedia(ISM 2008),Berkeley, California, USA,2008: 220 - 227[C7]Jun Ou, Xiao-Bo Bai, Yun Pei,Liang Ma, Wei Liu. Automatic Facial Expression Recognition Using Gabor Filter and Expression Analysis. In: Computer Modeling and Simulation, Sanya, China, 2010: 215 - 218[C8]Dae-Jin Kim, Zeungnam Bien, Kwang-Hyun Park. Fuzzy neural networks (FNN)-based approach for personalized facial expression recognition with novel feature selection method. In: Fuzzy Systems, St.Louis,Missouri,USA,2003: 908 - 913 [C9] Wei-feng Liu, Shu-juan Li, Yan-jiang Wang. Automatic Facial Expression Recognition Based on Local Binary Patterns of Local Areas. In: Information Engineering, Taiyuan, Shanxi, China ,2009: 197 - 200[C10] Hao Tang, Hasegawa-Johnson M, Huang T. Non-frontal view facial expression recognition based on ergodic hidden Markov model supervectors.In: Multimedia and Expo (ICME), Singapore ,2010: 1202 - 1207[C11] Yu-Jie Li, Sun-Kyung Kang,Young-Un Kim, Sung-Tae Jung. Development of a facial expression recognition system for the laughter therapy. In: Cybernetics and Intelligent Systems (CIS), Singapore ,2010: 168 - 171[C12] Wei Feng Liu, ZengFu Wang. Facial Expression Recognition Based on Fusion of Multiple Gabor Features. In: Pattern Recognition, HongKong, China, 2006: 536 - 539[C13] Chen Feng-jun, Wang Zhi-liang, Xu Zheng-guang, Xiao Jiang. Facial Expression Recognition Based on Wavelet Energy Distribution Feature and Neural Network Ensemble. In: Intelligent Systems, XiaMen, China, 2009: 122 - 126[C14] P. Kakumanu, N. Bourbakis. A Local-Global Graph Approach for FacialExpression Recognition. In: Tools with Artificial Intelligence, Arlington, Virginia, USA,2006: 685 - 692[C15] Mingwei Huang, Zhen Wang, Zilu Ying. Facial expression recognition using Stochastic Neighbor Embedding and SVMs. In: System Science and Engineering (ICSSE), Macao, China, 2011: 671 - 674[C16] Junhua Li, Li Peng. Feature difference matrix and QNNs for facial expression recognition. In: Control and Decision Conference, Yantai, China, 2008: 3445 - 3449 [C17] Yuxiao Hu, Zhihong Zeng, Lijun Yin,Xiaozhou Wei, Jilin Tu, Huang, T.S. A study of non-frontal-view facial expressions recognition. In: Pattern Recognition, Tampa, FL, USA,2008: 1 - 4[C18] Balasubramani A, Kalaivanan K, Karpagalakshmi R.C, Monikandan R. Automatic facial expression recognition system. In: Computing, Communication and Networking, St. Thomas,USA, 2008: 1 - 5[C19] Hui Zhao, Zhiliang Wang, Jihui Men. Facial Complex Expression Recognition Based on Fuzzy Kernel Clustering and Support Vector Machines. In: Natural Computation, Haikou,Hainan,China,2007: 562 - 566[C20] Khanam A, Shafiq M.Z, Akram M.U. Fuzzy Based Facial Expression Recognition. In: Image and Signal Processing, Sanya, Hainan, China,2008: 598 - 602 [C21] Sako H, Smith A.V.W. Real-time facial expression recognition based on features' positions and dimensions. In: Pattern Recognition, Vienna,Austria, 1996: 643 - 648 vol.3[C22] Huang M.W, Wang Z.W, Ying Z.L. A novel method of facial expression recognition based on GPLVM Plus SVM. In: Signal Processing (ICSP), Beijing, China, 2010: 916 - 919[C23] Xianxing Wu; Jieyu Zhao; Curvelet feature extraction for face recognition and facial expression recognition. In: Natural Computation (ICNC), Yantai, China, 2010: 1212 - 1216[C24]Xu Q Z, Zhang P Z, Yang L X, et al.A facial expression recognition approach based on novel support vector machine tree. In Proceedings of the 4th International Symposium on Neural Networks, Nanjing, China, 2007: 374-381.[C25] Wang Y B, Ai H Z, Wu B, et al. Real time facial expression recognition with adaboost.In: Proceedings of the 17th International Conference on Pattern Recognition , Cambridge,UK, 2004: 926-929.[C26] Guo G, Dyer C R. Simultaneous feature selection and classifier training via linear programming: a case study for face expression recognition. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, W isconsin, USA, 2003,1: 346-352.[C27] Bourel F, Chibelushi C C, Low A A. Robust facial expression recognition using a state-based model of spatially-localised facial dynamics. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition, Washington, DC, USA, 2002: 113-118·[C28] Buciu I, Kotsia I, Pitas I. Facial expression analysis under partial occlusion. In: Proceedings of the 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, USA, 2005,V: 453-456.[C29] ZHAN Yong-zhao,YE Jing-fu,NIU De-jiao,et al.Facial expression recognition based on Gabor wavelet transformation and elastic templates matching. Proc of the 3rd International Conference on Image and Graphics.Washington DC, USA,2004:254-257.[C30] PRASEEDA L V,KUMAR S,VIDYADHARAN D S,et al.Analysis of facial expressions using PCA on half and full faces. Proc of ICALIP2008.2008:1379-1383.[C31] LEE J J,UDDIN M Z,KIM T S.Spatiotemporal human facial expression recognition using Fisher independent component analysis and Hidden Markov model [C]//Proc of the 30th Annual International Conference of IEEE Engineering in Medicine and Biology Society.2008:2546-2549.[C32] LITTLEWORT G,BARTLETT M,FASELL. Dynamics of facial expression extracted automatically from video. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Face Processing inVideo, Washington DC,USA,2006:80-81.[C33] Kotsia I, Nikolaidis N, Pitas I. Facial Expression Recognition in Videos using a Novel Multi-Class Support Vector Machines Variant. In: Acoustics, Speech and Signal Processing, Honolulu, Hawaii, USA, 2007: II-585 - II-588[C34] Ruo Du, Qiang Wu, Xiangjian He, Wenjing Jia, Daming Wei. Facial expression recognition using histogram variances faces. In: Applications of Computer Vision (WACV), Snowbird, Utah, USA, 2009: 1 - 7[C35] Kobayashi H, Tange K, Hara F. Real-time recognition of six basic facial expressions. In: Robot and Human Communication, Tokyo , Japan,1995: 179 - 186 [C36] Hao Tang, Huang T.S. 3D facial expression recognition based on properties of line segments connecting facial feature points. In: Automatic Face & Gesture Recognition, Amsterdam, The Netherlands, 2008: 1 - 6[C37] Fengjun Chen, Zhiliang Wang, Zhengguang Xu, Donglin Wang. Research on a method of facial expression recognition.in: Electronic Measurement & Instruments, Beijing,China, 2009: 1-225 - 1-229[C38] Hui Zhao, Tingting Xue, Linfeng Han. Facial complex expression recognition based on Latent DirichletAllocation. In: Natural Computation (ICNC), Yantai, Shandong, China, 2010: 1958 - 1960[C39] Qinzhen Xu, Pinzheng Zhang, Wenjiang Pei, Luxi Yang, Zhenya He. An Automatic Facial Expression Recognition Approach Based on Confusion-Crossed Support Vector Machine Tree. In: Acoustics, Speech and Signal Processing, Honolulu, Hawaii, USA, 2007: I-625 - I-628[C40] Sung Uk Jung, Do Hyoung Kim, Kwang Ho An, Myung Jin Chung. Efficient rectangle feature extraction for real-time facial expression recognition based on AdaBoost.In: Intelligent Robots and Systems, Edmonton,Canada, 2005: 1941 - 1946[C41] Patil K.K, Giripunje S.D, Bajaj P.R. Facial Expression Recognition and Head Tracking in Video Using Gabor Filter .In: Emerging Trends in Engineering and Technology (ICETET), Goa, India, 2010: 152 - 157[C42] Jun Wang, Lijun Yin, Xiaozhou Wei, Yi Sun. 3D Facial Expression Recognition Based on Primitive Surface Feature Distribution.In: Computer Vision and PatternRecognition, New York, USA,2006: 1399 - 1406[C43] Shi Dongcheng, Jiang Jieqing. The method of facial expression recognition based on DWT-PCA/LDA.IN: Image and Signal Processing (CISP), Yantai,China, 2010: 1970 - 1974[C44] Asthana A, Saragih J, Wagner M, Goecke R. Evaluating AAM fitting methods for facial expression recognition. In: Affective Computing and Intelligent Interaction and Workshops, Amsterdam,Holland, 2009:1-8[C45] Geng Xue, Zhang Youwei. Facial Expression Recognition Based on the Difference of Statistical Features.In: Signal Processing, Guilin, China, 2006[C46] Metaxas D. Facial Features Tracking for Gross Head Movement analysis and Expression Recognition.In: Multimedia Signal Processing, Chania,Crete,GREECE, 2007:2[C47] Xia Mao, YuLi Xue, Zheng Li, Kang Huang, ShanWei Lv. Robust facial expression recognition based on RPCA and AdaBoost.In: Image Analysis for Multimedia Interactive Services, London, UK, 2009: 113 - 116[C48] Kun Lu, Xin Zhang. Facial Expression Recognition from Image Sequences Based on Feature Points and Canonical Correlations.In: Artificial Intelligence and Computational Intelligence (AICI), Sanya,China, 2010: 219 - 223[C49] Peng Zhao-yi, Wen Zhi-qiang, Zhou Yu. Application of Mean Shift Algorithm in Real-Time Facial Expression Recognition.In: Computer Network and Multimedia Technology, Wuhan,China, 2009: 1 - 4[C50] Xu Chao, Feng Zhiyong, Facial Expression Recognition and Synthesis on Affective Emotions Composition.In: Future BioMedical Information Engineering, Wuhan,China, 2008: 144 - 147[C51] Zi-lu Ying, Lin-bo Cai. Facial Expression Recognition with Marginal Fisher Analysis on Local Binary Patterns.In: Information Science and Engineering (ICISE), Nanjing,China, 2009: 1250 - 1253[C52] Chuang Yu, Yuning Hua, Kun Zhao. The Method of Human Facial Expression Recognition Based on Wavelet Transformation Reducing the Dimension and Improved Fisher Discrimination.In: Intelligent Networks and Intelligent Systems (ICINIS), Shenyang,China, 2010: 43 - 47[C53] Stratou G, Ghosh A, Debevec P, Morency L.-P. Effect of illumination on automatic expression recognition: A novel 3D relightable facial database .In: Automatic Face & Gesture Recognition and Workshops (FG 2011), Santa Barbara, California,USA, 2011: 611 - 618[C54] Jung-Wei Hong, Kai-Tai Song. Facial expression recognition under illumination variation.In: Advanced Robotics and Its Social Impacts, Hsinchu, Taiwan,2007: 1 - 6[C55] Ryan A, Cohn J.F, Lucey S, Saragih J, Lucey P, De la Torre F, Rossi A. Automated Facial Expression Recognition System.In: Security Technology, Zurich, Switzerland, 2009: 172 - 177[C56] Gokturk S.B, Bouguet J.-Y, Tomasi C, Girod B. Model-based face tracking for view-independent facial expression recognition.In: Automatic Face and Gesture Recognition, Washington, D.C., USA, 2002: 287 - 293[C57] Guo S.M, Pan Y.A, Liao Y.C, Hsu C.Y, Tsai J.S.H, Chang C.I. A Key Frame Selection-Based Facial Expression Recognition System.In: Innovative Computing, Information and Control, Beijing,China, 2006: 341 - 344[C58] Ying Zilu, Li Jingwen, Zhang Youwei. Facial expression recognition based on two dimensional feature extraction.In: Signal Processing, Leipzig, Germany, 2008: 1440 - 1444[C59] Fengjun Chen, Zhiliang Wang, Zhengguang Xu, Jiang Xiao, Guojiang Wang. Facial Expression Recognition Using Wavelet Transform and Neural Network Ensemble.In: Intelligent Information Technology Application, Shanghai,China,2008: 871 - 875[C60] Chuan-Yu Chang, Yan-Chiang Huang, Chi-Lu Yang. Personalized Facial Expression Recognition in Color Image.In: Innovative Computing, Information and Control (ICICIC), Kaohsiung,Taiwan, 2009: 1164 - 1167[C61] Bourel F, Chibelushi C.C, Low A.A. Robust facial expression recognition using a state-based model of spatially-localised facial dynamics. In: Automatic Face and Gesture Recognition, Washington, D.C., USA, 2002: 106 - 111[C62] Chen Juanjuan, Zhao Zheng, Sun Han, Zhang Gang. Facial expression recognition based on PCA reconstruction.In: Computer Science and Education (ICCSE), Hefei,China, 2010: 195 - 198[C63] Guotai Jiang, Xuemin Song, Fuhui Zheng, Peipei Wang, Omer A.M. Facial Expression Recognition Using Thermal Image.In: Engineering in Medicine and Biology Society, Shanghai,China, 2005: 631 - 633[C64] Zhan Yong-zhao, Ye Jing-fu, Niu De-jiao, Cao Peng. Facial expression recognition based on Gabor wavelet transformation and elastic templates matching.In: Image and Graphics, Hongkong,China, 2004: 254 - 257[C65] Ying Zilu, Zhang Guoyi. Facial Expression Recognition Based on NMF and SVM. In: Information Technology and Applications, Chengdu,China, 2009: 612 - 615 [C66] Xinghua Sun, Hongxia Xu, Chunxia Zhao, Jingyu Yang. Facial expression recognition based on histogram sequence of local Gabor binary patterns. In: Cybernetics and Intelligent Systems, Chengdu,China, 2008: 158 - 163[C67] Zisheng Li, Jun-ichi Imai, Kaneko M. Facial-component-based bag of words and PHOG descriptor for facial expression recognition.In: Systems, Man and Cybernetics, San Antonio,TX,USA,2009: 1353 - 1358[C68] Chuan-Yu Chang, Yan-Chiang Huang. Personalized facial expression recognition in indoor environments.In: Neural Networks (IJCNN), Barcelona, Spain, 2010: 1 - 8[C69] Ying Zilu, Fang Xieyan. Combining LBP and Adaboost for facial expression recognition.In: Signal Processing, Leipzig, Germany, 2008: 1461 - 1464[C70] Peng Yang, Qingshan Liu, Metaxas, D.N. RankBoost with l1 regularization for facial expression recognition and intensity estimation.In: Computer Vision, Kyoto,Japan, 2009: 1018 - 1025[C71] Patil R.A, Sahula V, Mandal A.S. Automatic recognition of facial expressions in image sequences: A review.In: Industrial and Information Systems (ICIIS), Mangalore, India, 2010: 408 - 413[C72] Iraj Hosseini, Nasim Shams, Pooyan Amini, Mohammad S. Sadri, Masih Rahmaty, Sara Rahmaty. Facial Expression Recognition using Wavelet-Based Salient Points and Subspace Analysis Methods.In: Electrical and Computer Engineering, Ottawa, Canada, 2006: 1992 - 1995[C73][C74][C75][C76][C77][C78][C79]3、英文期刊文章[J1] Aleksic P.S., Katsaggelos A.K. Automatic facial expression recognition using facial animation parameters and multistream HMMs.IEEE Transactions on Information Forensics and Security, 2006, 1(1):3-11[J2] Kotsia I,Pitas I. Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines. IEEE Transactions on Image Processing, 2007, 16(1):172 – 187[J3] Mpiperis I, Malassiotis S, Strintzis M.G. Bilinear Models for 3-D Face and Facial Expression Recognition. IEEE Transactions on Information Forensics and Security, 2008,3(3) : 498 - 511[J4] Sung J, Kim D. Pose-Robust Facial Expression Recognition Using View-Based 2D+3D AAM. IEEE Transactions on Systems and Humans, 2008 , 38 (4): 852 - 866 [J5]Yeasin M, Bullot B, Sharma R. Recognition of facial expressions and measurement of levels of interest from video. IEEE Transactions on Multimedia, 2006, 8(3): 500 - 508[J6] Wenming Zheng, Xiaoyan Zhou, Cairong Zou, Li Zhao. Facial expression recognition using kernel canonical correlation analysis (KCCA). IEEE Transactions on Neural Networks, 2006, 17(1): 233 - 238[J7]Pantic M, Patras I. Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(2): 433 - 449[J8] Mingli Song, Dacheng Tao, Zicheng Liu, Xuelong Li, Mengchu Zhou. Image Ratio Features for Facial Expression Recognition Application. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(3): 779 - 788[J9] Dae Jin Kim, Zeungnam Bien. Design of “Personalized” Classifier Using Soft Computing Techniques for “Personalized” Facial Expression Recognition. IEEE Transactions on Fuzzy Systems, 2008, 16(4): 874 - 885[J10] Uddin M.Z, Lee J.J, Kim T.-S. An enhanced independent component-based human facial expression recognition from video. IEEE Transactions on Consumer Electronics, 2009, 55(4): 2216 - 2224[J11] Ruicong Zhi, Flierl M, Ruan Q, Kleijn W.B. Graph-Preserving Sparse Nonnegative Matrix Factorization With Application to Facial Expression Recognition.IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(1): 38 - 52[J12] Chibelushi C.C, Bourel F. Hierarchical multistream recognition of facial expressions. IEE Proceedings - Vision, Image and Signal Processing, 2004, 151(4): 307 - 313[J13] Yongsheng Gao, Leung M.K.H, Siu Cheung Hui, Tananda M.W. Facial expression recognition from line-based caricatures. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2003, 33(3): 407 - 412[J14] Ma L, Khorasani K. Facial expression recognition using constructive feedforward neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(3): 1588 - 1595[J15] Essa I.A, Pentland A.P. Coding, analysis, interpretation, and recognition of facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 757 - 763[J16] Anderson K, McOwan P.W. A real-time automated system for the recognition of human facial expressions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(1): 96 - 105[J17] Soyel H, Demirel H. Facial expression recognition based on discriminative scale invariant feature transform. Electronics Letters 2010, 46(5): 343 - 345[J18] Fei Cheng, Jiangsheng Yu, Huilin Xiong. Facial Expression Recognition in JAFFE Dataset Based on Gaussian Process Classification. IEEE Transactions on Neural Networks, 2010, 21(10): 1685 – 1690[J19] Shangfei Wang, Zhilei Liu, Siliang Lv, Yanpeng Lv, Guobing Wu, Peng Peng, Fei Chen, Xufa Wang. A Natural Visible and Infrared Facial Expression Database for Expression Recognition and Emotion Inference. IEEE Transactions on Multimedia, 2010, 12(7): 682 - 691[J20] Lajevardi S.M, Hussain Z.M. Novel higher-order local autocorrelation-like feature extraction methodology for facial expression recognition. IET Image Processing, 2010, 4(2): 114 - 119[J21] Yizhen Huang, Ying Li, Na Fan. Robust Symbolic Dual-View Facial Expression Recognition With Skin Wrinkles: Local Versus Global Approach. IEEE Transactions on Multimedia, 2010, 12(6): 536 - 543[J22] Lu H.-C, Huang Y.-J, Chen Y.-W. Real-time facial expression recognition based on pixel-pattern-based texture feature. Electronics Letters 2007, 43(17): 916 - 918[J23]Zhang L, Tjondronegoro D. Facial Expression Recognition Using Facial Movement Features. IEEE Transactions on Affective Computing, 2011, pp(99): 1[J24] Zafeiriou S, Pitas I. Discriminant Graph Structures for Facial Expression Recognition. Multimedia, IEEE Transactions on 2008,10(8): 1528 - 1540[J25]Oliveira L, Mansano M, Koerich A, de Souza Britto Jr. A. Selecting 2DPCA Coefficients for Face and Facial Expression Recognition. Computing in Science & Engineering, 2011, pp(99): 1[J26] Chang K.I, Bowyer W, Flynn P.J. Multiple Nose Region Matching for 3D Face Recognition under Varying Facial Expression. Pattern Analysis and Machine Intelligence, IEEE Transactions on2006, 28(10): 1695 - 1700[J27] Kakadiaris I.A, Passalis G, Toderici G, Murtuza M.N, Yunliang Lu, Karampatziakis N, Theoharis T. Three-Dimensional Face Recognition in the Presence of Facial Expressions: An Annotated Deformable Model Approach.IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 640 - 649[J28] Guoying Zhao, Pietikainen M. Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915 - 928[J29] Chakraborty A, Konar A, Chakraborty U.K, Chatterjee A. Emotion Recognition From Facial Expressions and Its Control Using Fuzzy Logic. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009, 39(4): 726 - 743 [J30] Pantic M, RothkrantzL J.M. Facial action recognition for facial expression analysis from static face images. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(3): 1449 - 1461[J31] Calix R.A, Mallepudi S.A, Bin Chen, Knapp G.M. Emotion Recognition in Text for 3-D Facial Expression Rendering. IEEE Transactions on Multimedia, 2010, 12(6): 544 - 551[J32]Kotsia I, Pitas I, Zafeiriou S, Zafeiriou S. Novel Multiclass Classifiers Based on the Minimization of the Within-Class Variance. IEEE Transactions on Neural Networks, 2009, 20(1): 14 - 34[J33]Cohen I, Cozman F.G, Sebe N, Cirelo M.C, Huang T.S. Semisupervised learning of classifiers: theory, algorithms, and their application to human-computer interaction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(12): 1553 - 1566[J34] Zafeiriou S. Discriminant Nonnegative Tensor Factorization Algorithms. IEEE Transactions on Neural Networks, 2009, 20(2): 217 - 235[J35] Zafeiriou S, Petrou M. Nonlinear Non-Negative Component Analysis Algorithms. IEEE Transactions on Image Processing, 2010, 19(4): 1050 - 1066[J36] Kotsia I, Zafeiriou S, Pitas I. A Novel Discriminant Non-Negative Matrix Factorization Algorithm With Applications to Facial Image Characterization Problems. IEEE Transactions on Information Forensics and Security, 2007, 2(3): 588 - 595[J37] Irene Kotsia, Stefanos Zafeiriou, Ioannis Pitas. Texture and shape information fusion for facial expression and facial action unit recognition . Pattern Recognition, 2008, 41(3): 833-851[J38]Wenfei Gu, Cheng Xiang, Y.V. Venkatesh, Dong Huang, Hai Lin. Facial expression recognition using radial encoding of local Gabor features and classifier synthesis. Pattern Recognition, In Press, Corrected Proof, Available online 27 May 2011[J39] F Dornaika, E Lazkano, B Sierra. Improving dynamic facial expression recognition with feature subset selection. Pattern Recognition Letters, 2011, 32(5): 740-748[J40] Te-Hsun Wang, Jenn-Jier James Lien. Facial expression recognition system based on rigid and non-rigid motion separation and 3D pose estimation. Pattern Recognition, 2009, 42(5): 962-977[J41] Hyung-Soo Lee, Daijin Kim. Expression-invariant face recognition by facialexpression transformations. Pattern Recognition Letters, 2008, 29(13): 1797-1805[J42] Guoying Zhao, Matti Pietikäinen. Boosted multi-resolution spatiotemporal descriptors for facial expression recognition . Pattern Recognition Letters, 2009, 30(12): 1117-1127[J43] Xudong Xie, Kin-Man Lam. Facial expression recognition based on shape and texture. Pattern Recognition, 2009, 42(5):1003-1011[J44] Peng Yang, Qingshan Liu, Dimitris N. Metaxas Boosting encoded dynamic features for facial expression recognition . Pattern Recognition Letters, 2009,30(2): 132-139[J45] Sungsoo Park, Daijin Kim. Subtle facial expression recognition using motion magnification. Pattern Recognition Letters, 2009, 30(7): 708-716[J46] Chathura R. De Silva, Surendra Ranganath, Liyanage C. De Silva. Cloud basis function neural network: A modified RBF network architecture for holistic facial expression recognition. Pattern Recognition, 2008, 41(4): 1241-1253[J47] Do Hyoung Kim, Sung Uk Jung, Myung Jin Chung. Extension of cascaded simple feature based face detection to facial expression recognition. Pattern Recognition Letters, 2008, 29(11): 1621-1631[J48] Y. Zhu, L.C. De Silva, C.C. Ko. Using moment invariants and HMM in facial expression recognition. Pattern Recognition Letters, 2002, 23(1-3): 83-91[J49] Jun Wang, Lijun Yin. Static topographic modeling for facial expression recognition and analysis. Computer Vision and Image Understanding, 2007, 108(1-2): 19-34[J50] Caifeng Shan, Shaogang Gong, Peter W. McOwan. Facial expression recognition based on Local Binary Patterns: A comprehensive study. Image and Vision Computing, 2009, 27(6): 803-816[J51] Xue-wen Chen, Thomas Huang. Facial expression recognition: A clustering-based approach. Pattern Recognition Letters, 2003, 24(9-10): 1295-1302 [J52] Irene Kotsia, Ioan Buciu, Ioannis Pitas. An analysis of facial expression recognition under partial facial image occlusion. Image and Vision Computing, 2008, 26(7): 1052-1067[J53] Shuai Liu, Qiuqi Ruan. Orthogonal Tensor Neighborhood Preserving Embedding for facial expression recognition. Pattern Recognition, 2011, 44(7):1497-1513[J54] Eszter Székely, Henning Tiemeier, Lidia R. Arends, Vincent W.V. Jaddoe, Albert Hofman, Frank C. Verhulst, Catherine M. Herba. Recognition of Facial Expressions of Emotions by 3-Year-Olds. Emotion, 2011, 11(2): 425-435[J55] Kathleen M. Corcoran, Sheila R. Woody, David F. Tolin. Recognition of facial expressions in obsessive–compulsive disorder. Journal of Anxiety Disorders, 2008, 22(1): 56-66[J56] Bouchra Abboud, Franck Davoine, Mô Dang. Facial expression recognition and synthesis based on an appearance model. Signal Processing: Image Communication, 2004, 19(8): 723-740[J57] Teng Sha, Mingli Song, Jiajun Bu, Chun Chen, Dacheng Tao. Feature level analysis for 3D facial expression recognition. Neurocomputing, 2011,74(12-13) :2135-2141[J58] S. Moore, R. Bowden. Local binary patterns for multi-view facial expression recognition . Computer Vision and Image Understanding, 2011, 15(4):541-558[J59] Rui Xiao, Qijun Zhao, David Zhang, Pengfei Shi. Facial expression recognition on multiple manifolds. Pattern Recognition, 2011, 44(1):107-116[J60] Shyi-Chyi Cheng, Ming-Yao Chen, Hong-Yi Chang, Tzu-Chuan Chou. Semantic-based facial expression recognition using analytical hierarchy process. Expert Systems with Applications, 2007, 33(1): 86-95[J71] Carlos E. Thomaz, Duncan F. Gillies, Raul Q. Feitosa. Using mixture covariance matrices to improve face and facial expression recognitions. Pattern Recognition Letters, 2003, 24(13): 2159-2165[J72]Wen G,Bo C,Shan Shi-guang,et al. The CAS-PEAL large-scale Chinese face database and baseline evaluations.IEEE Transactions on Systems,Man and Cybernetics,part A:Systems and Hu-mans,2008,38(1):149-161.[J73] Yongsheng Gao,Leung ,M.K.H. Face recognition using line edge map.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24:764-779. [J74] Hanouz M,Kittler J,Kamarainen J K,et al. Feature-based affine-invariant localization of faces.IEEE Transactions on Pat-tern Analysis and Machine Intelligence,2005,27:1490-1495.[J75] WISKOTT L,FELLOUS J M,KRUGER N,et al.Face recognition by elastic bunch graph matching.IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):775-779.[J76] Belhumeur P.N, Hespanha J.P, Kriegman D.J. Eigenfaces vs. fischerfaces: recognition using class specific linear projection.IEEE Trans on Pattern Analysis and Machine Intelligence,1997,15(7):711-720[J77] MA L,KHORASANI K.Facial Expression Recognition Using Constructive Feedforward Neural Networks. IEEE Transactions on Systems, Man and Cybernetics, Part B,2007,34(3):1588-1595.[J78][J79][J80][J81][J82][J83][J84][J85][J86][J87][J88][J89][J90]4、英文学位论文[D1]Hu Yuxiao. Three-dimensional face processing and its applications in biometrics:[Ph.D dissertation]. USA,Urbana-Champaign: University of Illinois, 2008。

80岁老人社保认证人脸识别操作流程

80岁老人社保认证人脸识别操作流程

80岁老人社保认证人脸识别操作流程1.打开社保认证App并选择人脸识别认证方式。

Open the social security authentication app and select the face recognition authentication method.2.确认您的身份信息并点击开始认证。

Confirm your identity information and click start authentication.3.请将您的脸部置于屏幕中央,并保持相机对准您的脸。

Please place your face in the center of the screen and keep the camera aligned with your face.4.系统会自动进行人脸识别,请耐心等待。

The system will automatically conduct face recognition, please be patient.5.当听到“认证成功”的提示音后,认证流程就完成了。

When you hear the prompt "authentication successful", the authentication process is complete.6.如果提示认证失败,请重新调整面部位置并重试。

If the prompt indicates authentication failure, please readjust your facial position and try again.7.完成认证后,您将会收到一条认证成功的短信通知。

Upon completion of the authentication, you will receive an SMS notification of successful authentication.8.请将收到的短信通知保存好,以备日后查询和证明。

人是如何识别表情Facial expression recognition

人是如何识别表情Facial expression recognition

人是如何识别表情Facial expression recognition.这个是个很大的研究领域,相当复杂,全世界研究这个问题的估计得有个五千人吧?包括眼神、细微的神色等等,有时即使只是看了陌生人一眼,我们就可以直觉性地领会对方的神情,从而判断出对方的心理状态,这一过程在大脑中究竟是如何发生的?而不同的人,这种探知能力似乎有强有弱,是否和大脑的某种生理机能有关?又或者只与经验有关?但我个人感觉,这种判断有时并不依赖于经验。

人类的面部表情有21种。

根据1972年艾克曼(Ekman)的研究,不同文化、民族的人类群体中表情具有高一致性。

他归纳:最基础的表情为6个:高兴、悲伤、惊讶、愤怒、厌恶、恐惧。

(见下图)不同的表情代表着不同的情绪,要识别表情,就得理解什么是情绪。

那人的大脑是怎么理解、表达情绪的呢?大脑中,负责情绪的区域不仅仅是大脑的某一处,而是由一个系统负责,叫做limbic system。

这个系统同时也对其他的认知功能有莫大的关系,如行为、motivation、识路、长期记忆以及嗅觉。

另外要识别表情,就得识别脸。

对于脸部识别(facial recognition),最重要的区域是amygdala(上图下方紫色区域,或是下图的红色区域)。

在功能性核磁共振脑成像里,当实验者看到不同的脸,这个大脑区域的大脑活动增长最为明显。

同时,这个区域对恐惧、消极情绪的表情识别上有非常重要的作用。

那生理上,amygdala是怎样引起“恐惧”的呢?一种情况是,当进入大脑的血液中含二氧化碳大幅度增加(CO2多了,血的酸性up),amygdala检测到就会引起恐惧感和panic。

那为啥恐惧得和二氧化碳有关系呢?(啊...这么说不太准确...请不要较真)这也算是一种反应机制吧。

当人窒息时,血液中含氧量降低、二氧化碳会积累,这样血的酸性up。

窒息是个很令人恐惧的事情吧,很要命吧?当人窒息的时候,你得恐惧、挣扎、然后尽力逃脱吧?人并不要非要体验了一把窒息,才知道呼吸不畅是“需要避开”的。

基于面部深度空时特征的抑郁症识别算法

基于面部深度空时特征的抑郁症识别算法

文献引用格式:12 - 18.YU M,XU X Y,SHI S,et al.Depression Recognition Algorithm Based on Facial Deep Spatio - Temporal Features[J].中图分类号:基于面部深度空时特征的抑郁症识别算法摘要:提出基于残差注意力网络和金字塔扩大卷积长短时记忆(Convolutional Long Short-Term Memory网络提取人脸图像空时特征的抑郁症识别算法。

首先构建残差注意力网络提取人脸图像不同权值的空间特征,征,显示在两个数据集上,特征10%可见,关键词Abstract:the automatic diagnosis of depression from facial expressions, which extracted spatio-temporal features based on the residual attention network and pyramidal dilated convolutional LSTM network. Firstly, the residual attention network was constructed to extract the spatial features with different weight from facial expressions. Then based on the convLSTM network, a pyramid expansion strategy was added to extract the temporal features with different scales on the resulting spatial features. Finally the spatio-temporal features were input into the DNN network for the regression analysis of depression inventory score. Validation was performed on the AVECthe results were shown on both data sets, the Mae and RMSE values between the predicted and true depression degree of the proposed algorithm are better than those based on manual feature and manual feature + depth feature. In the AVEC2030年,抑郁症将成为全世界导致死亡和残疾的最大因素[2]。

基于压缩感知的鲁棒性人脸表情识别

基于压缩感知的鲁棒性人脸表情识别

基于压缩感知的鲁棒性人脸表情识别施徐敢;张石清;赵小明【摘要】为了有效提高噪声背景下的人脸表情识别性能,提出一种基于压缩感知的鲁棒性人脸表情识别方法。

先通过对腐蚀的测试样本表情图像进行稀疏表示,再利用压缩感知理论寻求其最稀疏的解,然后采用求得的最稀疏解信息实现人脸表情的分类。

在标准的Cohn-Kanade表情数据库的实验测试结果表明,该方法取得的人脸表情识别性能优于最近邻法、支持向量机以及最近邻子空间法。

可见,该方法用于人脸表情识别,识别效果较好,鲁棒性较高。

%In order to effectively improve the performance of facial expression recognition under the noisy background, a method of robust facial expression recognition based on compressed sensing is proposed. Firstly, the sparse representation of corrupted expression images of the identified test sample is sought, then the compressed sensing theory is used to solve its sparsest solution. Finally, according to the sparsest solution, facial expression classification is performed. Experimental results on benchmarking Cohn-Kanade database show that facial expression performance obtained by this method is better than the nearest neighbor (NN), support vector machine (SVM) and the nearest subspace (NS). Therefore, the proposed method shows both good recognition performance and high robustness on facial expression recognition tasks.【期刊名称】《计算机系统应用》【年(卷),期】2015(000)002【总页数】4页(P159-162)【关键词】压缩感知;稀疏表示;表情识别;鲁棒性;腐蚀【作者】施徐敢;张石清;赵小明【作者单位】浙江理工大学机械自动控制学院,杭州 310018; 台州学院图像处理与模式识别研究所,临海 317000;台州学院图像处理与模式识别研究所,临海317000;浙江理工大学机械自动控制学院,杭州 310018; 台州学院图像处理与模式识别研究所,临海 317000【正文语种】中文人脸表情是人们观察情感的重要标志, 如何使得机器能够认识人脸表情, 是一个既实用又有趣的研究方向. 如何让机器自动、高效、准确地来识别人类的情绪状态, 比如高兴、悲伤、愤怒、恐惧等, 即所谓的“人脸表情识别”[1]方面的研究, 是当前信号处理、模式识别、计算机视觉等领域的热点研究课题. 该研究在智能人机交互、人工智能等方面有着重要的应用价值.尽管人脸表情识别经过了多年的发展, 已经取得了较多的研究成果, 但现有的人脸表情识别研究[2-10]大多没有考虑表情图像受到噪声的影响. 在自然环境中, 人脸表情图像的获取、传输和存贮过程中常常也会受到各种噪声(如姿态、光照、腐蚀、遮挡等)的干扰而使图像降质, 从而导致人脸表情识别的性能会随之下降. 因此, 如何提高人脸表情识别的鲁棒性仍然是一个亟需解决的问题.压缩感知(Compressed sensing)或压缩采样(Compressive sampling)[11,12], 是近年来新出现的一种信号采样理论, 它可以在远小于Nyquist采样率的条件下获得信号的离散样本, 然后通过非线性重建无失真的完美信号. 压缩感知理论指出, 采样速率由信号中的内容和结构所决定, 而不再决定于信号的带宽. 目前, 压缩感知理论在图像处理[13]、人脸识别[14]、视频追踪[15]等领域受到了研究者的高度关注, 并表现出了极其强大的生命力, 但在人脸表情识别领域, 尤其针对鲁棒性的人脸表情识别问题, 国内外相关的文献报道甚少.压缩感知理论研究的初衷主要用于信号的压缩和表示, 但其最稀疏的表示具有很好的判别性. 本文利用压缩感知理论中的稀疏表示分类(Sparse Representation-based Classification, SRC)思想[14], 提出一种基于压缩感知的鲁棒性人脸表情识别方法. 先通过对腐蚀的测试样本表情图像进行稀疏表示, 再利用压缩感知理论寻求其最稀疏的解, 然后采用求得的最稀疏解信息实现人脸表情的分类. 在标准的Cohn-Kanade表情数据库[16]的实验结果表明了该方法的可行性.设A=[A1,A2,…,AC]是一组训练样本集, 总数量为n, 其中为第i类训练样本,y∈Rm是第i类的测试样本, 它可以由线性表示为:然而在实际情况中, 由于测试样本的类别一般是未知的, 所以式1可以写为式中, .由矩阵原来可知, m>n时, 矩阵(2)有唯一解; 但是在大多数情况下, m≤n, 此时矩阵(2)有无穷多个解. 为了使测试样本能够用自身所在类的训练样本进行线性表示, 这样的话系数向量x0中的非零向量应该尽可能少些. 所以对矩阵(2)求解可转换对矩阵(3)进行求解式中, ||·||0 表示l0范数, 它的作用是计算向量中非零元素的个数. 但是, 式(3)的求解非常困难, 这是个NP难题.由压缩感知理论可知: 当所求的系数足够稀疏时,可以把最小化l1范数的NP难题转化成最小化l1范数问题来求解.因此, 把式(3)改写为:然而在实际情况中, 获得的数据中经常含有噪声, 因此y很难由A进行比较准确的线性表示, 因此, 把式(4)改写为式(5)可以通过以下的式(6)来求解SRC算法可归纳如下:1)对训练样本集A中的每一个列向量进行归一化.2)求解最小化l1范数问题:或者求解3) 计算残差4) . 是的标记.本文采用标准的Cohn-Kanade[16]数据库进行实验. 通过对Cohn-Kanade数据库的原始图像采样得到32×32像素图像, 然后分别采用稀疏表示分类方法SRC、最近邻法(Nearest neighbor, NN), 支持向量机(Support Vector Machine, SVM), 以及近年来流行的最近邻子空间法(Nearest subspace, NS)[17]进行人脸表情识别实验, 并比较它们的性能.除了SRC方法, 使用的其它分类方法的基本思想表述如下: 最近邻法(NN)是基于样本学习的K近邻分类器(KNN), 当K=1时的一种情况. 支持向量机(SVM)是一种基于统计学习理论的分类器. 本文SVM采用“一对一”多类分类算法, 核函数为径向基函数, 并对核函数参数值进行最优化, 即在训练样本数据上使用交叉验证方法实现. 最近邻子空间法(NS)是一种基于信号重构的无参数分类器, 其分类思想是将测试样本表示为各类所有训练样本的线性组合, 从中选择最优解来进行分类. 2.1 表情数据库Cohn-Kanade数据库含有210个对象的大约2000个左右的具有充足的正面光照的灰度图像序列. 图像序列的分辨率都是640×490. 该数据库总共含有七种基本的表情, 如生气, 高兴、悲伤、惊奇、讨厌、害怕以及中性, 如图1所示. 我们从数据库中选用来自96个对象的320图像序列用于实验测试. 选择图像序列的标准是能够标记出除中性之外的六种表情. 然后对每个选择的图像序列中提取出一帧中性表情图像以及一帧含六种表情之一的图像. 最后我们提取出包括七种表情的470幅图像, 其中生气32个, 高兴100个, 悲伤55个, 惊奇75个, 害怕47个, 讨厌45个和中性116个.2.2 无腐蚀的人脸表情识别实验在该实验中, 直接使用32×32像素大小的图像样本用于表情识别, 图像中不存在任何腐蚀现象. 表1列出了SRC、NN, SVM和NS四种不同方法所取得的人脸表情识别性能. 由表1可知, 在无任何腐蚀图像的条件下, 稀疏表示分类方法SRC取得的人脸表情识别性能最好, 达到94.76%的识别率. 这表明了SRC用于人脸表情识别具有优越的分类性能.为了进一步给出七种表情中不同表情的具体识别性能, 表2给出了在Cohn-Kanade数据库上SRC方法采用32×32像素所取得的不同表情的识别结果. 从表2的实验结果可见, 在Cohn-Kanade数据库上七种表情中大部分表情的正确识别率达到了100%.2.3 有腐蚀的人脸表情识别实验为了检验SRC的鲁棒性人脸表情识别性能, 对32×32像素大小的测试图像随机添加像素腐蚀(Pixel Corruption). 随机添加像素腐蚀就是从测试图像中随机选择一定比例的像素, 采用范围之内的随机值进行替代, 其中表示第个测试图像的最大像素值. 实验中, 像素腐蚀比例从0%到90%, 依次递增10%. 图2展示了Cohn-Kanade数据库中一副原始图像从采样到腐蚀的过程, 其中图(a)为原始640×490像素的图像, 图(b)为采样之后的32×32像素的图像, 图(c)对32×32像素图像添加50%的腐蚀比例之后的图像.图3列出了NN、SVM、NS和SRC四种方法在Cohn-Kanade数据库上随机添加像素腐蚀比例从0%到90%取得的识别结果. 由图3实验结果可见, 随着图像腐蚀比例的增大, 图像越来越模糊, 人脸表情识别率也随之下降. 在图像腐蚀比例由0%增长到30%为止, SRC的正确识别率下降速度缓慢, 而其他三种方法的识别率下降非常快. 随之腐蚀比例的不断增大(30%至90%), 各种方法的识别率都一致下降, 但是SRC方法的识别率平均超过其它三种方法10%以上. 显然, 我们看到了SRC方法在处理人脸表情问题上有着良好的鲁棒性. 这主要是SRC方法提取了信号的稀疏结构, 并利用l1范数来作为来求解信号的稀疏表示系数. 由于采用正则化技术, SRC 的稀疏表示系数具有非常稳定的数值解.本文通过考虑测试图像是否存在像素腐蚀的现象, 对基于压缩感知理论的稀疏表示分类方法SRC的鲁棒性人脸表情识别性能进行了探讨. 在无任何像素腐蚀的人脸表情识别实验中, SRC取得的人脸表情识别性能比其他方法高出2%左右, 而在有像素腐蚀图像的人脸表情识别实验中, SRC展示出了良好的鲁棒性性能, 尤其在像素腐蚀比例30%至90%之间, SRC比其他方法的识别率平均高出10%以上. 这表明本文采用的基于压缩感知理论的稀疏表示分类方法SRC用于鲁棒性人脸表情识别时, 拥有良好的分类性能和鲁棒性.1 Tian Y, Kanade T, Cohn JF. Facial expression recognition. Handbook of Face Recognition, 2011: 487–519.2 刘晓旻,章毓晋.基于Gabor直方图特征和MVBoost的人脸表情识别.计算机研究与发展,2007,44(7):1089–1096.3 刘帅师,田彦涛,万川.基于Gabor多方向特征融合与分块直方图的人脸表情识别方法.自动化学报,2012,37(12): 1455–1463.4 易积政,毛峡,薛雨丽.基于特征点矢量与纹理形变能量参数融合的人脸表情识别.电子与信息学报,2013,35(10): 2403–2410.5 朱晓明,姚明海.基于局部二元模式的人脸表情识别.计算机系统应用,2011,20(6):151–154.6 Aleksic PS, Katsaggelos AK. Automatic facial expression recognitionusing facial animation parameters and multistream HMMs. IEEE Trans. on Information Forensics and Security, 2006, 1(1): 3–11.7 Zheng W, Zhou X, Zou C, et al. Facial expression recognition using kernel canonical correlation analysis (KCCA). IEEE Trans. on Neural Networks, 2006, 17(1): 233–238.8 Zhao G, Pietikainen M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915–928.9 Zhao X, Zhang S. Facial expression recognition using local binary patterns and discriminant kernel locally linear embedding. EURASIP Journal on Advances in Signal Processing, 2012, (1): 20.10 Yurtkan K, Demirel H. Feature selection for improved 3D facial expression recognition. Pattern Recognition Letters, 2014, 38: 26–33.11 Candes EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 21–30.12 Donoho DL. Compressed sensing. IEEE Trans. on Information Theory, 2006, 52(4): 1289–1306.13 Yang J, Wright J, Huang TS, et al. Image super-resolution via sparse representation. IEEE Trans. on Image Processing, 2010, 19(11): 2861–2873.14 Wright J, Yang AY, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210–227.15 Mei X, Ling H. Robust Visual Tracking and Vehicle Classification via Sparse Representation. IEEE Trans. on Pattern Analysis and MachineIntelligence, 2011, 33(11): 2259–2272.16 Kanade T, Tian Y, Cohn J. Comprehensive database for facial expression analysis. International Conference on Face and Gesture Recognition. Grenoble, France. 2000. 46–53.17 Lee KC, Ho J, Kriegman DJ. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(5): 684–698.。

人脸表情识别的研究进展

人脸表情识别的研究进展
(Information Engineering College,Minzu University of China,BeLeabharlann jing 100081,China)2
Abstract In recent years,facial expression recognition has become a hot research direction in human computer interac- tion,machine learning,intelligent control and image processing.According to feature extraction and feature classifica- tion,recent developments of facial expression recognition were presented.From static images and image sequences,the
ence-Pose,Expression,Accessory and Lighting)人 脸 数 据 库 包 [19] 含了1040个人的6种面 部 表 情 和 动 作,包 括 中 性、闭 眼 、皱 眉 、微 笑 、惊 奇 和 张 嘴 。
部分人脸图像库中也 包 含 若 干 表 情 图 像,比 如 AR 图 像 库 包 [20] 含 中 性、微 笑、生 气 和 尖 叫 4 种 表 情 ;Yale人 脸 图 像 库 包 [21] 含中性、高 兴、悲 伤 、欲 睡 、惊 奇 和 眨 眼 6 种 人 脸 的 表 情和动作。 另 外,纽 约 州 立 宾 汉 姆 顿 大 学 建 立 的 BU-3DFE (Binghamton University 3DFacial Expression)三 维 人 脸 表 情 图 像 库[22],包 含 了 100个 人 的 2500个 人 脸 表 情 模 型 。

社保刷脸认证流程

社保刷脸认证流程

社保刷脸认证流程1.进入社保服务大厅,取号排队等候。

Enter the social security service hall, take a number and wait in line.2.轮到您的号码后,前往窗口向工作人员说明需进行刷脸认证。

When it's your turn, go to the window and explain to the staff that you need to undergo facial recognition.3.工作人员会要求您出示身份证件以确认身份。

The staff will ask you to show your identification to confirm your identity.4.出示身份证后,工作人员会要求您站到刷脸认证设备前进行面部识别。

After showing your identification, the staff will ask you to stand in front of the facial recognition device for facial recognition.5.面部识别设备会扫描您的面部特征,进行比对验证。

The facial recognition device will scan your facial features for comparison and verification.6.如果识别成功,您的面部信息将与社保系统中的数据进行关联。

If the recognition is successful, your facial information will be associated with the data in the social security system.7.在系统中进行关联后,您将完成刷脸认证步骤。

After the association in the system, you will have completed the facial recognition process.8.工作人员会告知您认证成功并可以进行后续操作。

面部表情识别实验方法与步骤

面部表情识别实验方法与步骤

面部表情识别实验方法与步骤本文档旨在介绍面部表情识别实验的方法与步骤。

面部表情识别是一种通过分析人脸图像或视频来识别人类表情的技术,具有广泛的应用领域,包括人机交互、情感识别和心理研究等。

实验准备在进行面部表情识别实验前,需要进行以下准备工作:1. 软件与工具确保计算机上安装了面部表情识别相关的软件和工具,如OpenCV、Dlib和Facial Expression Recognition等。

2. 数据集选择合适的面部表情数据集,确保数据集的质量和准确性。

常用的面部表情数据集有FER2013、CK+和JAFFE等。

3. 实验设备准备用于实验的设备,包括摄像头、计算机和显示屏等。

确保设备的正常工作和相互连接。

实验步骤以下是进行面部表情识别实验的基本步骤:1. 数据收集使用摄像头采集参与者的面部表情数据,确保采集的图像质量和角度适合后续的分析和识别。

2. 数据预处理对采集到的面部表情数据进行预处理,包括图像的裁剪、灰度化、直方图均衡化等,以提高后续特征提取和分类的效果。

3. 特征提取使用合适的特征提取方法,提取面部表情数据中的特征信息。

常用的特征提取方法包括LBP、HOG和Eigenfaces等。

4. 模型训练准备标注好的面部表情数据,并使用该数据集对面部表情识别模型进行训练。

常用的模型包括SVM、神经网络和决策树等。

5. 模型测试与评估使用测试集对训练好的面部表情识别模型进行测试,并评估模型的准确率和性能。

常用的评估指标包括准确率、精确率、召回率和F1值等。

6. 结果分析与应用对实验结果进行分析和总结,并根据识别准确率和性能选择合适的应用场景,如情感识别、虚拟人机交互等。

总结本文档介绍了面部表情识别实验的方法与步骤,包括实验准备、数据收集、数据预处理、特征提取、模型训练、模型测试与评估以及结果分析与应用等内容。

通过按照这些步骤进行面部表情识别实验,可以获得准确的识别结果并应用于相关领域。

人脸识别的英文文献15篇

人脸识别的英文文献15篇

人脸识别的英文文献15篇英文回答:1. Title: A Survey on Face Recognition Algorithms.Abstract: Face recognition is a challenging task in computer vision due to variations in illumination, pose, expression, and occlusion. This survey provides a comprehensive overview of the state-of-the-art face recognition algorithms, including traditional methods like Eigenfaces and Fisherfaces, and deep learning-based methods such as Convolutional Neural Networks (CNNs).2. Title: Face Recognition using Deep Learning: A Literature Review.Abstract: Deep learning has revolutionized the field of face recognition, leading to significant improvements in accuracy and robustness. This literature review presents an in-depth analysis of various deep learning architecturesand techniques used for face recognition, highlighting their strengths and limitations.3. Title: Real-Time Face Recognition: A Comprehensive Review.Abstract: Real-time face recognition is essential for various applications such as surveillance, access control, and biometrics. This review surveys the recent advances in real-time face recognition algorithms, with a focus on computational efficiency, accuracy, and scalability.4. Title: Facial Expression Recognition: A Comprehensive Survey.Abstract: Facial expression recognition plays a significant role in human-computer interaction and emotion analysis. This survey presents a comprehensive overview of facial expression recognition techniques, including traditional approaches and deep learning-based methods.5. Title: Age Estimation from Facial Images: A Review.Abstract: Age estimation from facial images has applications in various fields, such as law enforcement, forensics, and healthcare. This review surveys the existing age estimation methods, including both supervised and unsupervised learning approaches.6. Title: Face Detection: A Literature Review.Abstract: Face detection is a fundamental task in computer vision, serving as a prerequisite for face recognition and other facial analysis applications. This review presents an overview of face detection techniques, from traditional methods to deep learning-based approaches.7. Title: Gender Classification from Facial Images: A Survey.Abstract: Gender classification from facial imagesis a widely studied problem with applications in gender-specific marketing, surveillance, and security. This surveyprovides an overview of gender classification methods, including both traditional and deep learning-based approaches.8. Title: Facial Keypoint Detection: A Comprehensive Review.Abstract: Facial keypoint detection is a crucialstep in face analysis, providing valuable information about facial structure. This review surveys facial keypoint detection methods, including traditional approaches anddeep learning-based algorithms.9. Title: Face Tracking: A Survey.Abstract: Face tracking is vital for real-time applications such as video surveillance and facial animation. This survey presents an overview of facetracking techniques, including both model-based andfeature-based approaches.10. Title: Facial Emotion Analysis: A Literature Review.Abstract: Facial emotion analysis has become increasingly important in various applications, including affective computing, human-computer interaction, and surveillance. This literature review provides a comprehensive overview of facial emotion analysis techniques, from traditional methods to deep learning-based approaches.11. Title: Deep Learning for Face Recognition: A Comprehensive Guide.Abstract: Deep learning has emerged as a powerful technique for face recognition, achieving state-of-the-art results. This guide provides a comprehensive overview of deep learning architectures and techniques used for face recognition, including Convolutional Neural Networks (CNNs) and Deep Residual Networks (ResNets).12. Title: Face Recognition with Transfer Learning: A Survey.Abstract: Transfer learning has become a popular technique for accelerating the training of deep learning models. This survey presents an overview of transferlearning approaches used for face recognition, highlighting their advantages and limitations.13. Title: Domain Adaptation for Face Recognition: A Comprehensive Review.Abstract: Domain adaptation is essential foradapting face recognition models to new domains withdifferent characteristics. This review surveys various domain adaptation techniques used for face recognition, including adversarial learning and self-supervised learning.14. Title: Privacy-Preserving Face Recognition: A Comprehensive Guide.Abstract: Privacy concerns have arisen with the widespread use of face recognition technology. This guide provides an overview of privacy-preserving face recognition techniques, including anonymization, encryption, anddifferential privacy.15. Title: The Ethical and Social Implications of Face Recognition Technology.Abstract: The use of face recognition technology has raised ethical and social concerns. This paper explores the potential risks and benefits of face recognition technology, and discusses the implications for society.中文回答:1. 题目,人脸识别算法综述。

一种高校后勤工作人员面部表情识别方法

一种高校后勤工作人员面部表情识别方法

现代电子技术Modern Electronics TechniqueAug.2023Vol.46No.162023年8月15日第46卷第16期0引言随着我国高校智慧校园建设工作的推进,如何提高后勤人员的工作积极性,是高校管理者目前亟待解决的问题。

后勤人员的工作积极性会直接影响全校师生员工的工作心情和生活质量,在此背景下,开展高校后勤工作人员的面部表情识别,通过面部表情分析工作人员的工作积极性尤为重要。

在国外,关于面部表情识别的研究,早期主要集中在图像数据处理方面。

比如M.K.Lee 等提出了一个FS 模块来选择有意义的帧,以增强图像数据的利用效率[1]。

C.Y.Park 等提出了由现成的可穿戴设备收集的生理传感器数据、辩论过程中参与者的视听片段以及持续的情感注释组成的K⁃EmoCon 数据集,用于情感的多角度评估[2]。

A.Khunteta 等通过对直方图均衡化技术改进,获得了最佳的绝对平均亮度误差图像[3]。

后来,随着理论研究的不断深入,研究的焦点集中在表情与心情之间关系、情感方面。

比如:N.M.Ashkanasy 提出了在一个组织中情绪的五层模型,认为员工个人情感状态会干扰认知加工[4],该模型的提出对于以后组织的情绪分析有极大的帮助;P.Totterdell 等认为心情状态可以影响员工的注意力分配,揭示了员工的心情状态可以影响到员工的工作集中度,为提高员工注意力找到了入手点[5];A.G.Miner 等通过对好心情进行研究,得出了好心情可DOI :10.16652/j.issn.1004⁃373x.2023.16.018引用格式:杨毅,王瑶瑶.一种高校后勤工作人员面部表情识别方法[J].现代电子技术,2023,46(16):105⁃110.一种高校后勤工作人员面部表情识别方法杨毅,王瑶瑶(西安工程大学后勤管理处,陕西西安710048)摘要:为推进我国高校智慧校园建设,提高后勤人员的工作积极性,文中提出一种面向后勤工作人员的面部表情识别方法。

情感感知技术英语作文

情感感知技术英语作文

情感感知技术英语作文英文回答:Affective Sensing Technology.Affective sensing technology refers to the ability of computers and devices to detect and recognize human emotions. This technology uses various sensors and algorithms to analyze physiological signals, facial expressions, speech patterns, and other indicators to infer the emotional state of individuals.Types of Affective Sensing Technologies.There are several types of affective sensing technologies, including:Physiological sensing: This method measures physical responses to emotions, such as heart rate, breathing rate, skin temperature, and muscle tension.Facial expression recognition: This technology analyzes facial movements and expressions to detect emotions like happiness, sadness, anger, and surprise.Speech emotion recognition: This technology identifies emotional cues in speech, such as pitch, volume, and prosody.Behavioral sensing: This method tracks and analyzes human behavior, including gestures, posture, and movement patterns.Applications of Affective Sensing Technology.Affective sensing technology has a wide range of applications, including:Healthcare: Monitoring patient emotions during medical procedures, assisting in mental health diagnosis and treatment.Education: Evaluating student engagement, identifying students at risk of dropping out, and providing personalized learning experiences.Customer service: Analyzing customer emotions to improve service quality, personalize interactions, and resolve complaints.Entertainment: Enhancing user experiences in games, movies, and other entertainment platforms.Security: Detecting deception and identifying individuals with malicious intent.Benefits of Affective Sensing Technology.Improved human-computer interaction: By understanding human emotions, devices can tailor responses and interactions to enhance the user experience.Enhanced healthcare and mental health diagnosis: Early detection of emotional changes can facilitate timelyinterventions and improve outcomes.Personalized education: Tailoring learning experiences to student's emotional states can improve engagement and learning outcomes.Improved customer service: Understanding customer emotions can lead to more empathetic and effective interactions.Increased safety and security: Detecting emotional cues can help identify potential threats and enhance security measures.Challenges and Future Directions.While affective sensing technology offers immense potential, there are also challenges to address:Accuracy and reliability: Improving the accuracy and reliability of emotion recognition algorithms is crucial.Privacy concerns: Ensuring the responsible use and protection of sensitive emotional data is essential.Ethical considerations: Ethical guidelines are needed to regulate the development and deployment of affective sensing technology.Future research directions include:Developing more robust and reliable emotion recognition algorithms.Exploring new sensor modalities and data sources.Addressing privacy and ethical concerns.Expanding applications in various domains.中文回答:情感感知技术。

2024届北京市海淀区人大附中九年级英语第一学期期末考试试题含解析

2024届北京市海淀区人大附中九年级英语第一学期期末考试试题含解析

2024届北京市海淀区人大附中九年级英语第一学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

Ⅰ. 单项选择1、— The accident was really terrible.— Y es, it was. The young man on the bicycle was too ________.A.careful B.careless C.carefully D.carelessly2、— Never give up, and I believe you will be successful.—Thank you, Mum. 1 won’t _____ you _____.A.let; down B.keep; off C.cheer; up3、With the development of modern sc ience, it’s ________for us to get information from all over the world.A.slower B.easier C.harder D.busier4、He ______ a complaint to the police because his neighbors’ party was too noisy.A.told B.said C.made D.gave5、She’s never been to Hong Kong, ______?A.is sheB.has sheC.isn’t sheD.hasn’t she6、Some of my father’s friends have been to the USA, but _______ of them can speak English.A.neither B.both C.all D.none7、It is_____to point at others with chopsticks during a meal in China.Yes.People will feel uncomfortable if you do so.A.traditional B.impolite C.common D.ancient8、— Do you know _____ a wonderful match and two basketball matches on July 15 th ?— Y eah . I am going to watch them on that day.A.there will be B.there is going to have C.there are going to be D.is there going to be9、---- Mum, I want to watch Across the Sea to See You (漂洋过海来看你) on Zhejiang Satellite TV.---- Oh, dear, it ______ for a few minutes. Come on!A.has begun B.will begin C.has been on D.will be on10、— Is that B ill’s volleyball?— Y es. Bill likes playing volleyball. volleyball is his.A.a; / B.the; / C.the; The D./; TheⅡ. 完形填空11、My husband and I only have one car. So after work, I always walk to his office to wait for him to drive me home.One day, while I was waiting for him, a beautiful Cadillac (凯迪拉克) came to a(n) 1 near me. I was busily 2 the car when I noticed the driver. Honestly, she was probably the 3 woman I had ever seen outside of a movie screen. Her eyes were as blue as the sea, and she had 4 like a row of pearls (珍珠). Minutes later, a man came out of the building and walked over to her. They kissed and drove off.Sitting there, 5 in jeans and a T-shirt, I wanted to cry. It is so unfair (不公平) some people have it all.The next week I saw her again, and after that it became almost 6 to see her. I would wonder if she and her husband ate out a lot and where they went. I wanted her to get out of the car so I could see her clearly. Did she wear high-fashioned shoes?A few weeks later, this was 7 for me.I was waiting in my usual place and the lady’s husband came over to their car. He opened the door. 8the woman walked around to the passenger side, with a walking stick. She had a prosthetic (假肢) on her left leg.As they drove away I began to cry. When my husband arrived I told him about what had 9 . He said he knew her husband and that, when the lady was 12 years old, she had an accident on the railroad. Both of her parents were killed. The rail company gave a large number of money to her because the crossing had no 10 ; that is why she owned such a nice car.Now I realize how lucky I am. When you meet a person who seems to be much better off than you, don’t be fooled (欺骗) by appearances.1.A.end B.stop C.mark D.point2.A.admiring B.comparing C.decorating D.following3.A.bravest B.happiest C.prettiest D.wealthiest4.A.ears B.fingers C.legs D.teeth5.A.covered B.dressed C.included D.trapped6.A.guilty B.strange C.stressful D.usual7.A.answered B.presented C.raised D.solved8.A.actively B.rapidly C.slowly D.suddenly9.A.announced B.disappeared C.happened D.mistaken10.A.scenes B.senses C.sights D.signsⅢ. 语法填空12、语法填空One sheep, two sheep... 632 sheep... still awake...People always believe that counting sheep1.(be) helpful to their sleep. But does it2.(real) work?Scientists at Oxford University tested it. Two sleep researchers looked at the people who had3.(difficult) in sleeping. They divided them4.different groups. Then they asked them to try all kinds of ways to help5.(they) fall asleep quickly. Surprisingly, it6.(take) those who were asked to count sheep more time to fall asleep than those who weren’t. But when they were asked to imagine a relaxing picture-- a beach, for e7., they fell asleep about twenty minutes8.(soon) than before, according to a report in The New York Times.“Sometimes, counting tasks are OK, b9.they are thought as stressful by many people,” Dr. Richards told ABC News.“As10.result, it may be a good way to try im agining colored fish slowly swimming in a river to help you sleep at night,” suggested Richards.Ⅳ. 阅读理解A13、What does your face say?How many different emotions do you think you can communicate to people with your face? Do you have the same facial expressions as people from different cultures?New research suggests that there are only four basic facial expressions of emotion.However, how these expressions are understood might depend on where you are from.Research by scientists from the University of Glasgow has challenged the traditional view of how the face expresses emotions. Until now, it was widely believed that six basic emotions — happiness, sadness, fear, anger, surprise and disgust (厌恶), were expressed and recognized across different cultures. However, the University of Glasgow’s work now suggests that the human face only has four basic expressions of emotion. This is because some pairs of emotions are impossible to distinguish, especially when they are first expressing on the face. Fear and surprise, for example,both share wide-open eyes. The facial expressions for anger and disgust also look thesame.So if our faces are only able to express four basic emotions, how do we communicate more complex (复杂的) feelings? The study found that the way expressions are explained is different in different cultures. Lead researcher Dr Rachael Jack was studying this beca use “facial expressions were considered to be general”, she explains. However, while looking at how people from the East and West look at different parts of the face during facial expression recognition, they found that although there are some common characteristics across cultures, the six basic facial expressions of emotion are not recognized by everyone.“We said we don’t know what a disgust face looks like in China, so the best way to go about that is to make allcombinations (组合) of facial movements and show to Chinese researchers and ask them to choose the ones they think are disgust faces.”With the software they developed, they discovered that in the early stages of signaling emotion, fear and surprise, and anger and disgust, were often confused. Jack explains that these facial expressions have developed both from biology and social evolution(进化).What interests people about the cross-cultural aspect of the research? “This work leads to understanding which emotions we share, realizing our differences and calling attention to our multicultural experiences.” This research could advise new ways of social communication that improve cross-cultural interactions.1.What is the main purpose of the first paragraph?A.To show interest in different cultures.B.To express the worries about emotions.C.To lead in the topic of facial expressions.D.To give an example of facial expressions.2.The word “distinguish” in Para graph 3 probably means ______.A.express B.explain C.differentiate D.develop3.According to the passage, Dr Rachael agrees that ______.A.facial expressions are easy to understand in JapanB.the way expressions are understood is different in ChinaC.new ways of social communication can improve movementsD.it’s difficult to understand all the facial expressions of emotion4.What can we learn from the passage?A.We can express our emotions in four different ways.B.Facial expressions of emotion can be discovered easily.C.Facial expressions of emotion are from different countries.D.Facial expressions are explained differently in different cultures.B14、Now, it may be difficult to predict the future, but many people believe that we will live on Mars by the year 2100. Our own planet, Earth, is becoming more and more crowed and polluted. Well, what problems will we need to solve before we prepare to go to Mars?First of all, transport should be much better. At present, humans need to spend months going to Mars by spaceship. However, by 2100, spaceship can travel at half the speed of light. It might take us two or three days to get there!Secondly, humans need food, water and air to live. Scientists should develop plants that can be grown on Mars. These plants will produce the food, water and air that we need. However, there is no answer for all the problems now.There is also a problem for us to live on Mars. Mars attracts us much less than the Earth does. This will be dangerous because we could easily jump too high and fly slowly away into space there. We will have to wear special shoes to make ourselves heavier.In some ways, life on Mars may not be better than that on the earth today. Food will not be the same —meals will probably be in the form of pills and will not be as delicious as they are today. Also, space travel will probably make many people feel very uncomfortable.1.So far, how long will it take us from the earth to Mars by spaceship?A.Two or three days. B.A few days.C.A few months. D.A few years.2.According to the passage, which of the following is wrong?A.A special plant which can produce water, air and food should be needed on Mars.B.We may go to Mars when transport is much better and faster..C.We can jump higher than on the earth on Mars.D.Food on Mars will be much better to eat.3.Which looks like life on Mars according to the passage?A.We can wear the shoes that we like to wear.B.We can drink easily and conveniently.C.We can walk faster than on the earth.D.We can boil food to eat.4.Why do we want to live on Mars?A.Life on Mars is more interesting than that on the earth.B.The earth is becoming dirty and crowded.C.The journey to Mars is very interesting.D.The scientists want us to do that.C15、Now cities are full of cars. Some families even have two or more cars. Parking is a great problem, and so is the traffic in around the cities. Something will have to be done to change it. What will the cars of tomorrow be like?Little cars may some day take the place of today's big cars. If everyone drives little cars in the future there will be less pollution in the air. There will also be more space for parking cars in cities, and the streets will be less crowded. Threelittle cars can fit in the space now needed for one car of the usual size.The little cars will cost much less to own and to drive. Driving will be safer, too. What is more, these little cars can go about 65 kilometers per (每) hour.Little cars of the future will be fine for getting around a city, but they will not be useful for long trips. If big cars are still used along with the small ones, two sets of roads will be needed in the future. Some roads will be used for the big, fast cars, and other roads will be needed for the slower small ones.1.What is the big problem for those people who have cars?A.Money. B.Parking. C.Time. D.Waiting.2.What does the underlined word “ take the place of ” mean in Chinese?A.花费B.地方C.超越D.取代3.People can money with using the little cars.A.spent B.cost C.save D.take4.Little cars are very fine for ______.A.everyday life B.journeys C.long trips D.sport5.What is this passage mainly about?A.The little cars are as useful as the big cars. B.What the cars of tomorrow will be like.C.There will be less pollution in the future. D.Cities are full of cars now.D16、INTERNATIONAL RADIO —WHAT’S ON?1.How many times will the World News Program be on?A.Once. B.Twice.C.Three times. D.Four times.2.When can you phone in if you have a problem with your friend?A.At 18:10. B.At 19:00.C.At 19:20. D.At 21:10.3.In which program can you hear people’s opinions about hot topics?A.Teen Dreams B.What Do You Think?C.World Business D.What Should You Do?E17、We can make mistakes at any age.Some mistakes we make are about money.But most mistakes are about people.“Did Jerry really care when I broke up with Helen?… ”, “When I got that great job,did Jerry really feel good about it,as a friend? Or did he envy my luck?”When we look back, doubts like these can make US feel bad.But when we look back.It’s too late. Why do we go wrong about our friends-or our enemies? Sometimes what people say hides their real meaning.And if we don’t really listen,we miss the feelingbehind the words.Suppose someone tells you “you’re a lucky dog”.Is he really on your side? if he says.“You’re a lucky guy” or “You’re a lucky gal”.That’s being friendly.But “lucky dog”?There’s a bit of envy in those words Maybe he doesn’t see it himself.But bringing in the ‘‘dog” bit puts you down a little.What he may be saying is that he doesn’t think you deserve your luck.How can you tell the real meaning behind someone’s words? One way is to take a good look at the person talking.Do his words fit the way he looks? Does what he says square with the tone of voice? His posture(体态)?The look in his eyes? Stop and think.The minute you spend thinking about the real meaning of what people say to you may save another mistake.1.From the questions in the first paragraph we can learn that the speaker _____ .A.feels happy,thinking of how nice his friends were to himB.feels he may not have “read”his friends’ true feelings correctlyC.thinks it was a mistake to have broken up with his girl friend,Helen.D.is sorry that his friends let him down2.In the second paragraph.the author uses the example of “You’re a lucky dog”to show that ______.A.the speaker of this sentence is just being friendlyB.this saying means the same as “You’re a lucky guy”or “You’re a lucky gal”C.sometimes the words used by a speaker give a clue to the feeling behindthe wordsD.the word “dog” shouldn’t be used to apply to people3.This passage tries to tell you how to ______ .A.avoid mistakes about money and friendsB.bring the “dog’’ bit into our conversationC.avoid mistakes in understanding what people tell youD.keep people friendly without trusting them4.In listening to a person, the important thing is ______ .A.to notice his tone,his posture,and the look in his eyesB.to listen to how he pronounces his wordsC.to check his words against his manner,his tone of voice,and his postureD.not to believe what he says5.If you followed the advice of the writer,you would ______ .A.be able to get the real meaning of what people say to youB.avoid any mistakes while talking with people who envy youC.not lose real friends who say things that do not please youD.be able to observe people as they are talking to youF18、Jim is a young farmer. He was once put into prison( 监狱).One day, he got a letter from his mother. “ I’m so worried about our farm,”she wrote.”it’s time to plant potatoes. I can’t dig (挖) all the fields(田地) by myself.”Jim read the letter and became sad. “ What can I do?” he thought. Then he had a good idea. He wrote to his mother,” don’t dig the fields. There is much money in the earth. Don’t plant potatoes until I come home.”Some days later, Jim got another letter from his mother. It said, “ Two days ago, about ten men came to our farm and dug all the fields. I can’t understand it. It seemed that they were looking for something. What should I do?”Jim smiled when he read his mother’s letter. He wrote a letter to his mother at once. It was very short. Guess what it would say.1.Jim’s mot her was much worried about___________.A.himB.their farmC.the potatoesD.the money2.In the letter to his mother, Jim told his mother not to______.A.dig the fieldsB.dig for the moneyC.ask others for helpD.go to the prison to see him3.Jim’s mother to ld him that about ten men came to dig their fields. These men might be_____.A.farmersB.Jim’s friendsC.prison guards( 监督员)D.Jim’s brothersⅤ.书面表达19、学生会做了一个关于中学生睡眠、饮食和休闲等生活习惯的调查,发现学生有不良习惯。

人脸表情识别概念

人脸表情识别概念

人脸表情识别概念
人脸表情识别(Facial Expression Recognition,FER)是指通过技术手段识别人的面部表情,确定其当前的心理状态。

人脸表情识别是一种人机交互的重要技术,它可以加深人工智能对人类情感的理解,实现更加智能化的人机交互环境。

人脸表情识别技术在电影或广告推荐、远程监测医疗患者的疼痛、数字娱乐、交通安全、行为科学和教学实践等领域具有广泛的应用。

在模式识别领域中,表情识别是一个具有挑战性的课题。

人脸表情识别系统主要包括四个组成部分,分别为人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。

通过计算机视觉技术,可以识别人的面部表情以理解人的情绪状态。

除了面部表情,利用生理信号(如脑电信号、心跳、脉搏等)以及自然语言也可以理解人的情绪状态。

总之,人脸表情识别是基于人的脸部特征信息进行身份识别的技术,通过计算机视觉技术来识别人的面部表情,从而理解人的情绪状态。

这项技术的应用能够加强人机交互关系,为人们的生活和工作带来便利。

Unit1ScienceFiction单词短语及变形清单高二英语人教版选择性

Unit1ScienceFiction单词短语及变形清单高二英语人教版选择性

1.science fiction 科幻小说fiction n.小说fiction al adj.虚构的,小说中的2.satis fy v.满意satis fact ion n.满意satisf act ory a.满意的3.work for+个人/组织;work as +职业身份4.experiment with ... 用.....做试验;试用.....5.domestic/household robot家用/家庭机器人6.test out 检验;测试7.persuade sb. to do sth. 说服某人做某事8.allow sb. to do sth. 允许某人做某事9.bonus n.奖金award n.报酬,薪水;奖赏reward n.报酬;奖励10.more like 更像是;更接近11.He was tall and handsome with smooth hair and a deep voice.他高大英俊,头发顺滑,嗓音低沉。

12.facial expression 面部表情= facial recognition13.in the morning 固定搭配,只要加了单词,就要用onon the second morning14.embarrass ed a.感到尴尬的人+ed感到...的embarrass ing a.令人尴尬的物+ing令人...的15.disturb ed a.感到不安的disturb ing a.令人不安的disturb v.使烦恼,使不安16.look after照顾17.It was ridiculous that ...to do ....是荒唐的ridiculous=absurd a.荒谬的18.offer sympathy提供同情19.with dignity 有尊严地;大度地20.gradually admired his wisdom and integrity 逐渐地欣赏他的智慧和诚实正直21.improve his social position 提高他的社会地位22.as a favour 作为一项恩惠in favour of支持do sb. a favour 帮某人的忙23.or rather更确切地说24.with wonder惊奇地25.acpany sb to sp. 陪某人去某地26.make/have an appointment with sb与某人约会appoint ment n.预约;约会;委任appoint v.任命,委派appoint ed adj.指定的;约定的27.paint the nails涂指甲/美甲nail n.指甲/趾甲; 钉子vt.(用钉子)钉牢; 固定nail polish指甲油nail clipper指甲刀28.be rude to sb. 对某人无礼29.be in a relationship 恋爱中30.turn around 转身;翻转31.after all 毕竟32.pletely innocent完全无辜的33.guilt y adj.内疚的;有罪的;有过失的feel guilty感到内疚guilt n.内疚;悔恨;犯罪;罪行a sense of guilt 内疚感34.w ee p w e p t wept哭泣35.suggest that sb.should do建议某人应该做什么表建议命令要求的动词接从句,从句要用虚拟语气(should)+V原36.light suspended from the ceiling悬挂在天花板上的灯suspen d v.悬; 挂; 暂停; 暂缓suspen sion n.暂缓;延迟;延期;暂停37.fall off脱落;跌落38.in time及时,最终39.push sb. away推开某人40.str ike str uck struck敲,击,打;罢工41.declar e v.表明;宣称;公布declar ation n.宣告42.more than +n.不仅仅more than +adj/adv 非常more than +number超过no more than只不过;仅仅not more than不超过;至多rather than而不是other than除了;不同于43.whereas conj. 然而;但是;尽管while conj. 然而but conj. 但是yet conj. 然而,但是however adv.然而; 但是nevertheless adv.然而,不过although conj.虽然/尽管though conj.虽然/尽管even if/though虽然;即使despite prep.即使;尽管in spite of 即使44.presum e vt. & vi.假设/假定; 认为presum ption n.假设/定presum ing conj.假设45.fare n.车费;船费;飞机票价fee n.车费;船费;交通工具票价tip n.小费;赏钱expense n.开支;费用46.on a ... basis 根据;以…的方式(基准)bas is n. (pl.bases) 底部;基础;主要成分;基本原则或原理bas e vt.以...为基础n.根基;底部;基础;基地bas ic adj.基础的;基本的47.calculat e vt.计算; 核算; 预测calculat ion n.计算,估算,算计calculat or n.计算器48.pros and cons 事物的利与弊;支持与反对advantages and disadvantages 利与弊; 优点和缺点strengths and weaknesses 优点和缺点49.(be)superior to... 比…更好; 更胜一筹be inferior to 比...更差/级别更低be senior to 比...年长/职位高be junior to 比...年幼/职位低50.take over占上风;取而代之;接管;接手;51.conflict with 与...冲突或抵触52.the starting lever on the main panel 主面板上的启动杆53.back ward(s) adv.向后;倒着;往回for ward(s)adv.向前up ward(s)adv.向上down ward(s)adv.向下east ward(s)adv.向东west ward(s)adv.向西backward(s) and forward(s) 来来回回54.draw/ take a breath深深地吸一口气55.go hazy 变得模糊56.niece n.侄女nephew n.侄子57.fetch vt. (去)拿来; (去)请来bring v.带来take v. 带走58.turn out 关掉;熄灭;在场;使朝外;结果是59.fall away (逐渐)减少;消失60.division between night and day昼夜之分61.like puffs of smoke似一阵青烟62.urge n. 强烈的欲望;冲动vt.催促;力劝;大力推荐urge n t adj.紧急的;急迫的urge n cy n.紧迫;急迫63.random adj. 随机的; 不可思议的random ly adv. 随机; 随意; 未加计划地64.at maximum speed 以最高的速度m ax imum adj.最大极限的n.最大量; 最大限度m in imum adj.最小的; 最低限度的n. 最低限度; 最少量65.be occupied by ...被占据...忙于做.....;专心于.....66.explo de vi. & vt.爆炸; 爆破explo sion n.爆炸,爆破,爆裂声explo sive adj.爆炸性的; 爆发性的n.炸药; 爆炸物67.with a sudden jolt 突然一震68.I was stunned for a moment. 我一时惊呆了stun vt.使震惊; 使昏迷stun n ed adj. 震惊的; 惊愕的stun n ing adj.令人震惊的/惊愕的69.in some mud 一堆烂泥mud n.泥; 泥浆mud dy adj.多泥的,泥泞的。

基于DenseNet_的人脸图像情绪识别研究

基于DenseNet_的人脸图像情绪识别研究

第 42 卷第 6 期2023年 11 月Vol.42 No.6Nov. 2023中南民族大学学报(自然科学版)Journal of South-Central Minzu University(Natural Science Edition)基于DenseNet的人脸图像情绪识别研究雷建云,马威,夏梦*,郑禄,田望(中南民族大学计算机科学学院& 湖北省制造企业智能管理工程技术研究中心,武汉430074)摘要针对人脸情绪识别类内差异大,类间差异小的特点,结合学生人脸图像的线上课堂情绪识别的场景,提出多尺度空洞卷积模块提取不同空间尺度特征的稠密深度神经网络模型,实现自然场景下学生人脸图像识别. 该模型主要由多尺度空洞卷积和DenseNet神经网络两个子网络组成,其中多尺度空洞卷积由不同空洞率的四分支网络提取不同尺度特征,空洞卷积减小特征图尺寸,减少DenseNet内存资源占用;最后在DenseNet网络中结合Adam优化器和中心损失函数.使用稠密网络的旁路连接,加强情绪特征传递和复用.研究结果表明:基于稠密深度神经网络的情绪识别网络模型能够有效提高情绪分类的准确率,模型对预处理后的FER2013+数据集识别准确率达到93.99%,可为线上教学反馈提供技术支持.关键词人脸情绪识别;稠密神经网络;空洞卷积;中心损失函数;深度学习优化器中图分类号TP391.4 文献标志码 A 文章编号1672-4321(2023)06-0781-07doi:10.12130/znmdzk.20230609Research on emotion recognition of face image based on densenetLEI Jianyun,MA Wei,XIA Meng*,ZHENG Lu,TIAN Wang(College of Computer Science & Hubei Provincial Engineering Research Center for Intelligent Management of Manufacturing Enterprises,South-Central Minzu University,Wuhan 430074,China)Abstract The characteristics of large intra-class differences and small inter-class differences in facial emotion recognition, combined with the scene of online classroom emotion recognition of student face images, a dense deep neural network model with multi-scale atrous convolution modules to extract features of different spatial scales is proposed,that realize student face image recognition in natural scenes. The model is mainly composed of two sub-networks: Multi-scale atrous convolution and DenseNet neural network. The multi-scale atrous convolution extracts features of different scales by four-branch networks with different atrous rates. Atrous convolution reduces the size of the feature map and reduce the memory resource occupation of DenseNet. Finally, the Adam optimizer and the central loss function are combined in the DenseNet network. The bypass connection of the dense network is used to strengthen the transfer and reuse of emotional features. The research results show that: The emotion recognition network model of the network can effectively improve the accuracy of emotion classification based on dense deep neural network, and the recognition accuracy rate of the model for the preprocessed FER2013+ data set reaches 93.99%, which provides technical support for online teaching feedback. Keywords facial emotion recognition; densenet; atrous convolution; center loss function; optimizer近几年来,基于卷积神经网络和循环神经网路的深度神经网络模型在计算机视觉和自然语言处理等领域应用广泛.自第一个大规模的深度神经网络AlexNet[1]诞生以后,各种骨干架构如VGGNet[2]、GoogleNet[3]、MobileNet[4]、ResNet[5]和DenseNet[6]等相继被提出,网络的性能不断提升,网络规模越来越大. 情绪识别的难点之一,同一个人脸有不同的表情,对应不同的情绪分类,不同人脸有相同的表情,对应相同的情绪分类,因此,人脸情绪识别的分类任务有类间差异小,类内差异大的挑战.收稿日期2022-01-22 * 通信作者夏梦,研究方向:深度学习与图形识别. E-mail:****************** 作者简介雷建云(1972-),男,教授,博士,研究方向:信息安全,E-mail:*********************基金项目湖北省科技重大专项(2020AEA011);武汉市科技计划应用基础前沿项目(2020020601012267)第 42 卷中南民族大学学报(自然科学版)1 研究现状1.1 传统情绪识别传统人脸情绪识别方法依赖手工设计特征或者浅层学习,如局部二值模式(local binary pattern,LBP)[7]、三正交平面的局部二值模式(local binary pattern from three orthogonal planes,LBP-TOP)[8]、非负矩阵分解(nonnegative matrix factorization,NMF)[9]和稀疏学习[10]. 2013年起,表情识别比赛如FER2013 (the Facial Expression Recognition 2013)[11]和EmotiW[12]从具有挑战性的真实世界场景中收集了相对充足的训练样本,促进了人脸表情识别从实验室受控环境到自然环境下的转换(表1).1.2 基于深度学习的情绪识别由于静态数据处理的便利性及其可得性,目前大量研究是基于不考虑时间信息的静态图像进行.直接在相对较小的人脸表情数据库上进行深度网络的训练势必会导致过拟合问题. 为了缓解这一问题,许多相关研究采用额外的辅助数据来从头预训练并自建网络,或者直接基于有效的预训练网络,例如AlexNet、VGG、ResNet、Mobelinet和GoogLeNet进行微调.大型人脸识别数据库CASIA WebFace、CFW和FaceScrub dataset,以及相对较大的人脸表情数据库如FER2013和TFD是较为合适的辅助训练数据. Kaya等人[13](2017)指出在人脸数据上进行预训练的VGG-Face模型比在预训练的ImageNet模型更加适合于人脸表情识别任务. Knyazev等[14](2017)也指出在大型的人脸数据库上进行预训练,然后进一步在额外的表情数据库上进行微调,能够有效地提高表情识别率.1.3 稠密网络架构DenseNet卷积神经网络是深度学习领域中举足轻重的网络框架,尤其在计算机视觉领域更是一枝独秀. CNN从ZFNet到VGG、GoogLeNet再到Resnet和最近的DenseNet,网络越来越深,架构越来越复杂,解决梯度传播时梯度消失的方法也越来越巧妙. 稠密网络架构DenseNet高速公路网络是第一批提供有效训练超过100层的端到端网络的架构之一. 使用旁通路径和浇注单元,公路网络与数百层可以毫无困难地优化. 旁路路径被认为是简化这些深度网络训练的关键因素. ResNet进一步支持这一点,其中使用纯身份映射作为旁路路径. ResNet在许多具有挑战性的图像识别、定位和检测任务上取得了令人印象深刻的、破纪录的性能,如ImageNet和COCO目标检测. 最近,随机深度被提出作为一种成功训练1202层ResNet的方法. 随机深度通过在训练过程中随机丢层来改进深度残差网络的训练. 这表明并非所有的层都是需要的,并强调了在深层(残差)网络中存在大量的冗余[6].DenseNet是一种网络架构,目的是训练更深的神经网络. 由于单独的DenseNet应用到人脸情绪识别时没有结合提取情绪特征,导致识别精度不高;DenseNet网络通过通道上的融合,会减轻深度特征的权重,更多提取到的是浅层特征. 本文针对人脸情绪识别的特点,在DenseNet中结合中心损失函数,提高情绪识别精度;使用Adam随机梯度优化器加快训练模型收敛;结合多尺度空洞卷积模块,分别用5、8和12的膨胀提权不同尺度图像特征;使用DenseNet-BC的增长率k=12,24,32分别进行情绪特征提取进行研究. 常见DenseNet网络结构如表2所示.2 基于DenseNet模型的面部表情识别2.1 整体网络结构针对原始的稠密网络不能有效提取情绪特征,多尺度特征提取不充分,且稠密网络内存占用高的问题. 本文提出多尺度卷积提取多尺度特征,减少稠密网络内存占用,同时结合改进的稠密网络模型,使用中心损失函数,加强模型对表情分类损失的学习. 网络由两部分组成,第一部分为多尺度空洞卷积模块,第二部分为结合Adam优化器和中心损失函数的稠密网络DenseNet169. 网络结构如图1.表1 常见人脸表情数据集Tab.1 Common facial expression dataset数据集CK+ JAFFE FER-2013+ RAF-DB AffectNet数量5932133141229672450000主体12310N/AN/AN/A来源实验室实验室网络网络网络收集方法P&SPP&SP&SP&S表情种类7类基础表情+蔑视7类基础表情8类基础表情7类基础表情7类基础表情注:P=posed;S= spontaneous;Condit.=Collection condition;Elicit.= Elicitation method.782第 6 期雷建云,等:基于DenseNet 的人脸图像情绪识别研究2.2 多尺度空洞卷积对于人脸情绪识别,不同的人脸都由五官组成,相同的人脸受不同的外界条件影响,能表达不同的情绪,面部肌肉做不同程度的收缩与舒张,因此人脸情绪识别需要模型重视深层的图像特征,针对类内差异大类间相似度高的问题,在稠密卷积网络模型中如何提高不同尺度特征的表达能力也是解决该问题的有效方法,V -J 人脸检测算法采用多尺度融合的方式提高模型的精度,Inception 网络则是通过不同大小的卷积核来控制感受野,[15]人脸检测算法采用了多尺度模型集成以提高分类任务模型的性能. 除了不同大小的卷积核控制感受野外,在图像分割网络Deeplab V3[16]和目标检测网络Trident Networks [17]中使用空洞卷积来控制感受野. 还有方法是通过直接使用不同大小的池化操作来控制感受野,这个方法被PSPNet [18]网络所采用. 本文提出结合多尺度空洞卷积的稠密网络形成更紧凑和位置不变的特征向量,提高不同尺度卷积特征表达能力,从而有效解决类内差异大和类间相似度小导致人脸情绪识别分类性能问题.空洞卷积也叫扩张卷积或者膨胀卷积,在卷积核中插入空洞,起到扩大感受野从而进行多尺度卷积,多尺度卷积在情绪特征识别任务中对于识别准确率相当重要,广泛应用在语义分割等任务中. 在深度网络中为了增加感受野且降低计算量,采用降采样增加感受野的方法,但空间分辨率会降低,为了能不丢失分辨率,且仍能扩大感受野,可以使用空洞卷积,在分割任务中十分有用,一方面感受野大了可以检测分割大目标,另一方面分辨率高了可以精确定位目标,捕捉多尺度上下文信息. 空洞卷积有一个参数可以设置,空洞率,具体含义就是在卷积核中填充一定数量的0,当设置不同的空洞率,感受野就会不一样,即获得了多尺度信息.该模块包含四个分支,每个分支都由3个batchnorm 、relu 和conv 组成,中间的卷积为3 × 3的空洞卷积,三个空洞卷积的膨胀分别为5、8和12. 第4个分支在原始图像的基础上,为了和前三个分支的特征图像尺寸一致对边缘做了一定的裁剪且使用3 × 3卷积计算使图像变成40 × 40 × 18,最后在四个分支上进行通道上的融合,形成40×40×54的特征图,作为稠密网络的输入. 通道融合如公式(1).表2 DenseNet 网络架构 k =32,卷积=BN -ReLu -Conv Tab.2 DenseNet Network structure k =32 conv= BN -ReLu -Conv 层卷积池化稠密块(1)转换层(1)稠密块(2)转换层(2)稠密块(3)转换层(3)稠密块(4)分类层输出大小112 × 11256 × 5656 × 5656 × 5628 × 2828 × 2828 × 2814 × 1414 × 1414 × 147 × 77 × 71 × 1DenseNet -1217 × 7,s = 23 × 3 最大池化,s = 21×1卷积3×3卷积×61 × 1 卷积2 × 2 平均池化,s = 21×1卷积3×3卷积×1211 卷积2 × 2 平均池化,s =21×1卷积3×3卷积×241 × 1 卷积2 × 2 平均池化,s = 21×1卷积3×3卷积×167 × 7 全局平均池化8D 全连接 softmaxDenseNet -1691×1卷积3×3 卷积×61×1卷积3×3卷积×121×1卷积3×3 卷积×321×1卷积3×3 卷积×32DenseNet -2011×1卷积3×3 卷积×61×1卷积3×3卷积×121×1卷积3×3 卷积×481×1卷积3×3 卷积×32多尺度空洞卷积模块稠密网络DenseNet-BC 模块图1 网络结构图Fig.1 Network structure diagram783第 42 卷中南民族大学学报(自然科学版)Y=cat(x1,x2,x3,x4) . (1)x1、x2和x3分别为不同膨胀的空洞卷积分支,x4是原始图像分支,cat表示对这四个分支在通道上面进行融合.2.3 DenseNet-BC网络模型DenseNet网络由稠密块、过渡层交替连接组成. 在稠密层中,任何层直接连接到所有后续层,加强特征传递,因此后面所有层都会收到前面所有层的特征图,即X0、X1、X2、…、Xμ-1做为输入,如公式(2):Xμ=Hμ([X0,X1,…,Xμ-1]) .(2)2.3.1 Adam优化器Adam是一种随机梯度优化方法,占用很少的内存,只需要一阶梯度. 该方法根据梯度的第一和第二矩估计值计算不同参数的学习率. 该优化器结合了比较流行的两种方法AdaGrad和RMSProp方法分别在稀疏梯度和非平稳设置梯度的优点,该优化器有如下优点:参数更新幅度对于重新缩放梯度是不变的,其步长由步长超参数限制,不需要固定的目标.2.3.2 中心损失函数中心损失函数针对softmax损失函数类内间距太大的问题,对每一个类都维护一个类中心,而后在特征层如果该样本离类中心太远就要惩罚,也就是所谓的中心损失,每一个特征需要通过一个好的网络达到特征层获得类中心,计算后所有样本的特征平均值为类中心,而好的网络需要在类中心加入的情况下才能得到. 没法直接获得类中心,所以将其放到网络里自己生成,在每一个batch里更新类中心,即随机初始化类中心,每一个batch里计算当前数据与center的距离,而后将这个梯度形式的距离加到center上. 类似于参数修正. 同样的类似于梯度下降法,增加一个度量,使得类中心不会抖动.3 实验与结果分析对提出的网络模型进行实验验证,使用PyTorch 深度学习框架,在DenseNet网络前面加入多尺度空洞卷积,同时在通道维度上结合原始输入的图像,在稠密网络中使用softmax+center 损失函数减少同类之间的距离,增加不同类的距离. 使用Adam优化器进行梯度反向传播. 具体分为实验环境和实验细节、数据集预处理、多尺度特征提取实验和对比实验.3.1 实验环境和实现细节3.1.1 实验环境本实验在Ubuntu 18.04.2 LTS操作系统环境下,基于PyTorch深度学习框架构建.实验环境见表3.3.1.2 实验过程输入48 × 48 × 3的图像经过多尺度空洞卷积处理之后得到46 × 46 × 54的人脸图像,批量大小为256,结合权值衰减参数为0.00001,学习率参数为1e-1的Adam算法,使用DenseNet-BC169 k=24的稠密网络训练300轮. 分类全连接层包含8个神经元输出实现8分类,8个输出中最大输出的序号对应情绪状态. 具体对应关系如下:生气-0,轻蔑-1,厌恶-2,害怕-3,高兴-4,中性-5,伤心-6,惊讶-7. 3.2 数据集预处理本文所采用到的实验数据集为网上公开数据集FER2013+,数据集由48 × 48 × 1的3万张图片组成.数据集分为3部分,分别是训练集、验证集和测试集,其中公开测试集用于训练过程中的验证,私有测试集用于训练最后的测试.使用OpenCV对原始数据集进行尺寸和通道的调准,将尺寸通过双线性插值法调整到60 × 60的三通道图片.卷积神经网络在分类问题中,对于数据集的不同类的样本量要求均衡,本文借助数据增强,用水平翻转、垂直翻转、旋转45°、旋转90°、高斯模糊添加噪音、仿射变换的方法,训练集中各类样本数量变为24000张,测试集各类样本数量变为4000张. 预处理前后数据集见表4~5和图2.表3 实验环境Tab.3 Experimental environment操作系统CPUGPU内存编程语言深度学习框架GPU加速库Ubuntu 20.04******************************×2Nvida Quadro RTX 6000 × 4128GPython 3.6PyTorch 1.9.1CUDA 11.2表4 预处理前FER2013+数据集Tab.4 FER2013plus dataset before preprocessing训练集公开测试集私有测试集开心7287865893惊讶3149415396中性874011821090轻蔑1191316厌恶1192418生气2100287273恐惧5326283伤心3014351384总计2506031993153784第 6 期雷建云,等:基于DenseNet 的人脸图像情绪识别研究3.3 多尺度特征提取实验在实验过程中,分别使用不同空洞率的三分支结构网络模型进行训练,分别使用了5、8和12的膨胀进行多尺度特征的提取的资源消耗和识别性能最佳,太大的空洞卷积无法提取细粒度信息,太小的空洞卷积无法提取大尺度信息.本实验为了保证通道融合上面尺寸的统一,使用公式(3)和公式(4)对图像的填充和裁剪进行计算,W in 和H in 表示输入图像尺寸,padding 表示填充数组,dilation 表示膨胀数组kernel_size ,描述卷积核大小数组,stride 描述卷积步长数组.为了证明多尺度空洞卷积模块的有效性,将在改进的DenseNet 模块前,分别添加多尺度模块和不添加多尺度模块进行训练学习情绪特征,实验结果对比如表6所示,其中训练时间是指batch size 为128的单批训练耗时.W out =êëêêúûúúW in +2×padding []0-dilation []0×()kernel_size [0]-1-1stride []0+1 ,(3) H out =êëêêúûúúH in +2×padding []1-dilation []1×()kernel_size [1]-1-1stride []1+1 .(4)3.4 算法复杂度为了说明本文模型的优越性,分别将DenseNet -BC 模型和ResNet 模型进行算法复杂度对比实验,实验数据如表7.本文提出改进的稠密网络模型的模型参数量明显少于其他的旁路网络.表7是在FER2013+的8分类网络条件下进行实验,时间是指batch size 为128的单批训练耗时.3.5 对比实验3.5.1 超参数调优实验在预处理后的FER2013+数据集上研究不同超参数对模型收敛速度和情绪分类正确率的影响. 分别从DenseNet -BC 网络增长率k ,DenseNet -BC 层数c ,权重衰减d 三个方面对模型进行训练. 实验结果如表8所示,结果表明k =24,c =169,d =1e -5时网络性能最好,收敛最快. 更深的网络会在数据集上产生过拟合,k 值太大会通过通道融合的方式加强浅层特征对深层特征的干扰,导致模型提取深层情绪特征比例较少,不利于人脸情绪识别.图3为不同模块的识别性能对比. 中心损失函数和softmax 损失相结合,学习类间的差异和类内的共同特征,有利于网络模型对情绪特征的学习,结合在深度学习中表现优秀的Adam 优化器和多尺度空洞卷积,最终模型的收敛速度快,收敛效果好. 这说明,多尺度特征和中心损失函数对情绪识别的精度有帮助,Adam 优化器能帮助模型加速收敛.3.5.2 表情识别性能本文方法在常用的面部情绪数据集FER2013+表5 预处理后FER2013+数据集Tab.5 Preprocessed FE2013plus dataset训练集公开测试集私有测试集开心2400040004000惊讶2400040004000中性2400040004000轻蔑2400040004000厌恶2400040004000生气2400040004000恐惧2400040004000伤心2400040004000总计192003200032000训练集预处理前后对比图预处理前预处理后图2 训练集预处理前后对比图Fig.2 Comparison of training set before and after preprocessing表7 模型参数对比Tab.7 Model parameter comparison 性能DenseNet -BC k=32ResNet12116920126450101101_wide152时间/s0.4530.550.7020.8790.0860.1560.2540.224参数量897101815132298209863783429562619752008354018009639508048290887表6 多尺度提取模块对比Tab.6 Comparison of multi -scale extraction modules 模型169121含有多尺度提取模块准确率0.85530.8366训练时间0.5500.453不含多尺度提取模块准确率0.79710.7863训练时间0.5450.450785第 42 卷中南民族大学学报(自然科学版)上进行十折交叉验证,实验结果如表9和图4、5所示,针对损失函数、Adam 优化器和多尺度空洞卷积对实验结果的影响见图4所示. 根据实验数据分析发现,都引入旁路连接的DenseNet 和ResNet ,明显能加快模型的收敛速度和取得更好的收敛效果,旁路连接有利于提取情绪特征和情绪特征复用;注重宽度的GoogLeNet 收敛速度不如有旁路连接的网络模型,但也取得了不错的收敛效果; 不过VGG 实验效果较差,说明浅层网络很难提取到有用的情绪特征.本文在DenseNet 神经网络结构进行表情识别性能的验证,结果表明,使用更深层的DenseNet 网络容易在FER2013数据集上产生过拟合,大模型需要训练的参数过多,数据集数量过少导致的原因,本文采用基于静态图像的单幅图像识别,相比于图像的视频序列方法,单幅图像方法的计算量更小,关于模型的正确率没有明显差别. 静态图像方法中DeRL 方法[19]和PPDN 方法[20]使用了中性表情图像作为其他情绪的参考,因此取得了比其他方法更好的性能.刘露露[21]将4个尺度特征融合放到模型的后端,DenseNet 模型中将多尺度特征放到模型的前端,显著加强多尺度特征在模型中的作用,提高表情特征的重要性,减少无用特征的干扰,实现多尺度情绪特征提取.本文的方法使用稠密网络DenseNet -BC169,模型的参数量为1855130,相比其他的轻量级模型,参数量较少,但模型准确率并没有下降,在预处理后的FER2013+上面训练300轮在公共测试集上达到93.99%的正确率. 本文方法相比于其他静态图像方法有更小的计算量和更好的情绪识别性能.4 结语针对人脸情绪识别问题提出基于DenseNet -BC169的面部表情识别网络模型,该网络模型由多尺度空洞卷积模块和稠密网络模块两部分组成.通道多尺度空洞卷积模块关注不同尺度特征的重要性,加强表情特征的作用,减少无用特征的干扰,实现对多尺度特征的提取. DenseNet 模块使用旁路加强特征传递,实现对显著表情区域的关注.该网络通过通道融合的方式,以较小的计算开销实现了对特征图的面部表情识别. 此外,在DenseNet 中结合Adam 优化器加快网络收敛速度,中心损失函数得到更好收敛效果. 实验结果表明,本文方法对预处HappySurpriseDisgustContemptAngerFearNeutral Sadness图3 识别效果Fig.3 Recognition effect表9 不同网络模型性能对比Tab.9 Performance comparison of different network models方法VGG19ResNet152DenseNet -BC169GoogLeNet 实验设置图片图片图片图片FER2013Plus (正确率/%)89.1990.2893.9988.98表8 超参数实验对比Tab.8 Comparison of superparametric experiments Variablek ,c =169,d =1e -5c ,k =24,d =1e -5d ,k =24,c =169Value 1224321211692011e -41e -51e -6Accuracy/%86.3993.0290.0690.3693.9992.5689.3891.2890.39A c c50100150200Epocn图4 不同模快性能对比 Performance comparison of different models 0.80.60.40.2A c c050100150200Epocn图5 不同网络模型性能对比Fig.5 Performance comparison of different network models786第 6 期雷建云,等:基于DenseNet的人脸图像情绪识别研究理后的FER2013+表情数据集的面部情绪识别准确率能达到93.99%.参考文献[1]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neuralnetworks [J].Communications of the ACM,2017,60(6): 84-90.[2]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J].arXivPreprint arXiv:1409.1556, 2019.[3]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C] // IEEE. 2015 IEEE Conference onComputer Vision and Pattern Recognition CVPR. NewYork: IEEE, 2015:1-9.[4]HOWARD A G,ZHU M,CHEN B,et al. Mobilenets:Efficient convolutional neural networks for mobile visionapplications[J]. arXiv Preprint arXiv:1704.04861,2017.[5]HE K M, ZHANG X Y, REN S Q , et al. Deep residual learning for image recognition [C]// IEEE. 2016 IEEEConference on Computer Vision and Pattern RecognitionCVPR. NewYork: IEEE, 2016:770-778.[6]HUANG G,LIU Z,VAN D M L,et al. Densely connected convolutional networks[C]//IEEE. Proceedingsof the IEEE Conference on Computer Vision and PatternRecognition. Hawaii: IEEE, 2017: 4700-4708.[7]SHAN C, GONG S, Facial expression recognition based on local binary patterns: A comprehensive study[J]. Imageand Vision Computing, 2009, 27(6):803–816.[8]ZHAO G,PIETIKAINEN M. Dynamic texture recognition using local binary patterns with an application to facialexpressions[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 2007, 29(6):915–928.[9]ZHI R,FLIERL M,RUAN Q,et al. Graph-preserving sparse nonnegative matrix factorization with application tofacial expression recognition[J]. IEEE Transactions onSystems, Man, and Cybernetics, 2011, B41(1):38–52.[10]ZHONG L,LIU Q,YANG P,et al. Learning active facial patches for expression analysis[C]// IEEE . ComputerVision and Pattern Recognition (CVPR). Portland:IEEE, 2013:2562-2569.[11]GOODFELLOW I J, ERHAN D, CARRIER P L, et al.Challenges in representation learning: A report on threemachine learning contests[J]. Neural Networks,2013,64:59-63.[12]DHALL A, RAMANA O, GOECKE R, et al. Video and image based emotion recognition challenges in the wild:Emotiw 2015[C]// ACM. International Conference onMultimodal Interaction. Brisbane:ACM,2015:423–426.[13]KAYA H,GURPINAR F,SALAH A A. Video-based emotion recognition in the wild using deep transfer learningand score fusion[J]. Image and Vision Computing,2017,65: 66-75.[14]KNYAZEV B,SHVETSOV R,EFREMOVA N,et al.Convolutional neural networks pretrained on large facerecognition datasets for emotion classification from video[C]//IEEE. 2018 13th IEEE International Conferenceon Automatic Face & Gesture Recognition. Istanbul:IEEE, 2018: 692-696.[15]ZHANG K,ZHANG Z,LI Z,et al. Joint face detection and alignment using multitask cascaded convolutionalnetworks[J]. IEEE Signal Processing Letters,2016,23(10):1499-1503.[16]CHEN L,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic imagesegmentation[J]. arXiv Preprint arXiv:1706.5587,2017.[17]LI Y,CHEN Y,WANG N,et al. Scale-aware trident networks for object detection[J]. arXiv Preprint arXiv:1901.1892, 2019.[18]ZHAO H,SHI J,QI X,et al. Pyramid scene parsing network [C]//IEEE. In Proceedings of the IEEEConference on Computer Vision and PatternRecognition. Hawaii: IEEE,2017:6230-6239.[19]YANG H Y,CIFTCI U,YIN L J.Facial expression recognition by de-expression residue learning [C]//IEEE. 2018 IEEE Conference on Computer Vision andPattern Recognition. Salt Lake City: IEEE, 2018:2168-2177.[20]ZHAO X Y,LIANG X D,LIU L Q,et al. Peak-piloted deep network for facial expression recognition [M]//Computer Vision-ECCV 2016. Berlin:Springer InternationalPublishing,2016.[21]刘露露,李波,何征,等.基于FS-YOLOv3及多尺度特征融合的棉布瑕疵检测[J].中南民族大学学报(自然科学版),2021,40(1):95-101.(责编&校对 姚春娜)787。

动态人脸图像序列中表情完全帧的定位与识别

动态人脸图像序列中表情完全帧的定位与识别
kingkongl48@
358
应用科学学报
第39卷
the feature vectors of each frame, and then calculates the Euclidean distance between the feature vectors to position the complete frame with the maximum expression intensity, so a standardized facial expression sequences are obtained. In order to further verify the accuracy of the positioning model, we adopt VGG16 network and ResNet50 network to perform facial expression recognition on the positioned complete frame, respectively. Experiments were conducted on the CK-h and MMI facial expression databases. The average accuracy of the sequential frame positioning model proposed in this paper reached 98.31% and 98.08%, respectively. As using the VGG16 network and ResNet50 network to perform expression recognition on the positioned complete frame, the recognition accuracies on the two databases reached 96.32% and 96.5%, 87.23% and 87.88%, respectively. These experimental results show that the proposed model can pick up the complete frame from the facial expression sequence accurately and achieve better performance on facial expression recognition as well. Keywords: facial expression sequence, embedding network, fully frame position, feature vector, facial expression recognition

基于L1范数特征脸的人脸表情识别算法

基于L1范数特征脸的人脸表情识别算法

基于L1范数特征脸的人脸表情识别算法马祥;李文敏;付俊妮【摘要】In order to achieve the good effect of facial expression recognition,this paper proposes a facial expression recognition algorithm based on L1 norm eigenface. All the training set of facial expression samples and test set of facial expression samples are preprocessing into grayscale pictures.The features of preprocessing training samples are extracted to form eigenface vectors set.Then the eigenface vectors set is classified by the method based on L1 norm to realize facial expression recognition. The experimental results of Japanese JAFEE and American AR facial expression database show that the algorithm achieves a satisfactory recognition rate for specific and non-specific face expression recognition.%为了实现良好的人脸表情识别效果,提出了一种基于L1范数特征脸的人脸表情识别算法.将所有的训练集人脸表情样本和测试集人脸样本都经过预处理后生成灰度图片,对预处理后的训练样本进行特征提取形成特征脸向量集合,通过L1范数方法对特征脸向量集合进行分类,以实现对人脸表情的识别.在日本JAFEE和美国AR人脸表情数据库上的对比实验结果表明,本文算法对于特定和非特定人脸表情识别均实现了较满意的识别率.【期刊名称】《电子设计工程》【年(卷),期】2018(026)009【总页数】5页(P163-166,171)【关键词】表情识别;L1范数;特征脸;特征空间【作者】马祥;李文敏;付俊妮【作者单位】长安大学信息工程学院,陕西西安710064;长安大学信息工程学院,陕西西安710064;长安大学信息工程学院,陕西西安710064【正文语种】中文【中图分类】TP391.4人脸表情识别就是一种通过计算机对人脸的面部表情信息进行特征提取并分类的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 Dynamic Facial Expression Recognition UsingA Bayesian Temporal Manifold ModelCaifeng Shan,Shaogang Gong,and Peter W.McOwanDepartment of Computer ScienceQueen Mary University of LondonMile End Road,London E14NS,UK{cfshan,sgg,pmco}@AbstractIn this paper,we propose a novel Bayesian approach to modelling tem-poral transitions of facial expressions represented in a manifold,with the aimof dynamical facial expression recognition in image sequences.A gener-alised expression manifold is derived by embedding image data into a lowdimensional subspace using Supervised Locality Preserving Projections.ABayesian temporal model is formulated to capture the dynamic facial ex-pression transition in the manifold.Our experimental results demonstratethe advantages gained from exploiting explicitly temporal information in ex-pression image sequences resulting in both superior recognition rates andimproved robustness against static frame-based recognition methods.1IntroductionMany techniques have been proposed to classify facial expressions,mostly in static im-ages,ranging from models based on Neural Networks[18],Bayesian Networks[7]to Support Vector Machines[1].More recently,attention has been shifted particularly to-wards modelling dynamical facial expressions beyond static image templates[7,19,20]. This is because that the differences between expressions are often conveyed more pow-erfully by dynamic transitions between different stages of an expression rather than any single state represented by a static key frame.This is especially true for natural expres-sions without any deliberate exaggerated posing.One way to capture explicitly facial expression dynamics is to map expression images to low dimensional manifolds exhibit-ing clearly separable distributions for different expressions.A number of studies have shown that variations of face images can be represented as low dimensional manifolds embedded in the original data space[17,14,9].In particular,Chang et al.[5,6,10]have made a series of attempts to model expres-sions using manifold based representations.They compared Locally Linear Embedding (LLE)[14]with Lipschitz embedding for expression manifold learning[5].In[6],they proposed a probabilistic video-based facial expression recognition method based on man-ifolds.By exploiting Isomap embedding[17],they also built manifolds for expression tracking and recognition[10].However,there are two noticeable limitations in Chang et al.’s work.First,as face images are represented by a set of sparse2D feature points,2expression manifolds were learned in a facial geometric feature space.Consequently any detailed facial deformation important to expression modelling such as wrinkles and dim-pling were ignored.There is a need to learn expression manifolds using a much more dense representation.Second,a very small dataset was used to develop and verify the proposed models,e.g.two subjects were considered in[5,10].To verify a model’s gen-eralisation potential,expression manifolds of a large number of subjects need to be es-tablished.To address these problems,we previously proposed to discover the underlying facial expression manifold in a dense appearance feature space where expression man-ifolds of a large number of subjects were aligned to a generalised expression manifold [15].Nevertheless,no attempt was made in using the expression manifold to represent dynamical transitions of expressions for facial expression recognition.Although Chang et al.presented a method for dynamic expression recognition on manifolds[6],their ap-proach is subject dependent in that each subject was represented by a separate manifold, so only a very small number of subjects were modeled.Moreover,no quantitative evalua-tion was given to provide comparison.Bettinger and Cootes,in[4,3],described a system prototype to model both the appearance and behaviour of a person’s face.Based on suf-ficiently accurate tracking,active appearance model was used to model the appearance of the individual;the image sequence was then represented as a trajectory in the param-eter space of the appearance model.They presented a method to automatically break the trajectory into segments,and used a variable length Markov model to learn the relations between groups of segments.Given a long training sequence for an individual containing repeated facial behaviours such as moving head and changing expression,their system can learn a model capable of simulating the simple behaviours.However,how to modelwork.facial dynamics for facial expression recognition was not considered in their Array Figure1:A Bayesian temporal manifold model of dynamic facial expressions.In this work,we propose a novel Bayesian approach to modelling dynamic facial ex-pression temporal transitions for a more robust and accurate recognition of facial expres-sion given a manifold constructed from image sequences.Figure1shows theflow chart of the proposed approach.Wefirst derive a generalised expression manifold for multi-ple subjects,where Local Binary Pattern(LBP)features are computed for a selective but also dense facial appearance representation.Supervised Locality Preserving Projections (SLPP)[15]is used to derive a generalised expression manifold from the gallery image sequences.We then formulate a Bayesian temporal model of the manifold to represent facial expression dynamics.For recognition,the probe image sequences arefirst embed-3ded in the low dimensional subspace and then matched against the Bayesian temporal manifold model.For illustration,we plot in Figure2the embedded expression manifold of10subjects,each of which has image sequences of six emotional expressions(with increasing intensity from neutral faces).We evaluated the generalisation ability of the proposed approach against image sequences of96subjects.Experimental results that fol-low demonstrate that our Bayesian temporal manifold model provides better performance than a static model.2Expression Manifold LearningTo learn a facial expression manifold,it is necessary to derive a discriminative facial representation from raw images.Gabor-wavelet representations have been widely used to describe facial appearance change[8,12,1].However,the computation is both time and memory intensive.Recently Local Binary Pattern features were introduced as low-cost appearance features for facial expression analysis[16].The most important properties of the LBP operator[13]are its tolerance against illumination changes and its computationalrepresentation.simplicity.In this work,we use LBP features as our facial appearance Array Figure2:Image sequences of six basic expressions from10subjects are mapped into a3D embedding space.Colour coded different expressions are given as:Anger(red),Disgust (yellow),Fear(blue),Joy(magenta),Sadness(cyan)and Surprise(green).(Note:these colour codes remain the same in allfigures throughout the rest of this paper.)A number of nonlinear dimensionality reduction techniques have been recently pro-posed for manifold learning including Isomap[17],LLE[14],and Laplacian Eigenmap (LE)[2].However,these techniques yield mappings defined only on the training data, and do not provide explicit mappings from the input space to the reduced space.There-fore,they may not be suitable for facial expression recognition tasks.Chang et al.[5] investigated LLE for expression manifold learning and their experiments show that LLE is better suited to visualizing expression manifolds but fails to provide good expression classification.Alternatively,recently He and Niyogi[9]proposed a general manifold learning method called Locality Preserving Projections(LPP).Although it is still a linear technique,LPP is shown to recover important aspects of nonlinear manifold structure.More crucially,LPP is defined everywhere in the ambient space rather than just on the training data.Therefore it has a significant advantage over other manifold learning tech-niques in explaining novel test data in the reduced subspace.In our previous work[15], we proposed a Supervised Locality Preserving Projection for learning a generalised ex-pression manifold that can represent different people in a single space.Here we adopt this approach to obtain a generalised expression manifold from image sequences of multiple subjects.Figure2shows a generalised expression manifold of10subjects.3A Bayesian Temporal Model of ManifoldIn this section,we formulate a Bayesian temporal model on the expression manifold for dynamic facial expression recognition.Given a probe image sequence mapped into an em-bedded subspace Z t,t=0,1,2,...,the labelling of its corresponding facial expression class can be represented as a temporally accumulated posterior probability at time t,p(X t|Z0:t), where the state variable X represents the class label of a facial expression.If we con-sider seven expression classes including Neutral,Anger,Disgust,Fear,Joy,Sadness and Surprise,X={x i,i=1,...,7}.From a Bayesian perspective,p(X t|Z0:t)=p(Z t|X t)p(X t|Z0:t−1)p(Z t|Z0:t−1)(1)wherep(X t|Z0:t−1)=p(X t|X t−1)p(X t−1|Z0:t−1)dX t−1(2)Hencep(X t|Z0:t)=p(X t−1|Z0:t−1)p(Z t|X t)p(X t|X t−1)p(Z t|Z0:t−1)dX t−1(3)Note in Eqn.(2),we use the Markov property to derive p(X t|X t−1,Z0:t−1)=p(X t|X t−1). So the problem is reduced to how to derive the prior p(X0|Z0),the transition model p(X t|X t−1),and the observation model p(Z t|X t).The prior p(X0|Z0)≡p(X0)can be learned from a gallery of expression image se-quences.An expression class transition probability from time t−1to t is given by p(X t|X t−1)and can be estimated asp(X t|X t−1)=p(X t=x j|X t−1=x i)=εT i,j=0αT i,j otherwise(4)whereεis a small empirical number we set between0.02-0.05typically,αis a scale coefficient,and T i,j is a transition frequency measure,defined byT i,j=∑I(X t−1=x i and X t=x j)i=1,...,7,j=1,...,7whereI(A)=1A is true0A is false(5)T i,j can be easily estimated from the gallery of image sequences.εandαare selected such that∑j p(x j|x i)=1.4The expression manifold derived by SLPP preserves optimally local neighbourhood information in the data space,as SLPP establishes essentially a k-nearest neighbour graph. To take the advantage of the characteristics of such a locality preserving structure,we define a likelihood function p(Z t|X t)according to the nearest neighbour information.For example,given an observation(or frame)Z t,if there are more samples labelled as“Anger”(we denote“Anger”as x1)in its k-nearest neighbourhood,there is less ambiguity for the observation Z t to be classified as”Anger”.Therefore the observation has a higher p(Z t|X t=x1).More precisely,let{N j,j=1,...,k}be the k-nearest neighbour of frame Z t,we com-pute a neighbourhood distribution measure asM i=∑I(N j=x i)j=1,...,k,i=1,...,7A neighbourhood likelihood function p(Z t|X t)is then defined asp(Z t|X t)=p(Z t|X t=x i)=τM i=0βM i otherwise(6)whereτis a small empirical number and is set between0.05-0.1typically,βis a scale coefficient,τandβare selected such that∑i p(Z t|X t=x i)=1.Given the prior p(X0),the expression class transition model p(X t|X t−1),and the above likelihood function p(Z t|X t),the posterior p(X t|Z0:t)can be computed straightforwardly using Eqn.(3).This provides us with a probability distribution measure of all seven candi-date expression classes in the current frame,given an input image sequence.The Bayesian temporal model exploits explicitly the expression dynamics represented in the expression manifold,so potentially it will provides better recognition performance and improved robustness against the static model based on single frame.4ExperimentsIn our experiments,we used the Cohn-Kanade Database[11],which consists of100uni-versity students in age from18to30years,of which65%were female,15%were African-American,and3%were Asian or Latino.Subjects were instructed to perform a series of 23facial displays,six of which were prototypic emotions.Image sequences from neutral face to target display were digitized into640×490pixel arrays.A total of316image sequences of basic expressions were selected from the database.The only selection cri-terion is that a sequence can be labeled as one of the six basic emotions.The selected sequences come from96subjects,with1to6emotions per subject.4.1Facial RepresentationWe normalized the faces based on three feature points,centers of the two eyes and the mouth,using affine transformation.Facial images of110×150pixels were cropped from the normalized original frames.To derive LBP features for each face image,we selected the59-bin LBP u28,2operator,and divided the facial images into18×21pixels regions,giv-ing a good trade-off between recognition performance and feature vector length[16]. Thus facial images were divided into42(6×7)regions as shown in Figure3,and repre-sented by the LBP histograms with length of2,478(59×42).5Figure 3:A face image is equally divided into small regions from which LBP histograms are extracted and concatenated into a single feature histogram.4.2Expression Manifold LearningWe adopted a 10-fold cross-validation strategy in our experiments to test our approach’s generalization to novel subjects.More precisely,we partitioned the 316image sequences randomly into ten groups of roughly equal numbers of subjects.Nine groups of image sequences were used as the gallery set to learn the generalised manifold and the Bayesian model,and image sequences in the remaining group were used as the probe set to be recognized on the generalised manifold.The above process is repeated ten times for each group in turn to be omitted from the training process.Figure 4shows an example of the learned manifold from one of the trials.The left sub-figure displays the embedded manifold of the gallery image sequences,and the right sub-figure shows the embedded results of the probe imagesequences.(a)(b)Figure 4:(a)Image sequences in the gallery set are mapped into the 3D embedded space.(b)The probe image sequences are embedded on the learned manifold.4.3Dynamic Facial Expression RecognitionWe performed dynamic facial expression recognition using the proposed Bayesian ap-proach.To verify the benefit of exploiting temporal information in recognition,we also performed experiments using a k -NN classifier to recognize each frame based on the sin-gle frame.Table 1shows the averaged recognition results of 10-fold cross validation.Since there is no clear boundary between a neutral face and the typical expression in a sequence,we manually labeled neutral faces,which introduced some noise in our recog-nition.We observe that by incorporating the temporal information,the Bayesian temporal67 manifold model provides superior generalisation performance over a static frame based k-NN method given the same SLPP embedded subspace representation.Overall Anger Disgust Fear Joy Sadness Surprise Neutral Bayesian83.1%70.5%78.5%44.0%94.5%55.0%94.6%90.7%k-NN79.0%66.1%77.6%51.3%88.6%54.4%90.0%81.7% Table1:The recognition performance of frame-level facial expression recognition.We also performed sequence-level expression recognition by using the Bayesian tem-poral manifold model followed by a voting scheme,which classifies a sequence accord-ing to the most common expression in the sequence.For comparison,we also performed experiments using a k-NN classifier followed by a voting scheme.Table2shows the averaged recognition results,which reenforce that the Bayesian approach produces supe-rior performance to a static frame based k-NN method.The recognition rates of different classes confirms that some expressions are harder to differentiate than others.For exam-ple,Anger,Fear,and Sadness are easily confused,while Disgust,Joy,and Surprise can be recognized with very high accuracy(97.5%-100%at sequence level).Overall Anger Disgust Fear Joy Sadness Surprise Bayesian91.8%84.2%97.5%66.7%100.0%81.7%98.8%k-NN86.3%73.3%87.5%65.8%98.9%64.2%97.5%Table2:The recognition performance of sequence-level facial expression recognition.We further compared our model to that of Yeasin et al.[19],who recently introduced a two-stage approach to recognize the six emotional expressions from image sequences.In their approach,opticflow was computed and projected into low dimensional PCA space to extract feature vectors.This was followed by a two-steps classification where k-NN classifiers were used on consecutive frames for entire sequences to produce characteris-tic temporal signature.Then Hidden Markov Models(HMMs)were used to model the temporal signatures associated with each of the basic facial expressions.They conducted 5-fold cross validation on the Cohn-Kanade database,and obtained the average result of90.9%.They also conducted experiments using k-NN classifier followed by a voting scheme,and achieved performance at75.3%.The comparisons summarized in Table3 illustrate that our proposed Bayesian temporal manifold model outperforms the two-stage approach(k-NN based HMM)in[19].Since our expression manifold based k-NN method followed by a voting scheme also outperforms their opticflow PCA projection based k-NN+voting,it suggests further that our expression manifold representation also captures more effectively discriminative information among different expressions than that of optic flow based PCA projections.Method Average Recognition PerformanceBayesian91.8%HMM[19]90.9%k-NN+voting86.3%k-NN+voting[19]75.3%Table3:Comparison on facial expression recognition between our model and that of Yeasin et al.[19].To illustrate the effect of a low-dimensional subspace on expression recognition per-formance,we plot the average recognition rates of both Bayesian and k -NN methods as a function of subspace dimension in Figure 5.It can be observed that the best recognition performance from both approaches are obtained with a 6-dimensional subspace.Dimension of Subspace R e c o g n i t i o n R a t e s Figure 5:Recognition rates versus dimensionality reduction in facial expression recogni-tion.Finally,we present some examples of facial expression recognition in live image se-quences.Due to the limitation of space,we plotted the probability distribution for four sequences representing Anger,Disgust,Joy,and Surprise respectively in Figure 6.The recognition results consistently confirm that the dynamic aspect of our Bayesian approach can lead to a more robust facial expression recognition in image sequences.(A supple-mentary video manifold rcg.avi is available at /∼cfshan/demos .)5ConclusionsWe present in this paper a novel Bayesian temporal manifold model for dynamic facial expression recognition in an embedded subspace constructed using Supervised Locality Preserving Projections.By mapping the original expression image sequences to a low dimensional subspace,the dynamics of facial expression are well represented in the ex-pression manifold.Our Bayesian approach captures effectively temporal behaviours ex-hibited by facial expressions,thus providing superior recognition performance to both a static model and also to an alternative temporal model using hidden Markov models.There is a limitation in our current experiment in that image sequences begin from neutral face and end with the typical expression at apex.The optimal data set should include image sequences in which the subjects can change their expression randomly.We are currently building such a dataset in order to further evaluate and develop our approach for expression recognition under more natural conditions.References[1]M.S.Bartlett,G.Littlewort,I.Fasel,and R.Movellan.Real time face detection and facial ex-pression recognition:Development and application to human computer interaction.In CVPR Workshop on CVPR for HCI ,2003.89 [2]M.Belkin and placian eigenmaps and spectral techniques for embedding andclustering.In International Conference on Advances in Neural Information Processing Sys-tems(NIPS),2001.[3] F.Bettinger and T.F.Cootes.A model of facial behaviour.In IEEE International Conferenceon Automatic Face&Gesture Recognition(FG),2004.[4] F.Bettinger,T.F.Cootes,and C.J.Taylor.Modelling facial behaviours.In British MachineVision Conference(BMVC),pages797–806,2002.[5]Y.Chang,C.Hu,and M.Turk.Mainfold of facial expression.In IEEE International Workshopon Analysis and Modeling of Faces and Gestures,2003.[6]Y.Chang,C.Hu,and M.Turk.Probabilistic expression analysis on manifolds.In IEEEConference on Computer Vision and Pattern Recognition(CVPR),2004.[7]I.Cohen,N.Sebe,A.Garg,L.Chen,and T.S.Huang.Facial expression recognition fromvideo sequences:Temporal and static puter Vision and Image Understanding, 91:160–187,2003.[8]S.Gong,S.McKenna,and J.J.Collins.An investigation into face pose distributions.InIEEE International Conference on Automatic Face and Gesture Recognition,pages265–270, Vermont,USA,October1998.[9]X.He and P.Niyogi.Locality preserving projections.In International Conference on Ad-vances in Neural Information Processing Systems(NIPS),2003.[10] C.Hu,Y.Chang,R.Feris,and M.Turk.Manifold based analysis of facial expression.InCVPR Workshop on Face Processing in Video,2004.[11]T.Kanade,J.F.Cohn,and prehensive database for facial expression analysis.InIEEE International Conference on Automatic Face&Gesture Recognition(FG),2000. [12]M.J.Lyons,J.Budynek,and S.Akamatsu.Automatic classification of single facial im-ages.IEEE Transactions on Pattern Analysis and Machine Intelligence,21(12):1357–1362, December1999.[13]T.Ojala,M.Pietikinen,and T.Menp.Multiresolution gray-scale and rotation invariant textureclassification with local binary patterns.IEEE Transactions on Pattern Analysis and Machine Intelligence,24(7):971–987,2002.[14]L.K.Saul and S.T.Roweis.Think globally,fit locally:Unsupervised learning of low dimen-sional manifolds.Journal of Machine Learning Research,4:119–155,2003.[15] C.Shan,S.Gong,and P.W.McOwan.Appearance manifold of facial expression.In IEEEICCV workshop on Human-Computer Interaction(HCI),2005.[16] C.Shan,S.Gong,and P.W.McOwan.Robust facial expression recgnition using local binarypatterns.In IEEE International Conference on Image Processing(ICIP),2005.[17]J.B.Tenenbaum,V.Silva,and ngford.A global geometric framework for nonlineardimensionality reduction.Science,290,Dec2000.[18]Y.Tian,T.Kanade,and J.Cohn.Recognizing action units for facial expression analysis.IEEETransactions on Pattern Analysis and Machine Intelligence,23(2):97–115,February2001. [19]M.Yeasin,B.Bullot,and R.Sharma.From facial expression to level of interests:Aspatio-temporal approach.In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2004.[20]Y.Zhang and Q.Ji.Active and dynamic information fusion for facial expression understandingfrom image sequences.IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):1–16,May2005.Figure 6:Facial expression recognition using a Bayesian temporal manifold model on four example image sequences (from top to bottom:Anger,Disgust,Joy,and Surprise).10。

相关文档
最新文档