(整理)基于PLC的温度控制闭环系统.

合集下载

基于PLC温度控制系统设计

基于PLC温度控制系统设计

编号: 毕业论文(设计)题目基于PLC温度控制系统的设计指导教师学生姓名学号专业自动化教学单位机电工程学院毕业论文(设计)开题报告书德州学院毕业论文(设计)中期检查表院(系):机电工程学院专业:自动化 2014 年 4月 7日目录1引言 (2)1.1课题背景以及研究的目的、意义 (2)1.2温控系统的现状 (2)1.3项目研究内容 (3)2系统硬件设计 (4)2.1 PLC选择 (4)2.2 硬件电路设计 (7)3 系统软件设计 (13)3.1 编程与通信软件的使用 (14)3.2 程序设计 (14)3.3 系统程序流程图 (15)3.4 控制系统控制程序的开发 (16)4系统的仿真和运行测试 (25)4.1 组态王的运行 (25)4.2 实时曲线的观察 (26)4.3 分析历史趋势曲线 (27)4.4 编辑数据的报表 (27)4.5系统稳定性测试及最终评估 (27)参考文献 (29)谢辞 (30)附录一三菱FX系列PLC指令一览表 (30)附录二系统程序(梯形图) (32)基于PLC温度控制系统的设计(德州学院机电工程学院,山东德州253023)摘要:本文主要介绍了基于日本三菱公司FX2N系列的可编程控制器从而进行硬件设计和软件设计,进而完成了一个完整的关于炉温控制系统的设计方案。

该设计编程时调用了PID控制模块,使得程序更为简洁,运行速度更为理想。

在软件上,则是通过利用比较新型的三菱专用软件三菱(PLC)GX Developer 8.86Q,实现控制系统的实时监控、数据的实时采样与处理。

实验证明,此系统具有快、准、稳等优点,在工业温度控制领域能够广泛应用。

关键词:温度控制;可编程控制器;三菱FX2N;PID控制模块1引言1.1课题背景以及研究的目的、意义进入21世纪后,我国社会的各项发展突飞猛进,世界的技术更是日新月异,竞争也愈演愈烈,传统的人工的操作已不能满足于目前的制造业前景,也无法保证高质量的要求,更不能提升高新技术企业的形象。

基于PLC可控硅的温度闭环控制系统设计

基于PLC可控硅的温度闭环控制系统设计

摘要在许多现代工业生产中,温度控制都是要解决的问题之一,对于无需人力控制的领域,我们需要自动控制。

随着电子技术的发展, 可编程序控制器(PLC)已经由原来简单的逻辑量控制, 逐步具有了计算机控制系统的功能。

PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。

PLC 在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。

本文提出了采用可编程控制器和可控硅组成一个比较简单、通用的温度控制系统。

PLC是温度控制的主控核心,采用PID算法,运用PLC梯形图编程语言进行编程,实现温度的自动控制。

可编程控制器的一个优势就是可以很方便的改写其中的程序以满足不同的控制系统,尤其在控制系统需要改进时优势更加明显。

文章分别就控制系统的基本工作原理,特殊模块的选型、PLC配置、等几方面进行阐述。

通过提高温度控制系统具有响应快、稳定性好、可靠性高、控制精度好等特点,对工业控制有现实意义。

关键词: 温度控制PLC PID 可控硅闭环系统AbstractIn many modern industrial production, temperature control is one of problems to solve, without human control on the field, we need automatic control. With the development of electronic technology, programmable logic controller (PLC) have by original simple logical quantity control, gradually with a computer control system function. PLC has strong commonality, use convenient, wide adaptability, high reliability, strong anti-jamming capability, programming of simple features. PLC in industrial automation control especially the status of sequence control in the foreseeable future, is irreplaceable.This paper proposes using the programmable controller and SCR form a relatively simple, general temperature control system. PLC is the main controlling of temperature control, PID algorithm, core using PLC ladder-diagram programming programming language, realize temperature automatic control. One of the strengths of the programmable controller is very convenient rewrite the program to meet different control system, especially in the control system that needs to improve more obvious when advantage.Articles respectively basic working principle of the control system, special module selection, PLC configuration, wait a few aspects. By raising the temperature control system has a fast response, good stability, high reliability, control precision is good wait for a characteristic, and the industrial control have realistic significance.Keywords :temperature-control PLC PID SCRclosed-loop system目录摘要................................................................................................................................................... Abstract (I)1 绪论.................................................................................................................................. - 0 -1.1 课题背景及研究目的............................................................................................. - 0 -1.2 国内外的研究状况.................................................................................................. - 0 -1.3 课题研究内容 ........................................................................................................... - 2 -1.4 课题研究方法 ........................................................................................................... - 2 -2 PLC控制系统的硬件组成..................................................................................... -3 -2.1 可编程控制器基础.................................................................................................. - 4 -2.1.1 可编程序控制器的概述.................................................................................... - 4 -2.1.2 可编程控制器的组成和工作原理 ................................................................... - 4 -2.1.3 可编程控制器的分类及特点............................................................................ - 7 -3 PLC控制系统的硬件设计..................................................................................... - 8 -3.1 PLC控制系统设计的基本原则和步骤............................................................ - 8 -3.1.1 PLC控制系统设计的基本原则 ....................................................................... - 8 -3.1.2 PLC控制系统设计的一般步骤 ....................................................................... - 9 -3.1.3 PLC程序设计的一般步骤............................................................................. - 10 -3.2 PLC的选型和硬件配置................................................................................... - 11 -3.2.1 PLC型号的选择 ............................................................................................. - 11 -3.2.2 FX2N的功能简介.......................................................................................... - 12 -3.2.3 温度检测模块FX2N-4AD-TC ..................................................................... - 13 -3.2.4 电加热控制器.................................................................................................. - 15 -3.3 系统整体设计方案和电器接线图 .................................................................. - 17 -3.4 PLC控制器的设计............................................................................................... - 19 -3.4.1 PID控制的原理和特点 ................................................................................. - 19 -3.4.2 PID控制的参数整定...................................................................................... - 21 -4 PLC控制系统的软件设计.................................................................................. - 25 -4.1 PLC程序设计的方法.......................................................................................... - 25 -4.2 编程软件FXGP_WIN-C概述与简介 .......................................................... - 25 -4.3.1 PLC编程指令.................................................................................................. - 26 -4.3.2 控制程序的编写.............................................................................................. - 29 -5 系统调试.......................................................................................................................... - 33 -5.1 系统软件调试 ........................................................................................................ - 33 -5.2 系统硬件调试 ........................................................................................................ - 33 -5.3 温度系统特性 ........................................................................................................ - 33 -6 结论..................................................................................................................................... - 36 -附录1......................................................................................................................................... - 38 -附录2......................................................................................................................................... - 39 -致谢........................................................................................................................................ - 40 -【参考文献】........................................................................................................................ - 41 -1 绪论1.1 课题背景及研究目的温度控制的应用领域是很广泛的,大到工业生产、航空航天,小到我们的日常生活。

基于PLC的温度控制

基于PLC的温度控制

随着微处理器,计算机的和数字通讯技术的飞速发展,计算机控制技术已经渗透到所有工业领域。

当前用于工业控制的计算机可分为:可编程控制器,基于 PC 总线的工业控制计算机,基与单片机的测控装置,用于摹拟量闭环控制的可编程调节器, 集散控制系统(DCS)和现场总线控制系统(FCS)等。

可编程控制器是应用广泛,功能强大,使用方便的通用工业控制装置,已成为当代工业自动化的重要支柱。

近几年来,在国内已得到迅速推广普及.正改变着工厂自动控制的面貌,对传统的技术改造、发展新型工业具有重大的实际意义。

可编程控制器对用户来说,是一种无触点设备,改变程序即可改变生产工艺,因此可在初步设计阶段选用可编程控制器,在实施阶段再确定工艺过程.另一方面,从创造生产可编程控制器的厂商角度看,在创造阶段不需要根据用户的要求专门设计控制器,适合批量生产.由于这些特点,可编程控制器问世以后很快受到工业控制界的欢迎,并得到迅速的发展.可编程序控制器,英文称 Programmable Controller,简称 PC。

但由于 PC容易和个人计算机(PersonalComputer)混淆,故人们仍习惯地用 PLC 作为可编程序控制器的缩写 .它是一个以微处理器为核心的数字运算操作的电子系统装置,专为在工业现场应用而设计,它采用可编程序的存储器,用以在其内部存储执行逻辑运算、顺序控制、定时/计数和算术运算等操作指令,并通过数字式或者模拟式的输入、输出接口,控制各种类型的机械或者生产过程.PLC 是微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中的机械触点的接线复杂、可靠性低、功耗高、通用性和灵便性差的缺点,充分利用了微处理器的优点,又照应到现场电气操作维修人员的技能与习惯,特殊是PLC 的程序编制,不需要专门的计算机编程语言知识,而是采用了一套以继电器梯形图为基础的简单指令形式,使用户程序编制形象、直观、方便易学;调试与查错也都很方便。

基于PLC S7—200温度控制系统设计与实现

基于PLC S7—200温度控制系统设计与实现

基于PLC S7—200温度控制系统设计与实现文章讲述了以PLC为核心的温度控制系统的设计,通过对S7-200的程序编辑和PID算法原理的运用给出了系统的硬件设计和软件设计过程,实现了对温度的闭环控制。

标签:PLC;加热器;温度控制;PID引言PLC以其自有的可靠性高,适应性强等优点已经被越来越多的应用于生活以及工业的各个领域,其中S7-200编程软件STEP7Micro/WIN编程简单且功能强大。

其强大的通信功能以及丰富的CPU模块,让设计者可以方便的选取所需功能的CPU和对应的通訊协议。

灵活的控制和强大的指令集使PLC能够控制各种设备以满足自动化控制要求。

PLC通过模拟量I/O模块实现A/D和D/A之间的转换,以便PLC用PID指令实现系统的闭环控制。

1 系统工作原理及温度控制的基本思路本设计是由PLC控制变频器调速装置与传感器、加热器以及恒温箱组成闭环控制系统如图1所示。

通过对温度值进行PID调节来进行恒温控制,由于加热器不能接收模拟量调节,所以温控主要采用PLC对其工作的占空比来控制,PID运算结果控制接通加热器。

温度传感器检测到温度信息,交由PLC处理,经PID运算得到一个0-1的实数,再经比例换算为0-100的整数,把这个整数当作一个0-10s的时间t。

设计一个周期为10s的脉冲,脉冲宽度为t,把这个脉冲加给电加热器达到控制温度的目的。

系统工作原理如图1所示。

2 系统的硬件选型及连接PLC的选型及参数设定:采用S7-200系列的CPU266,规格是:供电120-240V AC;CPU输入:24*24VDC;CPU输出:16*继电器。

温度传感器:温度传感器采用热电阻作为测温元件,带变送器。

测量范围是0-100℃,输出4-20mA,串接电阻把电流信号转换成1-5V电压信号,送入PLC 的模拟量输入通信。

系统的硬件连接:计算机和PLC之间通讯协议为PPI协议,用PC/PPI电缆将二者连接;在温度控制控制部分采用PLC的一个继电器输出口串接到加热回路中。

基于PLC和Pt100的闭环温度控制系统的设计

基于PLC和Pt100的闭环温度控制系统的设计

基于PLC和Pt100的闭环温度控制系统的设计作者:丁欣姚开武陈君霞来源:《企业科技与发展》2016年第01期【摘要】文章在建设国家骨干院校的背景环境下,借助广西水利电力职业技术学院的院级重点科研项目“基于PLC的整流教学装置的研究与实现”及核心课程的建设要求,设计出融合了PLC课程及自动检测课程的闭环温度控制系统,该控制系统稳定性好、可靠性高、响应迅速,并且与人们的生活联系紧密,具有一定的现实意义。

【关键词】PLC;单回路控制系统;铂电阻Pt100;EM235模块【中图分类号】TP273 【文献标识码】A 【文章编号】1674-0688(2016)01-0037-031 引言PLC具有经济、稳定性好、高效、易操作、易维护等特点,而且具有编程简单、抗干扰能力强、能耗低、功能强大等优点,因此在很多领域都有着广泛的应用,成为工程人员常用的控制设备之一。

其中,S7-200编程软件STEP7MIicro/WIN的编程过程简单,易掌握,功能强大。

PLC的数据采集模拟/数字量输入输出模块EM235,能够实现A/D和D/A之间的转换,以便及时采集温度变送器送过来的模拟信息[1]。

在自动化工业生产过程中,温度是最常见的过程参数之一。

近年来,国内外对温度控制系统的研究越来越深入、广泛。

随着计算机、网络、物联网等技术的发展,在温度控制系统的研究方面更是取得了巨大的进步。

如:模糊控制、职能化PID、自适应控制等,其性能、控制效果好,可广泛应用于温度控制系统及企业相关设备的技术改造服务[2]。

2 控制系统整体设计本设计采用西门子的S7-200系列PLC控制器。

铂电阻Pt100温度变送器可用来检测热水壶水温,并将温度转化为4~20 mADC的标准电流信号,送到采集模块EM235的1号通道,EM235模块将标准的电流信号转换成数字信号,完成A/D转换,并将数字信号传给PLC控制器。

PLC通过程序控制,把EM235模块传来的信号与给定值对应的数字信号相比较,根据比较结果输出驱动固态继电器的线圈,通过控制继电器线圈的得电与失电来改变热水壶的通断,从而实现对热水恒温的控制(如图1所示)。

(完整版)基于PLC的温度控制系统毕业设计论文

(完整版)基于PLC的温度控制系统毕业设计论文

基于PLC的温度控制系统设计摘要可编程控制器(plc)作为传统继电器控制装置的替代产品已广泛应用工业控制的各个领域,由于它可通过软件来改变控制过程,而且具有体积小,组装灵活,编程简单抗干扰能力强及可靠性高等特点,非常适合于在恶劣的工业环境下使用。

本文所涉及到的温度控制系统能够监控现场的温度,其软件控制主要是编程语言,对PLC而言是梯形语言,梯形语言是PLC目前用的最多的编程语言。

关键字:PLC 编程语言温度Design of the temperature control Systems based on PLCAbstractProgramming controler ( plc ) the replacing product as traditional relay control equipment each that already applies industrial control extensively field ,Since it can change control course through software ,It is little to is strong and reliability bad industrial environment use. The temperature control system that this paper is concerned with can the temperature of monitoring , its software control is programming language mainly, for PLC is ladder-shaped language, ladder-shaped language is the most programming language that PLC now uses.Keyword:PLC Programming language Temperature目录摘要----1Abstrack1引言-31.1课题研究背景1.2温度控制系统的发展状况1.3 总体设计分析2系统结构模块63.1 PLC的定义--73.2 PLC的发展--83.2.1 我国PLC的发展-83.3 PLC的系统组成和工作原理-----93.3.1 PLC的组成结构--93.3.2PLC的扫描工作原理3.4PLC的发展趋势3.5 PLC的优势--103.6 PLC的类型选择4.1 PID控制程序设计4.1.1 PID控制算法---124.1.2PID在PLC中的回路指令-144.1.3PID参数设置4.23A模块及其温度控制4.2.13A模块的介绍--174.2.2 数据转换4.2.3软件编程的思路---195程序的流程图---196 整个系统的软件编程---207结束语谢词24参考文献1 引言1.1 课题研究背景温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关。

plc温度控制系统设计

plc温度控制系统设计

plc温度控制系统设计一、引言随着现代工业的快速发展,温度控制系统在各个领域得到了广泛的应用。

可编程逻辑控制器(PLC)作为一种工业控制设备,具有较高的可靠性、稳定性和灵活性。

本文将介绍如何设计一套基于PLC的温度控制系统,以满足现代工业生产中对温度控制的需求。

二、PLC温度控制系统原理PLC温度控制系统主要通过传感器采集温度信号,将信号转换为电信号后,输入到PLC进行处理。

根据预设的温度控制策略,PLC输出相应的控制信号,驱动执行器(如加热器、制冷装置等)进行加热或降温,从而实现对温度的精确控制。

三、设计步骤与方法1.确定控制目标:明确温度控制系统的控制范围、精度要求、响应速度等指标。

2.选择合适的PLC型号:根据控制需求,选择具有足够输入/输出点、运算速度和存储容量的PLC。

3.设计硬件系统:包括传感器、执行器、通信模块等硬件设备的选型和连接。

4.设计软件系统:编写温度控制程序,包括输入数据处理、控制算法、输出控制等功能。

5.系统调试与优化:对系统进行调试,确保温度控制精度和稳定性,并根据实际运行情况进行优化。

四、系统硬件设计1.选择合适的传感器:根据控制范围和精度要求,选择合适的温度传感器,如热电偶、热敏电阻等。

2.选择合适的执行器:根据控制需求,选择合适的执行器,如伺服电机、电磁阀等。

3.通信模块:根据现场通信需求,选择合适的通信模块,如以太网、串口等。

五、系统软件设计1.编写程序:采用相应的编程语言(如梯形图、功能块图等)编写温度控制程序。

2.输入数据处理:对传感器采集的温度信号进行滤波、标定等处理,确保数据准确性。

3.控制算法:根据预设的控制策略,编写控制算法,如PID控制、模糊控制等。

4.输出控制:根据控制算法输出相应的控制信号,驱动执行器进行加热或降温。

六、系统调试与优化1.调试:对系统进行调试,确保各设备正常运行,控制算法有效。

2.优化:根据实际运行情况,对控制参数、控制策略等进行优化,提高系统性能。

基于PLC的中央空调温度控制系统设计设计

基于PLC的中央空调温度控制系统设计设计

摘要中央空调已经广泛应用于商用与民用建筑中,用于保持整栋建筑温度恒定。

传统的设计中,无论季节、昼夜和用户负荷的怎样变化,各电机都长期固定在工频状态下全速运行,所以会造成极大的的能源浪费。

本设计采用变频器、PLC、温度传感器等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量达到节能目的。

该系统采用西门子的S7—200PLC作为主控制单元,利用传统 PID 控制算法,通过西门子 MM440 变频器控制水泵运转速度,保证系统根据实际负荷的情况调整流量,实现恒温控制,从而最大程度的解决能源浪费问题。

本设计通过采用基于 USS 协议的RS-485总线通讯的网络,通过西门子TD200文本显示器实现人机界面的设计,使用 MCGS 工控组态软件,对系统进行理论分析。

通过分析该设计,验证了该设计的可靠性,可以解决中央空调的能源浪费问题。

关键词:中央空调,PLC,PID,变频器ABSTRACTThe central air conditioning has been widely used in commercial and civil buildings, which are used to maintain constant temperature of the building. In traditional design, regardless of the season, day and night, and how the user load changes, the motor is fixed to run at full speed for a long time in the condition of power frequency. It will cause great waste of energy.This design is developed based on the combination of frequency converter, PLC, temperature sensor. It makes up a temperature difference closed-loop automatic control system and automatically adjust the output flow of pump to achieve energy saving. The system adopts the Siemens S7-200 PLC as the main control unit, using the traditional PID to control algorithm, using Siemens MM440 inverter to control of pump speed, to guarantee system adjust load flow according to actual situation. All of these will bring out constant temperature control, so as to solve the problem of energy waste to a great extent.This design use RS - 485 bus communication networks which is based on USS protocol and using the Siemens TD200 to realize the human-computer interface design, and using the software made from MCGS, to carries on the theoretical analysis to the system. Verified the reliability of the design, the design can solve the problem of central air conditioning energy waste through the analysis of the design.KEY WORDS: The central air conditioning, PLC, PID, frequency converter目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1 中央空调的发展 (1)1.1.1 中央空调现在状况 (1)1.1.2 中央空调发展趋势 (1)1.2 本设计的意义 (1)1.2.1 设计的主要内容 (1)1.2.2 设计的意义 (2)第2章中央空调系统介绍 (3)2.1 中央空调结构 (3)2.1.1 中央空调概述 (3)2.1.2 中央空调结构 (3)2.2 中央空调系统工作原理 (4)2.2.1 制冷原理 (4)2.2.2 工作原理 (4)2.2.3 中央空调的控制原理 (4)2.3 中央空调的评价 (5)2.4 本章小结 (5)第3章中央空调控制系统的硬件设计 (6)3.1 变频器 (6)3.1.1 变频器的介绍 (6)3.1.2 变频调速的原理 (6)3.1.3 变频器的选择 (9)3.1.4 使用注意的问题 (10)3.2 电机的软启动原理及应用 (11)3.2.1 软启动的介绍 (11)3.2.2 软启动工作原理 (11)3.2.3 软启动的优点 (11)3.2.4 软启动与变频器的对比 (12)3.3 PLC选型 (12)3.3.1 PLC的工作原理 (12)3.3.2 西门子S7—200介绍 (13)3.4 温度传感器 (14)3.5 温度变送器 (15)3.6 人机界面选型方案 (15)3.7 总体硬件设计 (16)3.8 本章小结 (18)第4章软件设计 (20)4.1 PID控制 (20)4.1.1 PID控制简介 (20)4.1.2 PID参数整定 (20)4.1.3 对中央空调的PID控制 (21)4.2 应用软件STEP7 (21)4.3 plc编程 (22)4.3.1 程序流程图 (22)4.3.2 中央空调控制系统的I/O分配表 (24)4.3.3 程序中使用的存储器及其功能 (25)4.3.4 中央空调温度控制系统程序 (25)4.4 设备通讯 (26)4.4.1 RS-485介绍 (26)4.4.2 USS协议软件与S7—200间的通讯 (26)4.5 MCGS组态软件 (27)4.5.1 MCGS组态软件简介 (27)4.5.1 MCGS组态画面 (27)4.6 本章小结 (29)第5章结论 (30)致谢 (31)参考文献 (32)附录 (33)第1章绪论1.1 中央空调的发展1.1.1 中央空调现在状况中央空调行业现在存在着巨大的竞争,这种竞争是产品革新所产生的,产品革新主要围绕低碳环保进行,低碳环保在这个时代有着很重大的意义。

基于PLC和Pt100的闭环温度控制系统的设计

基于PLC和Pt100的闭环温度控制系统的设计
194—1O5.
[责任编辑 :钟声贤]
qiyekejIyufazhan 39
参 考 文 献
_1]李乃夫.可编程控制器原理 、应用、实验[M].河北 :中 国轻工业出版社 ,2010.
[2]朱强 ,江莹.基于工作过程的课程 开发方案研究 [J]. 中 国职 业 教 育 ,2008(1):42—44.
[3]姚家琛 ,孙健. 基于西 门子 S7—200控制器 的温度 控制 系统设计 [J].开封大学 学报 ,2014(1):83—86.
[4]王晓军 ,杨庆煊.可编程控制器原理及应用[M].北京: 化 学 工 业 出 版 社 ,2007.
[5] 陆希望 ,王权.基于 PLC技术的 电热毯远程控 制系统研 究[J].赤峰学院学报 ,2014(10):21—24.
[6] 刘伟.水温加热控制系统设计[J].科技创业 ,2014(1 1):
2o16 ̄Байду номын сангаас1期(总第411期)
岔业料扳与疑展
庆业秘授创新
公式 (1)中: 为修正代数 6】。
为铂 电阻值; 为测量温度值 ;K
当PLC于F女台运 寸,初女台fJ 中信 电器 SMO.O
进行初始化,将温度设定值 30℃对应的数字量、参数值 等存入有关数据寄存器 ,使定时器复位 ;按下启动按钮 , 系统开始温度采样 ,采样周期为 1 S;Ptl O0型铂电阻变 送器把所测量的温度隹IjI专换为 4~20 mADC的电流信号 , 送入 EM235模块 的 A号通道输入端 ,该通道将读入的 4~20 mADC 的模拟信号转换成数字信号送入 PLC的 AIW O;经过一些数据类型的转换和程序的计算后得出实 际测量的温度 将 T,n温度设定值 30℃进行比较 ,若 水温低于 30。C,控制固态继 电器线圈得 电,热水壶继续 加热 ,若水温等于或高于 30 oC,控制 固态继 电器 失电, 热水壶断电停I 烧水,从而使热水壶保持 了恒温控制 (如 图 4所示)。

基于PLC的温度控制系统设计毕业论文

基于PLC的温度控制系统设计毕业论文

作为世界第一农业大国,农业生产在我国国民经济中有着举足轻重的地位。

人们对绿色农产品的需求也随着生活水平的提高日益增强,因此我国农业由粗放式向集约式、精细式发展已经成为一种必然趋势,而设施农业作为其中的一个重要途径,越来越受到重视。

作物生长主要受温度、湿度、光照强度、CO2浓度等环境因素的影响,建造智能温室的目的就是为了对这些环境参数进行自动控制。

通过对温室控制对象和温室环境的特点的分析,确定了控制系统的结构和控制方案,本文设计了以 PLC 为下位机,以装有组态王软件的 PC 机为上位机的分布式智能温室监控系统。

硬件主要包括 PLC 及其特殊功能模块、各种传感器电路、电源和执行部件,软件主要是组态王软件和三菱 PLC 编程软件 GX Works。

控制系统有手动控制和自动控制两种控制方式。

在自动控制模式下,下位机PLC 通过传感器采集环境参数,并与用户设定的环境参数上限下限比较,控制相应执行部件启停,调节温室环境参数。

在手动控制模式下,用户根据需要控制上位机组态王手动画面的模拟开关,控制 PLC 发出开关指令控制对应执行机构,对温室环境进行调节。

上位机 PC 的组态软件与下位机 PLC 通信,完成人机交互的功能。

通过组态王实时显示下位机采集的环境参数当前值、执行部件状态、故障报警等,同时可以进行趋势曲线查看、数据库操作等。

另外用户设定环境参数、手动自动控制切换、手动控制模式下控制模拟开关也在组态王上进行。

通过系统的测试实验,智能温室监控系统基本达到了预期的设计目标,但是还需要继续完善才能运用于实际温室。

关键词:智能温室,PLC,组态王ABSTRACTABSTRACTAs the biggest agricultural country in the world, China's agricultural production Hasa pivotal position in national economy.With the improvement of living standards,demand for green vegetables are growing,therefore our country agriculture overdevelopment extensive to intensive has become an inevitable trend,and as one of the importancy of the developing,agricultural facilities are receiving much more attention. Crop growth is mainly affected by temperature, humidity, light intensity, carbon concentration's and other environmental factors, so the purpose of building Intelligence is to automatically control these environmental parameters.Through the analysis of controlled object and environmental quality greenhorn,we determine the structure of the control system and control programs. In this paper, we design a distributed intelligent greenhouse control system,which ha slower computer-programmable logic controller and upper computer-a personal with King. Hardware mainly includes the PLC and its special function module, all kinds of sensor circuit, power supply and execution unit;software maidenlinesses King and Mitsubishi PLC programming software-GX Developer.The control system has two control modes-manual control and automatic control. In the automatic control mode, lower computer-PLC collected environmental parameter sensors and compared with the minimum maximum environmental parameters which are set by the users to controlthe start and stop of the corresponding execution unit adjusted the parameters of greenhouse environment. In manual control mode, overcontrol analogue switch in the Glenview's manually screen according to the need,controllership PLC to give out switch order to con troll the corresponding execution immunoregulation the greenhouse environment. Upper computer communicate with computerist-PLC to complete the function of the human-computer interaction. Anticaking real-time display the current environment parameter values collected by computerist-PLC , the states of the execution units ,alarms and so on. In themeantime,users can view the trend curves,operate report forms or Access data base Longview. Users setting the minimum maximum environmental parameters,switchingmanual/automatic control and controlling analogue switch in manual control mode are also can be operated in King.Through system testing experiment,the intelligent greenhouse monitoring system achieves the expected design requirements,but it also need to continue to improve Borden to be used in practical greenhouse. Keywords:Intelligent Greenhouse,Environmental parameters,Programmable Logic Controller,King摘要 ................................................................................................................. 错误!未定义书签。

基于PLC的温度控制系统设计

基于PLC的温度控制系统设计

基于P L C的温度控制系统设计LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】基于PLC的温度控制系统设计摘要:可编程控制器(plc)作为传统继电器控制装置的替代产品已广泛应用工业控制的各个领域,由于它可通过软件来改变控制过程,而且具有体积小,组装灵活,编程简单抗干扰能力强及可靠性高等特点,非常适合于在恶劣的工业环境下使用。

本文所涉及到的温度监控系统能够监控现场的温度,并且能够通过现场和计算机控制,其软件控制主要是编程语言,对PLC 而言是梯形语言,梯形语言是PLC目前用的最多的编程语言。

关键词:西门子S7-200PLC;编程语言;温度1.工艺过程在工业生产自动控制中,为了生产安全或为了保证产品质量,对于温度,压力,流量,成分,速度等一些重要的被控参数,通常需要进行自动监测,并根据监测结果进行相应的控制,以反复提醒操作人员注意,必要时采取紧急措施。

温度是工业生产对象中主要的被控参数之一。

本设计以一个温度监测与控制系统为例,来说明PLC在模拟量信号监测与控制中的应用问题。

2.系统控制要求PLC在温度监测与控制系统中的逻辑流程图如图所示:具体控制要求如下:被控系统的温度的正常范围在10度-100度之间,基准温度为50度.高于60度可进行散热调整,低于40度时可进行加热调整.系统设置一个启动按纽-启动控制程序,设置绿,红,蓝3个指示灯来指示温度状态。

被控温度在要求10到100度范围内,绿灯亮,表示系统运行正常。

当被控温度超过上限100度时,红灯亮,当低于10度时蓝灯亮,红蓝灯亮示警操作人员做必要处置.另外,当温度处于正常范围,且高于60度时,启动风扇进行散热;当低于40度时启动加热器进行加热,从而使被控温度趋于50度的基准温度.在被控系统中设置1个温度测量点,温度信号经变送器变成4~20ma 的电信号(对应温度0~100度),送入AIW2模拟量输入通道。

基于PLC的温控系统设计与实现

基于PLC的温控系统设计与实现
基于PLC的温控系 统设计与实现
汇报人: 日期:
目 录
• 引言 • 系统设计 • 系统实现 • 系统评估与优化 • 结论与展望
01
引言
温控系统的重要性
01
02
ቤተ መጻሕፍቲ ባይዱ
03
产品质量保障
温控系统能够确保生产过 程中的温度稳定,从而保 障产品的质量和一致性。
能源效率提升
通过精确的温度控制,可 以优化能源消耗,降低生 产成本。
工业领域
该系统可用于电子厂房、制药车间等场所的温度控制,确保生产过 程的稳定性和产品质量的可靠性。
物流领域
基于PLC的温控系统可用于冷链物流中的仓储和运输环节,确保食 品、药品等产品在储运过程中的品质安全。
未来研究方向与目标
1 2 3
智能化发展
未来研究可进一步引入人工智能、大数据等技术 ,提高温控系统的自适应能力和智能化水平。
集成方式选择
根据实际需求,选择合适的系统集成方式 ,如通过通信接口(如Modbus、
Ethernet等)与上位机或其他系统进行集 成。
系统调试与优化
对整个温控系统进行调试,检查温度控制 效果,根据实际情况对控制算法和参数进
行调整优化,提高系统性能。
通信协议设计与实现
设计并实现PLC与上位机或其他系统之间 的通信协议,确保数据传输的准确性和实 时性。
文档编写与交付
编写系统使用说明、维护手册等相关文档 ,交付给客户或使用人员,确保系统能够 顺利投入运行。
04
系统评估与优化
系统性能评估
稳定性评估
01
基于PLC的温控系统在长时间运行过程中,能否保持温度控制的
稳定性,不出现大幅度的温度波动。

基于PLC及温度控制系统设计

基于PLC及温度控制系统设计

基于PLC的温度控制系统设计摘要:可编程控制器(plc)作为传统继电器控制装置的替代产品已广泛应用工业控制的各个领域,由于它可通过软件来改变控制过程,而且具有体积小,组装灵活,编程简单抗干扰能力强及可靠性高等特点,非常适合于在恶劣的工业环境下使用。

本文所涉及到的温度监控系统能够监控现场的温度,并且能够通过现场和计算机控制,其软件控制主要是编程语言,对PLC而言是梯形语言,梯形语言是PLC目前用的最多的编程语言。

关键词:西门子S7-200PLC;编程语言;温度1.工艺过程在工业生产自动控制中,为了生产安全或为了保证产品质量,对于温度,压力,流量,成分,速度等一些重要的被控参数,通常需要进行自动监测,并根据监测结果进行相应的控制,以反复提醒操作人员注意,必要时采取紧急措施。

温度是工业生产对象中主要的被控参数之一。

本设计以一个温度监测与控制系统为例,来说明PLC在模拟量信号监测与控制中的应用问题。

2.系统控制要求PLC在温度监测与控制系统中的逻辑流程图如图所示:具体控制要求如下:将被控系统的温度控制在50度-60度之间,当温度低于50度或高于60度时,应能自动进行调整,当调整3分钟后仍不能脱离不正常状态,则应采用声光报警,以提醒操作人员注意排除故障。

系统设置一个启动按纽-启动控制程序,设置绿,红,黄3个指示灯来指示温度状态。

被控温度在要求范围内,绿灯亮,表示系统运行正常。

当被控温度超过上限或低于下限时,经调整3分钟后仍不能回到正常范围,则红灯或黄灯亮,并有声音报警,表示温度超过上限或低于下限。

在被控系统中设置4个温度测量点,温度信号经变送器变成0~5V的电信号(对应温度0~100度),送入4个模拟量输入通道。

PLC读入四路温度值后,再取其平均值作为被控系统的实际值。

若被测温度超过允许范围,按控制算法运算后,通过模拟两输出通道,向被控系统送出0~10V的模拟量温度控制信号。

PLC通过输入端口连接启动按钮,通过输出端口控制绿灯的亮灭,通过输出端口控制红灯的亮灭,通过输出端口控制黄灯的亮灭。

基于PLC的温度控制系统

基于PLC的温度控制系统

摘要??温度是各种工业生产和科学实验中最普遍、也是最重要的热工参数之一。

温度控制的精度对产品或实验结果会产生重大的影响。

温度控制的模式多样,而PLC可靠性高,抗干扰能力强,易学易用,采用PLC控制是其中一种比较优越的控制。

?本文介绍了基于西门子可编程控制器(PLC)S7-200和组态软件组态王的炉温监控系统的设计方案。

硬件方面采用了CPU型号为224的S7-200、K型热电偶和温度模块EM231。

热电偶作为温度的采集元件,采集的信号经过EM231的处理后就可把数据送入PLC中进行处理。

PLC 的程序中采用了位置式PID算法,脉宽调制PWM方式,运用了粗调和细调的思想,程序在不同的温度段使用不同的PID参数,实现温度的自动控制。

?人机界面采用的是国内的一个比较流行的组态王软件。

组态王可以实现在线监控。

组态项目中制作了曲线画面、报表画面、报警画面和参数监控画面,用户可方便地查询PLC的运行情况、数据采集和在线控制。

?实验结果表明,采用了粗调和细调思想的程序的PLC系统,具有反应速度快,超调量小,调节迅速,精度高等特点。

组态王功能强大,操作方便,有助于系统的监视与控制,表明了组态软件的具有很好的发展前景。

?关键词:温度控制;可编程控制器;PID;组态王?Abstract??Temperature is the most universal and important industrial parameter in all kinds of technical produce and scientific experiment. The manipulative precision of temperature will take a great effect on production or experimental result. In many cases,we need to control the temperature of various types of furnace, heat treatment furnaces, reactors .But they are complex and changing .As a result, its control over demand regulator .The mode of temperature control is various. The programmable logic controller(PLC) is Reliable、not easily to be jamming and easily to be learned and used , welcomed by workers and widely used in industry.?Programmable controller (PLC) is a digital electronic computing operating system, designed for applications in industrial environments designed. It uses a programmable memory for storage in its internal implementation of logic operations, sequence control, timing, calculation and arithmetic operations, such as operating instructions, and through digital and analog input and output, control of various types of machinery or the production process.?Configuration is to use application software to provide the tools, methods, and to complete the works in the course of a specific task. Configuration software applications is broad, it can be applied to power systems, water supply systems, petroleum, chemical and other fields of data acquisition and supervisory control and process control and many other fields. Before the concept of the configuration, in order to achieve a particular task, using the preparation process is achieved. Programming is not only a heavy workload, long and easy to make mistakes, can not guarantee period. The emergence of the configuration software can solve the problem. The Kingview can help complete the task in a few days.?This thesis mainly introduces a design of temperature control system with SIMATICprogrammable logic controller (PLC) S7-200 and the Kingview configuration soft .We use the PLC s7-200 with cup 224、the K type thermocouple and temperature module EM231 as the hardware, and use the V4.0 STEP 7 Micro WIN to programming . The thermocouple can measure the temperature of the stove, and translate the temperature signal to the voltage signal. And then the EM235 will transmit it to the PLC after disposing the signal .This system use positional type PID arithmetic and Pulse-Width Modulation methodology .And the procedure use idea of coarse adjustment algorithm and the fine adjustment algorithm. The procedure will run with different PID parameter in different condition.?We have designed Human Machine Interface(HMI)with the Kingview? configuration soft which is developed by domestic company . The Kingview can monitor and control the PLC on line. We also have designed several menu ,including the historical curve screen 、the real time curve screen、the data? report forms screen、the alarm screen and parameter monitoring screen. Users can easily query the operation of PLC, data acquisition and on-line control.?The experimental results show that,the plc can work reliably, stably. The system using coarse adjustment algorithm and the fine adjustment algorithm can get a better result. That is fast response, small overshoot, rapid adjustment, high accuracy. The Kingview is powerful, easy to operate. We can speculate that configuration software will have a good prospect for development.??Keywords:Temperature Control;PLC;PID;KingView?目录第一章? 前? 言?11.1 课题研究背景?11.2 温度控制系统的发展状况?21.3本文的研究内容?4第二章可编程控制器的概述?52.1 可编程控制器的产生?52.2 可编程控制器的基本组成?5第三章? 硬件配置和软件环境?83.1实验配置?83.1.1 西门子S7-200?83.1.2 传感器?83.1.3 EM 231模拟量输入模块?93.2 STEP 7 Micro/WIN32软件介绍?103.2.1安装STEP 7-MWIN32 V4.0?103.2.2 系统参数设置?12第四章控制算法描述?144.1 PWM技术?144.2 PID控制程序设计?144.2.1 PID控制算法?154.2.2 PID在PLC中的回路指令?164.2.3 PID参数整定?19第五章程序设计?215.1方案设计思路?215.2 程序流程图?235.3助记符语言表?245.4梯形图?29第六章组态画面设计?35 6.1组态软件概述?356.2组态王的介绍?356.3组态画面的建立?356.3.1创建项目?366.3.2建立主画面?386.3.3建立趋势曲线画面?39 6.3.4建立数据报表?416.3.5建立报警窗口?436.3.6建立参数监控画面?45 第七章系统测试?467.1启动组态王?467.2 参数监控和设定?477.3 报警信息提示?487.4报表系统查询?497.5趋势曲线监控?507.5.1实时趋势曲线?507.5.2 分析历史趋势曲线?51 第八章结论?54参考文献??55。

基于PLC 的温度控制系统

基于PLC 的温度控制系统

《可编程控制器件及应用》课程考查论文题目:基于PLC 的温度控制系统专业班级:电子科学与技术2007级学号:222007322072007姓名:王松龄成绩:基于PLC 的温度控制系统概述:介绍了染色工艺的特点,并根据其特点提出温度控制的要求,进而确定以PLC 为核心的温度控制系统,阐述了染色温度控制的工艺流程,详细介绍了温度控制的原理和组成,实践证实这套系统简单有效可靠。

关键词:PLC、染色、温度控制1 引言染色工序在纺织品生产中占有重要地位,染色质量直接决定了纺织品的色泽、外观,甚至还影响纺织品的生产成本。

在染色工序中,影响染色的因素主要有染液浓度、温度、液位等,其中温度控制是很重要而又复杂的控制过程。

染色过程实际上是执行由工艺人员针对不同织物的一条温度曲线,每个工艺对染色的温度、升降温过程都有严格的要求,否则,容易使织物产生色差、缸差、条痕等疵点,造成复染率上升,生产成本的增加。

针对染色过程温度控制的复杂性,设计了基于PLC 的染色机温度控制系统,实现对染色过程温度的控制,从而减少织物疵点,提高生产效率,降低生产成本。

2 系统控制要求1)温度曲线存储要求对于不同的染色品种,其对温度的要求是不同的,因此对应的温度工艺曲线也是不同的,若将所有染色品种的温度工艺曲线都存入现场温度控制器中,则对该控制器的内存要求非常高,导致系统臃肿,因此本系统设计通过一台中控机,将工艺人员设定的不同的温度工艺曲线,全部由工作人员在中控机上输入后经PROFIBUS—DP 现场总线下传给现场控制器,现场控制器根据接收的温度工艺曲线进行温度控制,同时现场控制器可以随时向中控机申请修改温度工艺曲线的参数。

在网络中断时,现场控制器可以保存当前的温度工艺曲线,并且具有断电长期保存当前温度曲线的功能。

2)温度控制要求在染色工艺过程中,典型的工艺曲线如图1 下所示:图1 典型的工艺曲线由图1 可知,染色工艺可以分为多个曲线段,不同的曲线段对应不同的温度。

基于PLC的恒温控制系统

基于PLC的恒温控制系统

摘要随着计算机技术、通信技术、自动控制技术以及各种智能技术的迅速发展,高可靠性可编程控制器(PLC)出现,使得现代工业控制系统的设计开发周期短,可靠性高,成本低。

本文结合恒温控制系统的特点,提出控制系统的总体设计方案,采用PLC 和检测仪表完成系统硬件设计;编写PLC控制程序和监控组态界面,实现温度采集与显示,实现了温度在线监测和控制。

并采用工业以太网,实现现场控制单元与上位机进行信息交换,并能与企业内部联网。

关键词:自动检测;PLC;温度;监控组态ABSTRACTWith computer technology, communication technology, automatic control technology, as well as the rapid development of smart technology, high reliability, programmable logic controller (PLC) the emergence of modern industrial control systems makes the design of a short development cycle, high reliability and cost reduction .In this paper, the characteristics of constant temperature control system, the control system design program, PLC and instrumentation used to complete system hardware design; PLC control procedures to prepare and monitor the configuration interface, collection and display temperature to achieve a temperature-line monitoring and control. And the use of Industrial Ethernet, the realization of the scene control unit and host computer exchange of information and networking and the enterprise. Keywords: Automatic detection;PLC;Temperature;Monitoring configuration目录第一章绪论 (1)1.1选题背景 (1)1.1.1PLC控制技术与继电器控制技术的区别 (1)1.1.2PLC控制技术和通用计算机控制技术的区别 (1)1.1.3PLC控制技术与单片机控制技术的区别 (2)1.2本课题研究现状 (2)1.3 本文主要的研究工作 (3)第二章恒温控制系统的硬件设计 (4)2.1恒温控制系统的组成 (4)2.2恒温控制系统总体设计方案 (5)2.3 PID控制原理 (6)2.4可编程序控制器介绍 (7)2.5PLC的选型 (9)2.6模拟量模块选择 (10)2.7其他硬件选择 (11)2.8系统供电接线图 (16)2.9PLC硬件接线图 (17)第三章恒温控制系统软件设计 (21)3.1STEP7-Micro/Win32 编程软件介绍 (21)3.2I/O地址分配 (22)3.3系统主程序 (24)3.4PID控制算法程序 (26)3.5标度转换 (27)3.6数码显示 (28)3.7人机界面 (29)第四章结论 (31)参考文献 (32)致谢 (33)附录系统各部分程序 (34)主程序 (34)标度变换程序 (38)PID参数设定程序 (40)PID输出中断程序 (41)数显程序 (42)第一章绪论1.1选题背景随着计算机技术、通信技术、自动控制技术,以及各种智能技术的迅速发展,出现了多种实用的控制技术,如继电器控制技术、计算机控制技术、单片机控制技术及PLC控制技术等,每种控制技术有各自的优缺点和应用领域。

基于西门子PLC的温度控制系统的设计设计

基于西门子PLC的温度控制系统的设计设计

安徽大学机械与电气工程学院毕业设计(论文)课题:基于s7-200 PLC的温度控制系统设计专业:自动化安徽建筑大学机械与电气工程学院二○一三年六月摘要随着科学技术不断进步和社会飞速发展,热水器成为人民日常生活息息相关的电器产品;。

设计方法也开始多种多样,从而使全自动热水机显得更加智能化。

可编程控制器(PLC)以微处理器为核心,普遍采用依据继电接触器控制系统电气原理图编制的梯形图语言进行程序设计,编程容易,功能扩展方便,修改灵活而且结构简单,抗干扰能力强。

S7-200系列可编程控制器指令丰富,可以接各种输出、输入扩充设备,有丰富的特殊扩设备,其中的模拟输入设备和通信设备更是符合全自动洗衣机控制系统的要求与特点。

本设计选择S7-200为核心部件,着重进行硬件接口设计,利用梯形图和指令表进行编程,实现了水的加热控制系统的自动化。

在整个设计程序以及程序结束的处理操作过程中,更快捷。

总之,整体梯形图的设计简练,有很强的可读性及操作性。

关键字:PLC、继电接触器、可编程控制器、自动化ModelAlong with the constant progress of science and technology and the social rapid development, the water heater become People's Daily life is closely linked Electrical products; . Design method are also beginning to varied, so that the automatic hot water machine appear more intelligent. Programmable controller (PLC) in the microprocessor as the core, the widely used electrical principle diagram based on relay contactor control system establishment of ladder diagram programming language, programming easy, convenient function extension and modification flexible and simple structure, strong anti-jamming capability.S7-200 series programmable controller instruction is rich, can meet various output and input expansion equipment, has a lot of special equipment, and the analog input equipment and communication equipment is in accordance with the requirements and features of fully automatic washing machine control system.This design choose S7-200 as the core part, emphatically carries on the hardware interface design and programming using ladder diagram and instruction list, automate the water heating control system. Throughout the design process, in the process of the processing operations by the end of the program and more quickly. In a word, the whole ladder diagram design concise, has the very strong readability and operability.Key words: PLC, relay contactor, PLC, automation1绪论 (1)2 系统的介绍 (3)2.1系统的描述 (3)2.2系统的功能 (3)2.3 系统的流程图 (4)3 硬件设计 (5)3.1 温度变送器 (5)3.3PLC的简介 (10)3.3.1 PLC主机的选型 (10)3.3.2 PLC的输入和输出模块的选型 (11)3.4 PID (12)3.4.1 PID在PLC中的回路指令 (14)3.4.2 回路输入输出变量的数值转换方法 (15)3.4.3 实数归一化处理 (15)3.4.4 PID参数整定 (15)3.5可控硅 (16)4 软件设计 (17)4.1软件的设计 (17)4.2 程序的编写 (18)致谢 (23)参考文献 (24)附录1 (25)附录2 (28)1外文文献 (28)1绪论温度及湿度的测量和控制对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 绪论1.1 课题背景随着现代工业的逐步发展,在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。

其中,温度是一个非常重要的过程变量。

例如:在冶金工业、化工工业、电力工业、机械加工和食品加工等许多领域,都需要对各种加热炉、热处理炉、反应炉和锅炉的温度进行控制[1]。

这方面的应用大多是基于单片机进行PID控制,然而单片机控制的DDC系统软硬件设计较为复杂,特别是涉及到逻辑控制方面更不是其长处,然而PLC在这方面却是公认的最佳选择。

随着PLC功能的扩充在许多PLC控制器中都扩充了PID控制功能,因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的,通过采用PLC来对它们进行控制不仅具有控制方便、简单和灵活性大的优点,而且可以大幅度提高被测温度的技术指标,从而能够大大提高产品的质量和数量。

因此,PLC对温度的控制问题是一个工业生产中经常会遇到的控制问题。

这也正是本课题所重点研究的内容。

1.2 研究的主要内容本课题的研究内容主要有:1)温度的检测;2)采用PLC进行恒温控制;3)PID算法在PLC中如何实现;4)PID参数对系统控制性能的影响;5)温控系统人机界面的实现。

2 基于PLC的炉温控制系统的硬件设计2.1系统控制要求本PLC温度控制系统的具体指标要求是:对加热器加热温度调整范围为0℃—150℃,温度控制精度小于3℃,系统的超调量须小于15%。

软件设计须能进行人机对话,考虑到本系统控制对象为电炉,是一个大延迟环节,且温度调节范围较宽,所以本系统对过渡过程时间不予要求。

2.2系统设计思路根据系统具体指标要求,可以对每一个具体部分进行分析设计。

整个控制系统分为硬件电路设计和软件程序设计两部分。

系统硬件框图结构如图所示:图2.1系统硬件框图被控对象为炉内温度,温度传感器检测炉内的温度信号,经温度变送器将温度值转换成0~10V的电压信号送入PLC模块。

PLC把这个测量信号与设定值比较得到偏差,经PID运算后,发出控制信号,经调压装置输出交流电压用来控制电加热器的端电压,从而实现炉温的连续控制。

2.3系统的硬件配置2.3.1 S7-200PLC选型S7-200 系列 PLC 是由德国西门子公司生产的一种超小型系列可编程控制器,它能够满足多种自动化控制的需求,其设计紧凑,价格低廉,并且具有良好的可扩展性以及强大的指令功能,可代替继电器在简单的控制场合,也可以用于复杂的自动化控制系统。

由于它具有极强的通信功能,在大型网络控制系统中也能充分发挥作用[2] S7-200系列可以根据对象的不同, 可以选用不同的型号和不同数量的模块。

并可以将这些模块安装在同一机架上。

SiemensS7-200 主要功能模块介绍:(1)CPU 模块S7-200的CPU 模块包括一个中央处理单元,电源以及数字I/O 点,这些都被集成在一个紧凑,独立的设备中。

CPU 负责执行程序,输入部分从现场设备中采集信号,输出部分则输出控制信号,驱动外部负载.从 CPU 模块的功能来看, CPU 模块为CPU22*,它具有如下五种不同的结构配置CPU 单元:①CPU221 它有 6 输入/4 输出,I/0 共计 10 点.无扩展能力,程序和数据存储容量较小,有一定的高速计数处理能力,非常适合于少点数的控制系统。

②CPU222 它有8 输入/6 输出,I/0 共计 14 点,和 CPU 221 相比,它可以进行一定的模拟量控制和2个模块的扩展,因此是应用更广泛的全功能控制器。

③CPU224 它有 14 输入/10 输出,I/0 共计 24 点,和前两者相比,存储容量扩大了一倍,它可以有 7 个扩展模块,有内置时钟,它有更强的模拟量和高速计数的处理能力,是使用得最多 S7-200 产品。

④CPU226 它有 24 输入/16 输出,I/0 共计 40 点,和 CPU224 相比,增加了通信口的数量,通信能力大大增强。

它可用于点数较多,要求较高的小型或中型控制系统。

⑤CPU226XM 它在用户程序存储容量和数据存储容量上进行了扩展,其他指标和 CPU226相同。

(2)开关量 I/O 扩展模块当 CPU 的 I/0 点数不够用或需要进行特殊功能的控制时,就要进行 I/O 扩展,I/O 扩展包括 I/O 点数的扩展和功能模块的扩展。

通常开关量 I/O 模块产品分 3 种类型:输入模块,输出模块以及输入/输出模块。

为了保证 PLC 的工作可靠性,在输入模块中都采用提高可靠性的技术措施。

如光电隔离,输入保护(浪涌吸收器,旁路二极管,限流电阻),高频滤波,输入数据缓冲器等。

由于PLC 要控制的对象有多种,因此输出模块也应根据负载进行选择,有直流输出模块, 交流输出模块和交直流输出模块。

按照输出开关器件种类不同又分为 3 种:继电器输出型,晶体管输出型和双向晶闸管输出型。

这三种输出方式中,从输出响应速度来看,晶体管输出型最快,继电器输出型最差,晶闸管输出型居中;若从与外部电路安全隔离角度看,继电器输出型最好。

在实际使用时,亦应仔细查看开关量 I/O 模块的技术特性,按照实际情况进行选择。

由于本系统是单回路的反馈系统,CPU224XP相比与其他型号具有更好的硬件指标,其上自带有模拟量的输入和输出通道,因此节省了元器件的成本,CPU224XP自带的模拟量I/O规格如表:表2.1模拟量I/O配置表CPU224XP自带的模拟量输入通道有2个,模拟量输出通道1个。

在S7-200中,单极性模拟量的输入/输出信号的数值范围是0~32000,双极性模拟信号的数值范围是-32000~+32000[3]2.3.2 温度传感器温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和 IC 温度传感器。

热电阻是中低温区最常用的一种温度检测器。

它的主要特点是测量精度高,性能稳定,典型的有铜热电阻、铂热电阻等。

其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪,它的阻值会随着温度的变化而改变,通常用PT100来表示。

其中PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。

PT100是广泛应用的测温元件,在-50~600℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。

由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。

校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值[4]。

常用的Pt电阻接法有三线制和两线制,其中三线制接法的优点是将PT100的两侧相等的的导线长度分别加在两侧的桥臂上,使得导线电阻得以消除。

常用的采样电路有两种:一为桥式测温电路,一为恒流源式测温电路。

本设计采用的就是三线制接线。

由于铂热电阻测出的是温度变化,需要在将信号输入PLC前加一个温度变送器,将温度信号转换成电压信号。

本系统采用的温度变送器是DZ4130,使用过程中要加一个24V的电源,该电源可以从PLC上直接获得。

2.3.3 调压装置(SSR)由于PLC输出的信号是直流信号,而被控制的加热器小灯泡是由220伏特交流电供应工作的,所以在由PLC接入到小灯泡时要加入一个调压装置,本设计采用的是一个可将5伏特的直流电转化为220伏特交流电的反相调压器EUV-75A 。

该调压装置工作时需要有两个工作电源,分别支持交流部分和直流部分工作,交流部分需要220伏特的工作电压,直流部分需要5伏特的直流电压。

EUV-75A 是反相调压器,即输入0伏特对应的输出是220伏特的输出,而输入5伏特对应的是0伏特是输出。

EUV-75A 的硬件接线如图所示:图2.2 EUV-75A 硬件接线图其中直流部分共有5根线,实际使用的时候只有其中3根式有用的,一根接5伏特的直流电源,一根为信号的输出端,还有一根是电源和输出信号的公共接地。

EUV-75A 的交流部分有3个端口,对角线的两个端口是接工作电源220伏特的交流电,输出信号接剩下的一个端口和其下方的一个端口。

直流部分 交流电源和输出接口 输出接口交流电源3 炉温PID控制算法3.1模拟PID算法简介在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近80年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便[5]。

即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID 控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制:比例控制是一种最简单,最常用的控制方式[6]。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D)控制:在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

相关文档
最新文档